

Java Data Mining: Strategy,
Standard, and Practice

A Practical Guide for Architecture,
Design, and Implementation

Mark F. Hornick
Erik Marcadé

Sunil Venkayala

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Publisher Diane D. Cerra
Publishing Services Manager George Morrison
Project Manager Marilyn E. Rash
Assistant Editor Asma Palmeiro
Cover Design Brian May, Maycreate LLC
Production Services Graphic World Inc.
Composition diacriTech
Illustration diacriTech
Interior Printer The Maple-Vail Book Manufacturing Group
Cover Printer Phoenix Color Corp

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.
Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com. You may
also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”
Java Specification Request 73. Copyright © 2004. Oracle Corporation. Used with permission.
Java Specification Request 274. Copyright © 2005. Oracle Corporation. Used with permission.

Library of Congress Cataloging-in-Publication Data
Hornick, Mark F.

Java data mining : strategy, standard, and practice : a practical guide for architecture, design,
and implementation / Mark F. Hornick, Erik Marcadé, Sunil Venkayala.

p. cm.—(The Morgan Kaufmann series in data management systems)
Includes bibliographical references and index.
ISBN 0-12-370452-9 (acid-free paper)

1. Data mining. 2. Java (Computer program language) I. Marcadé, Erik.
II. Venkayala, Sunil. III. Title.
QA76.9.D343.H67 2007
005.74—dc22 2006050783

ISBN-10: 0-12-370452-9
ISBN-13: 978-0-12-370452-8

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 10 9 8 7 6 5 4 3 2 1

To Suzanne, Amanda, and Tim for their enthusiasm and support.
– M.H.

To Caroline, Laetitia, and Guillaume.
– E.M.

To my parents, wife Meera, and daughter Shreya.
– S.V.

vii

Contents

Preface xvii

Guide to Readers xxi

Part I – Strategy 1

Chapter 1 Overview of Data Mining 3

1.1 Why Data Mining Is Relevant Today? 4
1.2 Introducing Data Mining 6

1.2.1 Data Mining by Other Names 6
1.2.2 Data Mining Versus Other Forms of Advanced Analytics 7
1.2.3 Process 10
1.2.4 What Is a Data Mining Model? 12
1.2.5 Some Jargon 13
The Mining Metaphor 15

1.3 The Value of Data Mining 20
1.3.1 How Reliable Is Data Mining? 20
1.3.2 How Can Data Mining Increase Profits

and Reduce Costs 21
1.4 Summary 23
References 24

Chapter 2 Solving Problems in Industry 25

2.1 Cross-Industry Data Mining Solutions 26
2.1.1 Customer Acquisition 26
2.1.2 Customer Retention 28
2.1.3 Response Modeling 30
2.1.4 Fraud Detection 32
2.1.5 Cross-Selling 35

viii Contents

2.1.6 New Product Line Development 36
2.1.7 Survey Analysis 37
2.1.8 Credit Scoring 38
2.1.9 Warranty Analysis 39
2.1.10 Defect Analysis 40

2.2 Data Mining in Industries 41
2.2.1 Financial Services 41
2.2.2 Healthcare 42
2.2.3 Higher Education 43
2.2.4 Public Sector 44
2.2.5 Communications 45
2.2.6 Retail 46
2.2.7 Life Sciences 46

2.3 Summary 47
References 48

Chapter 3 Data Mining Process 51

3.1 A Standardized Data Mining Process 52
3.1.1 Business Understanding Phase 53
3.1.2 Data Understanding Phase 55
3.1.3 Data Preparation Phase 56
3.1.4 Modeling Phase 57
3.1.5 Evaluation Phase 58
3.1.6 Deployment Phase 59

3.2 A More Detailed View of Data Analysis and Preparation 60
3.3 Data Mining Modeling, Analysis, and Scoring Processes 70

3.3.1 Model Building 70
3.3.2 Model Apply 71
3.3.3 Model Test 72

3.4 The Role of Databases and Data Warehouses in Data Mining 74
3.5 Data Mining in Enterprise Software Architectures 75

3.5.1 Architectures 76
3.5.2 Incorporating Data Mining into Business Operations 79
3.5.3 Business Workflow 80

3.6 Advances in Automated Data Mining 81
3.7 Summary 82
References 83

Chapter 4 Mining Functions and Algorithms 85

4.1 Data Mining Functions 86
4.2 Classification 88

Contents ix

4.3 Regression 89
4.4 Attribute Importance 91
4.5 Association 93
4.6 Clustering 97
4.7 Summary 100
References 101

Chapter 5 JDM Strategy 103

5.1 What Is the JDM Strategy? 104
5.2 Role of Standards 110

5.2.1 Why Create a Standard? 110
5.2.2 What Do Data Mining Standards Enable? 112

5.3 Summary 114
References 114

Chapter 6 Getting Started 117

6.1 Business Understanding 118
6.2 Data Understanding 119
6.3 Data Preparation 121
6.4 Modeling 123

6.4.1 Build 124
6.4.2 Test 126

6.5 Evaluation 127
6.6 Deployment 127
6.7 Summary 129
References 129

Part II – Standards 131

Chapter 7 Java Data Mining Concepts 133

7.1 Classification Problem 134
7.1.1 Problem Definition: How to Reduce Customer Attrition? 134
7.1.2 Solution Approach: Predict Customers Who Are

Likely to Attrite 134
7.1.3 Data Specification: CUSTOMERS Dataset 135
7.1.4 Specify Settings: Fine-Tune the Solution to the Problem 139
7.1.5 Select Algorithm: Find the Best Fit Algorithm 141
7.1.6 Evaluate Model Quality: Compute Classification

Test Metrics 150
7.1.7 Apply Model: Obtain Prediction Results 155

x Contents

7.2 Regression Problem 157
7.2.1 Problem Definition: How to Reduce Processing Time

of Residential Real-Estate Appraisals? 157
7.2.2 Solution Approach: Property Value Prediction

Using Regression 157
7.2.3 Data Specification: REAL_ESTATE_APPRAISALS Dataset 157
7.2.4 Select Algorithm: Find the Best Fit Algorithm 158
7.2.5 Evaluate Model Quality: Compute Regression Test Metrics 159
7.2.6 Apply Model: Obtain Prediction Results 159

7.3 Attribute Importance 160
7.3.1 Problem Definition: How to Find Important

Customer Attributes? 160
7.3.2 Solution Approach: Rank Attributes According

to Predictive Value 160
7.3.3 Data Specification, Fine-Tune Settings, and Algorithm

Selection 160
7.3.4 Use Model Details: Explore Attribute Importance Values 161

7.4 Association Rules Problem 162
7.4.1 Problem Definition: How to Identify Cross-Sell

Products for Customers? 162
7.4.2 Solution Approach: Discover Product Associations

From Customer Data 162
7.4.3 Data Specification: CUSTOMERS and Their Product

Purchase Data 163
7.4.4 Fine-Tune Settings: Filter Rules Based on Rule

Quality Metrics 163
7.4.5 Use Model Content: Explore Rules From the Model 165

7.5 Clustering Problem 165
7.5.1 Problem Definition: How to Understand Customer

Behavior and Needs? 165
7.5.2 Solution Approach: Find Clusters of Similar Customers 166
7.5.3 Data Specification and Settings 166
7.5.4 Use Model Details: Explore Clusters 168
7.5.5 Apply Clustering Model: Assign New Cases to the Clusters 169

7.6 Summary 170
References 170

Chapter 8 Design of the JDM API 173

8.1 Object Modeling of Data Mining Concepts 174
8.1.1 Data Specification Objects 175

Contents xi

8.1.2 Settings Objects 178
8.1.3 Models 183
8.1.4 Test Metrics 184
8.1.5 Tasks 185

8.2 Modular Packages 187
8.3 Connection Architecture 188
8.4 Object Factories 190
8.5 Uniform Resource Identifiers for Datasets 192
8.6 Enumerated Types 192
8.7 Exceptions 194
8.8 Discovering DME Capabilities 196
8.9 Summary 197
References 197

Chapter 9 Using the JDM API 199

9.1 Connection Interfaces 200
9.1.1 Using the ConnectionFactory Interface 201
9.1.2 Using the Connection Interface 203
9.1.3 Executing Mining Operations 209
9.1.4 Exploring Mining Capabilities 211
9.1.5 Finding DME and JDM Version Information 212
9.1.6 Object List Methods 213
9.1.7 Model and Data Load Methods 213

9.2 Using JDM Enumerations 213
9.3 Using Data Specification Interfaces 214
9.4 Using Classification Interfaces 218

9.4.1 Classification Settings 218
9.4.2 Algorithm Settings 220
9.4.3 Model Contents 222
9.4.4 Test Metrics for Model Evaluation 227
9.4.5 Applying a Model to Data in Batch 229
9.4.6 Applying a Model

to a Single Record – Real-Time Scoring 234
9.5 Using Regression Interfaces 235
9.6 Using Attribute Importance Interfaces 240
9.7 Using Association Interfaces 243
9.8 Using Clustering Interfaces 249
9.9 Summary 256
References 257

xii Contents

Chapter 10 XML Schema 259

10.1 Overview 260
10.2 Schema Elements 260
10.3 Schema Types 262
10.4 Using PMML with the JDM Schema 267
10.5 Use Cases for JDM XML Schema and Documents 270
10.6 Summary 271
References 271

Chapter 11 Web Services 273

11.1 What is a Web Service? 274
11.2 Service-Oriented Architecture 277
11.3 JDM Web Service 278

11.3.1 Overview of JDMWS Operations 279
11.3.2 JDMWS Use Case 282
11.3.3 JDM WSDL 288
11.3.4 Data Exchange and Security in JDMWS 292

11.4 Enabling JDM Web Services Using JAX-RPC 293
11.4.1 Overview of JAX-RPC 293
11.4.2 Build JDMWS Using JAX-RPC 294

11.5 Summary 296
References 297

Part III – Practice 299

Chapter 12 Practical Problem Solving 301

12.1 Business Scenario 1: Targeted Marketing Campaign 302
12.1.1 Campaign Specifications 302
12.1.2 Design of the “Campaign Optimization” Object 305
12.1.3 Code Examples 306
12.1.4 Scenario 1 Conclusion 320

12.2 Business Scenario 2: Understanding Key Factors 321
12.2.1 Code Example 321
12.2.2 Scenario 2 Conclusion 324

12.3 Business Scenario 3: Using Customer Segmentation 325
12.3.1 Customer Segmentation Specifications 325
12.3.2 Design of the CustomerSegmenter Object 327
12.3.3 Code Examples 328
12.3.4 Scenario 3 Conclusion 338

Contents xiii

12.4 Summary 338
References 339

Chapter 13 Building Data Mining Tools Using JDM 341

13.1 Data Mining Tools 342
13.1.1 Architecture of the Demonstration Interfaces 343
13.1.2 Managing JDM Exceptions 345

13.2 Administrative Console 346
13.2.1 Creating the Connection 347
13.2.2 Retrieving the List of Classes That Can

Be Saved 350
13.2.3 Retrieving the List of Saved Objects 352
13.2.4 Rename a Saved Object 355
13.2.5 Delete a Saved Object from the MOR 356

13.3 User Interface to Build and Save a Model 356
13.3.1 General Introduction 357
13.3.2 Getting the Metadata 359
13.3.3 Computing Statistics 361
13.3.4 Retrieving the Statistics Information 364
13.3.5 Saving the Physical Dataset, Build Settings,

and Tasks 370
13.4 User Interface to Test Model Quality 376

13.4.1 Getting the List of Saved Models 378
13.4.2 Computing the Test Metrics 378

13.5 Summary 385

Chapter 14 Getting Started with JDM Web Services 387

14.1 A Web Service Client in PhP 387
14.1.1 Filling the Input Values Using Javascript 390
14.1.2 Saving the ApplySettings Object 391
14.1.3 Retrieving the List of Models 394
14.1.4 Executing RecordApplyTask on Models 395

14.2 A Web Service Client in Java 397
14.2.1 How to Generate Java Classes with Axis 398
14.2.2 Opening the Connection to a JDMWS

Live Server 400
14.2.3 Creating BuildSettings 401
14.2.4 Creating a PhysicalDataSet 403
14.2.5 Creating a BuildTask 404
14.2.6 Executing a BuildTask 404

xiv Contents

14.3 Summary 406
References 406

Chapter 15 Impacts on IT Infrastructure 407

15.1 What Does Data Mining Require from IT? 408
15.2 Impacts on Computing Hardware 409
15.3 Impacts on Data Storage Hardware 411
15.4 Data Access 414

15.4.1 Data Access for Model Building 415
15.4.2 Data Access for Apply and Test 416

15.5 Backup and Recovery 416
15.6 Scheduling 416
15.7 Workflow 417
15.8 Summary 419
References 419

Chapter 16 Vendor Implementations 421

16.1 Oracle Data Mining 421
16.1.1 Oracle Position on JDM 422
16.1.2 Oracle JDM Implementation Architecture 422
16.1.3 Oracle JDM Capabilities 424
16.1.4 Oracle JDM Extensions 425
16.1.5 DME URI and Data URI 427
16.1.6 Getting Started with OJDM 428
16.1.7 Other Oracle Data Mining APIs 428
16.1.8 Data Mining Graphical Interface Using OJDM 430

16.2 KXEN (Knowledge Extraction Engines) 431
16.2.1 KXEN Data Mining Activity 431
16.2.2 KXEN Position on JDM 431
16.2.3 KXEN JDM Implementation Architecture 432
16.2.4 KXEN JDM Capabilities 433
16.2.5 DME URI and Data URI Specifications 435
16.2.6 KXEN Extensions 438
16.2.7 KXEN Web Services Implementation 439

16.3 Guidelines for New Implementers 440
16.3.1 Standards Conformance 440
16.3.2 Using the TCK 442

16.4 Process for New JDM Users 446
16.5 Summary 446
References 446

Contents xv

Part IV – Wrapping Up 449

Chapter 17 Evolution of Data Mining Standards 451

17.1 Data Mining Standards 452
17.1.1 Predictive Model Markup Language 452
17.1.2 Common Warehouse Metadata

for Data Mining 454
17.1.3 SQL/MM Part 6 Data Mining 455

17.2 Java Community Process 456
17.3 Why So Many Standards? 457
17.4 Directions for Data Mining Standards 461
17.5 Summary 464
References 464

Chapter 18 Preview of Java Data Mining 2.0 465

18.1 Transformations 466
18.2 Time Series 469
18.3 Apply for Association 471
18.4 Feature Extraction 472
18.5 Statistics 473
18.6 Multi-target Models 474
18.7 Text Mining 475
18.8 Summary 476
References 477

Chapter 19 Summary 479

Further Reading 483

Glossary 485

Index 499

About the Authors 519

xvii

Preface

The birth of a standard is an amazing event, highlighting the ability
of individuals from vastly different and often competing companies
to come together to design an interface for a domain such as data
mining. For JSR-73, we drew on experts from data mining tool and
application vendors, as well as users of data mining technology. Data
mining, as a field, is remarkably diverse in scope, encompassing
capabilities from a broad range of disciplines: artificial intelligence,
machine learning, statistics, data analysis, and visualization. Producing
a standard in such a space is a challenging and fascinating adventure.

Within a year or so of embarking on the JDM 1.0 standard, various
expert group members suggested that we’d have to write a book
about Java Data Mining (JDM) someday. And indeed, here we are.
Our main motivation for writing this book is to introduce data min-
ing to a much broader audience, one that may have never used or
encountered data mining before. As such, we focus less on the techni-
cal and scholarly details of data mining than on its practical under-
standing and application. We have tried to include a reasonably
broad set of references for individuals who want to dive down to the
next level of detail. However, we have strived to make data mining
concepts, process, and use through JDM more accessible to Java devel-
opers, who usually do not encounter data mining, and the colleagues
they will work with to develop advanced analytic applications.

xviii Preface

Advanced analytic applications—those augmented with advanced
and predictive analytics such as data mining—provide greater business
intelligence, yielding insight into business problems and guidance for
improved decision making. Such applications are becoming most valu-
able to businesses, and hence can increase revenue and profits—both
for the vendors who sell them and for the businesses that use them.

Readers of this book will find a somewhat unconventional
approach to data mining. Other books on data mining provide much
detail on algorithms and techniques. Although this information is
important to those studying machine learning or wanting to become a
data analyst, other potential users of data mining are left wondering
how these algorithms or techniques will be applied to solve problems.
As vendors of data mining technology strive to make data mining
more accessible to a broader range of users, such as business analysts,
information technology (IT) specialists, and database administrators
(DBAs), it is no longer the details that users require, but the big pic-
ture. Users ask, “How can I use this powerful technology to provide
value within my business?” In this book, we strive to approach this
and other questions from several perspectives: the software devel-
oper, the software and systems architect, and the business and data
analyst. We explore these perspectives in the following section,
“Guide to Readers.”

In this book, we provide insight into three key aspects of the Java
Data Mining standard. The first aspect, covered in Part I, focuses on
strategies for solving data mining–related business and scientific
problems, and on the strategy the JDM Expert Group pursued in the
design of the JDM standard. After an introduction to the data min-
ing field, we discuss solving problems in various industries using
data mining technology.

Although every industry has unique problems to solve, requiring
custom and innovative solutions, each industry also shares many
problems that can benefit from cross-industry solutions. For exam-
ple, industries such as retail, financial services, and healthcare, as
well as the public sector, all have customers. The cross-industry
solution spaces include customer acquisition, customer retention,
customer lifetime value, and targeted marketing.

Because data mining solutions typically do not take form or produce
value in a vacuum, we then discuss the overall process, based on the
industry standard data mining process CRISP-DM. Because users of
data mining technology need to be minimally conversant in the
terminology and concepts to problem solve with their colleagues,

Preface xix

we introduce the mining functions and algorithms defined in JDM.
With this foundation, we explore the JDM strategy, answering ques-
tions such as: What drove the design of JDM? What is the role of
standards? Lastly, before embarking on details of the Java Data
Mining standard, we provide a “getting started” code example that
follows the CRISP-DM process.

The second aspect, covered in Part II, focuses on the standard
itself. This part introduces various concepts defined by or assimilated
into the standard using examples based on business problems. After
this, we explore the design of the JDM API and more detailed code
examples to give readers a better understanding of how to use JDM to
build applications and solve problems. Although JDM is foremost
dedicated to being a standard Java language API, Java Data Mining
also defines an XML schema representation for JDM objects, as well
as a web services interface to enable the use of JDM functionality in a
Services Oriented Architecture (SOA) environment. Part II also dis-
cusses these with specific examples of their use.

The third aspect, covered in Part III, focuses on using JDM in
practice, building applications and tools that use the Java Data Mining
API. We begin this part with several business scenarios (e.g., targeted
marketing, key factor analysis, and customer segmentation). Because
JDM is designed to be used by both application designers and data
mining tool designers, we introduce code for building a simple tool
graphical user interface (GUI), which manipulates JDM-persistent
objects as well as enables the building and testing of a model. Having
introduced web services in Part II, we give an example of a web ser-
vices based application. Since data mining can impact the Information
Technology (IT) infrastructure of most companies, we explore the
impact of data mining along several dimensions, including hardware,
software, data access, performance, and administration tools. Since
the practice of using data mining often involves the use of commercial
implementations, we introduce two such JDM implementations,
from Oracle and KXEN. We also provide some guidelines or insights
for implementers new to JDM.

Wrapping up in Part IV, we explore the evolution of data mining
standards, which puts JDM in the broader context of other data min-
ing standards. We also contrast the approaches taken by various data
mining standards bodies. Since we note that no standard is ever com-
plete, and JDM 1.1 itself covers only a subset of the possible data
mining functions and algorithms, we highlight directions for JDM 2.0.
We introduce features under consideration such as transformations,
time series, and apply for association models, among others.

xx Preface

Acknowledgments

We first want to acknowledge the Java Data Mining expert group
members who participated in the long process required to produce
the JSR-73 standard. Their unwavering support through weekly con-
ference calls and face-to-face meetings over the 4 years of the stan-
dards development is greatly appreciated. We also acknowledge the
additional contributions of Hankil Yoon, Ka Kit Chan, Jim Dadashev,
and Somesh Marepalli to the Technology Compatibility Kit (TCK)
implementation, and Marwane Jai Lamimi to the Reference Imple-
mentation (RI).

We are very grateful for the general and specialist input provided
by Frank Byrum, Jim Melton, and Osmar Zaiane on the developing
manuscript. Over the past year, their detailed comments on both
structure and content were a tremendous asset. We thank Jacek
Myczkowski and Don Deutsch for their valuable comments on the
final manuscript, as well as their support of the standards efforts for
JSR-73 and JSR-247 at Oracle. We thank the JDM expert group mem-
bers Michal Prussak, Alex Russakovsky, and Michael Smith who also
provided valuable comments on the final manuscript, and David
Urena and Samy Mechiri who contributed to the source code used in
Part III of this book.

Of course, all remaining errors (which we expect exist despite care-
ful review) are entirely our responsibility.

We offer our appreciation and gratitude to the wonderful people at
Morgan Kaufmann Publishers as they guided us through the process
of book writing and publishing. We thank Jim Melton, one of our
reviewers, for putting us in contact with Diane Cerra, our talented
and patient publisher, to begin this journey. We thank Diane, Asma
Palmeiro, Misty Bergeron, Marilyn Rash, and Bruce Siebert who
worked to make this book possible.

xxi

Guide to Readers

Data mining is becoming a mainstream technology used in business
intelligence applications supporting industries such as financial
services, retail, healthcare, telecommunications, and higher educa-
tion, and lines of business such as marketing, manufacturing, cus-
tomer experiences, customer service, and sales. Many of the business
problems that data mining can solve cut across industries such as
customer retention and acquisition, cross-sell, and response model-
ing. Due to the cost, skillsets, and complexity required to bring data
mining results into an established business process, early adopters
were typically big companies and research labs with correspondingly
large budgets and access to statisticians and machine learning
experts. In recent years, however, data mining products have simpli-
fied data mining considerably by automating the process—making
the fruits of the technology more widely accessible. New algorithms
and heuristics have evolved to provide good results with little or no
experimentation or data preparation. In addition, the availability of
data mining has increased with in-database data mining capabilities.

Java Data Mining (JDM) furthers the adoption of data mining by
providing a standard Java and web services Application Program-
ming Interface (API) for data mining. This book introduces data mining
to software developers and application architects who may have
heard of the benefits of data mining but are unsure how to realize
these benefits. This book is also targeted at business and data analysts

xxii Guide to Readers

who want to learn how JDM helps in developing vendor-neutral
data mining solutions. It does not require a reader to be familiar with
data mining, statistics, or machine learning technologies.

We have organized this book into three main parts: strategy, stan-
dard, and practice. In Part I, JDM Strategy, we introduce data mining
in general, uses of data mining in solving industry problems, data
mining processes and techniques, the role of data mining standards,
and a high-level introduction to the JDM Application Programming
Interface (API). Most of this part doesn’t require the reader to know
the Java language.

In Part II, JDM Standard, we explain the concepts used in JDM by
example, explore the JDM API design and its usage, and introduce
the Java Data Mining XML schema and web services. This part
requires readers to know the Java language, XML, and XML schema.
It gives a brief introduction to web services in Chapter 11 before dis-
cussing the JDM web services.

In Part III, JDM Practice, we illustrate practical problem solving
using the JDM API. We begin by developing a sample data mining
tool using JDM and a sample data mining web service using JDM.
We then introduce two JDM vendor implementations, exploring their
functionality, architecture, and design tradeoffs before giving some
guidance to others interested in implementing a JDM-compliant
system.

In Part IV, Wrapping Up, we discuss the evolution of data mining
standards, where they have been and where they might go. We give a
preview of some of the features proposed for JDM 2.0.

For the Software Developer

For software developers, and in particular Java and
web services developers, this book introduces data
mining and how to use JDM to develop data mining
solutions. Part I introduces data mining and various
types of business problems that can be solved using

data mining, illustrates a standard process used to conduct a data
mining project, describes data mining techniques used to solve busi-
ness problems, explains the JDM standard strategy and why the JDM
standard is necessary, and provides an overview of the JDM API.
Even though software developers are not typically involved in the
initial solving of a data mining problem, it is important to know

Guide to Readers xxiii

about concepts to understand the JDM API and how to develop data
mining solutions.

Part II will familiarize developers with JDM concepts and the API.
Readers of this part are required to know the Java language, Object
Oriented Programming, the Unified Modeling Language and XML to
understand the Java examples, API design concepts, JDM XML
schema, and web services. This part introduces JDM concepts using
examples, describes the design and usage of the Java API, and illus-
trates the Java Data Mining XML schema and web services interfaces.

Part III describes the use of the JDM API in practice with sample
applications and detailed code examples both for the Java and web
services API. It also provides JDM vendor implementation details
and explains the process for other data mining vendors in adopting
the JDM standard.

After reading this book, we expect the data mining knowledge
gap between developers and data analysts will be greatly reduced to
help them communicate more effectively when developing a data
mining solution.

For the Software Architect

Data mining is often integrated with existing soft-
ware applications and business processes. Under-
standing of data mining processes provides greater
insight for architects to enable this technology in
existing or new applications. For example, an archi-

tect needs to understand how data mining works to add intelligent
customer offers using data mining to an existing call center application.

For architects who want to be hands-on with the JDM API (e.g., to
develop prototypes), all parts of this book are useful. Part I and
Part III are particularly useful for architects. Part I introduces data
mining in general and provides examples of how it is currently being
applied to solve business problems. Most important, it introduces the
data mining process and the role of the information technology
department in implementing a data mining project.

Part II will be useful to understand the API-level concepts for the
architects who want to be hands-on with the API, to develop proto-
types, or to mentor the developers about the use of the API.

In Part III, we provide deeper insight into how JDM can be used
in practice. Chapter 16, which discusses vendor implementations, is

xxiv Guide to Readers

particularly useful for data mining software architects who are
interested in developing JDM compatible API’s and extensions.

After reading this book, architects should be comfortable in inte-
grating JDM-based data mining solutions with their applications and
be able to develop a strategy to operationalize data mining results
with their existing applications.

For the Business/Data Analyst

For business and data analysts who want to extract
actionable information from corporate data, this book
provides an introduction to data mining and how it is
used to solve various business problems across indus-
tries. In Part I, the data mining usage scenarios and
process of implementing a data mining project will be
particularly useful for the analyst unfamiliar with data

mining. Chapter 5, JDM Strategy, enables analysts to understand
why the JDM standard is important in implementing a data mining
solution. Typically, analysts are not involved in the software implemen-
tation of the solution, yet Part II may be useful for understanding the
data mining concepts used by JDM to facilitate communication with
developers and data mining experts, and for using tools based on JDM.

For an analyst who is already familiar with data mining and who
has expertise in data mining and statistics, this book gives details of
Java Data Mining and its usage in developing data mining solutions.
Data mining tools can often generate JDM-compatible code to easily
deploy a solution to a JDM-compatible Data Mining Engine (DME).

After reading this book, an analyst previously unfamiliar with
data mining should be able to better understand how data mining
can help in solving business problems. A data mining expert analyst
will be able to understand the supported data mining features in
JDM and be able to communicate easily with the software architects/
developers to implement a data mining solution.

Part I

Strategy

In this part, we frame data mining as a strategy for solving complex
business problems and discuss the role of standards that support
such a strategy. It addresses the needs of both the business analyst
and the architect.

3

Chapter

1
Overview of Data Mining

The most incomprehensible thing about the world
is that it is at all comprehensible.

—Albert Einstein

Imagine one’s surprise at discovering which genes determine
susceptibility to a certain type of cancer by running an algorithm on
data consisting of 5,000 genes from each of a hundred patients.
Imagine one’s surprise at being able to predict with high accuracy
which customers will purchase a specific product. Einstein’s com-
ment on comprehensibility fits well with the world of data mining.
What is so amazing is that by amassing data from the real world on
just about anything, patterns can be determined that provide
insights into the world the data represents, making the world more
comprehensible. Using data mining to gain insight into seemingly
random data points is an increasingly common strategy among
business analysts, scientists, and researchers.

Although the complexity of some data mining algorithms is great,
using them has been greatly simplified through automation and
higher level abstractions, such as those found in Java Data Mining 1.1
(JSR-73) [JSR-73 2004]. Java Data Mining (JDM) provides a standard
application programming interface (API) and design framework to
provide developers, application architects, data analysts, and business
analysts greater access to data mining technology.

4 Chapter 1 Overview of Data Mining

This chapter discusses why data mining is relevant today, both to
consumers of data mining results and users of the technology. It then
introduces and explores data mining at a high level, contrasting data
mining with other forms of advanced analytics and reviewing the
basic data mining process. Since the mining metaphor is often used,
we digress to contrast the data mining process with the gold mining
process. To be relevant, data mining must provide value. We discuss
the reliability of data mining results and highlight ways in which
data mining adds value to businesses.

1.1 Why Data Mining Is Relevant Today

Today’s business landscape is highly competitive. Product margins
are typically low due to increased competition and commoditization.
Consumers have more information about competing offers and more
channels such as the Web to pursue them. Customer loyalty exists
either as long as the customer experience [Shaw/Ivens 2002] remains
positive or until a better alternative comes along.

Savvy businesses have long taken advantage of advanced analytics
and data mining to give them an edge in the marketplace. Major
retailers know which customers to target with ad campaigns. Manu-
facturers know how to determine which aspects of their manufactur-
ing process are yielding inferior results and why. Financial services
providers, such as banks, know which customers are a high risk for a
loan [Davenport 2006].

Companies that do not leverage data mining in their business
processes are not likely to realize their revenue and profit potential.
Their customers’ experiences may be inferior as they become
fatigued by what appear to be random solicitations or irrelevant
offers. Companies may be missing key insights into ways to deter-
mine why customers are leaving or what customer profile yields the
highest customer lifetime value.

From another angle, various regulatory compliance measures
(e.g., Sarbanes-Oxley [SOX 2006], Basel II [BIS 2004]) require the
keeping of large quantities of historical data. As such, multi-terabyte
data repositories are becoming commonplace. Many companies
make dramatic efforts to collect almost everything about their
businesses, and to ensure that the data are clean. Consequently, cor-
porate executives want to put this costly asset to good use. One such
use is in the area of Business Intelligence (BI), which traditionally
involves extracting information, generating reports, and populating

1.1 Why Data Mining Is Relevant Today 5

dashboards with key performance indicators from these repositories
to assist with business decisions.

More recently, the concept of BI is being expanded to include data
mining techniques to extract knowledge and generate predictions for
business problems, thereby enabling companies to make better use of
a costly corporate asset, their data. With the advent of fast and inex-
pensive hardware, the ability to mine large volumes of data is not
only possible, but the building of models and the scoring of data can
often be performed in real time. Advances in data mining techniques
and Moore’s Law [Webopedia 2006] help to ensure that businesses
and researchers will be able to keep pace with data repositories dou-
bling at about the same rate as hardware performance.

On the other side of the spectrum are the marketers, financial
analysts, and even call center representatives—generally application
users—who leverage data mining increasingly through intelligent
applications. These users either know nothing about the techniques
of data mining or do not need to know anything about data mining
to reap its benefits. The algorithms and the data mining process are
concealed by business-centric user interfaces, which present the
results of data mining, not its mechanics. For many, this is the only
way to take advantage of the benefits of data mining—through
verticalized solution applications.

Data mining is also relevant today as the technology becomes more
accessible to a broader audience. Traditionally, data mining has been
the realm of statisticians, data analysts, and scientists with Ph.D.’s in
machine learning. These users wrote their own algorithms and graph-
ical tools, leveraged complex commercial graphical user interfaces and
application programming interfaces. Their process for mining data
was often ad hoc, stitching together analytic workflows using Perl
[Perl 2006], AWK, Python, Tcl/Tk, among others [SoftPanorama 2006].

With modern advances in data mining automation technology
and the introduction of standard interfaces and processes, data
mining is being made accessible to a new class of users: application
architects and designers, and mainstream developers. Although the
role of the data analyst will likely always be in fashion for superior
results, technology is at the point where nonexperts can get good
results. Here, good is defined as results that could be achieved by a
junior statistician and sometimes much better. This empowers archi-
tects, designers, and developers to experiment with mining the data
available to their applications and to enhance those applications with
predictive analysis, presenting new insights to application users.

6 Chapter 1 Overview of Data Mining

Once application owners see the potential of data mining in
these applications unleashed, through the efforts of their application
creators, the application owners may choose to apply more expert
data mining skills to determine whether the quality of the results
can be further enhanced. Oftentimes, even small insights can have a
significant impact on a business or scientific problem.

1.2 Introducing Data Mining

Data mining is the process of finding patterns and relationships in
data. At its core, data mining consists of developing a model, which is
typically a compact representation of patterns found using historical
data, and applying that model to new data. We apply a model to data
to predict individual behavior (classification and regression), segment
a population (clustering), determine relationships within a population
(association), as well as to identify the characteristics that most
impact a particular outcome (attribute importance). These and other
data mining capabilities are explored in detail in subsequent chapters.

Data Mining grew as a direct consequence of the availability of large repositories of
data. Data collection in digital form was already underway by the 1960s, allowing
for retrospective data analysis via computers. Relational Databases arose in the
1980s along with Structured Query Languages (SQL), allowing for dynamic, on-
demand analysis of data. The 1990s saw an explosion in growth of data. Data ware-
houses were beginning to be used for storage of data. Data Mining thus arose as a
response to challenges faced by the database community in dealing with massive
amounts of data, application of statistical analysis to data and application of search
techniques from Artificial Intelligence to these problems. [Wikipedia-DM 2006]

Motivations for undertaking data mining include reducing costs,
increasing revenue, making new discoveries, automating laborious
human tasks, identifying fraud, and improving customer or user
experiences. As such, data mining is a competitive strategy for all
industries and ventures.

1.2.1 Data Mining by Other Names

Data mining goes by several aliases, for example, advanced analytics,
predictive analytics, artificial intelligence, and machine learning. Advanced
analytics is commonly thought of as referring to sophisticated statisti-
cal analysis, online analytical processing (OLAP), and data mining. In
the next section, we elaborate on the difference between OLAP and
data mining.

1.2 Introducing Data Mining 7

Predictive analytics focuses more on the data mining elements of
predicting outcomes or making assignments [SearchCRM 2006], but
it has also come to mean a more automated data mining process
[Oracle-PA 2006]. Such automated data mining processes relieve the
data miner1 of data preparation or model quality checks, allowing
the focus to be mainly on desired results (e.g., making predictions or
ranking attributes by relative importance).

Artificial Intelligence (AI) is described as “the science and
engineering of making intelligent machines, especially intelligent
computer programs. It is related to the similar task of using computers
to understand human intelligence, but AI does not have to confine
itself to methods that are biologically observable” [McCarthy 2004].
AI is very broad and dates back to at least the 1950s. As such, there
are several branches of artificial intelligence: logical AI, search, pat-
tern recognition, representation, interference, common sense knowl-
edge and reasoning, learning from experience, among others.
Aspects of data mining may find their way into each of these, but the
true emphasis is learning from experience. Machine learning [Mitchell
1997] falls into this category, where computer programs examine his-
torical data in an effort to learn or derive patterns from the data that
can be used to solve specific problems.

1.2.2 Data Mining Versus Other Forms of Advanced Analytics

When we talk to customers new to data mining and ask whether
they mine their data, we’ll sometimes hear, “Yes, of course.” But
when we ask how they mine their data or which tools they use, we
hear that they have a very large database that they analyze with
complex queries. To some, this is data mining. The area of query
and reporting addresses relatively simple deductive analysis, that is,
the extraction of detail and summary data based on human-
formulated questions. For example, answering questions such as
“which stores sold portable DVD players in the past quarter” and
“how much did each sell” is common. We draw a distinction that
querying is not data mining in the machine learning sense. Answer-
ing such questions can be accomplished through a straightforward
SQL query, as shown in this code, which is based on the schema of
Figure 1-1.

1 We will sometimes refer to the user of a data mining tool or the person who
mines data as a “data miner.”

8 Chapter 1 Overview of Data Mining

Figure 1-1 shows four tables: SALES, PRODUCT, STORE, and
DATE. The SALES table contains the sales amount and keys into the
other three tables, indicating the product sold, the store that sold it,
and the date that it was sold. The PRODUCT table provides the name
of the product as well as a hierarchical grouping of that product into
higher-level categories. A product belongs to a particular group,
which belongs to a more general category (e.g., Coca-Cola 20-ounce
soda may have a product group of “colas” and be in the product
category of “soft drinks”).

Another technology to distinguish from data mining is Online
Analytical Processing (OLAP) technology [Wikipedia-OLAP 2006].
OLAP supports summaries, forecasts, and trend analysis. For example,
summaries often involve “rolling up” data to different levels of
granularity as defined by a dimension, such as Date, which can

SELECT store.name, sum (sale_amount) AS sales_sum
FROM store, sales, date, product
WHERE product.name � ‘Portable DVD Player’ AND

product.id � sales.product_id AND
sales.store_id � store.id AND
sales.date � date.date AND
date.quarter � ‘2Q06’

GROUP BY store.id
ORDER BY sales_sum

sale_amount
date
product_id
store_id

date
week
month
quarter
year

id
name
product_group
product_category

id

name

city

state

region

country

PRODUCT

DATE STORE

SALES

Figure 1-1 Example of a star schema.

1.2 Introducing Data Mining 9

provide a summary of dollar sales by day, week, month, quarter, or
year. Multiple dimensions can be used to form a data cube; for exam-
ple, the store where the sale was made and the product that was sold
are each dimensions, as depicted in Figure 1-2. The sale amount is
called a measure, and a cube may have multiple measures. Once the
cube is defined, business and data analysts can “slice and dice” it to
provide different views of the data (e.g., sales by month by geograph-
ical region by product category). Like querying large databases,
OLAP is also deductive in nature. Users formulate questions or orga-
nize data to retrieve answers. The underlying data representation for
OLAP is often in the form of a star or snowflake schema, as shown in
Figure 1-1.

In contrast, data mining supports knowledge discovery of hidden
patterns and insights. It takes an inductive approach to data analysis,
building up results by analyzing each of potentially millions of
records. Data mining allows the answering of such questions as how
much revenue will each store generate for portable DVD players in
the next quarter, or which customers will purchase a portable DVD
player and why. Although OLAP generally supports trend analysis
and forecasting, it may rely on simple moving average or percentage

Store

Date

Product

Item-1

Item-2

Item-3

Item-4

Store-1 Store-2 Store-3
Jan-1-06

…

Dec-31-06

Figure 1-2 Example of an OLAP cube.

10 Chapter 1 Overview of Data Mining

growth calculations considering aggregated or summarized data. In
other cases, it may leverage more advanced time series analysis.

Like query and reporting and OLAP, data mining solutions exist
in every industry—for example, predicting the likelihood of a
customer buying a particular product, switching to a competitor’s
product, or defaulting on a loan; identifying false insurance claims;
contracting a certain type of leukemia.

The results of data mining can be fed back into the data warehouse,
data mart, or other data repositories to enrich query and reporting
and OLAP analysis. In query and reporting, once we predict which
customers are likely to purchase a portable DVD player, we can sort
customers by their likelihood to purchase that product or accept a
related offer, and then select the top N customers for a marketing
campaign. In OLAP, we can use data mining to identify which
dimensions are the most predictive for a particular measure. If there
are many, perhaps dozens, of dimensions to choose from, this can
guide selecting dimensions to include in a particular cube analysis.

In addition, the predictions from data mining models on the
individual data records can be fed back into the cube, perhaps as
additional measures that can be included in subsequent roll-ups. For
example, we could predict which offer a given customer is likely to
accept and then include a dimension that rolls up these offers into an
offer hierarchy.

1.2.3 Process

For business people and C-level2 executives, the details of data
mining are likely to be a curiosity at best. What these individuals
desire are tangible results that they can use to make better business
decisions. From their perspective, knowing which customers are
likely to become next month’s attrition3 statistics is more important
than the technique used to get that information—as long as the
methodology used is sound and the tools trustworthy. At this level,
we can view data mining as a “black box,” as illustrated in Figure 1-3.

2 “C-level” refers to top corporate management, including the Chief Executive
Officer (CEO), Chief Marketing Officer (CMO), Chief Information Officer (CIO),
and so on.

3 Attrition occurs, for example, when a customer terminates service or stops pur-
chasing a product, an employee resigns, or student does not return the following
term. Attrition is often the term used in the industries financial services and higher
education. In the telecommunications industry, attrition is referred to as “churn.”

1.2 Introducing Data Mining 11

There is a comprehensive, recognized process for data mining—
CRISP-DM—which we cover in detail in Chapter 3. For now, we can
consider a simplified process that begins with defining the problem
and its objectives, identifying data for mining, and assessing data
quality. The availability of data for mining is not the same thing as appro-
priateness of data for mining. If the data is dirty (i.e., contains errors and
inconsistencies), it likely must first be cleaned. Note that the adage
“garbage in, garbage out” is most applicable to data mining.

This data is then transformed as required by the data mining tool
and/or according to the creativity of the data miner. Transformations
include, for example, replacing misspelled values with correct ones,
identifying outlier values, and create attributes derived from other
attributes. The knowledge extraction process continues with mining
the transformed data to produce a data mining model, which is then
evaluated for quality and relevance to the problem’s objectives. The
knowledge extraction step could involve the labor of dozens of statis-
ticians in a back room crunching numbers, or a data mining
algorithm iterating over the data to produce a model of the data.

The model itself may be used directly to understand, for example,
customer segments, or what the factors are that most influence
customers to accept an offer. The model may also be used to generate
scores (i.e., make predictions or classifications). Scoring can be per-
formed in batch (i.e., all at once over a given dataset such as a large
customer dataset), or integrated into applications for real-time
scoring such as in call center applications or online retail product
recommendations.

Solving business and scientific problems often requires many
components in a complex process flow—for example, customer inter-
action, data collection and staging, data analysis and summarization,
report generation and distribution, decision making, and deploy-
ment. As such, data mining does not exist by itself but is often inte-
grated with a business process to provide value.

Operational systems collect data, typically in relational databases,
that is then cleaned and staged into the corporate data warehouse.

Data Knowledge
Extraction
(Data Mining)

Actionable
Results

Report
Generation

Reports
to
Executives

Figure 1-3 A workflow involving data mining.

12 Chapter 1 Overview of Data Mining

Various reporting tools can issue queries about data, both in
operational data stores and the data warehouse. OLAP cubes may be
refreshed with the latest data to facilitate slicing and dicing the latest
results. Data mining, as described earlier, not only plays a key role in
understanding the interactions between historical data and out-
comes, but also in characterizing those interactions in a way that can
predict future outcomes and feed those outcomes back into other
analysis and decision making.

Although corporate data available for mining may be considerable,
when assessing the data available for mining you may need to
supplement it. Banks, for example, know every transaction their
customers have ever made, their account balances, and details from
customer loan applications. One could say that a bank has plenty of
data to mine. However, the “availability of data” may not be suffi-
cient to build a useful data mining model, or a model that satisfies a
particular need. If a bank is trying to understand its customers based
on demographics, such as personal interests as part of a marketing
campaign, those demographics are not typically part of the bank’s
operational data stores or data warehouse. Before mining the data, a
bank may have to acquire demographic information, either through
direct solicitation from customers or by purchasing customer
information from third-party providers.

1.2.4 What Is a Data Mining Model?

We have used the term model several times already and defined it as a
compact representation of the patterns found in historical data. To
illustrate the concept of a data mining model more concretely, con-
sider a simple linear regression problem—that is, predicting a continu-
ous numerical value from one or more inputs. Basically, we have a
set of points on a graph and we want to fit a straight line to them.
This functionality was provided in the Texas Instruments TI-55 scien-
tific calculator of the 1970s and had been around long before that.
Essentially, the algorithm iterates over the data to collect statistics
and then determines the coordinates of the line that best fits the set of
two-dimensional points; this is illustrated in Figure 1-4.

The model that represents this line is simply expressed as two
values from the equation y � mx � b, where m is the slope, and b is
the y-intercept. A model that consists of m and b is sufficient to make
predictions for y given a value of x. For example, if m � 2 and b � 5,
then if x (or age) � 25, we predict the value of y (or income) � 55
(thousand).

1.2 Introducing Data Mining 13

In two dimensions,4 involving the attributes age and income, and
with a small number of data points, the problem seems fairly simple.
We could probably even “eye” a solution by drawing a line to fit the
data and estimating the values for m and b. However, consider data
that is not in two dimensions, but a hundred, a thousand, or several
thousand dimensions. The attributes may include numerical values
or consist of categories that are either numbers or strings. Some of
the categorical data may have an ordering (e.g., high, medium, low) or
be unordered (e.g., married, unmarried, widowed). Further, consider
cases where there are tens of thousands or millions of cases. It is
intractable for a human to make sense of this data, but it is relatively
easy for the right algorithm executing on a sufficiently powerful
computer. Here lies the essence of data mining.

Now, data mining algorithms are typically much more complex
than that of linear regression; however, the concept is the same: there
is a compact representation of the “knowledge” present in the data
that can be used for prediction or inspection.

1.2.5 Some Jargon

Every field has its jargon—the vernacular of the “in crowd.” Here’s a
quick overview of some of the data mining jargon.

At one level, data mining experts talk about things like models
and techniques, or mining functions called classification, regression,
clustering, attribute importance, and association. Classification mod-
els predict some outcome, such as which offer a customer will
respond to. Regression models predict a continuous number, such as
what is the predicted value of a home or a person’s income.

4 This use of the term “dimension” here should not be confused with the same
term as used in OLAP, which has a different intent. Here, the term “dimension”
is synonymous with “attribute” or “column.”

Age

IncomeIncome

Age

Figure 1-4 Fitting a regression line to a set of data points.

14 Chapter 1 Overview of Data Mining

Clustering models contain descriptions of groups of records that
share similar characteristics, such as the naturally occurring seg-
ments in a customer database. Attribute importance models rank the
input attributes according to how well they are able to predict an out-
come or assist in defining clusters. Association models contain rules
for common co-occurrences in data, such as the determination that
customers who purchased products A and B also purchased product
C 90 percent of the time.

Data mining often is characterized as being predictive or descriptive
and supervised or unsupervised. The predictive nature of data mining
is that the models produced from historical data have the ability to
predict outcomes such as which customers are likely to churn, who
will be interested in a particular product, or which medications are
likely to affect the outcome of cancer treatment positively.

The descriptive nature of data mining is where the model itself is
inspected to understand the essence of the knowledge or patterns
found in the data. As in the regression example of Section 1.2.4, we
may be more interested in the trend of the data and hence knowing
that the slope of the line is positive is sufficient—as age increases,
salary increases.

Some models serve both predictive and descriptive purposes. For
example, a decision tree not only can predict outcomes, but also can
provide human interpretable rules that explain why a prediction was
made. Clustering models provide not only the ability to assign a
record to a cluster, but also a description of each cluster, either in the
form of a representative point called a centroid, or as a rule that
describes why a record is considered part of the cluster. These
concepts are explained more fully in Chapter 7.

The notion of model transparency is the ability of a user to under-
stand how or why a given model makes certain predictions. Some
algorithms produce such models, others algorithms produce models
that are treated as “black boxes.” Neural networks are a good example
of opaque models that are used solely for their predictive capabilities.

A second characterization is supervised and unsupervised learning.
Supervised learning simply means that the algorithm requires that
its source data contain the correct answer for each record. This allows
some algorithms (e.g., decision trees and neural networks) to make
corrections to a model to ensure that it can get as many of the
answers correct as possible. The correct answers supervise the learn-
ing process by pointing out mistakes when the algorithm uses the
model to predict outcomes. Other algorithms (e.g., naïve bayes) use

 The Mining Metaphor 15

the known outcomes to compute statistics which enable subsequent
predictions. Supervised models use data consisting of predictors and
targets. The predictors are attributes (columns) used to predict the
outcome—the target attribute (also a column).

Unsupervised learning does not require, and does not accept,
knowledge of any correct answer. It merely looks at all the data and
applies an algorithm that performs the appropriate analysis. Cluster-
ing is an unsupervised technique that determines the clusters that
naturally exist in the data.

In data mining, several terms have evolved to mean the same
thing. For example, when referring to a column of data, the typical
relational database term, we will see the terms attribute, field, and
variable. Similarly, when referring to the rows of data, we will see the
terms case, record, example, and instance. They typically can be used
interchangeably.5 In JDM, we have adopted the terms attribute and
case.

The Mining Metaphor

Data mining is the process of extracting knowledge from data. That

knowledge can be used to understand the nature of a business or

scientific problem, or applied to new data to make predictions or

classifications. Just as mining in the physical world involves a pro-

cess of going from raw earth to refined material (e.g., gold, steel,

and platinum) to end-products (e.g., jewelry, electronics), data min-

ing involves a process of going from large volumes of raw data to

extracted knowledge to knowledge applied in practice. This section

takes this metaphor to its limit by contrasting a description of the

gold mining process [Wells 2006] with data mining.

Gold mining involves the science, technology, and business of the discovery of
gold, in addition to its removal and sale in the marketplace. Gold may be

found in many places, most commonly rock but even sea water; in very small quanti-
ties. More often it is found in greater quantities in veins associated with igneous
rocks, rocks created by heat such as quartzite.

“Data Mining” is somewhat of a misnomer since we are not trying

to discover “data,” but the knowledge that is present in data.

In any

5 There are some distinctions to be made, for example, a case may be comprised of
multiple records when the data is stored in transactional format. Here a case
corresponds to a transaction consisting, perhaps, of multple items as purchased
at a grocery store checkout.

16 Chapter 1 Overview of Data Mining

case, making use of this knowledge is key to realizing a return on

investment (ROI) with data mining. Like gold mining, some corpo-

rate data are rich with patterns and insights, others have nothing.

Unlike some gold mining, however, data mining doesn’t have “veins”

of knowledge waiting to be pulled out. Rather, the knowledge is dis-

persed in the data, waiting to be discovered by various data mining

techniques.

Since the costs can be high in the exploration and removal of gold from the
hard rock mines, large companies are created in order to raise the money

necessary for the development of the mines, rather than the solitary individual or
small group associated with placer mining.

The machinery brought to bear in data mining, of course, is

computer hardware, software algorithms, and often experienced

data analysts. Traditionally, companies specialized in their ability to

mine certain domains of data, using certain techniques; for exam-

ple, the retail domain for customer segmentation and response

modeling, banking for fraud detection and credit scoring, genomics

for cancer cell similarity analysis, or homeland security for text doc-

ument analysis. Other companies cover a much broader range of

domains and techniques. Still, the image of statisticians or data

mining experts in the back room working creative magic with the

data and producing mind-boggling results is prevalent.

Mining for gold is only worthwhile financially where there is a significant
concentration of it found in ore. The fixed price of gold in 1934 increased

from $20.67 U.S. to $35 U.S. per troy ounce. This price remained fixed until 1968
which discouraged hard rock mining for gold because increased inflation (which
raised the cost of mining production) prevented the mining companies from making
a profit.

The price of gold can be likened to ROI in business. An IDC

report [IDC 2003] shows the median ROI for advanced analytics

projects, such data mining, to be 145 percent. This makes an

investment in such projects a worthwhile venture in general. It is

when competition becomes so fierce, and margins so slim, that not

leveraging data mining becomes a practice dangerous to corporate

survival. Like gold mining, data mining results may miss ROI tar-

gets for numerous reasons: the quality of the raw material (data)

from which knowledge is to be extracted, using the wrong tool(s),

applying the wrong technique to the problem, the skill of the indi-

viduals performing the mining, the inability to use the mining

results effectively in the business process, and so on. This can

 The Mining Metaphor 17

require paying more attention to the data being collected, using the

right tools or tools that have more automated intelligence for the

mining process, or hiring more skilled or experienced individuals.

Before hard rock mining operations have even begun, companies explore areas
where gold may be found and scientifically analyse the rock. The actual gold

originates deep within the earth in places called pockets. These pockets are filled with
gold, heavy ore, and quartz. If enough gold is discovered in the ore, the technological
process of hard rock mining begins.

As we discuss later in Chapter 3, the data mining process

begins with a clear understanding of the business objectives and

data mining goals. Like gold mining, we then need to survey the

corporate landscape for available data. Sometimes needed data

may be readily available in repositories such as data warehouses

and data marts. Other times, data resides in various databases

that support operational systems. In less sophisticated organiza-

tions, data may reside in Excel spreadsheets or flat files. Once

sources have been identified, we need to analyze the data for

quality (e.g., missing values, consistency of values, etc.) and pre-

pare it through data cleansing and other transformations. An

assessment can be made for correlation between combinations of

attributes as to whether the data is likely to contain any useful pat-

terns or knowledge; then the process of data mining begins.

First, miners dig a tunnel into the solid rock. During the 1930s, miners
working for the companies dug these tunnels by hand, a very labour-intensive

undertaking. Miners often risked their health, digging with picks and shovels during
long shifts in these dark, damp tunnels, building the shafts and carting out the ore.

Data miners have it a little easier. However, in the early days of

data mining, statisticians applied various combinations of univari-

ate (single attribute) and multivariate (multiple attributes) statistics.

They also hand-coded algorithms, such as linear regression, to fit a

line to a set of data points. Visualization was often crude, some-

times relying on only numerical outputs. Due to hardware and soft-

ware limitations, the number of attributes and cases mined was

often relatively small, perhaps tens of attributes. Producing useful

models could take weeks or months using complex analysis. Get-

ting the results of mining into the hands of business people, or into

operational systems, often required teams of people to process the

results, produce high-level reports, and include models in opera-

tional systems.

Today, there are commercial tools with standard and state-of-

the-art algorithms that can automate much of the data mining

18 Chapter 1 Overview of Data Mining

process. Such tools can produce good results, but the expert data
miner may be able to produce superior results through custom

analysis and crafty techniques. In addition, including data mining

results in applications or operational systems has also become sim-

pler as a result of standard interfaces and model representations.

The gold milling process may be broken down into three basic procedures:

1. Sorting the ore by size

2. Crushing the rock

3. Extracting the gold

A simplified data mining process can be broken down into four

basic procedures:

1. Acquiring and preparing the data

2. Building the model

3. Assessing model quality and reviewing the model details

4. Applying the model to new data for predictions or assign-

ments

First, miners raise the ore out of the mine in wheeled carts pushed on rails and
take it down to the mill. The rock fragments are sorted according to size in a

grizzly—a device consisting of a series of spaced bars, rails, or pipes—above a for-
ward moving conveyer belt to a crusher machine.

In large companies, and even some smaller ones, the IT

department’s database administrators (DBAs) help to identify

available data from operational systems and data warehouses.

Data is “sorted” according to quality, completeness, and applicabil-

ity to the problem to be solved. Once data is identified, it needs to

be unified by joining different data tables, often into a single table,

or perhaps a set of tables related by a single case identifier or as

part of a star schema.

After secondary washing, a shaker screen filters out fragments of less than
1/2 inch diameter into a fine ore bin, or box. Larger ore fragments are pul-

verized or crushed in the crusher. The fine ore is fed by conveyer belt to a ball mill,
a rotating steel cylinder filled with tumbling steel balls which further crushes the
fragments to a consistency of fine sand or talcum powder. This powder is fed into a
thickener with a cyanide and water solution to create a sludge (a sticky, mudlike

 The Mining Metaphor 19

material). The liquid sludge is diverted into holding tanks and referred to as the
pregnant solution—a liquid sludge containing 70% of the gold.

Like rock and ore, raw data needs to be prepared. The mecha-

nisms for refining it to enable knowledge extraction involve data

analysis technology, data cleansing, transformations, and attribute

synthesis. These are big terms for problems such as graphing data

values, correcting typos, dealing with missing values, categorizing

data values (e.g., age) into buckets instead of continuous values,

and creating new attributes based on other attributes (e.g., cus-

tomer lifetime value).

[The liquid sludge] is drawn from holding tanks through a clarifier, a device
that removes all the remaining rock or clay from a pregnant solution. In the

next step, the material is taken to a de-areator tank that removes bubbles of air and
further clarifies the solution.

The dataset as presented to the data mining algorithm can be

viewed as the “pregnant solution.” As a data mining algorithm

executes, it makes finer and more precise distinctions about the

data to extract knowledge. This can be in the form of, for example,

rules that define customer profiles, common co-occurrences of

product sales enabling cross-sell, or a representative case that

describes a set of patients susceptible to a type of cancer.

Zinc is added in dust form to the de-areated solution, which is drawn under
pressure through a filter press; which causes the gold and zinc to precipitate

onto canvas (heavy cloth) filter leaves. This zinc-gold precipitate (condensed into a
solid) is then cleaned from the filters while extreme heat burns off the zinc.

The purified “precipitate” of data mining is the emerging model,

which contains the extracted knowledge. It needs to be tested and

possibly refined through changing of parameters or further prepa-

ration of the data to produce a sufficient knowledge yield.

Water passing through the filters is chemically tested for gold residue before
being discharged into tailings ponds. Gold bearing water may be passed

through the filtering process several times to remove all of the gold and separate it
from impure substances.

Mining algorithms will often make several passes over the data

to continually tune or refine the model. Algorithms, such as neural

networks, decision trees, and K-means clustering, make multiple

passes over the data until any further improvements are deter-

mined insignificant or some other stopping criterion is met.

20 Chapter 1 Overview of Data Mining

Gold recovered from the ore through the milling process is poured into bricks
that are shipped to be assayed and sent to the mint in Ottawa, where coins are

struck (made).

Data mining models can be shipped from the lab to the field, or

components of which can be packaged up in reports or dashboards

for management and operations staff. From there, some models

can be used to score new data (i.e., make predictions or classifica-

tions). These scores can be used in applications such as predicting

customer response.

After reviewing this metaphor, you should have a physical

grounding in the data mining process and perhaps have learned

something about gold mining you did not know before.

1.3 The Value of Data Mining

The true value of data mining does not reside in a set of complex
algorithms, but in the practical problems that it can help solve. Too
often, data mining solutions are presented through the eyes of the
data analyst—the person who massages and prepares the data and
builds the models—where the emphasis is on the algorithm and tech-
niques used to solve the problem. However, in the business world,
true value is realized with return on investment, when we see that
$2 million was saved for a $300,000 investment to predict which
customers will default on a loan, or when we see that consumer
fraud was reduced 50 percent resulting in a savings of $22 million.

1.3.1 How Reliable Is Data Mining?

For a technology to be truly valuable, it needs to be reliable. Few
technologies are foolproof in practice, including data mining. How-
ever, data mining is based on a firm foundation in mathematics and
statistics. Data mining algorithms withstand tests on both real and
synthetic datasets, where results are rigorously analyzed for accu-
racy and correctness. The reliability of results more often depends on
the availability of sufficient data, data quality, and the technique cho-
sen, as well as the skills of those preparing the data, selecting algo-
rithm parameters, and analyzing the results. If the data provided
contains erroneous values (e.g., false data entered on warranty cards,
or a lot of missing values), data mining algorithms may have diffi-
culty discovering any meaningful patterns in the data. However,
over the past several decades, data mining techniques have been

1.3 The Value of Data Mining 21

used extensively in industry. For example, credit card transactions
and mortgage applications are often approved with input from data
mining models.

When a model is first produced, it can be quite reliable in terms of
the accuracy of its predictions on new data. However, is the predictive
quality of a model invariant? Does model accuracy remain constant
over time?

Few things remain constant, especially when humans are
involved. Tastes change, needs change, technology changes, life-
altering events force change. For example, a model that may have
been excellent at predicting credit risk for a given month may start to
show signs of degraded performance. When this happens we say
that such a model is stale. In this case, the model may need to be
rebuilt, taking into account more recent data. The data mining
process and its artifacts require periodic review and maintenance to
maintain reliable results.

1.3.2 How Can Data Mining Increase Profits and Reduce Costs?

Let’s consider an example from campaign management, first without
the use of data mining and then using data mining. One of the objec-
tives for campaign management is to determine which customers to
contact with regard to a particular sales campaign, with goals to min-
imize costs and maximize response and profits. If you knew in
advance which customers would respond, you may likely contact
only those customers.

Consider Company DMWHIZZ with a base of a million customers.
Based on previous campaign responses, DMWHIZZ generally gets a
2 percent response rate. With a million customers, this produces
about 20,000 responses. A proposed DMWHIZZ campaign will
require mailing costs of $1.50 per item, with a total campaign cost of
$1.5 million. If the average profit per customer who responds is $50,
our expected total profit is $1 million (20,000 � $50). But, since the
net profit of the campaign is a negative $500,000, DMWHIZZ will not
proceed with the campaign.

Let’s see how applying data mining can make this campaign
profitable. Selecting those customers most likely to respond is a
classification problem (i.e., classify each customer as responding or
not with an associated probability). As with any classification prob-
lem, DMWHIZZ will need to have actual response data from a
similar campaign to learn customer behavior. To achieve this,

22 Chapter 1 Overview of Data Mining

DMWHIZZ takes a 1 percent sample of customers for a trial
campaign. Reviewing the data from the 10,000 customers they
received their expected 2 percent, or 200 responses. Using the data
mining model and a held-aside or test set of customers, we find that
the model can return 80 percent of the likely responders contacting
only 40 percent of the customers, or 70 percent of likely responders
contacting 30 percent of the customers, as illustrated in Figure 1-5.6

Armed with this information, DMWHIZZ data miners build a
classification model using customer demographic and other data in
their customer and sales databases. The resulting model is used to
predict the likelihood of response for each of the remaining 990,000
customers. Now, let’s add up the results.

The cost of the trial campaign was $15,000 (10,000 � $1.50). Using
the data mining model, DMWHIZZ scores the 990,000 customers and
takes the top 40 percent as likely to respond (400,000). Recall that this
model provides 80 percent of the likely responders within that
40 percent. Since we expect 20,000 responses out of a million custom-
ers, we should get 80 percent of these, or 16,000—less the 200 we
already received in the trial, or 15,800. At an average profit of $50 per

6 Note that predicting a customer’s response is one aspect of the solution. Another
aspect is often profitability. This scenario can be augmented to predict profit per
customer and multiply by the probability of response, thereby producing an
expected profit per customer. Customers can be ordered based on this expected
profit.

100

90

80

70

60

50

40

30

20

10

0

10 20 30 40 50 60 70 80 90 100

%
 o

f
P

o
si

ti
v
e

R
es

p
o

n
se

s

% of Total Cases

“Lift” due to

Data Mining

Random

selection response

Figure 1-5 Cumulative positive targets representing model “lift.”

1.4 Summary 23

response, this produces $790,000 in revenue.7 The cost of the
campaign is $600,000 (400,000 � $1.50), so the projected profit is
$175,000 ($790K � $600K � $15K).

But what if we are more selective? Can we further increase profit?
If we restrict the campaign to the top 30 percent of customers likely to
respond (300,000), we will obtain 70 percent of the likely responders,
or 13,800 responses (20,000 � 70 � 200). Projected revenue is $690,000
(13,800 � $50), but cost of the campaign is only $450,000 (300,000 �
$1.50). So, the projected profit is $225,000 ($690K � $450K � $15K). In
this case, we actually increased profits by running a campaign for
fewer customers.

1.4 Summary

This first chapter discussed how data mining is particularly relevant
to businesses today in solving complex problems. Competition and
the need to improve customer experiences and interactions are
among the motivations, along with a better evaluation of the risks
associated with business processes. We discussed other terms that
are often used for data mining or are related to it. We then introduced
data mining, contrasting it with other forms of advanced analytics
such as OLAP and highlighting a basic process for extracting knowl-
edge and patterns from data. We introduced the notion of a model as a
compact representation of the knowledge or patterns found in the
data. To set the stage for our subsequent discussions, we introduced
typical data mining jargon, which will be revisited in more detail in
later chapters.

As gold mining has been performed through the centuries, so has
it been codified into a repeatable process. Similarly, data mining has
evolved to the stage where the process of mining data has also been
codified. Since data mining has parallels with gold mining, we com-
pared and contrasted the process of data mining with that of gold
mining.

We finished with a discussion on the value of data mining, exploring
reliability as well as a specific example in monetary terms.

7 In an actual modeling, the $50.00 expected profit would be multipled by the
probability of response assigned to each customer. This gives a more precise
expected outcome.

24 Chapter 1 Overview of Data Mining

The next chapter takes a more in-depth look at solving problems
in industry.

References

[BIS 2004] Bank for International Settlements, “Basel II: Revised Interna-
tional Capital Framework,” http://www.bis.org/publ/bcbsca.htm, June
26, 2004.

[Davenport 2006] Thomas Davenport, “Competing on Analytics,” Harvard
Business Review, January 2006.

[JSR-73 2004] “Java Specification Request 73: Java Data Mining (JDM),”
Maintenance Release v1.1, June 2005, http://jcp.org/en/jsr/
detail?id�73.

[McCarthy 2004] John McCarthy, “What is Artificial Intelligence,” Depart-
ment of Computer Science, Stanford University (http://www-formal.
stanford.edu/jmc/whatisai/whatisai.html), November 24, 2004.

[Mitchell 1997] Tom Mitchell, Machine Learning, McGraw-Hill, Boston,
1997.

[Oracle-PA 2006] http://www.oracle.com/technology/products/bi/odm/
pa-addin/odm_pred_analytics_addin.html.

[Perl 2006] http://www.perl.org/about.html.

[SearchCRM 2006] http://searchcrm.techtarget.com/sDefinition/0, sid11_
gci1070868,00.html.

[Shaw/Ivens 2002] Colin Shaw, John Ivens, Building Great Customer Experi-
ences, Great Britain, Palgrave Macmillan, 2002.

[SoftPanorama 2006] http://www.softpanorama.org/Scripting/index.shtml.

[SOX2006] http://www.soxtoolkit.com/sox-mail.htm.

[Webopedia 2006] http://www.webopedia.com/TERM/M/Moores_Law.html.

[Wells 2006] Wells Historical Society and Wells Museum, “Hard-Rock
Mining: The Process,” http://wells.entirety.ca/mining.htm.

[Wikipedia-DM 2006] http://en.wikipedia.org/wiki/Data_mining.

[Wikipedia—OLAP 2006] http://en.wikipedia.org/wiki/OLAP.

[Wikipedia—OpenStd 2006] http://en.wikipedia.org/wiki/Open_standard.

[XML.com 2006] “Service Oriented Architecture,” http://www.xml.com/
lpt/a/ws/2003/09/30/soa.html.

25

Chapter

2
Solving Problems in Industry

No problem can stand the assault of sustained thinking.

—Voltaire

Data mining has long been used to solve important problems across
industries [Apte� 2002] [Berry/Linoff 2004] [Gloven 2002]. One of
the biggest challenges to using data mining is knowing to which
types of problems it can readily be applied. Too often, a discussion of
data mining delves into a specific algorithm and its myriad features.
However, success with data mining goes beyond choosing the right
algorithm. Understanding the requirements in a particular domain,
and the types of problems and approaches to solving those problems,
is the best starting place to reap the benefits of data mining technol-
ogy. This chapter explores various business problems that are com-
mon to many industries and that can be addressed with a strategy
based on data mining.

As Internet and digital storage technology enables volumes of
data to grow astronomically, so does the need for analyzing that
data to extract useful information. However, data mining is not only
for large institutions with terabytes of data. Data mining’s benefits
can be leveraged by companies both big and small, from large finan-
cial institutions to local car dealerships, those with millions of
customers, and those with hundreds, and those with scientific as
well as manufacturing process data analysis needs.

26 Chapter 2 Solving Problems in Industry

Java Data Mining (JDM) is geared toward providing a rich set of
capabilities that allow applications to integrate data mining pro-
cesses and results to solve a wide variety of problems. As such, JDM
fits well with a solution strategy involving data mining.

2.1 Cross-Industry Data Mining Solutions

Data mining can solve a wide variety of problems either to gain
understanding or insights from business and scientific data (what is
the root cause of failures), or to predict certain outcomes (will the
customer purchase the product?) or values (what is the predicted real
estate value?). Knowing how to adapt even a small set of canonical
problems to specific industries enables taking advantage of the
power of data mining. This section explores several cross-industry
solutions where data mining is being applied. We use the term
“cross-industry” since most industries can tailor each of these solu-
tions for their particular domain.

2.1.1 Customer Acquisition

Obtaining new customers is the hallmark of growth for many
companies. However, not all customers are equally profitable. Busi-
ness marketers may select a subset of customers using some basic
criteria, such as income and age constraints, but may prove to be not
loyal, that is, not stay with the company for a long time or purchase
products exclusively from that company. Providing generous offers
to attract such customers may result in high acquisition costs while
providing no long-term benefits. Some customers simply jump from
offer to offer to take advantage of discounts or “freebies.”

Others may be loyal, but may purchase infrequently or purchase
only low-margin products. Targeting low-value customers with
generous offers may also prove to be counterproductive. Targeting
the right potential customers can result in greater customer retention,
greater customer lifetime value, and more profitability in the most
desirable product and customer segments.

Consider the customer groups in Figure 2-1. A potential customer
population for a marketing campaign is represented by the large
oval. A company could attempt to acquire all these customers, but
that may be prohibitively expensive. Moreover, many of the potential
customers may quickly leave for a competitor, purchase only low-
margin products, or introduce more costs (through call center or

2.1 Cross-Industry Data Mining Solutions 27

support line interactions) than profits for the business. If we use
traditional query techniques, we may select a subset of these possible
customers and target those of a certain age or in a particular income
bracket or household size. This type of segmentation is often based
on intuition or business experience. Yet, only a subset of these
customers are likely to purchase such a product or respond to a
campaign, whether contacted by mail, phone, or e-mail.

Where customer acquisition costs are high, either due to the
means of customer contact or incentives offered to them, knowing
which customers are likely to respond (see Section 2.1.3, “Response
Modeling”) and the potential value of those customers can greatly
reduce costs. Yet still, only some of the customers who purchase or
respond will be loyal. A goal for customer acquisition is to target
those customers who will have the greatest probability for response,
loyalty, or lifetime value.

For a moment, let’s go back to the simple query approach. Form-
ing precise boundaries to determine which customers to target based
on intuition or business experience may be accurate some of the time,
but likely leaves out some customers, perhaps many, who may prove
to be highly valuable, simply because they didn’t meet a precon-
ceived set of constraints.

Data mining is a key component of any modern customer acquisi-
tion strategy and revolves around several techniques. Given a set of
potential customers, perhaps obtained as data acquired from a third
party, data mining techniques such as clustering and classification
can be used to identify the various customer segments that exist
among those customers. After analyzing each of those segments, we
can determine the likelihood that each customer segment, and each
individual customer, will purchase specific products. To achieve this

Potential Customers

Qualifying

Customers Likely to

be loyal

Likely to purchase
Likely

to respond

Figure 2-1 Identifying your customers.

28 Chapter 2 Solving Problems in Industry

requires having historical data on the types of products existing
customers have purchased and various attributes of those customers
such as demographics, behaviors, etc.

Once we have identified the customers who are likely to purchase,
we can further assess which of these customers are likely to be profit-
able. This also requires historical data containing the profiles of
customers deemed to be profitable and unprofitable. Certain classifi-
cation techniques, such as decision trees, can produce a set of profiles,
or rules, highlighting the characteristics of profitable customers. This
information can then be used to select profitable customers.

Now that we know which customers are likely to purchase, which
of those are likely to be loyal, and which will be the most profitable,
we can perform response modeling to determine who is likely to
respond to a campaign. Then, we may even go one step further to
determine which channel is best for contacting such customers.

2.1.2 Customer Retention

Once a business has customers, one of the next problems is how to
keep those customers. Customer retention, or answering the question
“how do I keep my current customers?” is a problem faced by busi-
nesses in most every industry. For example, in financial services, a
customer who leaves is called an “attriter” and the problem is
referred to as “attrition.” In telecommunications, a customer who
leaves is called a “churner” and the problem is referred to as
“churn.” Regardless of the terminology, the basic problem is the
same: which customers are likely to leave and why?

Customers may leave for many reasons, for example, poor service,
moving out of the area, or the availability of more competitive offers.
However, these reasons are not always obvious until after the fact.
An effective customer retention effort often requires identifying cus-
tomers before they leave so that some action can be taken, if war-
ranted, to retain those customers. We say “if warranted” because
some customers may not be worth retaining. Customers who have
low value or represent a net loss to the business when considering
support and maintenance costs fall into this category.

Data mining can be applied to identify characteristics of individu-
als and their past and current behavior to determine much more
subtle indicators of attrition or churn. For example, in wireless phone
service, a customer whose minutes of usage drop from a four-week
moving average of 500 minutes per week to 50 minutes per week

2.1 Cross-Industry Data Mining Solutions 29

could have many reasons: the person is on vacation, lost his job for
which the phone was largely used, started using other means of
communication such as Internet, or switched to another service
provider for work-related calls, but still uses the service for personal
calls. Figure 2-2 illustrates a pattern in minutes of usage that a
possible churner may exhibit before terminating his account.
However, different groups of individuals may be exhibiting this
behavior, for example, teenage girls with large family and friend
circles, 30-something single male professionals, etc. Understanding
the particular characteristics of each of these groups enables busi-
nesses to develop campaigns to retain such customers or to increase
their service usage. Data mining can identify the important factors or
attributes that lead to a specific behavior, as well as group individu-
als according to their behavior.

A customer retention or loyalty strategy can revolve around
several techniques. Customer loyalty can be increased when that
customer purchases more products. Identifying which other prod-
ucts existing customers are likely to purchase, called cross-sell (see
Section 2.1.5), can meet this objective. The data mining technique
association, as discussed in Section 4.5, can help here.

We have already noted that some customers are more valuable
than others, that is, they purchase products in greater quantity or
purchase more profitable products. Helping to prevent the loss of
such high-value customers is another area where data mining can
help. First, one needs to be able to identify high-value customers.
Being able to classify individuals efficiently as high, medium, or low
value, or as representing a specific dollar amount to the business, is a

Time

M
in

u
te

s
o

f
U

sa
g

e

Possible

Churner

More likely

Churner

Account

Terminated

Figure 2-2 Customer J. Doe’s cellphone usage pattern.

30 Chapter 2 Solving Problems in Industry

first step. Once we know which customers are high value, we can
take steps to encourage them to remain customers, especially if
we’ve identified them as likely to leave. Just as important as knowing
which customers to keep is knowing which customers to let go. As
noted above, low-value customers can be costly to maintain. For
example, if a customer frequently uses your call center with ques-
tions or problems yet buys minimal product or services, it may be
more cost effective to allow such customers to leave. Both active and
passive actions can help to reduce low-value customers. Combining
data mining results with rule-based systems can help to automati-
cally recommend actions for certain customers.

For customers who are likely to leave, businesses need to under-
stand if there are any common factors (e.g., a certain age or ethnic
group, geographic region, or type of products sold) that are common
among dissatisfied customers. If such factors are identified, busi-
nesses may be able to take more effective actions to avert a
customer’s decision to leave. Data mining can be used to identify the
factors that play most heavily in determining an outcome. The data
mining technique attribute importance can help here (see Section 4.4)
as well as the decision tree algorithm which produces rules that high-
light the specific attribute values that result in a dissatisfied
customer. For example, a decision tree rule may indicate that high-
income, 30-something female customers from the Northeast who
purchased the latest product offering and had an unsuccessful call
center experience cancelled their service.

Knowing in aggregate the number of customers likely to leave,
say in the next three months, can give a manager a reasonable
estimate for resource allocation, either in the number of support staff
needed to try to retain these customers or budget to provide incen-
tives to customers at risk. In this case, classification techniques allow
the building of models that generate a probability of each customer
to leave. Summing these probabilities provides the estimate of total
attrition.

2.1.3 Response Modeling

The essence of response modeling is to determine whether or not
someone will respond positively to a request or offer. That request
may be to purchase a product, complete a survey, donate money, or
participate in a clinical trial. The motivations for response modeling
are simple: reduce costs by soliciting fewer people who have a
greater likelihood of responding, increase return on investment by

2.1 Cross-Industry Data Mining Solutions 31

getting more positive responders for the money expended, and
reduce customer fatigue by contacting only those customers most
likely to show interest.

From a data mining perspective, the goal is to classify each indi-
vidual as a responder or nonresponder with an associated probability.
Data mining classification algorithms are well suited for this task.
Customers can then be ranked from those with the highest probabil-
ity of response to the lowest probability of response. Choosing those
customers at the top of the list provides a high concentration of
responders. This is reflected in a “lift” chart as depicted in Figure 2-3.
The notion of lift is discussed in detail in Chapter 7, but in short, lift
provides a simple understanding of how much better the predictions
of the data mining model are than a random selection of customers.

To use data mining for response modeling, it is important to have
relevant historical data about which customers responded and did
not respond to campaigns in the past. “Relevant data” means that the
data is for a similar situation, for example, purchase of a product or
type of product, completing a survey, etc. Moreover, there needs to be
sufficient demographic and other customer-related information from
which data mining algorithms can “learn” the patterns or types of
customer that respond. If there is no historical data available, a trial
campaign can be performed on a random subset of the potential cus-
tomers. Assuming there are a sufficient number of responders, the
data mining algorithm can learn what distinguishes a responder from

%
 o

f
 P

o
si

ti
v

e
 R

e
sp

o
n

d
e
rs

100

100

0

% of Total Cases

0

Data mining–based

selection result

Random

selection

result

Figure 2-3 Getting “lift” on responders.

32 Chapter 2 Solving Problems in Industry

a nonresponder. It is from this trial, or sample, of the population that
we can also test model accuracy and obtain a lift chart.

Response modeling can be combined with a value prediction,
such as dollar amount of order, donation size, etc., to derive an
expected return on the campaign. A regression model can be built to
predict, for example, the amount each customer spends or each
alumnus donates. Multiplying this value by the probability that a
given customer will respond to the campaign produces an expected
value for that customer. Customers can be sorted not only by likeli-
hood to respond, but by expected value to identify the highest likely
spenders or donors.

Another refinement of response modeling is to determine which
channel is best to approach these customers, for example, mail, e-mail,
or phone. Once again, based on historical data, we can learn the pat-
tern of customers who respond best to mail, e-mail, or phone.

2.1.4 Fraud Detection

Anywhere money is involved, the potential for fraud exists; all
industries are vulnerable to individuals who abuse established
procedures for personal gain, often illegally. Healthcare, financial
services, and taxation are just a few areas where fraud is found.

One approach to fraud detection involves clustering. The objective
is first to group the data into clusters. We can then review each of the
clusters to see if there is a concentration of known fraud in any one
cluster, indicating that fraud is more likely to occur within a given
cluster than another. In addition, we can look for cases that don’t
match any of the known clusters particularly well, or at all. These
outliers become prime candidates for investigation.

A second approach to fraud detection involves classification.
We first identify examples of fraud manually in historical data.
With classification, the goal is to learn to distinguish between
fraudulent and nonfraudulent behavior. Consider a dataset con-
sisting of various predictor attributes, such as “age,” “income,”
“wire transfer within last 10 days,” and a target attribute indicat-
ing if the case was fraudulent or not. A classification algorithm like
decision tree or support vector machine can then predict the likeli-
hood of fraud on new data. Cases with a high probability of fraud
are then good candidates for investigation. However, we can also
predict the likelihood of fraud on the original data. This allows for
a comparison between actual target values and the predicted values.

2.1 Cross-Industry Data Mining Solutions 33

Where there are discrepancies (i.e., the case was believed to be
nonfraudulent, but predicted to be fraudulent), there are opportu-
nities for investigation.

In fraud detection, we want to ensure we catch fraud (minimize
false negatives, which incorrectly identify fraud events as nonfraud
events), while avoiding investigating too many red herrings (mini-
mize false positives, which identify nonfraud events as fraud events),
since the costs associated with investigating fraud can be high.

We digress briefly to discuss the types of errors possible for a
classification model. Figure 2-4 illustrates a typical report on predic-
tion accuracy, where Type I error is considered a false negative
prediction and Type II error is considered a false positive prediction.
The columns are labeled with the possible predicted classes, in this
binary case, “0” corresponds to the negative (nonfraud) prediction,
and “1” the positive (fraud) prediction. The value reported where
actual and predicted equals “1” indicates the number of times the
positive class was predicted correctly. Similarly, the value reported
where the actual and predicted equals “0” indicate the number of
times the negative class was predicted correctly. More than two val-
ues are possible when predicting multiple outcomes. In this case, the
matrix is n � n, instead of 2 � 2, where n is the number of possible
values.

Accuracy = Total Correct / Total Scored

= (523 + 143) / 834

= 666 / 834

= 0.7985

Type I
Error

Type II
Error

Figure 2-4 Assessing prediction accuracy via Type I and Type II error. Source: Screen
capture from Oracle Data Miner graphical interface.

34 Chapter 2 Solving Problems in Industry

As a percentage of transactions or cases, fraud is normally quite
small, perhaps less than a few percent among all cases. A challenge
for some data mining algorithms using predictive modeling for fraud
detection is this imbalance between the number of known fraudulent
cases and nonfraudulent cases. When using classification to identify
fraud, such data can require special data preparation. A technique
called stratified sampling can be used to obtain a dataset that contains
a better balance. For example, if a million-case dataset contains 1 per-
cent known fraud cases, this means that for the 10,000 examples of
fraud, there are 990,000 examples of nonfraud. Many algorithms
have difficulty with this imbalance, producing models that cannot
distinguish fraud from nonfraud well. Consider that if the model
simply predicted all cases to be nonfraud, the result would be 99 per-
cent accurate, yet would not detect any fraud. By sampling the data
for 25 percent (10,000) fraudulent cases and 75 percent (30,000) non-
fraudulent cases, the algorithm can learn more effectively. When
stratified sampling is introduced, prior probabilities can be used to
inform the algorithm of the original population distribution, as
illustrated in Figure 2-5. In this example, the priors are 1 percent for
fraud and 99 percent for nonfraud. We revisit this concept of prior
probability in Chapter 7. There are other techniques that can support
fraud detection such as anomaly detection, which is being intro-
duced in JDM 2.0.

Original Dataset

Target Value Distribution

for 1,000,000 Records

Fraud
25%

Nonfraud

75%

Stratified Sample Dataset

Target Value Distribution

for 40,000 Records

Model takes into account
the original distribution of
data when making
predictions

Prior Probability specification

Nonfraud = 0.99

Fraud = 0.01

Stratified

Sample

Data

Build

Model
Nonfraud

99%

Fraud 1%

Figure 2-5 Example of stratified sampling and prior probabilities.

2.1 Cross-Industry Data Mining Solutions 35

Perhaps the biggest problem in performing data mining is in the

availability of useful data. Even if a company is willing to pursue a

data mining project, that project can quickly come to a standstill due

to either a total lack of data to mine, or poor quality data. Data with

many missing values or inaccurate entries can make extracting

meaningful information nearly impossible until the fundamental data

quality or availability issues are resolved. This can involve anything

from establishing a data warehouse, instituting business processes

to collect certain information, or going back to the data sources to

clean up “dirty” data. However, the problem of data availability and

quality is beyond the scope of this book. We refer readers interested

in this topic to [Kimball1 2004, Phonniah 2004] on data warehous-

ing, and [Pyle 1999] on data preparation.

2.1.5 Cross-Selling

Getting customers to buy more of a company’s products is a key goal
for many marketing managers. Cross-selling is quite prevalent in
online retailers, or e-businesses, where purchasing one product gives
the company an opportunity to sell other products to that same cus-
tomer. Cross-selling can involve identifying complementary or
related products, or even premium products—called up-selling. For
some products, suggestions for cross-selling may be obvious, for
example, staples with staplers and mouse pads with computer mice.
However, others are not so obvious, sometimes involving multiple
products being purchased together.

The term market basket analysis is often applied to this problem.
The data typically used is transaction data, a collection of records
identified by a transaction identifier and containing the set of prod-
ucts or items that were purchased in that transaction. Consider a
supermarket visit at customer checkout. Each customer’s shopping
cart or “market basket” contains some set of items. The data mining
technique association rules leverages these buying patterns of custom-
ers to provide insight into which products are commonly purchased
together, known as product relationships. Once we know these rela-
tionships, they can be used to position products on the same Web
page, suggest other products at checkout time, or result in a separate
solicitation via e-mail, mail, or phone.

Another use of identifying product relationships involves under-
standing product demand given promotions on certain products. For
example, consider a store that decides to put a certain computer game

36 Chapter 2 Solving Problems in Industry

on sale that uses a steering wheel input device. If the retailer does not
foresee the relationship, there may be plenty of computer games in
stock (what the retailer planned to promote), but customers may not
be able to buy the complementary steering wheel input device since
the product may have sold out prematurely. As a result, the retailer
loses additional sales from customers who want that input device, or
even loses the sale of the computer game from customers wanting
both items and purchasing none.

2.1.6 New Product Line Development

Answering which bundle of products should be offered to custom-
ers, perhaps with pricing discounts, is a challenging task. Knowing
which products are normally purchased together, possibly out of
thousands, is daunting. Since not all customers behave the same, a
bundling strategy should start with groups of similar customers. The
first step is to identify a set of customer segments or target markets.

Consider a typical customer database, including individuals with
a wide range of ages, incomes, and interests. Using clustering
techniques, we can automatically identify customer segments. These
segments might include such groups as “wealthy seniors who enjoy
the outdoors,” “young families in the suburbs,” “college students
who rent,” and “large families in cities who use public transporta-
tion.” We then partition the market basket data associated with each
customer according to the customer’s assigned segment. The next
step is to use an association technique to find those products that are
frequently purchased together within each segment. For example, we
may find that “young families in the suburbs” may purchase several
life insurance policies on family members as well as home insurance,
but not car insurance. These now form the candidate product bundles
that can be targeted for each of the customer groups. In the example,
this could lead to a product bundle for multiple life insurance policies
or a more complete bundle that includes car insurance to get this
customer segment to purchase car insurance from this insurance
company as well. The basic process is depicted in Figure 2-6.

Usually it is not enough to just identify possible product bundles.
It is important to understand how likely a customer group is to pur-
chase the new product bundle, and how much profit we can expect
to make from such customers. To determine the success of a product
bundle, a test marketing campaign can be performed, much like the
response modeling problem of Section 2.1.3. From this we can deter-
mine not only if a significant percentage of customers will purchase

2.1 Cross-Industry Data Mining Solutions 37

the new product bundle, but also develop a subprofile of customers
in the segment most likely to purchase.

2.1.7 Survey Analysis

Thousands of surveys are conducted every day. The value of these
surveys is often realized through straightforward statistical analysis
and deductive reasoning. For example, consider a customer service
satisfaction survey for a wireless telecommunications provider. Typi-
cally, such survey results are provided as bar charts of the population
according to age group, income level, household size, and marital
status. Questions are often summarized, for example, 50 percent of
respondents rated quality of service low. Sometimes, results will
even be correlated with a particular demographic, for example,
15 percent of 20- to 30-year-olds rated quality of service low while
80 percent of 30- to 40-year-olds did so. However, there may be more
complex combinations of demographics that could shed more light
on a particular response. For example, 75 percent of those who rated
quality of service low have income between $75K and $100K, have a
household size of 5, have over 1,000 minutes of usage per month, and
travel for work more than 50 percent of the time. This kind of infor-
mation helps to target a specific profile of persons and possibly even
helps to pinpoint the reason for the low quality of service rating.

Rules

Rules

Segment Customers

Bundling

Strategy

Association

Association

Association

Association

Association Rules

Rules

Rules

Bundling

Strategy

Bundling

Strategy

Bundling

Strategy

Senior and Wealthy

Family and Wealthy

College Students

Middleclass

Figure 2-6 Developing new product lines using segmentation and association.

38 Chapter 2 Solving Problems in Industry

To this end, data mining technology can be applied to identify the
profiles of respondents who answered one or more questions a certain
way. It can also be used to understand how respondents are grouped
or segmented. Such results enable focused sales and marketing efforts
to well-defined groups, as well as corrective action [SPSS 2003].

Data in surveys is often structured but can also be unstructured.
Structured data contains discrete responses such as multiple choice
questions involving demographic data, for example, age and income
level, or statements to be rated from “strongly agree” to “strongly
disagree.” Unstructured data can consist of short free-form
responses, for example, the “other” category with a line to specify a
value, or longer free-form questions such as “What was your best
and worst experience with our company?” where the user responds
with text.

To address free-form responses, text mining can be introduced by
extracting important terms from the text and combining it with
structured data before mining. Some data mining vendors will per-
form this term extraction automatically, others may require explicit
preprocessing.

2.1.8 Credit Scoring

Every time you apply for a loan, mortgage, or credit card, your credit
history is checked and your current financial situation is assessed to
determine a “credit score.” This score indicates the type of risk you
represent to the financial institution issuing the credit. Credit scoring
takes into account various information such as customer demo-
graphics, loan history, deposits and assets, total credit line, outstand-
ing debt, etc.

The more accurate the score, the more likely the financial institu-
tion is to make a correct decision on a customer. Although there are
always unexpected factors for individuals defaulting on loans, such
as job loss or illness, the credit score provides important input to the
loan decisioning process.

Historically, statistical methods were employed for credit scoring.
Today, data mining plays an increasingly important role in determin-
ing credit worthiness due to the large number of predictor attributes
that exist on customers.

A typical approach for building credit scoring models uses super-
vised learning, where first a credit score for each of a set of customers

2.1 Cross-Industry Data Mining Solutions 39

is computed manually. This score is combined with customer
demographic and other data as noted above. If we were interested in
classifying customers as a high, medium, or low credit risk we could
use a classification technique. If we wanted to predict a numerical
score, we could use a regression technique that predicts a continuous
numerical value.

Another approach uses historical data on customers who either
failed or succeeded in fulfilling their loan obligations in the past.
Instead of using manually computed “scores,” a classification
algorithm learns to predict the probability of default on a loan. After
these probabilities have been established, a scale can be introduced
for ranking customers (assigning a credit score), usually based on a
desired distribution of scores (e.g., 5% must be in the top range—
“AAA” rating according to some classifications; 25% in the next
range, and so on).

2.1.9 Warranty Analysis

Anyone who buys products has likely had some of those products
break. Some of those products will be under warranty, which
means that someone—the retailer, manufacturer, or independent
warranter—will make certain repairs free of charge. Many products
come with warranties automatically, for example, you will see “the
manufacturer warranties this product to be free from defects for a
period of 90 days from purchase.” More common today are cus-
tomer-purchased, or extended, warranties. Although extended
warranties are often regarded as a “cash cow” for retailers, depend-
ing on the industry, the costs associated with servicing products
are, to some extent, a gamble. The warranter expects a certain per-
centage of products to fail within the warranty period, and builds
the cost for that into either the product cost or the cost of the
extended warranty. By using advanced analytic techniques, war-
ranters can better manage the seemingly unpredictable and uncon-
trollable expenses associated with warranties. Manufacturers and
retailers need good algorithms for predicting future claims, very
reliable products, or dramatically overpriced warranty offerings.

To reduce internal warranty costs where multiple suppliers,
assemblers, dealers, and repair centers are involved, it is important
to understand where product failures originate to improve cost
recovery and processes. Because data mining can attribute problems
to the various parties in the product path, data mining can be used to
identify the root causes behind warranty repairs, for example, a

40 Chapter 2 Solving Problems in Industry

particular supplier’s parts or even the repair process itself. Using
attribute importance, we can identify the factors that best determine
valuable and problem parties. Using association, it is possible to
determine which types of problems typically occur together and
from which parties. By identifying the causes of failures faster,
overall costs can be reduced by taking corrective action sooner. In
addition, data mining can be used to forecast warranty reserves.

Warranty claims processing is often labor intensive, especially
where invalid or fraudulent claims must be analyzed manually. By
quickly classifying claims as invalid or potentially fraudulent, using
techniques discussed in Section 2.1.4, both time and claims paid can
be reduced.

2.1.10 Defect Analysis

Any company that manufactures products is interested in under-
standing the root causes of product defects. Data mining provides
several techniques for uncovering root causes, including association,
clustering, and predictive modeling. In association, the resulting
rules identify co-occurring items, features, or events that typically
accompany defects. Whereas the number of factors associated with
each production run may be large, on the order of hundreds or
thousands of factors, such that examining these manually is intracta-
ble, the association data mining technique extracts rules highlighting
the most frequent factors that, in this case, result in product failure.

In clustering, defective parts or production runs may share
common properties. Clustering analysis produces groupings of items
according to common attribute values. Reviewing the distribution of
data values for each cluster and the rules that define each cluster may
give clues as to what each of these defects has in common. In predic-
tive modeling, one can build a classifier to predict which items are
likely to be defective. If the classification model provides transparency,
such as the rules, one can identify what determines a failure. More-
over, for any given production run, users could predict if a defect is
likely given certain conditions such as temperature or humidity. Other
benefits of data mining for defect analysis are well-stated in [Wu 2002]:

Through the use of data mining techniques, manufacturers are able to identify
the characteristics surrounding defective products, such as day of week and time of
the manufacturing run, components being used and individuals working on the
assembling line. By understanding these characteristics, changes can be made to
the manufacturing process to improve the quality of the products being produced.

2.2 Data Mining in Industries 41

High-quality products lead to improved reputation of the organization within its
industry and help to drive sales. In addition, profitability improves through the
reduction of return materials allowances and field service calls.

2.2 Data Mining in Industries

The cross-industry solutions presented in the previous section are
readily applicable to a variety of industries. In this section, we char-
acterize some specific industry problems for which data mining can
be applied. In the discussion, we highlight some of the cross-industry
solutions as well as other problems where data mining can be
applied.

2.2.1 Financial Services

Financial services is an umbrella term that includes banking,
insurance, and capital markets. Within banking, many opportuni-
ties exist for the use of data mining, including credit scoring, credit
card fraud detection, cross-sell, as well as customer relationship
management issues including response modeling, acquisition, and
retention [SAS 2001] [SAS 2002].

In [Wu 2002], we find that

within the financial services industry, credit card issuers have been using data
mining techniques to detect potentially fraudulent credit card transactions. When a
credit transaction is executed, the transaction and all data elements describing the
transaction are analyzed using a sophisticated data mining technique called neural
networks to determine whether or not the transaction is a potentially fraudulent
charge based upon known fraudulent charges. This data mining technique yields a
predictive result. While the prediction may or may not be correct, this technique
requires the system to learn various patterns and characteristics of transactions so to
fine-tune its prediction capabilities. By utilizing data mining, credit card issuers
have decreased and mitigated losses due to fraudulent charges.

While neural networks have traditionally been used in this industry,
they also suffer from problems such as scalability and difficulty
converging on an optimal solution. Other algorithms, like Support
Vector Machine as discussed in Chapter 7, overcome these types of
problems.

Within banking, the advent of the Basel II accord, final version
issued June 2004, created a huge opportunity for data mining. Basel II is
the result of deliberations among central bankers from around the
world and the Basel Committee on Banking Supervision in Basel,

42 Chapter 2 Solving Problems in Industry

Switzerland. One of the outcomes of Basel II is to allow banks to move
away from stringent reserve requirements and rely more on the risk
actually assumed by the individual banks for their specific customers.
However banks must be able to prove to regulators that their risk esti-
mates are well grounded. Accurately calculating the “loss given default,”
that is, the amount of money the bank is likely to lose if a customer
defaults on his loan, for an individual bank’s customers can result in
reduced reserve requirements, thereby freeing up capital for other
investment. In one aspect of the accord, banks must maintain 5 years of
what is called “customer default” data from which to build models that
produce a probability of default, where “default” refers to the cus-
tomer’s inability to pay back a loan. The results of these models must be
available for auditing and to provide the required proof to regulators
that risk used is based on actual data [BIS 2004] [Wikipedia 2005].

Within insurance, beyond typical customer acquisition and reten-
tion, one goal is to increase the number of policies held by customers.
This can be achieved through the development of successful policy
bundles, as well as cross-sell and up-sell of policies as described in
Section 2.1. Regression techniques can be used to set rates for insur-
ance premiums using customer demographics and psychographics,
and claims history. Setting rates too high results in lost business,
setting rates too low can result in overexposure on claims. Insurance
claims fraud detection is another area where data mining plays an
important role [SAS 2002a].

Within capital markets, data mining can assist with bundling
stocks into a mutual fund portfolio by clustering stocks, yielding sets
of stocks with common characteristics. By assigning stocks to clus-
ters, each cluster can be the starting point for further analysis and
assessment of which stocks to include in a particular portfolio. Data
mining has also been used to perform trader profiling to understand
the type and styles of traders, as well as trader abuse through insider
trading monitoring [NASD 2006].

2.2.2 Healthcare

It is practically a cliché to comment on the skyrocketing costs of
healthcare. Costs are often attributed to inefficiencies in process,
errors, fraud, and generally a lack of knowledge of what treatments
are necessary or appropriate for a given patient. With increasing
momentum, healthcare institutions and health plans are turning to
data mining to solve such important problems and contain costs
[Hagland 2004].

2.2 Data Mining in Industries 43

To realize these benefits requires a certain infrastructure, one that
is able to collect electronically meaningful data about patients, their
treatments, and healthcare providers such as labs, doctors, and
nurses. Hospitals and other care providers are slowly moving into
the digital age. For those who have, they can use this data to identify
the important factors that determine a patient’s likelihood of
responding to a particular treatment. Using the association tech-
nique, providers can determine probable causes of a patient’s death
that may be a result of external factors such as staffing shortages,
prescription mix-ups, or process flaws.

As for financial institutions, fraud is a major concern for health-
care insurance companies, specifically in the area of billing fraud
[SPSS 2003a]. Being able to identify which providers are likely billing
incorrectly and by how much is an area where data mining can be
readily applied. A fairly common technique is to cluster healthcare
providers to identify those with unusual billing patterns. There may
be a few clusters of providers that warrant investigation since they
are outside the norm of other providers. There may be individual
providers that do not fit any particular cluster and warrant further
investigation. Association can be used to identify uncommon
relationships expressed as rules that appear with low support, that is,
few cases exhibit that behavior. Using regression techniques, an
expected number of claims or monetary value of claims for each
provider can be predicted. By comparing the actual number of claims
or monetary value to the predicted, those providers who signifi-
cantly differ from the predicted value are identified as candidates for
investigation.

Still other areas for healthcare fraud involve doctors prescribing
unneeded medications, perhaps due to receiving kickbacks from
drug companies. Developing predictive models on patients who
legitimately use certain drugs can yield profiles of such patients.
When a drug is prescribed, the profile of the patient can be matched
against known profiles for legitimate users of the drug. Mismatches
are candidates for investigation.

2.2.3 Higher Education

Higher education institutions such as colleges and universities are
faced with a growing number of concerns, including reducing opera-
tions costs and the resultant tuition increases, attracting students
who will flourish in their respective environments and complete a
degree program, and increasing alumni donations.

44 Chapter 2 Solving Problems in Industry

Using the classification technique, colleges and universities can
identify the types of students that tend to enroll in and complete
particular course programs. When determining which students to
solicit or admit, one consideration can include their likelihood to
graduate. Understanding which course programs are likely to be
pursued can enable projecting future revenues, more efficient plan-
ning in terms of number of sections offered, and the corresponding
needed staff.

Another concern involves student attrition, with a goal to iden-
tify the profile and likelihood of students who will drop out of a
degree program or transfer. A critical time for many students is
between the second and third year in an undergraduate program. If
students likely to drop out or transfer can be identified at this junc-
ture, appropriate measures can be taken to address the need for
tutoring or scholarships. Data mining can also be used to understand
why certain groups of students drop out or transfer, or what are the
important factors leading to a higher turnover ratio one year com-
pared to another.

A common activity in higher education is soliciting donations
from alumni. Response modeling can be used to identify which
alumni are most likely to donate. Regression can be used to predict
how much each alumnus is likely to donate. Multiplying the
predicted donation amount by the probability to donate yields an
expected donation amount. Ranking alumni by this expected dona-
tion amount enables prioritizing who to contact and how. Using
classification and regression algorithms that provide transparency,
we can identify the characteristics of alumni who donate and alumni
who make relatively large donations.

2.2.4 Public Sector

Within the public sector is a wide range of possible data mining
applications, from crime analysis to lottery systems [SPSS 2005].

In crime analysis, law enforcement is getting much more
sophisticated in data collection and management, leveraging this
data for “tactical crime analysis, risk and threat assessment, behav-
ioral analysis of violent crime, analysis of telephone and Internet
records, and deployment strategies” [McCue 2003]. By extracting
patterns over large datasets, it is possible, for example, to identify
relationships between events (association) or the attributes associated
with increased threat levels (attribute importance).

2.2 Data Mining in Industries 45

In the area of homeland security, data mining is often met with
skepticism. There are concerns over privacy and accuracy. In particu-
lar, Seifert [2004] notes,

One limitation is that although data mining can help reveal patterns and relation-
ships, it does not tell the user the value or significance of these patterns. These types of
determinations must be made by the user. A second limitation is that while data
mining can identify connections between behaviors and/or variables, it does not
necessarily identify a causal relationship. To be successful, data mining still requires
skilled technical and analytical specialists who can structure the analysis and
interpret the output that is created.

Despite these limitations, data mining is being used for identifying
terrorists and for analyzing large volumes of text documents, includ-
ing the Web and e-mail, for possible breaches in national security.

In lottery systems, data mining is employed to increase revenues
by predicting customer color or game preferences, to acquire and
retain customers, and to determine in which regions certain games
are most successful [SPSS 2005]. Attribute importance can be used to
determine which customer demographics most affect game success.
Classification techniques can predict which customers are likely to
prefer certain types of games.

2.2.5 Communications

The communications industry is one of intense competition. Many of
the cross-industry problems noted above apply: customer retention/
attrition referred to as “churn,” response modeling, fraud detection,
and cross-sell. As noted in Peppers/Rogers [1999],

GTE developed a data mining product called ChurnManager that scans all the data
in a customer’s file and summarizes it in an easy-to-use graphical interface that is
prominent on the very first customer record screen displayed to the service rep
answering the call. / Every customer’s relationship with GTE is summarized … to pro-
vide [the customer service representatives] with instant notification of potential cus-
tomer dissatisfaction, as well as customer value and vulnerability to leaving the service.

Another specific communications industry problem is in the area
of network performance management.

A leading US operator uses [data mining] to ensure that calls are routed effectively.
This is done by continuous monitoring of performance rules and the analysis of data,
both data on the history of component and trunk usage, and on the current network
activity metrics. This operator has seen “false” service and engineering call-outs
decrease and the number of successful calls on their network increase. [Morgan 2003]

46 Chapter 2 Solving Problems in Industry

2.2.6 Retail

Many players in the retail industry already leverage data mining
extensively. Customer relationship management (CRM) and the
desire for one-to-one marketing [Peppers/Rogers 1999] make good
use of various cross-industry solutions: customer acquisition and
retention, response modeling, and new product line development,
among others. Loyalty programs such as those providing affinity
cards (frequent buyer cards) allow retailers to understand the buying
habits of customers and predict future behavior and needs.

Retail problems, however, go beyond CRM. Efficiently processing
and managing inventory can make a significant difference in profit
margins. Wu [2002] states,

In retail, every time merchandise is handled it costs the merchant. By incorporating
data mining techniques, retailers can improve their inventory logistics and thereby
reduce their cost in handling inventory. Through data mining, a retailer can identify
the demographics of its customers such as gender, martial status, number of children,
etc. and the products that they buy. This information can be extremely beneficial in
stocking merchandise in new store locations as well as identifying ‘hot’ selling
products in one demographic market that should also be displayed in stores with sim-
ilar demographic characteristics. For nationwide retailers, this information can have
a tremendous positive impact on their operations by decreasing inventory movement
as well as placing inventory in locations where it is likely to sell.

2.2.7 Life Sciences

Life sciences typically involves research that analyzes the structure,
function, growth, origin, evolution, or distribution of living organisms
and their relations to their natural environments [NCCS 2005]. It is a
fruitful area for applying data mining techniques amidst the deluge
of data confronting the life sciences industry [Lanfear 2006]. Problems
cover a wide range of areas including disease diagnosis [Chan�
2002] [Lerner� 2001] and treatment, genomics, drug interactions,
drug discovery, and cancer research [May/Heebner 2003].

For assessing disease treatments [Hamm 2004], attribute importance
techniques can rank treatments, treatment factors, and treatment effica-
cies. For example, factors associated with positive diabetes treatments
are ordered based on the drug received, full patient history, number of
hospital admissions, gender, etc. In addition, association techniques can
identify correlations between a particular treatment and patient out-
come. Rules may be of the form, “if number of visits to provider > 5
then outcome � improvement in 36 percent of cases.”

2.3 Summary 47

In cancer research, data mining has been applied to cluster different
types of cancer cells according to hundreds or thousands of attributes
on the cancer cells. This data can consist of visible aspects of the can-
cers, as well as gene-level data. Those cancer cells that appear in the
same cluster as cancer cells with known treatments may be treated
similarly. Accurately diagnosing cancer in patients is essential for
selecting optimal treatment. However, accurate diagnosis is often diffi-
cult since tumor appearance and location are not always sufficient to
properly classify a tumor. Moreover, clinical data can be incomplete or
misleading. Data mining has also been successfully employed to reduce
error by using molecular classification of common adult malignancies.
Using microarray-based tumor gene expression profiles, classification
techniques using data from over sixteen thousand genes have been
analyzed to yield more accurate diagnoses [Ramaswamy� 2001].

For drug discovery and drug interactions, data mining is being
employed “to predict properties such as absorption rates, metabo-
lites, liver toxicity, and carcinogenicity” [Pinsky 2005].

2.3 Summary

In this chapter, we identified and discussed several cross-industry
solutions where data mining plays a central role. Understanding
such common data mining scenarios is a beginning for identifying
uses of data mining in your individual application domains. We also
highlighted several industries and their particular uses of data
mining. Each of these industries can apply the cross-industry
solutions cited, tailored to its own domain-specific needs.

We have so far discussed various mining techniques at a high
level. In the next chapter, we go to the next level of detail, discussing
data mining functions and algorithms that are provided in JDM.

References

[Apte� 2002] C. Apte, B. Liu, E. Pednault, P. Smyth, “Business Applications
of Data Mining,” Communications of the ACM, vol. 45, no. 8, August
2002.

[Bakin� 1999] http://citeseer.ifi.unizh.ch/bakin99mining.html.

[Berry/Linoff 2004] M. Berry, G. Linoff, Data Mining Techniques for
Marketing, Sales, and Customer Relationship Management, New York, John
Wiley & Sons, Inc., 2004.

48 Chapter 2 Solving Problems in Industry

[BIS 2004] Bank for International Settlements, “Basel II: Revised International
Capital Framework,” http://www.bis.org/publ/bcbsca.htm, June 26,
2004.

[Chan� 2002] K. Chan, T. Lee, et al., “Comparison of Machine Learning and
Traditional Classifiers in Glaucoma Diagnosis,” IEEE Transactions on
Biomedical Engineering, vol. 49, no. 9, September 2002.

[Gloven 2002] M. Gloven, “Mining for Knowledge—Revealing the Secrets of
Information,” Proceedings of IPC2002, International Pipeline Conference,
September 2002.

[Hagland 2004] M. Hagland, “Data Mining,” Healthcare Informatics Online,
http://www.healthcare-informatics.com/issues/2004/04/hagland.htm,
April 2004.

[Hamm 2004] Carolyn Hamm, Walter Reed Medical Center, presentation at
Oracle Life Sciences User Group Meeting, June 2004.

[Lanfear 2006] J. Lanfear, “Dealing with the Data Deluge,” in Nature
Reviews Drug Discovery, Nature Publishing Group, 2006. http://www.
nature.com/drugdisc/nj/articles/nrd832.html.

[May/Heebner 2003] M. May, G. Heebner, “Drug Discovery and Biotechnol-
ogy Trends,” Science, September 26, 2003.

[McCue 2003] Colleen McCue, “Data Mining and Crime Analysis in the
Richmond Police Department,” SPSS, www.spss.com, 2003.

[Morgan 2003] M. Morgan, “Revenue-Generating Networks” Telecommunica-
tions International, http://www.findarticles.com/p/articles/mi_m0IUL/
is_5_37/ai_101862365, May 2003.

[NASD 2006] http://www.nasd.com/AboutNASD/CorporateInformation/
CorporateDescription/index.htm.

[NCCS 2005] http://nccs2.urban.org/ntee-cc/u.htm#u50.

[Peppers/Rogers 1999] Don Peppers, Martha Rogers, Bob Dorf, The One to
One Fieldbook, New York, Currency/Doubleday, 1999.

[Pinsky 2005] S. Pinsky, “Mining Data via n-Tier Architecture,” Bio-IT
World.com, http://biodev.telepathy.com/public/index.php/intro/13, 2005.

[Ramaswamy� 2001] S. Ramaswamy, P. Tamayo, et al., “Multiclass Cancer
Diagnosis Using Tumor Gene Expression Signatures,” PNAS, vol. 98,
no. 26, pp. 15149–15154, December 18, 2001.

[SAS 2001] “Customer Relationship Management in Banking—Key
Challenges Facing Banking Executives,” SAS, www.sas.com, 2001.

2.3 Summary 49

[SAS 2002] “Advanced Marketing Automation for Banking,” SAS,
www.sas.com, 2002.

[SAS 2002a] “Data Mining in the Insurance Industry,” SAS, www.sas.com,
2002.

[Seifert 2004] J. Seifert, “Data Mining: An Overview,” CRS Report for Con-
gress, Order Code RL31798, December 16, 2004.

[SPSS 2003] “How to Get More Value from Your Survey Data,” SPSS,
www.spss.com, 2003.

[SPSS 2003a] “Data Mining Techniques for Detecting Fraud, Waste, and
Abuse,” www.spss.com, 2003.

[SPSS 2005] “Data Mining for Lottery Systems,” http://www.spss.com/
vertical_markets/government/lottery.htm.

[Wikipedia 2005] http://en.wikipedia.org/wiki/Basel_II.

[Wu 2002] J. Wu, “Business Intelligence: The Value in Mining Data,” http://
www.dmreview.com/article_sub.cfm?articleId�4618, DMReview.com,
February 2002.

51

Chapter

3
Data Mining Process

To learn is to change. Education is a process that changes the learner.

—George B. Leonard, 1986

Historically, data mining has been viewed as the territory of gurus
and Ph.D.s and not for the techno-phobic or faint of heart. Fortu-
nately, increased understanding of the data mining process and
advances in automating many aspects of the traditional data mining
process are making data mining more accessible to mainstream
application developers. The data mining process involves learning
and, as the chapter-opening quotation notes, learning leads to
change—in the case of data mining, change in our understanding of
the business problem, change in our understanding of the data and
what it represents. To reap this understanding requires giving suffi-
cient thought to the problem to be solved as well as how to integrate
the data mining process and its results into the business process. The
ability to understand whether the data mining results meet the busi-
ness objectives and can be integrated with the business process are
key aspects of a successful corporate business intelligence strategy.

In this chapter, we characterize a rather complete and sophisticated
data mining process through the CRISP-DM standard, a popular data
mining process model, going from problem definition to solution
deployment [CRISP-DM 2006]. The standard largely approaches the

52 Chapter 3 Data Mining Process

data mining process from the perspective of what a consultant should
do for a customer engagement, complete with knowledge- and
solution-transfer to the customer. For smaller-scale data mining
projects, portions of the process may be omitted; however, the general
flow still applies. Having a well-defined and thorough process is a
critical part of a successful data mining strategy.

Also in this chapter, we highlight specific advances that simplify
the traditional data mining process, thereby making data mining
more accessible to application developers. We then highlight those
parts of the data mining process that are supported by Java Data Min-
ing (JDM). Two of the phases, data analysis and data preparation, are
covered in more detail in Section 3.2, followed by a more in-depth
review of the modeling phase. Section 3.5 discusses how the data
mining process fits into enterprise software architectures. Section 3.6
discusses advances in automated data mining that facilitate the over-
all data mining process, and concludes with a discussion of how some
vendors present and integrate data mining into business applications.

3.1 A Standardized Data Mining Process

The Cross Industry Standard Process for Data Mining, or CRISP-DM,
was a project to develop an industry- and tool-neutral data mining
process model [CRISP-DM 2006]. The CRISP-DM concept was con-
ceived by DaimlerChrysler (then Daimler-Benz), SPSS (then ISL),
and NCR, in 1996 and evolved over several years, building on
industry experience, both company-internal and through consulting
engagements, and specific user requirements. Although most data
mining projects traditionally had been one-off design and imple-
mentation efforts by highly specialized individuals, they suffered
from budget and deadline overruns. CRISP-DM had as goals to
bring data mining projects to fruition faster and more cheaply. Since
data mining projects that followed ad hoc processes tended to be
less reliable and manageable, by standardizing the data mining
phases and integrating and validating best practices from experts in
diverse industry sectors, data mining projects could become both
reliable and manageable.

We should note that data mining project success depends heavily
on the data available and the quality of that data. As a whole, placing
greater emphasis on current and future data analysis requirements
during system and application design can greatly reduce future data
mining effort. Poor data design and organization poses one of the
greatest challenges to data mining projects.

3.1 A Standardized Data Mining Process 53

As illustrated in Figure 3-1, CRISP-DM presents the process of a
data mining project through a life cycle with six distinct phases. It high-
lights the tasks associated with each phase as well as the relationships
between the phases and tasks. As with most standards, CRISP-DM
does not claim to cover every relationship between phases and tasks,
since this depends on project goals, the user’s experience and needs,
and the peculiarities of the data. It is highly likely that movement
between any of the defined phases may be required. The arrows in the
figure indicate common or the most important phase relationships.

The data mining process itself typically forms a continuum as
indicated by the outer circle of Figure 3-1. Once a solution has been
deployed, new insights into the problem typically emerge, yielding
more questions that can be answered by data mining or refinements
of the existing solution to improve result quality. With each iteration
of the data mining process, improved skills and experience help
improve subsequent efforts.

3.1.1 Business Understanding Phase

In the first phase, CRISP-DM begins with the problem to be solved,
called business understanding, which includes defining business

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment

Data

Figure 3-1 CRISP-DM process: the six phases.

54 Chapter 3 Data Mining Process

objectives and requirements followed by the definition of a data
mining problem, project planning, and an assessment of effort.
CRISP-DM distinguishes between business goals and data mining
goals. Business goals are stated in business terms, for example,
“reduce the cost of fraud in insurance claims.” Data mining goals are
stated in technical terms, for example, “determine which factors
(attributes) occur together on a claim form, combined with submitter
demographics, to identify fraudulent claims; then predict which
claims are fraudulent and order by predicted fraud monetary value.”

This first phase is the most important, and often the most
challenging. Without a clear understanding of what problem needs
to be solved and how results will be used, expectations may be
fuzzy and unrealistic. Business and technical people typically work
together to define the problem and how it can best be approached.
Some problems, such as campaign response modeling, can be easy
to define. Others, as noted for the “churn” problem discussed in
Chapter 2, require a deeper assessment of what is predicted—has
the customer churned?—and is not always immediately clear. For
example, does churn only occur when a customer has terminated
all service, some service, or merely reduced minutes of use? In
these cases, domain and business expertise is necessary to provide
such answers.

Another aspect of the business understanding phase includes
identifying available resources: human, hardware, software, and
data. Knowing which domain and technical experts can be drawn
upon to work on the problem is an initial step. However, available
computing resources, appropriate software, and access to needed
data sources can make or break a data mining project and need to be
assessed early on.

Since most data mining projects expect a significant return on
investment (ROI), having such expectations defined up front is key.
Ensuring that costs are properly balanced with expected benefits
avoids false starts or inflated expectations. In large-scale projects, it is
not uncommon for data mining projects to result in cost savings or
increased profits of tens of millions of dollars with a small percentage
of that devoted to the data mining project itself. IDC, an analyst orga-
nization in the information technology and telecommunications
industries, notes that both predictive and nonpredictive analytics
projects yield high median ROI—with predictive analytics topping
out at 145 percent [IDC 2003]. IDC also notes that predictive analytics
projects dramatically improve business processes with an emphasis
on the quality of operational decisions.

3.1 A Standardized Data Mining Process 55

JDM addresses aspects of this first phase by providing a framework
for thinking about data mining problems in terms of mining functions:
the inputs they require and the outputs they produce. The business
problem itself requires domain-specific knowledge and creativity to
decide what should be done. JDM, being an application programming
interface (API), enables the specification of how the solution will be
implemented, and through the use of settings and data objects JDM can
assist in the capture of some outputs from the business understanding
phase.

3.1.2 Data Understanding Phase

Once we understand the problem and expected results, we need to
determine what data is available, its quality, and appropriateness for
solving the stated business problem. This is covered in the data
understanding phase. Often, once the data is better understood, the
problem may need to be refined, or even redefined. Important data
may be missing or corrupt; such data is referred to as dirty. This may
result in new requirements to clean the data or to obtain new data,
or different types of data, with careful attention paid to accuracy or
completeness.

With data understanding, we strive to gain insights into the data
through basic and possibly advanced statistical methods. For exam-
ple, we need to understand the range of values in each attribute as
well as frequency counts of values, often referred to as the data distri-
bution. Continuous attributes, like age and income, may be bucketized
(or binned) to provide a better sense of the overall distribution. Fre-
quency counts provide insight into the existence of extreme values,
called outliers, that can adversely affect data mining results. We also
need to assess how the data should be interpreted; for example,
should a number attribute be treated as a continuous value, like age or
income, or a discrete value, perhaps movie rating or multiple choice
survey question response? Some data mining tools will automatically
address issues such as outliers and missing values, as well as provide
heuristics for guessing how the data should be interpreted.

In many situations, data may be coming from multiple sources
that need to be integrated before further analysis is possible. It is at
this point that data inconsistencies may be most pronounced because
the joining of data tables may be hindered if keys are not properly
maintained. For example, joining two tables based on customer name
may prove impossible if names such as “John Smith” are common, or

56 Chapter 3 Data Mining Process

if customers are identified with name and address and addresses are
not entered correctly or consistently across data sources. Having
common unique identifiers greatly simplifies this effort.

JDM supports data understanding through its statistics interface.
Users can compute statistics such as mean, median, standard devia-
tion, etc., as well as frequency counts on all attributes in a dataset.
Since these statistics are collected on individual attributes, they are
referred to as univariate statistics. These statistics can be inspected
directly as numerical values provided through the API, or through a
vendor tool–provided graphical interface. JDM 2.0 [JSR-247], as dis-
cussed in Chapter 18, further extends the statistics interface to
include multivariate statistics (i.e., those involving two or more
attributes). JDM specifies data to be presented as a single table; how-
ever, vendors are free to extend this capability to support multiple
tables, online analytical processing (OLAP) cubes, or nested tables.

3.1.3 Data Preparation Phase

Once the problem is defined and we believe there is reasonable data
to support solving that problem, we enter the data preparation phase.
In this phase, one goal is to produce one or more datasets suitable for
mining from the raw data identified in the data understanding phase.
Through an iterative approach, many such datasets may need to be
produced with various refinements to achieve the desired model
quality. Data transformations within data preparation can be as
simple as ensuring that similar values are coded the same way (e.g.,
”married,” “Married,” and “M” are all converted to “married” so
they are considered the same value). This type of data cleaning is
essential to avoid poor results such as inaccurate predictions or
meaningless clusters. As noted in Chapter 1, the adage “garbage in,
garbage out” is no more fitting than in data mining.

At the other end of the spectrum, data preparation may involve
computing missing values or deriving new attributes from others, for
example, defining a new target attribute called ATTRITER defined as
“yes” if 50 percent or more of a customer’s accounts have been closed
within the past month, and “no” otherwise. The amount of data pre-
paration can vary from virtually none, where data mining tools per-
form automated data preparation, to extremely elaborate preparation
involving complex or creative transformations. The effort required by
the data preparation phase can often dwarf the effort required by the
other phases depending on how dirty or primitive the data is. We
expand our discussion of data preparation in Section 3.2.

3.1 A Standardized Data Mining Process 57

JDM distinguishes between data that is prepared and data that is
unprepared. Data miners may specify that their data is already pre-
pared, perhaps through various extraction, transformation, and load
(ETL) tools, and that the data mining tool should not transform it fur-
ther. For example, if a user already normalized a data attribute—per-
haps the range of attribute age between 10 and 90 has been mapped
to values between 0 and 1—the data mining tool typically should not
normalize it again. Alternatively, users may specify that some data
attributes are unprepared, meaning that the tool should perform
transformations it deems appropriate. JDM 2.0 further extends sup-
port for data preparation by including a framework and an explicit
interface for performing common data mining transformations.

3.1.4 Modeling Phase

Once a dataset is sufficiently prepared, the modeling phase begins.
Practitioners often consider this phase the “fun part.” Here, the user
gets to specify settings for mining functions, and if more control is
desired, the user can further select algorithms and their specific set-
tings for building models. These settings can be automatically tuned
by the data mining tool, or tuned explicitly by the user. Since there
are many possible algorithms or techniques for a given problem,
users may try several to determine which produces the best result.
Some mining algorithms may have specific data preparation require-
ments. As such, users may switch back and forth between the model-
ing and data preparation phase.

Also included in the modeling phase is model assessment.
Normally, a data mining tool will produce some model for almost any
data thrown at it, whether or not there are any meaningful knowl-
edge or patterns in the data. To safeguard against this, users can test
supervised models, that is, those supporting classification and
regression. On unsupervised models, like association and clustering,
users can inspect the models to determine if the results are meaning-
ful. For example, are the clusters defined in a clustering model help-
ful in understanding customer segments, or are these segments
different enough to develop a marketing strategy around them? We
explore the details of the modeling phase further in Section 3.3.

JDM provides extensive support for the modeling phase. For
those users new to data mining, they can specify problems at the
mining function level. In this case, the data mining tool is responsible
for selecting an appropriate algorithm and corresponding algorithm

58 Chapter 3 Data Mining Process

settings. JDM also provides algorithm level settings, where a user can
select a specific algorithm and adjust settings manually. JDM also
provides detailed attribute-level specifications, called logical data, for
defining how the input physical data should be interpreted. For exam-
ple, in Section 3.1.2, we gave an example involving whether to inter-
pret a number attribute as continuous (age) or discrete (rating). This
can be specified as input to model building using the logical data
specification.

For model assessment, JDM provides capabilities to test supervised
models using a variety of techniques, as well as to inspect model
details such as cluster definitions, or the rules associated with a deci-
sion tree. Specifically, JDM provides interfaces for assessing classifica-
tion models via the confusion matrix, lift, and receiver operator
characteristics (ROC); regression models via error metrics; clustering
models by viewing cluster rules and centroids; association models by
filtering and inspecting rules; and attribute importance models by
viewing the ranking of attributes. Models produced using specific
algorithms may also have corresponding model details to provide
greater insight into the results produced. These concepts are discussed
in detail in Chapters 7, 8, and 9.

3.1.5 Evaluation Phase

Whereas building and testing models is the fun part, the next phase,
evaluation, cannot be overlooked. Before unleashing a model in a
business application or process, we need to assess how well it meets
the business objectives set out in the business understanding phase.
Although we may have high quality models from the modeling
phase, they may still not satisfy the business objectives. For example,
an exploratory model may produce superior results using attributes
fully populated with values in the data sample, but that are not pop-
ulated for most customers in practice. During the evaluation phase,
we review the steps leading up to the model and its quality assess-
ment to determine if some aspect of the business problem has not
been addressed, or not addressed adequately. The objective for this
phase is to decide whether or not the model can be deployed in the
business application or process.

As noted for the modeling phase, JDM provides much of the raw
information needed to support the evaluation phase, in terms of test
metrics and model details. The evaluation phase relies on domain
knowledge and critical thinking to assess whether the data mining
models will address the business need.

3.1 A Standardized Data Mining Process 59

3.1.6 Deployment Phase

The deployment phase in CRISP-DM focuses on packaging the
results of the data mining project—both the knowledge extracted
from the data as well as the process and experience mining the data
for the specific business problem—for the business users, IT depart-
ment, or business application consumer. The deployment phase may
culminate in a report, or some degree of an implementation, perhaps
as complete as an implemented and repeatable data mining solution
integrated with a business process. CRISP-DM stresses the need to
define a monitoring and maintenance strategy as part of this phase.
This involves, for example, defining when and how models will be
refreshed, that is, rebuilt, and under what conditions. Rebuilding may
be conditional on a model meeting accuracy requirements as deter-
mined by further model testing. For unsupervised models, rebuild-
ing may be done on a periodic basis with manual review of the
model details. In either case, models may need to be rebuilt when
data statistics such as range of values or distribution changes signifi-
cantly as illustrated in Figure 3-2. In Figure 3-2(a) we see the attribute
income with a fairly normal distribution. However, in Figure 3-2(b)
the distribution changes to what is called multimodal data and may
affect an existing model’s quality.

Although some data mining results are useful for the knowledge
or insight they provide, businesses reap some of the most important
benefits of data mining technology when the results are deployed
in a business application or process, especially in a repeatable man-
ner. This may involve the ability to rebuild and assess models auto-
matically, or to move models from the system where they are built
to another system where data scoring occurs. For example, the

F
re

q
u

en
cy

Income Income

F
re

q
u

en
cy

(a) (b)

Figure 3-2 Attribute frequency distribution changes.

60 Chapter 3 Data Mining Process

deployment of a data mining solution in a call center application
may involve rebuilding models with the latest customer data on a
weekly basis at the central data center, and exporting these models
to geographically local call centers. The customer service represen-
tative (CSR) application accepts new data obtained by the CSR’s
interaction with a customer. The application uses the data mining
model to generate predictions indicating anything from products
the customer is likely to buy, to whether the customer is likely to ter-
minate service or leave for a competitor, to what is the customer’s
frustration index.

By virtue of being an API, a JDM program captures the sequence
of data mining operations performed, which can be useful for devel-
oping a report, or more importantly, for deploying a functioning sys-
tem. However, JDM also defines an array of data mining objects, such
as models, settings, and tasks. JDM also defines result objects, which
when combined with the other mining objects can be used to recount
the data mining process the user went through to develop the solu-
tion. JDM further supports the deployment phase through interfaces
for exporting and importing models and other mining objects, apply-
ing models to data (i.e., scoring), and, of course, building models.

3.2 A More Detailed View of Data Analysis and Preparation

We have just explored the data mining process according to CRISP-
DM, end to end. When planning a data mining project, consider that
particular phases require a disproportionate percentage of the over-
all time and effort. For example, among the data analysis, data
preparation, and modeling phases, it is often said that 80 percent of
the time is spent in data analysis and preparation, and only 20 per-
cent on modeling. Given this, no discussion of data mining is com-
plete without a discussion of data preparation. However, to do
justice to the topic of data analysis and preparation requires more
space than we will devote to it here. Indeed, entire books are written
on the subject, as data preparation is viewed as an art as much as a
science [Pyle 1999].

Section 3.1 discusses how JDM supports both data analysis and
data preparation. However, JDM 1.1 does not support any specific
data mining transformations. The expert group decided to limit the
scope of the first release of JDM, making it more manageable and, as
a result, the general data transformation problem was deferred to a sub-
sequent Java Specification Request (JSR) or JDM release. As such,
transformations are now being addressed in JDM 2.0.

3.2 A More Detailed View of Data Analysis and Preparation 61

As noted before, JDM does allow the specification on a per
attribute basis whether an attribute has been prepared by the user or
not. If the user does not want the data mining engine (DME) to fur-
ther manipulate an attribute’s data values, perhaps by binning or nor-
malization, the attribute is flagged as prepared. If the DME cannot
work with the data as presented—perhaps a neural network requir-
ing normalized data was presented with data in an invalid range—
the DME may choose to throw an exception or produce a poor model.

Some DMEs may be able to accept data in a more “raw” form and
perform automated transformations within the DME. In this case, the
user may flag the data as unprepared and expect the DME to prepro-
cess the data. One benefit of allowing the DME to prepare the data is
that such DME-performed transformations are typically embedded
in the model. Consequently, when data is scored or model details
examined, values are presented in terms of the original data value.
Contrast this with an example of user-provided transformations: if a
user binned the attribute age into 5 bins labeled bin-1 through bin-5,
the model may contain rules that refer to those bins, not the original
values. This makes directly interpreting model detail difficult. More-
over, when scoring data, the user must explicitly bin age before pro-
viding those values to the model. Note that identifying data as
unprepared does not mean that the user did not, or could not, pre-
pare the data in some way, perhaps by removing or replacing miss-
ing values, or by computing new attributes.

What to Look for in Data

One of the reasons for performing data analysis is to understand the
degree to which data contains useful values, or is rife with errors and
inconsistencies.

Constants and Identifiers
A simple type of analysis involves locating attributes that are
constants or identifiers. If an attribute contains all null values or the
same value, such an attribute, called a constant, contains no informa-
tion for the data mining model. For example, it may be interesting to
know all customers are from the United States, but a data mining
algorithm will not find such an attribute useful. On the other hand,
an attribute that contains all distinct values, forming a key, is called
an identifier. It can be useful to identify a case, but should not be used
as a predictor in the mining process. For example, the attribute social
security number can be used to predict which customers will attrite

62 Chapter 3 Data Mining Process

perfectly for a given build dataset. However, such a model will not
generalize to different social security numbers and therefore is not
useful. Some attributes are near constants or near identifiers, meaning
that a high percentage of the values are the same or unique, respec-
tively. What constitutes high is often determined by the user or DME,
but generally can be around 95 percent depending on the dataset.
Both constants and identifiers should be excluded as predictors from
a dataset prior to mining.

Missing Values
Missing values are common in real data. For any given record, or
case, data may not have been provided, for example, a customer not
specifying his income on a warranty card. Also, data may have been
lost, for example, a temperature recording device that failed for a
period of time would collect no data. If a case has too many missing
values, it may not be worth including. Similarly, if an attribute has
too many missing values, it too may be worth excluding from the
build data.

Similar to constants and identifiers, what constitutes too many
missing values in a case or attribute is subject to experience or trial
and error. In some cases, missing values can be replaced with a con-
stant such as the average value for the attribute, or even a value pre-
dicted from another model likely built using other predictors in the
same dataset. Using a model to predict and populate missing values
is called value imputation and may, of course, produce incorrect val-
ues for a given case and thus bias the dataset. However, it may still
produce better results than leaving the values as missing. Experi-
ence, trial and error, and resulting model quality can guide the deci-
sion on how to treat missing values. If a target attribute in a
supervised mining function has missing values in the build dataset,
the corresponding cases should be removed since the model does
not know the correct answer for these cases. Some data mining
algorithms handle missing values automatically, requiring no user
preprocessing.

Errors and Outliers
Like missing values, data that contain errors are common in practice.
Errors can result from data entry mistakes, such as mistyping the
name of a town (“Bostin” instead of “Boston”), transposing digits in
a customer’s social security number, or specifying an invalid date
(“13/32/06”). Errors can also be deliberate where customers misstate
income, age, interests, or even gender. Data mining techniques can

3.2 A More Detailed View of Data Analysis and Preparation 63

tolerate some degree of error in the data, referred to as noise;
however, too much noise and not enough valid signal can result in
poor quality models.

Various errors can be detected and corrected through data clean-
ing techniques [Rahm/Do 2000] [Pyle 1999]. For example, reviewing
the unique values in a column may expose spelling mistakes or
invalid values. Comparing names and addresses across tables for
small differences, where most of the information is the same, can
highlight matching cases. Once many of the errors have been
addressed, duplicate cases can more easily be identified and ulti-
mately removed.

Another common plague on data involves outliers. The term out-
lier can be applied to values within an attribute or to entire cases in
the data. The effects of outliers differ depending on the data mining
technique or data preparation technique. For example, consider an
attribute income with a distribution centered around $100,000, but
also with some very high income values in the millions of dollars. If
we need to bin this data into discrete bins, we may choose to take
the maximum and minimum values, and divide the range into equal
subranges. If the minimum income was zero, and the maximum was
$10,000,000, we can divide this into five bins: 0–2M, 2M–4M, and so
on. However, with the bulk of the entries centered around $100,000,
we could find that the first bin (0–2M) contains 99 percent of the
data. Such an outcome is not very useful when mining data since
this would result in an attribute that contains values that are
99 percent the same, in effect a constant! The original distribution is
illustrated in Figure 3-3, and the binned distribution is illustrated in
Figure 3-4(a).

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

Income ($)

F
re

q
u

en
cy

Figure 3-3 Binning the attribute income with outliers.

64 Chapter 3 Data Mining Process

An alternative is to transform, or assign a treatment to, values that
are too far away from the average, or mean, value. Standard deviation is
a typical statistic. Data values that are, say, more than 3 standard devia-
tions from the mean can be replaced by NULLs, or edge values (i.e., the
value at 3 standard deviations from the mean). This allows binning
to produce more informative bins. As illustrated in Figure 3-4(b), if we
replace the outliers with edge values, we see the distribution of data in
the bins can be more telling.

Derived Attributes
Sometimes, the data analyst or domain expert may be aware of
special relationships among predictor attributes that can be explic-
itly represented in the data. Whereas some algorithms may be able
to determine such relationships implicitly during model building,
providing them explicitly can improve model quality. Consider
three attributes: length, width and height. If we are trying to mine
data involving boxes, it may be appropriate to include the volume
(length � width � height) and surface area (2 � [(length � width) �
(width � height) � (height � length)]) as explicit attributes. We may
decide to leave the original attributes in the dataset to determine if
they provide any value on their own.

Further, we may apply a specific mathematical function such as
log to an attribute that has a very large range of possible values,
perhaps that grow exponentially. Other attributes may be derived

0–2M

F
re

q
u

en
cy

2–4M 4–6M 6–8M 8–10M 0–100K

F
re

q
u

en
cy

Income Bin

(b)

Income Bin

(a)

100–200K 200–300K 300–400K 400K–10M

Figure 3-4 Binning the attribute income with outliers treated.

3.2 A More Detailed View of Data Analysis and Preparation 65

from simple calculations, for example, given a person’s birth date,
we can compute their current age; or we can compute total minutes
of usage per year by summing the minutes of usage per month.

Derived attributes may also be used to construct a target attribute.
For example, we may compute a “churn” attribute which is set to 1 if
the percentage in minutes of usage drops by 75 percent, indicating
churn, and 0 otherwise.

Generating derived attributes often depends on the data miner’s
domain understanding, creativity, or experience.

Attribute Reduction
Another common data preparation step involves reducing the number
of attributes used in mining. Some data mining tools can scale to
include large volumes of data for mining—millions of cases and thou-
sands of attributes. While it is possible to mine such data volumes, it
may not always be necessary or beneficial. If nothing else, more data,
either in cases or attributes, requires more time to build a model, and
often requires more time to apply that model to new data. Moreover,
some attributes are more predictive than others. Models built using
nonpredictive or noisy attributes can actually have a negative impact
on model quality. Consider a dataset with 1,000 attributes, but only
100 of the attributes are truly useful/necessary to build a model. In a
best case scenario, building the model on the 1,000 attributes wastes
90 percent of the execution time, since only 100 attributes contribute
positively to model quality. Identifying those 100 attributes is key.

Previously, we discussed manually removing attributes that are
constants or identifiers, or contain too many missing values. How-
ever, the data mining function attribute importance can be used to
determine which attributes most contribute to model quality. In
supervised techniques such as classification and regression, attri-
bute importance identifies those attributes that best contribute to
predict the target. In unsupervised techniques such as clustering, it
can identify which attributes are most useful for distinguishing
cases among clusters. Since attribute importance ranks the attributes
from most important to least, a decision needs to be made as to what
percentage of the top attributes to include. In some cases, attributes
may be identified as negatively impacting model quality; these can
easily be removed. Others may contribute nothing; these too can
easily be removed. If there are still a large number of attributes, it
may still be appropriate to build models on different subsets of the
top attributes to decide which subset produces the best or most

66 Chapter 3 Data Mining Process

suitable model. Data miners may trade off greater speed of scoring
for a small reduction in model accuracy.

Some algorithms, such as decision tree, identify important
attributes by the very nature of their processing. Providing a large
number of attributes to such algorithms can work as well as, or better
than, attribute importance for supervised learning. In subsequent
model builds, perhaps when refreshing the model or building a pro-
duction model, it may be reasonable to include only those attributes
actually used in the initial model.

Transforming Data
Much of what we have discussed in this section involves transforming
data. There are some fairly standard data mining transformations we
should introduce in more detail: binning, normalization, explosion, sam-
pling, and recoding. Binning involves reducing the cardinality—the num-
ber of distinct values—of an attribute. Some algorithms, like naïve
bayes, work best when provided a relatively small number of distinct
values per attribute. Consider the attribute age, with a continuous value
range from 0 to 100. A person’s age can be any number in this range. If
real numbers are allowed, there are an infinite number of possible val-
ues, which make understanding the distribution of ages difficult. Bin-
ning of numbers involves defining intervals or ranges of numbers that
correspond to a bin, or single value. In the example involving age, we
could define four bins: 0�25, 25�50, 50�75, 75�100, where the lower
endpoint is excluded (e.g., 25�50 means 25 � x � � 50). Producing a
bar chart of binned age frequencies gives us a more meaningful view of
the distribution. Alternatively, binning can also be applied to discrete
values to reduce cardinality. For example, consider the 50 states of the
United States, we may want to bin this into five bins: northeast, south-
east, central, southwest, northwest. Here, we can explicitly map CT, MA,
ME, NH, NJ, NY, PA, RI, and VT to Northeast.

The normalization transformation applies only to numerical data
where we need to compress or normalize the scale of an attribute’s
values. Normalization allows us to avoid having one attribute
overly impact an algorithm’s processing simply because it contains
large numbers. For example, a neural network requires its input
data to be normalized to insure that an attribute income, with a range
from 0–1,000,000, doesn’t overshadow the attribute age, with a range
of 0 to 100. Normalization proportionally “squeezes” the values into
a uniform range, typically 0 to 1 or �1 to 1.

The explosion transformation applies only to discrete data such as
strings or numbers representing individual categories. The goal is to

3.2 A More Detailed View of Data Analysis and Preparation 67

transform such attributes into numerical attributes. This is necessary
for those algorithms, like k-means, that work only with numerical
data. As such, explosion is used on categorical data. Some category
sets do not have any order among them (e.g., attribute marital status
with values married, single, divorced, widowed). These can be exploded
using what is called the indicator technique. For marital status, four
new attributes, created with names of the categories, replace the orig-
inal attribute. For each case, the new attribute corresponding to the
value in marital status is set to 1; all others are set to 0. If a case has the
value married, then the attribute named “married” is given a 1, and
the other three new attributes are given a zero.

If an attribute contains values that are ordered, such as customer
satisfaction with values high, medium, and low, that attribute can be
exploded using a technique called thermometer. For customer
satisfaction, three new attributes are created with names of the cate-
gories: high, medium, and low. These replace the original attribute.
For each case in the dataset, the new attribute corresponding to the
value in customer satisfaction is set to 1, as well as those new
attributes ordered less than it. Remaining new attributes are set to 0.
For example, if a case has the value medium, then the attributes
named “medium” and “low” are set to 1 and the “high” attribute is
set to zero. These are illustrated in Figure 3-5.

Divorced

Widowed

Single

Married

Marital

Status

Low

Medium

High

Customer

Satisfaction

Indicator

Thermometer

1000

0100

0010

0001

DivorcedWidowedSingleMarried

100

110

111

LowMediumHigh

Figure 3-5 Exploding attribute: indicator and thermometer approach.

68 Chapter 3 Data Mining Process

Sampling
Companies are amassing huge volumes of data on everything from
manufacturing processes and product defects to maintaining a 360-
degree view of operations and customers. However, some algorithms
are better at dealing with large volumes of data than others. Simi-
larly, some implementations scale better than others. In general, the
more data that needs to be processed, the more time it will take to
build a model; it also will likely require more computer memory and
disk space. One way to reduce the amount of time and resources
needed to build a model is to take a sample of the data. This is espe-
cially useful in the early phases of model building where a user
should get a feel for how a particular algorithm responds to the pro-
vided data. Building a model on 1 million customers may take min-
utes or hours depending on the technique. It would be better to get a
quick assessment of whether the mining technique yields any results
using a small sample than waiting for dubious results. Once the user
is convinced the technique and the data are appropriate, building a
model on more or all of the data can be pursued with greater expec-
tations for success. In other cases, a sample of the data may be all that
is required to produce a good model. For example, if you have a pop-
ulation of 10,000,000 customers, it may not be necessary to build a
clustering model on all 10,000,000 in order to segment your customer
base. A sample of even 50,000 may produce statistically sound
results.

When randomly sampling records, there is no guarantee that a
given attribute will contain all the possible values contained in that
attribute. This is particularly important when building classification
models. For the model to be able to predict a given target value, it
needs to have learned from data that contains examples of those val-
ues. In addition, a dataset skewed with too many of one category
may not allow a given algorithm to learn the desired pattern (i.e., the
negative signal drowns out the positive).

Recall the sampling technique called stratified sampling, intro-
duced in Section 2.1.4, which allows you to specify how many of
each target value to provide in the resulting data sample. Consider a
dataset with target attribute customer satisfaction. The goal is to pre-
dict a given customer’s satisfaction level based on other customer
demographics and other customer experience metrics. If the values
are high, medium, and low, we should ensure we have a reasonable
number of each category. In Figure 3-6(a), we see a histogram of the
original data: high (4,654 cases), medium (130,954 cases), and low
(50,348 cases). We can then sample the data to ensure that we have a

3.2 A More Detailed View of Data Analysis and Preparation 69

relatively equal number of each category. Since we have few cases in
the high category, we will want to use all of those, and we may decide
to take 8,000 of the medium cases, and 6,000 of the low cases, as illus-
trated in Figure 3-6(b). The “correct” number of cases to specify is
more of an art than a science. Trying several variations can help iden-
tify an appropriate mix.

Recoding
In several of the transformations above, we discussed replacing one
value with another. In its most general form, this is called recoding.
The binning transformation on categorical data mentioned above
(the 50 United States into regions) is also a form of recoding that
enables manual roll-up of data. Typically, recoding is performed on
categorical data (e.g., replacing the attribute values H, high, hi, and
“***” with HIGH). This can be useful for cleaning data, as in the pre-
vious example, or to help in the interpretability of a model. For
example, when looking at the rules produced from market basket
analysis, it is much easier to understand a rule like “BEER implies
PIZZA” than one like “Prod-3425 implies Prod-5593.” Recoding can
also be useful for numerical data when non-numerical data is mixed
in with numerical data. For example, it is not uncommon to see “999”
or “ “ used for a missing age value. These may be more appropriately
be replaced with null.

Integrating data
An important step in data preparation often involves integrating two
or more datasets into one. If the data contain well-defined keys and
use the same data conventions, integrating the data can be as simple
as performing a database join on the two tables, producing a new
table or view. However, real data is seldom so clean and requires var-
ious data cleaning techniques as noted in the previous section about
errors and outliers.

0

20,000

40,000

60,000
80,000

100,000

120,000

140,000

High Medium Low

Case

Count

(a) Case Count

Case

Count

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

High Medium Low

(b) Straified Sample Case Count

Figure 3-6 Customer satisfaction data: histogram of target attribute.

70 Chapter 3 Data Mining Process

 3.3 Data Mining Modeling, Analysis, and Scoring Processes

In Section 3.1.4, we discussed the CRISP-DM modeling phase at a
relatively high level. In this section, we explore the modeling process
in more detail, as well as process details for assessing supervised
model quality and applying models to new data. In JDM, we charac-
terize these activities as data mining tasks.

3.3.1 Model Building

In model building, we start with a dataset—a collection of cases—
where each case typically corresponds to a record and has a set of
attribute values. A case can be data we have collected on a customer,
house, disease, or anything that we wish to understand better
through data mining. The amount of data required for mining varies
depending on the algorithm and the nature of the problem. For
example, in a clinical trial to assess health improvement, there may
be only 200 cases, one for each participating patient. On the other
hand, a company may have a database of 10 million customers and
want to segment these customers using a clustering algorithm. Simi-
larly, some problems may have very few attributes, such as observ-
able traits of mushrooms, while others may have thousands of
attributes, such as the output of a microarray chip exploring the
human genome.

To extract knowledge or patterns from data, we begin with a
dataset, called the build data, as illustrated in Figure 3-7. Depending
on requirements of the data mining engine (DME) or the problem to be
solved, the data may be sampled and transformed, producing a
transformed dataset ready for model building.

The process of model building requires not only the data, but also
a group of settings that tell the DME what type of model to build, for
example, a classification model with a particular target attribute. The
settings may include what algorithm to use, among other settings.
The output of this process is a model—a compact representation of
the knowledge or patterns contained in the data. Depending on the
mining function and algorithm, the model can then be used to make
predictions, or inspected to understand the knowledge or patterns
found in the data.

3.3 Data Mining Modeling, Analysis, and Scoring Processes 71

3.3.2 Model Apply

In model apply, the objective is to use the model to make predictions
or classify data. This is often referred to as scoring. The data used is
called the apply data. When using a data mining model for apply,
the apply data should have characteristics similar to the build data
(e.g., the same or a subset of the attributes used for model build-
ing). We include “subset” here because some algorithms, like deci-
sion trees, produce models that use only the most relevant
attributes. Hence, during apply, only those attributes need be
included.

The apply data must be transformed in the same way as the build
data was transformed, using the same statistics gathered for the
transformations from the build data. Consider an attribute age with
values ranging from 10 to 90. If this attribute were binned into 8 bins,
each with a range of 10 years, this same transformation must be
applied to data used for applying the model. If we did not bin the
data, or binned it into, say, 12 bins, the model would likely produce
incorrect results, if not explicitly raise exceptions. Note that it would
not matter if the apply data contained different age ranges, say from
5 to 75; the original bin boundaries must be used.

Data

Original

Sample,

Transform,

Prepare

Data

Data´

Transformed Dataset

Build

Model Model

Build

Settings

Figure 3-7 Data mining model build process.

72 Chapter 3 Data Mining Process

As illustrated in Figure 3-8, we begin with a new dataset that we
wish to apply the model to—the apply data. The apply data must be
transformed using the same transformations as for the build data.
This transformed dataset is then used with the model and apply set-
tings to produce the apply result. The apply settings describe the con-
tents that the user wants in the apply results (e.g., the top
prediction(s) for a case, the probability that the prediction is correct,
additional attributes carried over from the apply data, and so on).
These are explained further in Chapters 8 and 9.

The apply result is typically a table where each input case from
the apply data has a corresponding output case. A unique identifier
of the case is normally provided in the apply result so that results can
be matched to the apply data. For example, you likely want to know
which customer is predicted to respond favorably to a campaign.

3.3.3 Model Test

Model test applies only to supervised models—classification and
regression. The reason for this is that in order to test a model, you
need to know the correct outcome to determine how accurate the
model is. In unsupervised models, we do not have a target (known
outcome) and so there is no known value to compare. In general, we

Apply Data
Transform,

Prepare

Data
Apply Data´

Apply

Model

Model

Apply

Result

New Dataset

(with unknown
target values)

Transformed

Dataset using

same build data

transformations

and statistics

Apply

Settings

Figure 3-8 Data mining model apply process.

3.3 Data Mining Modeling, Analysis, and Scoring Processes 73

do not know whether an unsupervised model is correct or not, only if
it is useful through manual inspection.

The notion of testing a supervised model is simple. Take a set of
cases with known outcomes and apply the model to those cases to
generate predictions. Compare the known, or actual, outcomes with
the predicted outcomes. Simplistically, the more predictions the model
gets correct, the more accurate the model. However, there are a variety
of test metrics that can be used to understand the goodness of a model.
Metrics such as confusion matrix, lift, and ROC for classification, and
various error metrics for regression are explored in Chapter 7.

To test a model, we use what is called a held-aside or test dataset.
When building a model, the original data with known outcomes can
be split randomly into two sets, one that is used for model building,
and another that is used for testing the model. A typical split ratio is
70 percent for build and 30 percent for test, but this often depends on
the amount of data available. If too few cases are available for build-
ing, reserving any records for test may lessen the accuracy of the
model. There is a technique known as cross validation for addressing
this situation [Moore 2006]. However, we do not discuss it further
here as cross validation is not currently defined in JDM.

Just as in model apply, the same transformations must be applied
to the test data before providing the test data to the model. The
model test phase compares the predictions with the known out-
comes. From this, the test metrics are computed.

Transform,

Prepare

Data
Test Data´

Held-aside

Test Data

Test

Model

Model

Confusion

Matrix

Held-aside

Test Dataset

(with known

target values)

Transformed

Dataset using

same build data

transformations

and statistics Lift Result

ROC

OR
Error

Metrics

Figure 3-9 Data mining model test process.

74 Chapter 3 Data Mining Process

3.4 The Role of Databases and Data Warehouses in Data Mining

An abundant source of data for mining is found in relational data-
bases and data warehouses. Historically, data mining tools have
focused on data contained in flat files. Flat files, however, can be dif-
ficult to manage and control. Database management systems
(DBMSs) offer query capabilities, security, correctness guarantees,
and access control, among other features. In addition, DBMSs, like
some other tools, provide metadata control for data tables, explicitly
capturing column names, data types, and comments as part of the
table definition. Today, virtually all data mining tools are capable of
accessing data stored in commercial relational databases, such as
Oracle Database, IBM DB2, and Microsoft SQL Server. Querying and
transformations, using languages like SQL, facilitate analyzing data
and preparing it for mining. Multiple tables can be joined easily to
produce a single table—often a key step in data preparation.

Whereas individual databases readily support data mining
needs, large organizations often have dozens, hundreds, or even
thousands of databases spread across geographical locations and
numerous operational systems. The designers of these databases
may have adopted local conventions for schema design, naming,
values used in columns, etc. As such, trying to integrate data from
multiple databases to obtain a global picture becomes quite a chal-
lenge. A data warehouse [Inmon 1995, Ponniah 2001] is designed to
provide a common view of all the relevant data in an organization.
Here, relevant is defined as whatever is needed to run the business
more effectively or provide management insight into the health of
the business. For example, businesses implementing a customer-
oriented data warehouse strive to get a “360-degree” view of their
customers (i.e., being able to see all aspects of a customer’s interac-
tion with the business). Designing a data warehouse with advanced
analytics and data mining requirements in mind can greatly
increase the value of the data warehouse and reduce efforts to
extract knowledge once completed.

When building a data warehouse, most database vendors provide
ETL tools for collecting and cleaning data. However, data mining can
be leveraged in the creation of a data warehouse to identify data
quality issues, or populate missing values. To populate missing val-
ues, the user can build predictive models from the other associated
attributes, using what is called value imputation. Data mining can also
be used to determine what data should be given special attention for
accuracy due to its value in model building and scoring. Further, it

3.5 Data Mining in Enterprise Software Architectures 75

can help identify which attributes should be included in the data
warehouse in addressing business problems such as attrition, fraud,
or cross-sell.

Unfortunately, many businesses strive to first design and imple-
ment a data warehouse, then introduce OLAP, and lastly consider
data mining. Although this phasing of introduction may, at first
glance, seem reasonable, it can greatly delay, and in some cases
preclude, ever reaping the benefits of data mining. Data mining
can place unique requirements on the design of the data ware-
house, such requirements that are better to take into account dur-
ing data warehouse requirements and design time. Unfortunately,
given the cost and effort involved, some data warehouse projects
have produced disappointing results. This is due largely to merely
cleaning and assembling available corporate data instead of select-
ing data that is actually needed to answer key business questions—
the types of questions that data mining–based solutions can
answer. Since data mining can contribute to the data warehouse
design and population itself, as well as to the design and under-
standing of OLAP cubes, businesses should include data mining at
the outset.

3.5 Data Mining in Enterprise Software Architectures

At this point, we have discussed a standard data mining process,
some of the details surrounding data preparation and modeling,
and the role of databases and data warehouses. Any discussion of
data mining process would be incomplete without a discussion of
how data mining fits into enterprise software architectures. Enter-
prise software architectures today are driven to provide current and
accurate information in a manner that is digestible by business
users. Businesses spend millions of dollars building data ware-
houses to unify their data under a coherent data model. The ability
to issue queries over all customer data or to obtain up-to-the-minute
sales reports from all regional stores is now possible. However,
looking at data to understand the past and present is only part of
the value present in a data warehouse. A typically dormant and
untapped source of value involves looking at data to understand
the future as well. Data mining not only provides insight into past
and present data, but also provides an arsenal of techniques for
accurately predicting the future. We are seeing a steady increase in
the use of data mining, especially in businesses that have invested

76 Chapter 3 Data Mining Process

the time and money in a data warehouse. C-level1 executives want
to get more return on their investment.

So, how does the data mining process fit into enterprise software
architectures?

3.5.1 Architectures

Data mining tools provide a wide range of options for integrating
with enterprise software architectures and processes. First, we take a
look at data mining tools themselves and then how they interact with
data sources.

As illustrated in Figure 3-10, we can view data mining tools as
consisting of four parts: a graphical user interface (GUI) for
interactive data mining, an application programming interface (API)
for building applications, a data mining engine (DME) where the
core processing or data mining algorithm execution occurs, and a
mining object repository (MOR) where persistent mining objects are
stored. Some tools may provide multiple APIs based on different
programming languages (e.g., Java, SQL, C#, C) or may involve Web
services.2 Some may build their GUIs directly accessing the data
mining engine, as shown in Figure 3-10(a); others have the GUI using
the public API, as shown in Figure 3-10(b). Ideally, a tool should

1 “C-level” refers to executive management (e.g., Chief Executive Officer, Chief
Information Officier).

2 A detailed discussion of JDM web services and architectural implications is
provided in Chapter 11.

APIDesktop GUI

Data Mining Engine

API

Desktop GUI

Data Mining Engine

(a) (b)

Mining Object Repository Mining Object Repository

Figure 3-10 Data mining tool architectures.

3.5 Data Mining in Enterprise Software Architectures 77

allow full interoperability among the objects produced either
through the GUI or API(s).

Tools can further be characterized along other dimensions: data
access options, DME location, and mining object storage. Historically,
data mining tools were file based, storing all mining objects and
metadata in flat files at the operating system level. With the preva-
lence of data stored in databases, nearly all tools support accessing
data in commercial relational databases. A DME that accesses remote
data exists as a standalone server, an operating system process or set
of processes that loads data from files or extracts data from the data-
base. Such a DME then mines the data and saves any results back to
the file system. This is illustrated in Figure 3-11(a). Other systems
leverage the relational database itself to store all mining objects and
metadata, thereby keeping the mining process under database con-
trol, as illustrated in Figure 3-11(b).

Other vendors take a database-centric approach where the
algorithms are moved to the data, instead of the data to the
algorithms, as illustrated in Figure 3-12. As data volumes continue
to grow, the time and space required to move data outside the data-
base also grow, sometimes dwarfing the data mining execution time.
In-database mining also avoids the management of extracted data,
which includes disk space, memory, and security.

With this foundation in place, we now take a look at an enter-
prise architecture involving data mining. In Figure 3-13, we see sev-
eral operational data stores (ODSs), containing perhaps customer,
sales, service, account, etc., that support various applications, such
as online retailing, call centers, business intelligence dashboards,
business activity monitoring (BAM), mobile customers, campaign

File

System

(MOR)

File

System

(Data Source)

Data Mining Tool

Database

(Data Source)

Data Mining Engine

Database

(MOR)

File

System

(Data Source)

Data Mining Tool

Database

(Data Source)

Data Mining Engine

(a) (b)

Figure 3-11 Data mining tool data access and mining object storage architectures.

78 Chapter 3 Data Mining Process

management, to name a few. The ODSs provide data to the data
warehouse. This data is normally cleaned and merged into an inte-
grated data schema. Subsets of this data may be moved to a data
mart—a database populated with a subset of warehouse data dedi-
cated to a specific purpose, in this case performing data mining
[Firestone 2002]. Results from data mining may be returned to the
data mart or the data warehouse for use by the application server in
supporting the various applications.

Database

(Mining Objects

 and Data Source)

Data Mining Engine

Data Mining Tool

Figure 3-12 In-database data mining tool architecture.

Operational

Data Stores

Data Warehouse
Data

Mart

Data Mining Tool

Data Mining Engine
Web

Call Center

Mobile

Campaign
Management

Applications

.

.

.
Application Server

Figure 3-13 Enterprise software architecture involving data mining.

3.5 Data Mining in Enterprise Software Architectures 79

Of course, the architecture just described is only one of the many
possible architectures. If an in-database data mining tool architecture
is used, as illustrated in Figure 3-14, either the data mining engine
and data mart are merged, or the data mining engine, data mart, and
warehouse components are merged to further simplify the architec-
ture. Some businesses have concerns over how the mining activity
may impact data warehouse performance. However, with newer
technologies [Oracle 2006], processors can be effectively partitioned
to separate mining from query and reporting demands on the data
warehouse. The need for a data mart as opposed to mining the data
warehouse directly may depend on the concerns of the database
administrator (DBA) for managing machines, disk space, and overall
system performance.

We have seen where data mining fits into an overall enterprise
architecture. But as a matter of process, how do we incorporate data
mining into an operational system?

3.5.2 Incorporating Data Mining into Business Operations

If we have followed the CRISP-DM process, we will have identified
the data needed for mining, determined the steps necessary for pre-
paring the data for mining, performed enough experimental mining
to know which models work well for the business problems at hand,

Operational

Data Stores

Data Warehouse

Data Mining Engine

Application Server

Web

Call Center

Mobile

Campaign

Management

Applications

.

.

.

Figure 3-14 Enterprise software architecture involving in-database data mining.

80 Chapter 3 Data Mining Process

and assessed which specific results should be deployed into business
operations. We will also have identified the hardware and software
resources for performing data mining in production.

It is at this point that having an API is critical for operationalizing
data mining. If a graphical user interface was used for the explor-
atory mining, you either need to have kept very good notes about the
steps and settings used to obtain your results, or be able to generate a
script of the steps performed. In some cases, this script is a combina-
tion of structured and free form text. Ideally, the tool should generate
an executable script in an appropriate programming language. This
is where JDM re-enters the picture. The generated program can then
be incorporated in the business workflow.

3.5.3 Business Workflow

At its simplest, a workflow is a sequence of tasks that are executed
when certain conditions are satisfied. For example, a workflow may
involve human actions: obtain customer information, call customer,
present offer, record response, if response positive then take order,
repeat. A workflow may also be completely automated, involving no
human interaction: receive Internet purchase order, check inventory
database if order can be fulfilled, if yes then submit shipping order.
Workflows, especially involving data mining, introduce additional
dependencies among tasks as well as a combination of automated
and manual tasks. Such dependencies may be based on time, success
or failure of previous tasks, or explicit human approval. Time depen-
dencies include starting a task at a specific time or after a specific
duration. Workflows may also be set up to be performed repetitively
(e.g., once per week).

Consider the data mining workflow illustrated in Figure 3-15,
which supports refreshing a predictive data mining model—used
for cross-sell or response modeling—on a monthly basis using the
latest data from the data warehouse. On the first of each month at
midnight, the system retrieves needed data for mining. It then pre-
pares that data using the transformations determined from the
exploratory phases of the data mining process. To increase the
chances of getting a model with adequate accuracy, we build three
models in parallel using different settings, perhaps even different
algorithms: decision tree, neural networks, and support vector
machine. These models are tested on the test data and the results
automatically compared to select the most accurate model.

3.6 Advances in Automated Data Mining 81

To ensure against deploying an inadequate model, which, for
example, could impact customers contacting a call center, we intro-
duce a manual approval step. If the model is approved, it is
deployed to the operational system. If not approved, the problem is
submitted to a data analyst for review. Since approval or disap-
proval is expected within one day, we have a time dependency to
deploy the model at 3:00 A.M. on the second day of the month. If a
decision is not made in time, the task does not execute.

3.6 Advances in Automated Data Mining

“Why can’t I just point a data mining tool at my data warehouse and
say, ‘Find something interesting’ or ‘Solve my business problem’? We
can map the human genome, but I still have to spend countless
hours, days, weeks, even months, extracting knowledge from my
data warehouse or solving data mining problems, many of which
must have been solved before. With all the intelligence put into
applications today, why don’t the data mining vendors produce soft-
ware that automates this data mining process?”

These are the rantings of many a novice in data mining. In fact,
more and more applications are building in data mining–based intel-
ligence, providing industry-specific and problem-specific interfaces,
without users even being aware of data mining’s presence. However,
there are many situation-specific problems that still warrant custom-
ized solutions. For these, data mining software is increasingly getting

Retrieve Monthly

Data from Data Warehouse

@ 00:00 first of each month

Prepare

Data

Build

Model 1

Test

Model 1

Compare

Test

Results

Request

Approval

Deploy

Model

@03:00 second

of each month

Build

Model 2

Test

Model 2

Build

Model 3

Test

Model 3

Approved?

Yes

No

Submit to

Data Analyst

for Review

Figure 3-15 A data mining workflow.

82 Chapter 3 Data Mining Process

better at automating much of the data preparation required by
algorithms. Advances in algorithms also include automated settings
tuning to obtain optimal models relative to the data provided. Some
tools even select the “best” model from a set of candidate models.
However, the process of defining the business problem, selecting the
mining function to be used, and ensuring that suitable data exists
and is coalesced into a dataset for mining cannot currently be auto-
mated. People knowledgeable in the domain must lead the charge in
these areas.

Another advance in automated data mining is in the area of
guided analytics, which typically consists of a wizard-driven graphi-
cal user interface. Such an interface systematically prompts the user
for information needed to define a data mining problem and then
guides the user through the various data mining steps, for example,
sampling, outlier treatment, algorithm-specific transformations,
building, testing or assessing, and applying. Tools supporting
guided analytics allow business analysts and non–data mining
experts to obtain reasonable results.

The JDM interface enables vendors to provide a great deal of auto-
mation for users. The separation of mining function from mining
algorithm allows vendors to intelligently select an algorithm and cor-
responding settings based on the problem and data provided. Many
of the settings for both functions and algorithms include an option
systemDetermined. This instructs the DME to determine the most
appropriate setting value automatically.

3.7 Summary

In this chapter, we introduced the CRISP-DM standard data mining
process and characterized how JDM supports the various phases of
this process. We then looked at data analysis and preparation in
greater detail exploring what to look for in data and how to address
typical data quality issues. Since modeling is the main focus of JDM,
we explored three principal tasks—model build, test, and apply.

In preparation for the discussion on enterprise software architec-
tures, we discussed the role of databases and data warehouses on
data mining. We characterized the architectures of data mining tools
and their interplay with file systems and databases. We then looked
at a larger scale enterprise system involving data mining and how
workflow can be used to include mining tasks in the enterprise.

3.7 Summary 83

Lastly, we characterized advances in automated data mining,
noting the use of guided analytics interfaces and support for
automation in JDM.

References

[CRISP-DM 2006] http://www.crisp-dm.org.

[Firestone 2002] J. Firestone, “DKMS Brief No. Six: Data Warehouses,
Data Marts, and Data Warehousing: New Definitions and New Con-
ceptions,” http://www.dkms.com/papers/dwdmed.pdf.

[Han/Kamber 2001] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, San Francisco, Morgan Kaufmann, 2001.

[IDC 2003] Henry D. Morris, “Predictive Analytics and ROI: Lessons from
IDC’s Financial Impact Study,” IDC, Framingham, MA, 2003.

[Inmon 1995] W. H. Inmon, “What Is a Data Warehouse?” Prism Tech
Topic, vol. 1, no. 1, 1995.

[JSR-247] http://jcp.org/en/jsr/detail?id�247.

[Moore 2006] Andrew Moore, “Cross Validation Tutorial Slides,” http://www.
autonlab.org/tutorials/overfit.html.

[Oracle 2006] Real Application Clusters, http://www.oracle.com/database/
rac_home.html.

[Ponniah 2001] Paulraj Ponniah, “Data Warehousing Fundamentals:
A Comprehensive Guide for IT Professionals,” New York, John Wiley
& Sons, 2001.

[Pyle 1999] Dorian Pyle, Data Preparation, San Francisco, Morgan
Kaufmann, 1999.

[Rahm/Do 2000] Erhard Rahm, and Hong Hai Do, “Data Cleaning:
Problems and Current Approaches,” University of Leipzig, Germany,
http://dbs.uni-leipzig.de.

85

Chapter

4
Mining Functions and Algorithms

I believe the States can best govern our home concerns,
and the General Government our foreign ones.

—Thomas Jefferson to William Johnson, 1823

Just as federal and state governments serve their separate functions,
mining functions and mining algorithms play distinct roles. Mining
functions provide the ability to specify what is to be done, providing
a high level of interoperability and commonality among vendors.
Mining algorithms provide the ability to specify how it should be
done, often with vendor-specific features. Algorithms allow users to
tailor data mining results, and allow vendors to expose details of
their algorithms supporting a given function.

Java Data Mining (JDM) separates the notion of mining function
from mining algorithm to simplify the specification of model build-
ing. Vendors are able to automate the selection of which algorithm
would work best on the provided data. This helps novices at data
mining obtain good results without knowing details of the underly-
ing algorithms. Yet, data mining experts are able to control which
algorithm is used and tune specific parameters.

Once we appreciate the type of industry problems that data mining
can solve, as discussed in Chapter 2, and the overall data mining pro-
cess, as discussed in Chapter 3, users applying the technology as part

86 Chapter 4 Mining Functions and Algorithms

of their business strategy need to understand the more general class
of problems they will encounter when trying to mine data in new sit-
uations. In data mining, there are several fundamental functions and
associated algorithms. In this chapter, we characterize mining func-
tions at a high level along several dimensions, and explain the data
mining functions provided in JDM. These mining functions include
classification, regression, attribute importance, clustering, and association.
In the first version of JDM, the expert group felt these five functions
were most commonly used, as well as most mature and amenable for
standardization. Moreover, these functions form a core supporting
many common data mining solutions. We also note algorithms that
are typically associated with these mining functions, especially those
specified in the standard.

4.1 Data Mining Functions

As introduced in Chapter 1, data mining functions can be classified
along several dimensions. For example, supervised and unsupervised,
descriptive and predictive, transparent and opaque. At some level, all
mining functions are implemented using one or more algorithms,
whether the algorithm details are exposed to the user or not. The
choice of algorithm can impact some of these dimensions, as we
discuss below.

Supervised functions are typically used to predict a value and
require the user to specify a known outcome or target for each case to
be used for model building. Examples of targets include binary
attributes with categories indicating buy/no-buy, churn/no-churn,
and success/failure. A target may also be a multiclass attribute, con-
taining multiple values, for example, indicating likely salary ranges
in $30,000 increments; expected reaction to a drug such as highly
favorable, favorable, no response, unfavorable, or highly unfavorable; or
favorite color. A target may also be a continuous numerical value, for
example, house price, temperature, or the number of copies of a book
to print. The target allows a supervised data mining algorithm to
learn from “correct” or “actual” examples, those with known out-
comes. Some algorithms assess how well they predict the provided
target values as they build models and adjust the resulting model
accordingly. Others simply count co-occurrences between values in
each non-target attribute, called a predictor attribute, and target
attribute values, ignoring how well it is able to predict.

Supervised functions are of two types: classification and regression.
Classification predicts categorical values; regression predicts continuous

4.1 Data Mining Functions 87

values. As we discuss in Sections 4.2 and 4.3, classification and
regression also differ in how model quality is assessed.

Unsupervised functions do not use a target, and are typically
used to find the intrinsic structure, relations, or affinities in a dataset.
Unlike supervised mining functions, which predict an outcome,
unsupervised mining functions cover a wide range of analytical
capabilities including clustering and association. Clustering may be
used to identify naturally occurring groups in the data, for example,
similar proteins or cancer cells, or retail customer segments. Associ-
ation models return items and rules that can be used, for example,
to identify products for cross-sell to retail customers. There are
other unsupervised mining functions, such as sequential patterns
[Wang� 2005], feature extraction [Lui� 1998], and anomaly detec-
tion [Margineantu� 2005], not yet officially covered by JDM.

Another dimension of data mining involves whether the result-
ing model is descriptive or predictive. Descriptive data mining
describes a dataset in a concise, enlightening, and summary manner,
and presents interesting generalized properties of the data. Descriptive
data mining results in models that provide transparency, that is, the
ability to understand why the model behaves as it does. The extent to
which a model is descriptive often depends on the algorithm used to
produce it. For example, in supervised learning, decision trees typi-
cally provide human interpretable rules that explain why a given
prediction was made, whereas a neural network used on the same
data provides no readily discernable understanding, and are consid-
ered “black-box” or opaque. Most unsupervised mining functions,
such as clustering or association rules, by definition are descriptive.
Mining functions and algorithms can be both descriptive and predic-
tive, such as the decision tree algorithm.

Predictive mining functions perform inference on the available
data, and attempt to predict outcomes or assignments for new data.
In addition to the prediction, predictive mining functions may also
provide a probability or confidence as to how strong the prediction
is based on what the model knows. For example, a clustering model
may assign a case to Cluster 5 with a 95 percent probability (a
strong assignment), or a classification model may predict the
customer will churn with a 55 percent probability (a weak predic-
tion). Supervised mining functions by definition are predictive.
Supervised algorithms supporting predictive data mining include
naïve bayes, neural networks, support vector machine, and deci-
sion trees. The clustering mining function, with algorithms such as
k-means, may also be considered predictive when used to assign

88 Chapter 4 Mining Functions and Algorithms

new cases to clusters. Even association rules can be used for prediction
[Lui� 1998, Li� 2001, Antonie/Zaiane 2002], although this is not
covered by JDM 1.1. See Chapter 18 on JDM 2.0 features for a brief
description.

4.2 Classification

Classification can be used to make predictions involving a wide
range of problems, including campaign response, customer segmen-
tation, churn and attrition modeling, credit analysis, and patient out-
comes. Many of these were discussed in Chapter 2.

The notion of classification is to classify cases according to a fixed set
of categories. A category, or class, is simply a discrete value with some
well-defined meaning. For example, the problem to determine “will
the customer respond to a campaign” typically has two categories: yes
and no. As a supervised mining function, the data used to build a
classification model needs to include a target attribute, containing the
known outcomes. From the response modeling example in Chapter
2, “yes” in the target attribute of build or test data indicates that the
customer responded to the campaign; “no” indicates that the customer
did not respond.

In the apply results, where the predictions are placed, “yes”
indicates that the model predicted the customer will respond to a
similar future campaign. This prediction is often accompanied by a
probability; for example, the customer is 80 percent likely to
respond to this campaign. This can be taken to mean that out of 100
customers with similar probability, 80 of those customers should
respond to the campaign. Probabilities are quite useful since they
can be used to compute, for example, expected return on a campaign
by multiplying the probability by the expected order value of each
customer and summing the results. Problems like response modeling
normally have two possible outcomes, a binary classification problem,
but classification can also be used to predict more than two possible
outcomes, a multiclass classification problem.

Let’s take a look at the data used to build a classification model.
As a type of supervised learning, classification algorithms build a
model from a set of predictors used to predict a target. As illustrated in
Figure 4-1 for the response modeling problem, a set of predictors
may include demographic data such as age, income, number of
children, and head of household (yes or no), to predict a customer’s
response to a campaign. The data for classification contains attribute

4.3 Regression 89

values for the predictors and target in each case. Additional
attributes, such as name or some unique identifier, may be provided to
identify each case. The resulting model creates in effect a functional
relationship between the predictors and the target:

Y = f (X2, ..., Xm).

Determining the quality of classification models is based on
comparing the historical, or actual, target value with the predicted
value. Chapter 7 explores specific metrics used to assess classifica-
tion model quality.

Algorithms that support classification in JDM are decision trees,
naïve bayes, support vector machine, and feed forward neural net-
works.

4.3 Regression

Regression is used to make predictions for continuous numerical
targets. It is valuable, for example, in financial forecasting, time
series prediction, biomedical and drug response modeling, house
pricing, customer lifetime value prediction, and environmental
modeling such as predicting levels of CO2 in the atmosphere.

Like classification, regression is a supervised mining function and
requires the build data to contain a set of predictors and a target
attribute, as illustrated in Figure 4-2. The target attribute contains

Predictor Attributes

. . .

Target

Attribute

Attributes

Cases

…

Response?

1 = Yes, 0 = No

1001

1002

1003

1004

X1 X2 X m Y

30,000

55,000

25,000

50,000

30

67

23

44

1

1

0

0

Case Identifier

Y

N

N

Y

2

3

0

1

Cust_id Income #Children HeadHHAge

Figure 4-1 Characterization of a dataset used for classification.

90 Chapter 4 Mining Functions and Algorithms

known numerical values, such as house value. In this house pricing
example, the predictors may include attributes for house square foot-
age, number of bedrooms, number of bathrooms, land area, and
proximity to school.

Also like classification, regression produces a functional rela-
tionship between the predictor attributes and the target attribute,
Y = f(X2, . . ., Xm). When getting a prediction from a regression
model, some models may return only the numerical prediction, for
example, a specific predicted house value such as $976,338. Others
may also be able to return a confidence band surrounding this
value. For example, the model may provide a confidence of
$15,478, which means the prediction for the house price is most
likely correct between the range $960,860 and $991,816.

Determining the quality of regression models is based on compar-
ing the size of the difference between the actual target value and the
predicted value. Since predictions are continuous, it is highly unlikely
the model will predict a target value exactly, unlike classification
models that have few discrete values. As such, there are metrics that
assess the overall error the model makes when predicting a set of val-
ues. Chapter 7 explores specific metrics used to assess regression
model quality.

Algorithms that can support regression in JDM include support
vector machine, neural networks, and decision trees. Other popular
regression algorithms are linear regression and generalized linear models
(GLM) [StatSci-GLM 2006].

...

Attributes

Cases

HouseID SqFt #BRs #Baths Acres House Value

1

2

3

4

3000

1500

2550

2300

5

3

4

4

748,000

279,000

510,900

1,420,500

1.25

.54

.88

4.6

3

2

4

3

Predictor Attributes

. . .

Target

Attribute

X1 X2 X m Y

Case Identifier

Figure 4-2 Characterization of data used for regression.

4.4 Attribute Importance 91

4.4 Attribute Importance

Which attributes most affect the outcome of my prediction?
Which attributes contribute most to defining good clusters? Which
attributes should I eliminate when building a model? These are some
of the questions answered by attribute importance for both super-
vised and unsupervised learning.

Business analysts often want to know what factors, or predictor
attributes, most influence an outcome, such as a customer’s decision to
churn, buy a product, or respond to a campaign. Knowing which
attributes most influence an outcome enables business analysts to focus
their attention on the data most relevant to their problem, perhaps
when querying data, manipulating it in an OLAP cube, or building a
model. Attribute importance can identify where greater effort should
be made to ensure the accuracy of certain data. Similarly, it can identify
the attributes that do not contribute useful information to model
building and consequently these attributes can be eliminated from
the build data. Attribute importance results may influence what data
is maintained in the data warehouse, or what data is purchased from
third-party data providers.

Consider a company that purchases data from a third-party
supplier. This data may be quite rich, consisting of hundreds if not
thousands of attributes. But, which ones are most useful for data
mining? Since data can be expensive to purchase, instead of purchas-
ing as much as possible, a business analyst may choose a relatively
small sample of data with a wide range of attributes. Using attribute
importance, the analyst can determine which of the attributes are
most useful for building models to solve particular problems. Then,
only those attributes that add value to the accuracy of the models
need to be purchased for the remaining cases.

As noted above, attribute importance can assist in determining
which attributes are most relevant for building a model. Eliminat-
ing unnecessary attributes in the build data can reduce model
building time. If fewer attributes are used to build a model, fewer are
required to apply that model, hence scoring will be faster as well.
Studies have shown that eliminating “noise” attributes from data can
also improve model accuracy or quality. Noise attributes are those
reported by attribute importance as not contributing to the model, or
actually reducing model quality.

Attribute importance produces a model that ranks attributes
according to how each attribute contributes to model quality, for

92 Chapter 4 Mining Functions and Algorithms

example, how effective each predictor attribute is at predicting the
target. Attribute importance results are often depicted graphically
using a bar chart. For example, Figure 4-3 illustrates the attribute
ranking available through JDM involving the attribute name, rank,
and importance value. A bar chart provides an immediate sense of the
relative importance of the attributes. Obviously, a higher ranked
attribute is more important than a lower ranked attribute. However,
there is typically no real sense of magnitude in the importance value,
meaning for example, one attribute being twice as important as
another does not hold. JDM specifies no precise interpretation of
attribute importance values other than attributes with a greater
numeric value are relatively more important than those with lesser
values.

From this ranking, users can select the attributes to be used in
building models. For example, a percentage of the top attributes may
be used to construct a new dataset, or perhaps visual inspection will

Attribute
Importance

Value
Rank

0.191

marital status 0.182

promotion 0.163

… ……

workclass 0.00817

Predictor

household size

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

H
O

U
SEH

O
LD

_S
IZ

E

M
A

RIT
A

L_S
TA

TU
S

PRO
M

O
_R

ESPO
N

D

BU
LK

_P
U

RCH
_A

V
E_A

M
T

Y
RS_R

ESID
EN

CE

Y
_B

O
X

_G
A

M
ES

ED
U

CATIO
N

W
K

S_S
IN

CE_L
A

ST_P
U

RCH

H
O

M
E_T

H
EATER_P

A
CK

A
G

E

O
CCU

PA
TIO

N

G
EN

D
ER

A
G

E

N
O

_D
IF

FEREN
T_K

IN
D

_I
TEM

S

AV
ERA

G
E_I

TEM
S_P

U
RCH

A
SED

BO
O

K
EEPIN

G
_A

PPLIC
ATIO

N

D
IS

A
BLE_C

O
O

K
IE

S

W
O

RK
CLA

SS

Figure 4-3 Attribute importance result.

4.5 Association 93

indicate a sharp drop-off in the importance value. Some algorithms
may produce negative attribute importance values. Such attributes
are likely noise, actually making the model accuracy or quality worse
than if they were not present.

4.5 Association

Association analysis is widely used in transaction data analysis for
directed marketing, catalog design, store layout, and other business
decision-making processes. Association is the mining function used
for market basket analysis, that is, the analysis of consumer behavior
for the discovery of relationships or correlations among a set of
items. For example, the presence of one set of items implies the
presence of another item or set of items, such as 90 percent of the
people who buy milk and eggs also buy bread in the same transac-
tion. Association identifies the attribute value conditions (items) that
frequently occur together in a given dataset by providing rules.

The rules returned from an association model are different from
the rules produced from clustering models or classification decision
tree models. For example, decision tree rules are predicate-based,
meaning that they consist of a series of true or false boolean-valued
expressions, such as “age < 45 AND income > 80,000 AND
owns_home = TRUE.” Association rules deal with discrete items,
specifically, consisting of two sets of items. One itemset, called the
antecedent, implies another itemset, called the consequent. If we have
an antecedent A and a consequent B, the rule can be written as A ➔ B.
These two itemsets are found to occur together in some number of
transactions or market baskets in the provided data.

Support and confidence metrics are used as quality measures of
the rules within an association model. The support of a rule indicates
how frequently the items associated in the rule occur together, for
example, milk, eggs, and bread occur together in 22 percent of the
transactions. The confidence of a rule indicates the probability of find-
ing both the antecedent itemset and consequent itemset in the same
transaction, given that the antecedent alone is found. An example is
illustrated in Figure 4-4 where there are four transactions, each with
some purchased items. The association algorithm found the rule
“milk implies bread,” where milk is the antecedent, and bread is the
consequent. First, we count the number of transactions that contain
milk and bread. Since there are two, we say the support for this rule
is 50 percent (2/4). The confidence of this rule is determined by

94 Chapter 4 Mining Functions and Algorithms

taking the number of times we saw both milk and bread (the support)
and dividing it by the number of transactions that have milk alone,
which is 3. This gives us a confidence of 66 percent (2/3). Intuitively,
we want to know that if we see milk, how likely are we to also see
bread. In the dataset provided, we see that 2 out of 3 times.

Let’s turn this around for a moment. The association model also
contains the rule “bread implies milk.” You could ask, why is this
different? The support is the same as in the previous rule; however,
the confidence is 100 percent. This is because every time we saw
bread (2 times), we also saw milk, as in transactions 1 and 3.

Input data for association models typically comes in one of two
forms. Figure 4-5 illustrates a standard one-row-per-case format,
referred to as single record case, which has also been used for the other
mining functions above. In the association data, however, each pre-
dictor attribute indicates whether the product was purchased or not.
A “1” indicates the item was purchased in the transaction, a “0” indi-
cates it was not.

Another representation, more common for association data, is
often called “transactional format” and referred to as multirecord case
in JDM. In this format, we capture only the items purchased, as
opposed to those purchased and not purchased. Each item purchased
has a row in the table. The items are linked together by their transac-
tion or case identifier. This is illustrated in Figure 4-6.

milk ➔ bread:

Support = 2/4 = 50%

Confidence = 2/3 = 66%

bread ➔ milk:

Support = 2/4 = 50%

Confidence = 2/2 = 100%

Transaction ID Purchased Items

1 {milk, eggs, bread}

2 {milk, cheese}

3 {milk, bread}

4 {eggs, ham, ketchup}

Support:

 (A ➔ B) = P(AB)

Confidence:

 (A ➔ B) = P(AB)/P(A)

Rule Length:

number of items in the rule

 AB ➔ C

 Rule Length = 3

Figure 4-4 Computing support and confidence of an association rule.

4.5 Association 95

The choice of data format depends on how the data was originally
maintained, perhaps in the data warehouse. But more importantly, it
depends on the ability of the algorithm to handle a particular format.
Multirecord case format is considered a sparse representation of the
data since it only contains the items of interest. Single record case
format is considered a dense representation since it contains all the
information. As you may expect, sparse representations can be more
space efficient depending on the data. Consider a grocery store that
sells 10,000 different products and where customers purchase on
average 10 products at a time. If we maintained the data in single

Attributes

Cases

Transaction

Id Milk Bread Eggs Bananas Cereal

1

2
3

4

1

0
0

1

1

1
0

0

0

1
1

0

1

0
0

0

1

1
1

0

...

Predictor Attributes

. . .X1 X2 X m

Case Identifier

Figure 4-5 Characterization of data used for Association—single
record case.

Case 1

Transaction

Id

Attribute

Name Value

1

1

1

1

Milk

Bread

Eggs

Cereal

1

1

1

1

2 Bread 1

2 Bananas 1

2 Cereal 1

Case 2

…

Figure 4-6 Characterization of data used for Association—
multirecord case.

96 Chapter 4 Mining Functions and Algorithms

record case, we would require space for 10,000 entries per transaction.
If we have 1,000 transactions in our dataset, this is a total of 10,000,000
entries. However, if we use multirecord case format, we store only data
on 20,000 items (20 items/transaction � 1,000 transactions). Each item
requires 3 entries (two minimally), which amounts to 60,000 entries.
Clearly, 10,000,000 greatly exceeds the sparse representation of 60,000.

Association rules are interesting for showing relationships among
items, but can also be interesting for showing relationships among
item categories. To generate association rules that include category
rules, some association algorithms can take a taxonomy as input
which shows the relationships among items. Each item is associated
with one or more categories. Categories in turn can belong to one or
more other categories. The overall taxonomy cannot contain any
cycles; that is, a category can end up being its own parent, directly or
indirectly.

Consider the example in Figure 4-7, which illustrates four subcat-
egories of food: fruits, meats, grains, and dairy. Fruits are further sub-
categorized into native and imported fruit, and fresh and canned fruit.
Pineapple exists in both fresh and imported forms. Apples are both
fresh and native fruits. Each of the categories provided may further
be subdivided into finer categories or linked to specific items, for
example, Royal Gala apples.

Whereas association models normally find rules among items,
given such a taxonomy, an association algorithm can also identify
rules among categories. For example, “dairy implies grains” (one
category implies another category), “dairy implies Rice Krispies”

Food

Fruits Meats Grains Dairy

FreshFruits CannedFruits Pork Beef ChickenNativeFruits ImportedFruits

PineappleApple
FruitCocktail

Figure 4-7 Taxonomy for food items.

4.6 Clustering 97

(one category implies an item), or “angus filet mignon implies steak
sauce” (one item implies a category).

The mining function for association provides most of the func-
tionality for specifying inputs to model building and retrieving rules.
As such, JDM does not specify any algorithm settings for association;
however, the most popular algorithm is Apriori. For retrieving rules,
JDM focuses on filtering rules using various criteria; for example,
users may want to see only rules that meet a minimum support or
confidence value. Others may also want rules involving some
minimum number of items in the antecedent for more interesting
rules, or having a specific set of items in the antecedent or consequent.
The rules filter may be simple or complex, depending on the needs of
the user or application. For example, consider the rules in Table 4-1.

If we are interested in only “long” rules, we may select all rules
with length 4 or greater. This returns only one, rule 2. If we are inter-
ested in rules with high support and confidence, we may select all
rules with support > 0.3 and confidence > 0.5. This returns rules 1
and 4. If we are interested in any rules involving the item “milk,” we
may select those containing “milk” in the antecedent or consequent.
This returns rules 1 and 4 again. If we are interested only in what
results in the purchase of eggs, we may select those containing
“eggs” in the antecedent only. This returns rules 2 and 6.

4.6 Clustering

Clustering has been used in customer segmentation, gene and protein
analysis, product grouping, finding taxonomies, and text mining.
Typical goals for clustering can include finding representative cases

Table 4-1 Example Association Rules

Rule ID Antecedent Consequent Support Confidence

1 Milk Bread .50 .66

2 Ham, Bacon, Bread Eggs .14 .45

3 Apples, Grapes Oranges .37 .25

4 Cereal, Bananas Milk .44 .78

5 Steak Steaksauce .19 .39

6 Cakemix, Oil Eggs .08 .78

98 Chapter 4 Mining Functions and Algorithms

from a large dataset to support data reduction, identifying natural
clusters in a dataset to give insight into what cases are grouped
together, as well as finding data that either does not belong to any of
the found clusters or belongs to a cluster of only a few cases provid-
ing a kind of outlier or anomaly detection [DEI 2005]. The data for-
mat used for clustering is similar to that used for supervised
learning, except that no target attribute is specified.

Essentially, clustering analysis identifies clusters that exist in a given
dataset, where a cluster is a collection of cases that are more similar to
one another than cases in other clusters. A set of clusters is considered
to be of high quality if the similarity between clusters is low, yet the
similarity of cases within a cluster is high [Anderberg 1973]. As illus-
trated in Figure 4-8, it can be fairly easy to understand clusters in two
dimensions. Here we have two numerical attributes: income and age.
The figure depicts two clusters each with its respective centroid, that
is, representative center point. Cluster C1 corresponds to individuals
with lower income and lower age, whereas Cluster C2 corresponds to
individuals with higher income and higher age. If we look at the his-
tograms of these attributes as illustrated in Figure 4-9, we see the
number of cases is highest closest to the centroid of each cluster.

With this simple example, there is no need to use a data mining
algorithm to identify the clusters—visual inspection can easily identify
the clusters once the data is graphed. With advanced visualization

Age

Centroids

In
co

m
e

C2

C1

Figure 4-8 Cluster centroids.

4.6 Clustering 99

techniques, it may also be possible to interpret clusters directly in
three-dimensional space. However, when there are 10s, 100s, or 1,000s
of attributes, it is not humanly possible to identify the clusters present
in the data. This is where data mining comes in. Clustering algorithms
automatically identify groups of cases into clusters. Humans can then
inspect these clusters, looking either at the centroids themselves or at
rules that define the clusters. For example, the rules for clusters C1
and C2 from the example in Figure 4-8 may look like

C1: 0 < income < 50,000 AND 0 < age < 35

C2: 40 < income < 100,000 AND 31 < age 57

Note that there is overlap between the regions defined by C1 and
C2. Cases that fall into this overlapping region may actually be closer
to one centroid than another, as determined by a distance measure.
Sometimes a case may be equally close to multiple clusters, in which
case the probability or confidence associated with the assignment to
any one of these clusters may be equally low.

What constitutes similarity between cases depends on the type of
attributes involved. When considering numerical values, such as
income, it is quite easy to determine “closeness” since we can graph

Age

Income

C2

Age

C1

Income

Figure 4-9 Cluster histograms.

100 Chapter 4 Mining Functions and Algorithms

income values and compute the distance between them. For categorical
values, such as marital status, determining similarity can be difficult.
Whereas we could say married is far from single, it is less clear how
much closer divorced is to married or single. Also consider colors. Is
green closer to red or blue? If considering the colors scientifically, we
could use their frequency or wavelength. However, in considering
customer color choices, this is likely irrelevant. In this case, we may
conclude that two cases are similar for attribute color only if they
have the same color.

Some clustering algorithms produce hierarchies that characterize
relationships among clusters. This can be useful when creating tax-
onomies for organizing documents or products, or trying to deter-
mine what clusters are most meaningful for a particular business
problem.

JDM defines algorithm settings for k-means [MacQueen 1967].
However, there are many other clustering algorithms such as self-
organizing maps [Kohonen 1995], orthogonal partitioning clustering
[Milenova/Campos 2002], and hierarchical clustering.

4.7 Summary

In this chapter, we introduced the mining functions supported in the
first release of JDM and mentioned some of the algorithms that can
be used to support those functions, both those defined for the stan-
dard as well as some other popular algorithms. We discussed each
mining function’s capabilities and typical uses. We looked at the
basic data requirements and formats of each mining function and
how results may be interpreted.

There are other mining functions, not currently defined in JDM,
that are useful in various situations. Examples include time series
analysis [Chatfield 2004], to understand trends and cycles of numeri-
cal sequence-oriented data; anomaly detection, to identify unusual
cases based on patterns identified to be normal; and feature extraction,
to determine higher level attributes or features as linear combina-
tions of the original attributes. In Chapter 18, we discuss some of the
new features, like these, being considered for JDM 2.0.

For additional information on mining functions, see [Berry/
Linoff 2004] [Witten/Frank 2005]. In the next chapter, we look at the
overall strategy adopted for JDM, of which these mining functions
form a part.

4.7 Summary 101

References

[Agrawal/Srikant 1994] Rakesh Agrawal, Ramakrishnan Srikant, “Fast
Algorithms for Mining Association Rules,” Proceedings of the 20th
VLDB Conference, Santiago, Chile, 1994.

[Anderberg 1973] M. R. Anderberg, Cluster Analysis for Applications, New
York, Academic Press Inc., 1973.

[Antonie/Zaiane 2002] Maria-Luiza Antonie, Osmar R. Zaiane, “Text
Document Categorization by Term Association.” In IEEE International
Conference on Data Mining, pages 19–26, December 2002. http://
www.cs.ualberta.ca/~zaiane/postscript/icdm02-1.pdf.

[Berry/Linoff 2004] M. Berry, G. Linoff, Data Mining Techniques for
Marketing, Sales, and Customer Relationship Management, New York,
John Wiley & Sons, Inc., 2004.

 [Chatfield 2004] Chris Chatfield, The Analysis of Time Series: An Introduc-
tion, Boca Raton, FL, CRC Press, 2004.

[DEI 2005] Dipartimento di Elettronica e Informazione, Politecnico
Di Milano, http: // www.elet.polimi.it/upload/matteucc/Clustering/
tutorial_html.

[Kohonen 1995] T. Kohonen, Self-organizing Maps, 2nd ed., Berlin,
Springer-Verlag, 1995.

[Li� 2001] Wenmin Li, Jiawei Han, Jian Pei, “CMAR: Accurate and
Efficient Classification Based on Multiple Class-Association Rules.”
In IEEE International Conference on Data Mining, 2001. http://www-
faculty.cs.uiuc.edu/~hanj/pdf/cmar01.pdf.

[Lui� 1998] Bing Liu, Wynne Hsu, Yiming Ma, “Integrating Classification
and Association Rule Mining.” In Knowledge Discovery and Data Mining,
pages 80–86, 1998. http://www.dsi.unive.it/~dm/liu98integrating.pdf.

[Lui� 1998] Huan Liu, Hiroshi Motoda, Feature Extraction Construction
and Selection: A Data Mining Perspective, Boston, Kluwer Academic
Publishers, 1998.

[MacQueen 1967] J. B. MacQueen “Some Methods for Classification and
Analysis of Multivariate Observations, Proceedings of 5th Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley, University
of California Press, 1:281–297, 1967.

102 Chapter 4 Mining Functions and Algorithms

[Margineantu� 2005] Dragos Margineantu, Stephen Bay, Philip Chan,
Terran Lane, “International Workshop on Data Mining Methods for
Anomaly Detection,” Workshop Notes, Chicago, SIGKDD, 2005.

[Milenova/Campos 2002] Boriana Milenova, Marcos Campos, O-Cluster:
Scalable Clustering of Large High Dimensional Datasets, Oracle
Corporation, 2002, http://www.oracle.com/technology/products/bi/
odm/pdf/o_cluster_algorithm.pdf.

[Pyle 1999] Dorian Pyle, Data Preparation for Data Mining, San Francisco,
Morgan Kaufmann, 1999.

[StatSci-GLM 2006] Generalized Linear Models Introduction, StatSci.org,
http://www.statsci.org/glm/intro.html.

[Wang� 2005] Wei Wang, Jiong Yang, Mining Sequential Patterns from
Large Datasets, Kluwer International Series on Advances in Database
Systems, New York, Springer, vol. 28, 2005.

[Wikipedia 2005] http://en.wikipedia.org/wiki/Minimum_description_length.

[Witten/Frank 2005] Ian H. Witten, Eibe Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd ed., San Francisco, Morgan
Kaufmann, 2005.

103

Chapter

5
JDM Strategy

Strategy without tactics is the slowest route to victory.
Tactics without strategy is the noise before defeat.

—Sun Tzu (c. 400–430 B.C.), Chinese military strategist

The term strategy can be defined as “a long term plan of action
designed to achieve a particular goal” [Wikipedia 2005]. The term
tactic can be defined as “a method or action for accomplishing an
end” [GBC 2005]. This chapter characterizes the strategic decisions
made for the Java Data Mining (JDM) standard. In addition, some of
the rationale for those strategies is provided. The overall goal in the
case of JDM is to make data mining accessible to Java developers and
Java-based applications. The JDM strategy is introduced in this chap-
ter using 10 strategic objectives. To heed the warning in the chapter-
opening quotation, we also highlight corresponding JDM tactics.

To understand the context of the JDM strategy, an understanding
of standards in general and data mining standards in particular is
beneficial. Hence, this chapter discusses the role of standards and
motivations for creating them. The benefits that data mining stan-
dards offer the advanced analytics community are discussed. Later,
in Chapter 17, the evolution of several data mining standards will be
explored.

104 Chapter 5 JDM Strategy

5.1 What Is the JDM Strategy?

Historically, data mining has been the domain of statisticians and
data analysts. Sophisticated businesses often developed propri-
etary algorithms or implemented published algorithms by hiring
experts with advanced degrees in statistics and machine learning.
As data mining technology evolved, commercial tools entered the
market, providing more general purpose tools that could be used
by these same experts. However, a technology that can explain and
predict behavior and outcomes, as well as automatically categorize
and derive hidden associations among objects, should be more
readily available to enhance applications. Although commercial
tools go far toward making the raw technology more accessible, it
is still difficult for many businesses to reap the benefits of data
mining.

For example, many data mining tools provide complex graphi-
cal interfaces for performing data mining. This often results in the
problem of how to deploy the results to business processes or
applications. To address this problem, data mining vendors pro-
duced proprietary application programming interfaces (APIs) to
their products to enable programmatic control. These APIs ranged
from using traditional programming languages like C
[Kernighan� 2005] and Java [Weka 2005], to proprietary inter-
preted languages [Darwin 2005]. As discussed later in this chapter,
the diversity in interfaces comes at a cost to vendors, developers,
and businesses.

The JDM interfaces are defined as a pure Java specification, in
which either client, server, or both can be implemented purely in
Java. However, JDM also allows vendors to implement the system
behind the Java interface specification in any implementation
technology or programming language. This enables vendors with
established products to wrap their products with the JDM
interface.

JDM began and remains an open, pure Java, multivendor stan-
dard. An open standard can be defined as being

publicly available specifications for achieving a specific task. By allowing anyone to
use the standard, [open standards] increase compatibility between various hardware
and software components since anyone with the technical know-how and the neces-
sary equipment to implement solutions can build something that works together with
those of other vendors. [Wikipedia 2006a]

Here are 10 strategic objectives for JDM.

5.1 What Is the JDM Strategy? 105

Strategic Objective 1: Address a large developer community

To gain mainstream adoption, it is important to attract the attention
of a large and appropriate audience. It is easy for good designs to
fade into obscurity for targeting too small of an audience or the
wrong audience. The JDM standard is more likely to take root and
grow by providing an established community of application devel-
opers programmatic access to data mining functionality, enabling
them to extract knowledge and insight from data.

As of 2006, it is estimated there are millions of Java developers
worldwide. Java™ and J2EE are natural choices for application
development. With Java’s powerful language concepts and J2EE’s
distributed application framework, Java offers a major application
development framework as used in research and industry. Tactically,
Java is a natural choice of language.

Strategic Objective 2: Be a standard interface

Proprietary interfaces rarely stand the test of time. The products
that provide them or the companies that create them may come and
go. Developing applications on such interfaces can be risky. Some de
facto standards1 arise because of extensive adoption in the market-
place. For better or worse, de facto standards normally reflect the
perspective of the organization or company that defined them.
Standards developed by multiple vendors and consumers are likely
to address a broader set of needs. Standards provide a host of others
benefits, as detailed later in this chapter, not least of which is to give
consumers a greater sense of the maturity of the technology they are
using. By providing a standard interface, technologies such as data
mining can be more confidently deployed in business processes and
applications.

Tactically, the Java Community Process (JCP) [JCP 2005] is the nat-
ural choice for a standards body through which to become a stan-
dard interface for Java.

1 De facto standards are those that are widely used and recognized by the
industry as being standards as opposed to being approved by a standards
organization [Webopedia 2006] [BellevueLinux 2006] such as Microsoft Word
and Adobe PostScript.

106 Chapter 5 JDM Strategy

Strategic Objective 3: Have broad acceptance among
vendors and consumers

All too often, a standards effort can become dominated by tech-
nologists enamored with the technical details of a problem and
vendors limited to focusing on the specific features they support,
rather than on ease of use or what the consumer needs. Involving both
consumers and vendors in the standards process helps to provide bal-
ance to the resulting work. The JCP encourages participation from
multiple vendors and consumers to ensure that Java language exten-
sions meet a wide range of needs. This and other aspects of the JCP, as
discussed in Section 17.2, give potential users greater confidence in the
resulting standard.

Tactically, we chose to involve multiple vendors and potential
consumers to ensure the standard reflects the capabilities and prac-
tices common in data mining tools, as well as the needs of industry.
For example, the JSR-73 expert group consisted of leading corporate
and individual members from both data mining vendors and
technology consumers, with Oracle as specification lead [JSR-73
2006].2

Strategic Objective 4: Be extensible

As in any healthy field, the number of data mining techniques and
algorithms continues to expand. Variations on traditional algorithms
are introduced to improve performance, quality, or ease of use. As
such, no standard is ever complete. New requirements or capabilities
are constantly evolving. Any of the proceedings from SIGKDD
[SIGKDD 2005] give testament to the research supporting advance-
ments in data mining.

To remain relevant, a standard must provide sufficient common
functionality, yet enable vendors to enhance and grow that function-
ality in advance of the standards process itself. Having a framework
through which new mining capabilities can be readily added makes
it practical for vendors to implement the standard, yet provide their
customers the same level of service and capabilities those customers
are accustomed to.

Tactically, we designed JDM to be an easily extensible framework
consisting of a small core set of interfaces from which JDM standard
and vendor-proprietary interfaces can inherit to provide new capabil-
ities (e.g., functions and algorithms) while keeping the same overall

2 See [JSR-73 2006] for a complete list of expert group members.

5.1 What Is the JDM Strategy? 107

structure and feel of the API. This framework enables vendors to use
the core of the standard while reflecting a product’s unique capabili-
ties. This framework also enables application developers to learn a
standard set of interfaces yet easily leverage vendor extensions since
they adhere to a common design. This framework is discussed fur-
ther in Chapter 8.

Strategic Objective 5: Start small and grow in functionality

The field of data mining includes a wide variety of techniques. Some
are mature and well-established in both tools and practice. For exam-
ple, classification and regression have been long implemented using
decision tree algorithms such as C4.5 [Quinlan 1993] and CART
[Breiman+ 1984], and other algorithms including naïve bayes and
neural networks [Mitchell 1997]. Newer algorithms such as support
vector machine (SVM) [Christianini/Shawe-Taylor 2000] have also
gained significant acceptance in both tools and applications. Other
techniques are more experimental and evolving, or still proprietary.
As the breadth of data mining is quite encompassing, it is important
to focus initially on a set of techniques commonly available with
well-known applications.

To enable a data mining standard to come to fruition, it is impor-
tant to constrain its scope and focus on a core set of capabilities,
while defining a framework within which new capabilities can be
readily added. Tactically, we provide an initial set of mining func-
tions and algorithms that can solve a wide range of problems and
expand over time as demand dictates.

Strategic Objective 6: Simplify data mining for novices
while allowing control for experts

As we have noted, data mining has traditionally been the domain of
experts. Although there are still many aspects of the data mining
problem space that require in-depth understanding of both the prob-
lem and solution, such as data preparation and domain-dependent
knowledge, much can be done to simplify the data mining process,
including automatic algorithm selection, data preparation, and set-
tings tuning. This automation gives vendors the opportunity to add
value to their products beyond algorithms. Yet at the same time,
experts want to be able to exert control over all aspects of the model-
ing process.

Tactically, we provide an API that allows vendors to automate
much of the data mining process such that both novice and expert

108 Chapter 5 JDM Strategy

data miners can obtain desired results. By distinguishing mining
functions from mining algorithms, JDM simplifies the mining pro-
cess for novices, while allowing experts complete control. Mining
functions allow users to specify what they want to accomplish, e.g.,
classify these cases into two categories, or cluster these cases into n
clusters. Novice data miners who are not familiar with the details
of data mining can rely on the vendor to choose a specific algo-
rithm. In addition, many of the settings that control the mining
function or algorithm behavior allow a system determined setting
that instructs the data mining engine to make an intelligent selec-
tion, perhaps based on the nature of the data presented. JDM also
allows for automated data preparation to further support the nov-
ice user. On the other hand, expert data miners, familiar with the
details of data mining, can select the specific algorithm or specify
detailed settings. Expert data miners can prepare their data explic-
itly and instruct the data mining engine not to further transform
their data.

Strategic Objective 7: Recognize conformance limitations
for vendor implementations

Like the field of data mining itself, data mining software vendors
support a wide range of data mining techniques. In some cases,
vendors may specialize in a particular technique like neural
networks, or in a small set of techniques such as classification and
regression, providing a variety of algorithms. As such, it is
important to create a standard that is flexible enough to allow ven-
dors with different focuses to implement and comply with the
standard.

Tactically, we reduce barriers to entry for vendors to support the
standard by making conformance a la cart; that is, the standard is
naturally segmented into logical units, which can be easily
supported independent of others. Simply, this means that JDM is
organized into packages specific to different types of functionality
that vendors can optionally choose to support. Of course, there is a
relatively small core set of packages that must be supported, yet
vendors can select to implement a narrow subset of functionality,
for example, only the classification mining function with the deci-
sion tree algorithm. Other vendors may choose to implement only
interfaces at the mining function level, leaving out any algorithm
details. This flexibility makes the JDM standard much more accessi-
ble to niche vendors.

5.1 What Is the JDM Strategy? 109

Strategic Objective 8: Support requirements of real,
industrial applications

A major impetus to businesses using data mining is how to derive
value or operationalize their data mining results in business applica-
tions and processes. Deploying data mining results can involve mov-
ing the data mining models from the lab into the field, or publishing
the results in reports or through dashboards. The complexity of
applications often requires the ability to transport data mining
objects and related information between machines.

Sophisticated graphical user interfaces (GUIs) for performing data
mining can be feature rich with algorithms, transformations, and
support for model building, test, and scoring. However, GUIs are
often not enough to deploy data mining solutions in applications and
throughout a business.

Tactically, we enable applications to exchange objects using export
and import interfaces, to save mining objects to files, and to share set-
tings and results, including models, between vendor implementa-
tions. The ability to transport data mining objects from one
environment to another is often key in a distributed application envi-
ronment. For example, where models are built in one system but
applied to data in another, an XML representation of mining objects
is highly valuable. Adopting a common XML Schema representation
for JDM objects facilitates interchange among vendors, as discussed
in Chapter 10.

Strategic Objective 9: Appeal to vendors and architects
in other development domains

Implementing and conforming to a standard can be a major
undertaking. If the data mining engine (DME) must be modified or
enhanced to support a standard interface, vendors are more inclined
to adopt that standard if it can reach a broader audience.

Tactically, we enable data mining in a Service Oriented Architec-
ture (SOA) by defining a web services interface that maps closely
with the Java API. This allows application designers and developers
to freely move between Java and web services, especially within the
same vendor implementation.

Strategic Objective 10: Leverage other data mining standards

Much effort has gone into standardizing various aspects of data
mining. Some vendors and consumers are already familiar with

110 Chapter 5 JDM Strategy

some of these standards and may have already implemented systems
and applications using them. Where possible, leverage existing data
mining standards to achieve a greater degree of interoperability and
avoid impedance mismatch between standards.

Tactically, we include the notion of import and export of objects
conforming to PMML and CWM, as well as provide a conscious
mapping of capabilities among data mining standards where possi-
ble and appropriate.

These are the strategic objectives for JDM. Next, we explore some
of the basic premises for standards.

5.2 Role of Standards

Although data mining in the form of artificial intelligence, machine
learning, and various statistical techniques has been around for
many decades, only within the past 5 years have data mining stan-
dards taken hold—a proof point for the maturing of the field and its
pervasiveness in the marketplace. This section explores the motiva-
tions for creating a standard and what standards enable for realizing
the Java Data Mining strategy.

5.2.1 Why Create a Standard?

Standards exist in nearly every aspect of life. In the physical world,
we have standards for phone jacks, electrical sockets, railroads, and
bathroom fixtures, to name a few. We feel and experience how these
standards make life much easier and products less expensive.
Consider electrical sockets: Anyone who has traveled to a foreign
country using a different electrical socket standard can readily under-
stand the benefits of standards.

In the nonphysical world, we have standards for Internet commu-
nication protocols, SQL, and programming languages. Those who
have used software and hardware products from multiple vendors
also appreciate the benefits of standards, or at least the problems
introduced by lack of standards.

The Java programming language is a specific case of a standard
that benefits its user community. In particular, the Java Data Mining
standard provides a common framework for exploring and develop-
ing applications using data mining. Developers are able to learn a

5.2 Role of Standards 111

single development framework and apply it in many situations,
across applications, and across vendor-provided tool sets. A standard
and consistently designed API also makes data mining more accessi-
ble to developers. Companies using data mining can choose from
multiple, competing products while ensuring that their developers
need not retool to a completely different way of developing applica-
tions. Companies can select products more on the merits of their
capabilities than on what product their developers currently use or
are familiar with. Moreover, applications solving business problems
can take advantage of the capabilities of multiple data mining prod-
ucts more easily since the interface is standard. The risks associated
with using a proprietary API such as vendor longevity or costly
application rewrites due to changing vendors are greatly reduced.
With a standard API, applications no longer need to be completely
rewritten to adapt to a different vendor's interface.

As noted earlier, standards normally involve input from many
diverse individuals and companies. De facto standards may reflect a
marketplace consensus—sometimes resulting from a monopoly-like
reign in an industry. However, open standards, like the Java Commu-
nity Process, have the benefit of providing interfaces that can meet a
broader set of needs due to input from participants with a broader
range of experience and needs. Drawing on both vendors and con-
sumers helps ensure a standard is both implementable and usable.

Innovation also benefits from standards; small enterprises includ-
ing start-ups can join the big players on a level playing field pro-
vided by an open standards forum. Further, vendors can compete on
features and performance, instead of on the interface. Customers do
not have to feel they are taking as much of a risk adopting a small
vendor’s solution since they will be developing against a standard
interface. Just as it is a benefit for customers to be able to change ven-
dors more easily, it is also a benefit to vendors because a customer
may be more willing to change vendors when competing on price or
level of functionality.

The existence of standards also frees vendors from having to rein-
vent the wheel. Instead of expending resources to design alternative
APIs, vendors can apply engineering resources to enhancing func-
tionality and performance.

When some of the best minds come together to design a standard,
often the whole is greater than the sum of the parts. That is, new
ideas arise that make the standard better than any one vendor could
have done independently.

112 Chapter 5 JDM Strategy

5.2.2 What Do Data Mining Standards Enable?

The evolution of data mining standards speaks to the maturing of the
market and the technology. By standardizing model representations,
as is done via the Predictive Model Markup Language (PMML)
[DMG-PMML 2006], users have greater potential to interchange
models among different vendor data mining systems. By standardiz-
ing the mining operations, their input parameters, and output
results, as is done via JDM, users have greater potential to develop
more portable applications, as well as interchange settings and min-
ing objects among vendors. Moreover, developers of advanced ana-
lytic applications can learn a single paradigm and leverage that
across vendors. Applications that leverage multiple vendor mining
systems are greatly simplified since a common framework can be
used to invoke functionality in each mining system.

Extensible data mining standards such as JDM also provide a
framework for integrating proprietary, new, or evolving algorithms
and mining functions. Vendors can provide the needed delta func-
tionality while reusing definitions, objects, and common functional-
ity of the underlying framework.

As noted, the JDM standard enables more flexible application archi-
tectures, which provide application developers and businesses greater
choice in how they address data mining solutions. These include:

• Avoiding vendor lock-in

• Multivendor solutions

• Best of breed interoperability

With most software purchases that involve extensive application
development, business management is concerned with vendor
lock-in. That is, after investing much time, resources, and money
into a project using a vendor’s proprietary interface, if the software
supporting a key piece of that solution needs to be changed, this
will require rewriting much of the application. Such a cost makes
management afraid to choose certain solutions or to undertake a
particular project until standard solutions are available. This places
smaller vendors at a disadvantage due to concerns of longevity, but
also larger vendors for fear of being held hostage to price increases.
Figure 5-1 depicts the objective to enable an application using JDM
with Vendor 1 to be able to write the application in such a way that
the user can switch to Vendor 2 without significant modification to
the application.

5.2 Role of Standards 113

Apart from the negative aspects of vendor lock-in, a standard can
also make new and innovative applications possible, leveraging the
best features from a set of vendor tools. As illustrated in Figure 5-2,
the same application, or application user, can choose which vendor
features to use. Meanwhile, the application is using a common API to
interact with each of the systems. (Chapter 13 introduces an example
with code for such an application.)

Another variant of the multivendor solution involves possibly
distributed applications where mining objects are exchanged
between applications and among vendor products. The example
depicted in Figure 5-3 illustrates a build application that uses
Vendor 1 to build models. These models may be exported and then
imported into other applications, such as a visualization applica-
tion or an apply application, often referred to as a scoring engine.

Application

JDM

Vendor 1

Application

JDM

Vendor 2

JDM JDM

Figure 5-1 Avoiding vendor lock-in.

Application

JDM

Vendor 1

JDM

Vendor 2

JDM

Vendor 3

JDM

Figure 5-2 Multivendor solutions.

114 Chapter 5 JDM Strategy

Vendor 3 provides highly sophisticated graphical visualization of
models that are displayed through a custom visualization applica-
tion, while Vendor 2 provides a highly performant scoring engine
that the apply application uses.

5.3 Summary

The JDM strategy revolves around making data mining more accessi-
ble to the masses of Java and web services developers. Making JDM a
standard and working through an established standards organiza-
tion reassures businesses in the strength and maturity of the data
mining market. This chapter explored several strategic objectives and
tactical approaches the expert group had for JDM, as well as the role
of standards for meeting these objectives.

References

[Breiman+ 1984] Leo Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone,
Classification and Regression Trees, New York, Chapman & Hall, 1984.

[BellevueLinux 2006] http://www.bellevuelinux.org/de_facto_standard.html.

Build

Application

JDM

Vendor 1

Apply

Application

JDM

Vendor 2

Visualization

Application

JDM

Vendor 3

JDM

JDM

JDM

mining

object

mining

object

mining

object

Figure 5-3 Best of breed interoperability.

5.3 Summary 115

[Christianini/Shawe-Taylor 2000] N. Cristianini, J. Shawe-Taylor, An
Introduction to Support Vector Machines, Cambridge, UK, Cambridge
University Press, 2000.

[CWM 2005] http://www.omg.org/technology/cwm.

[Darwin 2005] http://www.oracle.com/technology/documentation/darwin.
html.

[DMG-PMML 2006] http://www.dmg.org.

[GBC 2005] Government of British Columbia, http://www.for.gov.bc.ca/
tasb/legsregs/fpc/fpcguide/defoliat/gloss.htm.

[ISO 2005] http://www.iso.org/iso/en/ISOOnline.frontpage.

[JCP 2005] http://www.jcp.org.

[JSR-73 2006] http://jcp.org/en/jsr/detail?id�73.

[Kernighan+ 2005] Brian W. Kernighan, Dennis Ritchie, Dennis M.
Ritchie, The C Programming Language, 2nd ed., Upper Saddle River,
NJ, Prentice Hall, 2005.

[Kimball/Ross 2002] R. Kimball, M. Ross, The Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, New York, John Wiley &
Sons, 2002.

[OMG 2001] Common Warehouse Metadata (CWM) Specification,
Object Management Group (OMG), http://www.omg.org/cgi-bin/
apps/doc?ad/01-02-01.pdf, Version 1.0, February 2, 2001.

[OMG 2005] http://www.omg.org.

[Phonniah 2001] Paulraj Ponniah, Data Warehousing Fundamentals: A Com-
prehensive Guide for IT Professionals, New York, John Wiley & Sons,
2001.

[Pyle 1999] D. Pyle, Data Preparation for DataMining, San Francisco,
Morgan Kaufmann, 1999.

[Quinlan 1993] R. Quinlan, C4.5: Programs for Machine Learning, San
Mateo, CA, Morgan Kaufmann, 1993.

[SAS 2005] http://www.sas.com/technologies/analytics/datamining/miner/
factsheet.pdf.

[SIGKDD 2005] Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM Press,
2005.

[SUN 2005] www.jcp.org.

116 Chapter 5 JDM Strategy

[Wikipedia 2005] http://en.wikipedia.org/wiki/Strategy.

[Wikipedia 2006a] http://en.wikipedia.org/wiki/Open_standard.

[Webopedia 2006] http://www.webopedia.com/TERM/D/de_facto_
standard.htm.

[Weka 2005] http://www.cs.waikato.ac.nz/ml/weka.

117

Chapter

6
Getting Started

The secret of getting ahead is getting started.

—Mark Twain (1835–1910)

As with any technology, the challenge to gaining proficiency is not
being afraid to venture into the unknown. As Mark Twain noted,
“the secret of getting ahead is getting started,” and a strategy to get
ahead with data mining is to start with small problems and
datasets, learn some basic techniques and processes, and keep
practicing. This chapter introduces a small code example to give
the reader a feel for the Java Data Mining (JDM) application pro-
gramming interface (API) in the context of a specific business prob-
lem before going into more detailed examples in Parts II and III of
this book. The business problem we address involves response
modeling, as discussed in Chapter 2, for a fictitious company
DMWIZZ and their product Gizmos. Rather than dive right into the
code, this chapter follows the CRISP-DM data mining process by
first discussing the business understanding, data understanding,
and data preparation phases. Code is shown for modeling, and
evaluation and deployment are discussed. Note that each process
phase is not explored in depth, but enough to give the reader a feel
for the phase.

118 Chapter 6 Getting Started

6.1 Business Understanding

The business objective of company DMWhizz is to increase the
response rate for its latest campaign for a new product, Gizmos.
DMWhizz has run many such campaigns, so from an operational
standpoint, there is little risk associated with this project. However,
this is the first time DMWhizz is employing data mining to try
to increase the response rate over previous efforts. Historically,
DMWhizz has obtained a 3 percent response rate from such cam-
paigns, which they viewed as better than the norm in the retail
industry. DMWhizz will be satisfied with anything over a 4 percent
response rate, a 33 percent increase. They typically send a campaign
to 400,000 of their customers, chosen at random. As such, they get
about 12,000 responses. With the introduction of data mining,
DMWhizz expects at least 16,000 responses if sent to 400,000
customers, a 33 percent increase.

The business has a base of 1 million existing customers to poten-
tially send an offer to. Although Gizmos is a new product, it is
related to several other less-featured products, so DMWhizz can use
historical sales information of customers who have bought these
other products.

DMWhizz knows that this data mining solution requires known
outcomes to build predictive models, in this case, which customers
actually purchased Gizmos. As such they factor into their plan
conducting a small-scale, trial campaign to collect data on which
customers actually purchased Gizmos. From this trial campaign,
data mining models can be built to predict which of the remaining
customers and prospects are likely to purchase Gizmos.

Specifically, DMWhizz takes a 2 percent random sample of the 1
million potential customers for Gizmos, totaling 20,000. They mail
the offer to these customers and record which customers purchased
the item. Based on previous campaigns, they expect a 3 percent
response rate, or 600 customers purchasing Gizmos. This data, with
known outcomes both positive and negative, serves as the basis for
the modeling process.

Technically speaking, this is a classification problem in data
mining. DMWhizz is as yet unfamiliar with the quality and charac-
ter of the data; they expect to try several types of classification
algorithms and to select the one that provides the best lift. Lift
essentially indicates how well the model performs at predicting a
particular outcome instead of randomly selecting cases, in this

6.2 Data Understanding 119

instance customers, to include in the campaign. The concept of lift is
explored in more detail in Section 7.1.6.

The database of 1 million customers and prospects includes
demographic data such as age, income, marital status, and house-
hold size. There is also previous customer purchase data for three
related products: Tads, Zads, and Fads, which indicate whether the
customer purchased these items or not. The target attribute, what is
to be predicted, is called response. The response attribute contains a
“1” if the customer responded to the Gizmos campaign, and “0”
if not.

6.2 Data Understanding

DMWhizz’s database administrators (DBAs) obtain the data and
provide it to the data miner to begin data exploration. Three tables
are obtained: CUSTOMER, PURCHASES, and PRODUCT. As illus-
trated in Figure 6-1, a customer can have many purchases, and a
product can be purchased many times.

The CUSTOMER table contains many attributes, some of which
will not be useful for mining. For example, the customer’s name is
not useful in predicting who will respond in general. A rule such as
“all people named Smith buy Gizmos” likely does not hold, or even
if it did hold in the build dataset, it will not generalize to other
datasets or the broader customer base. Similarly, the attribute street
address typically will not generalize (e.g, “people on Prospect Street
buy Gizmos”). However, attributes like city, state, or zip code may
prove useful as perhaps customers in Boston find Gizmos more
appealing than customers in San Francisco. Age is the age of the
registered customers determined from their birth date relative to
the current year. Gender, income, education level, occupation, years at
residence, and household size are as reported on the latest warranty
registration card returned by the customer, or were purchased

Customer ProductPurchases
Has purchases Corresponds

to product

Figure 6-1 Entity-Relationship diagram of tables.

120 Chapter 6 Getting Started

through a third-party data provider. The following attributes will
be included in the CUSTOMER table:

CUSTOMER

id

name

address

city

state

zip

age

gender

income

education

occupation

years_at_residence

household_size

The PURCHASE table contains past purchases of products for each
customer. There is a unique transaction identifier for each separate
purchase by a customer and a given transaction may have included
one or more products. The PURCHASE table also records how many
of a given item were purchased in the transaction.

PURCHASE

customer_id

transaction_id

product_id

quantity_sold

The PRODUCT table contains a list of products sold by DMWhizz,
identified by a specific product identifier, and being sold for a
specific price.

PRODUCT

product_id

product_name

product_price

6.3 Data Preparation 121

6.3 Data Preparation

DMWhiz has clean data due to a data warehousing initiative they
undertook the previous quarter. However, data can be acquired for
specific tables without requiring the creation of a data warehouse.
Clean data not only simplifies the data mining effort, but can also
yield superior results.

Being satisfied with the quality of the data, the next step for
data preparation involves joining the data tables into a single table
that can be used for mining. In the PURCHASES table, the data is
represented in transactional format. This means that each item
purchased is captured in a separate row or record in the table. As
noted above, there is an identifier that associates a set of pur-
chases to a given transaction (purchase instance), and another
identifier that identifies the customer. We are interested in trans-
forming this into a table where a record indicates whether a
customer previously purchased a Tads, Zads, or Fads. Because
JDM 1.1 does not address specific transformations, an easy way to
accomplish this is to use the database query language SQL [SQL
2003] via JDBC [JDBC 2006], or SQLJ [SQLJ 2003], which enables
writing SQL statements in Java code as though they were ordinary
embedded SQL, translating such statements into JDBC invoca-
tions. Examples of executing SQL through JDBC are given in
Chapters 12 and 13.

We can define a view to provide the data in the desired format:

CREATE VIEW PURCHASES_v AS
SELECT customer_id,

max(decode(product_name, ‘Tads’, 1, 0)) AS purchased_tads,1

max(decode(product_name, ‘Zads’, 1, 0)) AS purchased_zads,
max(decode(product_name, ‘Fads’, 1, 0)) AS purchased_fads

FROM PURCHASES AS pu, PRODUCTS AS pr
WHERE pu.product_id � pr.product_id
GROUP BY customer_id;

1 The standard SQL syntax for decode can be expressed as
CASE product_name

WHEN ‘Tads’ THEN 1
ELSE 0

END

We use the Oracle SQL decode to simplify the example.

122 Chapter 6 Getting Started

The original data in PURCHASES is depicted in Table 6-1. The
transformed data in PURCHASES_V, depicted in Table 6-2, contains
new columns derived from the transactional format PURCHASES
table. We used the PRODUCT table, depicted in Table 6-3, to look up
the product ID by product name.

Table 6-1 Original PURCHASES table data, example

Customer_id Transaction_id Product_id Quantity

1 1 1 1

1 2 2 2

1 3 3 5

2 1 1 3

2 2 4 7

3 1 3 1

3 2 4 2

4 1 2 6

5 1 1 4

5 2 3 3

Table 6-2 Transformed PURCHASES_V view data, example

Customer_id Purchased_tads Purchased_zads Purchased_fads

1 1 1 1

2 1 0 0

4 0 1 0

5 1 0 1

3 0 0 1

Table 6-3 Transformed PRODUCTS table data, example

Product_id Product_name Product_price

1 Tads 30

2 Zads 20

3 Fads 10

4 Rads 40

6.4 Modeling 123

The table GIZMOS_RESULTS, depicted in Table 6-4, records which
customers in the trial campaign responded and placed an order for
Gizmos.

The SQL statement in the following code creates a view called
CUSTOMER_RESPONSE, which produces a data mining-ready table
based on the CUSTOMER and PURCHASES_V table.

We are now ready to begin building models using this data.

6.4 Modeling

For modeling, we select the technique we will use for mining the
data. As noted above, DMWhizz will try several algorithms, each
possibly with different settings to obtain better results. However, to
get a model built quickly, and to see how well the data mining engine
(DME) can do using default settings, we leave the selection of algo-
rithm and any detailed settings to the DME. This can serve as a base-
line model against which we can measure other models.

The DMWhizz data miner will likely want to do some additional
data preparation once the initial results are obtained. For this initial
model building exercise, DMWhizz relies on the DME to prepare
the data automatically. Note that not all data mining tools support

Table 6-4 Table GIZMOS_RESULTS from trial campaign

Customer_id Response

1 1

2 0

3 0

4 1

CREATE VIEW CUSTOMER_RESPONSE as
SELECT id, name, address, city, state, zip, age, gender,
 income, education, occupation, years_at_residence,
 purchased_tads, purchased_zads, purchased_fads, household_size,
 response
from CUSTOMER c, PURCHASES_V p, GIZMOS_RESULTS g
where c.id � p.customer_id
and c.id � g.customer_id

124 Chapter 6 Getting Started

this capability and some tools may require algorithm-specific data
preparation.

In the modeling phase, we first build, and then test the model.
To be able to test, we need a test dataset, that is, one taken from the
original data and used to determine how well the model performs
on data it has not seen before. Since our data is randomly ordered,
we will take the first 70 percent of records for the build dataset,
called CUSTOMER_BUILD, and the remaining 30 percent for the
test dataset, called CUSTOMER_TEST.

6.4.1 Build

For model building, there are a couple of JDM artifacts to be aware
of. First, JDM requires a connection to the DME to perform mining.
This is illustrated in the following code. JDM requires the instantia-
tion of a factory object to create a connection. Factory objects also
play a major role in working with JDM overall. See Chapter 8 for a
discussion of JDM factories.

Now that we have a connection, dmeConn, we can proceed to set
up the model building task. The task requires defining the data
using a PhysicalDataSet object. This object is saved to the DME for

import javax.datamining.resource.ConnectionFactory;
import javax.datamining.resource.Connection;
import javax.datamining.resource.ConnectionSpec;

Hashtable env � new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 ”com.myCompany.javax.datamining.resource.initialContextFactoryImpl”);
env.put(Context.PROVIDER_URL, ”http://myHost:myPort/myService”);
env.put(Context.SECURITY_PRINCIPAL, ”user”);
env.put(Context.SECURITY_CREDENTIALS, ”password”);
InitialContext jndiContext � new javax.naming.InitialContext(env);

// Perform JNDI lookup to obtain the connection factory
ConnectionFactory jdmCFactory � (ConnectionFactory)
 jndiContext.lookup(”java:comp/env/jdm/MyServer”);

// Create a data mining server connection
ConnectionSpec svrConnSpec � (ConnectionSpec) jdmCFactory.getConnectionSpec();
svrConnSpec.setName(”jdm_user”);
svrConnSpec.setPassword(”jdm_password”);
svrConnSpec.setURI(”serverURI”);
Connection dmeConn �

(Connection) jdmCFactory.getConnection(svrConnSpec);

6.4 Modeling 125

subsequent reference by name. See Chapter 8 for more details on
JDM persistence. We then create the object that contains the classifi-
cation settings, namely, the parameters that instruct the DME what
type of model to build. Initially, DMWhizz will rely on the DME to
decide the type of model to build, so we only need to specify the
target, in this case, response.

We then create a build task object, specifying the input build data,
the settings, and the name we want to give the resulting model. After
saving that object, we execute it and check the resulting status. Upon
success, we can retrieve the model if desired.

We can inspect the model that was produced to see which algo-
rithm the DME chose. In the variable algorithm, the value is the min-
ing algorithm “decisiontree,” meaning a decision tree, which

// Create the physical representation of the data
PhysicalDataSetFactory pdsFactory � (PhysicalDataSetFactory)

dmeConn.getFactory (”javax.datamining.data.PhysicalDataSet”);
PhysicalDataSet pd � pdsFactory.create(”CUSTOMER_BUILD”, true);
dmeConn.saveObject(”customer_build”, pd, REPLACE);

// Create and save a settings object to be used for a classification model
ClassificationSettingsFactory csFactory � (ClassificationSettingsFactory)
 dmeConn.getFactory(

”javax.datamining.supervised.classification.ClassificationSettings”);
ClassificationSettings settings � csFactory.create();
settings.setTargetAttributeName(”RESPONSE”);
dmeConn.saveObject(”response_settings”, settings, REPLACE);

// Create the build task and verify the task before execution
BuildTaskFactory btFactory � (BuildTaskFactory)
 dmeConn.getFactory(”javax.datamining.task.BuildTask”);
BuildTask buildTask �

 btFactory.create(”customer_build”, ”response_settings”, ”resp_model_1”);
dmeConn.saveObject(”response_build_task”, buildTask, REPLACE);

// Execute the task and block until finished
ExecutionHandle handle � dmeConn.execute(”response_build_task”);
handle.waitForCompletion(Integer.MAX_VALUE); // wait until done

// Access the model if model was successfully built
ExecutionStatus status � handle.getLatestStatus();
if(ExecutionState.success.equals(status.getState())) {
 ClassificationModel model � (ClassificationModel)
 dmeConn.retrieveObject(”resp_model_1”, NamedObject.model);
 ClassificationSettings settings �

 (ClassificationSettings) model.getEffectiveSettings ();
 MiningAlgorithm algorithm � settings.getMiningAlgorithm();
}

126 Chapter 6 Getting Started

produces rules; this was chosen by the DME, as the default algo-
rithm. Now that we have a model, we need to understand how well
it predicts whether a customer will respond to the campaign.

6.4.2 Test

For model testing, we use the CUSTOMER_TEST dataset. As the
code below indicates, we first create a physical dataset object from
the CUSTOMER_TEST data, and then create a classification test task
which specifies the test dataset, the previously built model, called
response_model, and the name of the test results. We accept the default
set of tests performed by the DME, which includes computing a
confusion matrix, lift, and ROC. After executing the task, we can
examine the lift to understand how well the model performs over a
random selection of customers.

From this default model, the cumulative lift for the test dataset at
40 percent is .6, meaning that the model was able to predict 60 percent

// Create the physical representation of the input data for apply
PhysicalDataSetFactory pdsFactory � (PhysicalDataSetFactory)
 dmeConn.getFactory(”javax.datamining.data.PhysicalDataSet”);
PhysicalDataSet testInputData � pdsFactory.create(”CUSTOMER_TEST”, true);
dmeConn.saveObject(”cust_response_test”, testInputData, REPLACE);

// Create a task to run test operation
ClassificationTestTaskFactory cttFactory � (ClassificationTestTaskFactory)

 dmeConn.getFactory
(”javax.datamining.supervised.classification.ClassificationTestTask”);

ClassificationTestTask testTask � cttFactory.create(
”cust_response_test”, ”resp_model_1”, ”resp_model_1_test_result”);

// Enable computation of confusion matrix as the result of test
testTask.computeMetric(ClassificationTestMetricOption.confusionMatrix);
dmeConn.saveObject(”response_test_task_1”, testTask, false);

// Execute the task asynchronously, but wait until done
ExecutionHandle execHandle � dmeConn.execute(”response_test_task_1”);
execHandle.waitForCompletion(WAIT_FOR_COMPLETION);

// Retrieve the test metrics
ClassificationTestMetrics testMetrics � (ClassificationTestMetrics)
dmeConn.retrieveObject(”resp_model_1_test_result”,

NamedObject.testMetrics);
Double accuracy � testMetrics.getAccuracy();
Lift lift � testMetrics.getLift();
Double cumulativeLift � lift.getCumulativeLift (4);

6.6 Deployment 127

of the likely responders from only 40 percent of the data. The
DMWhizz data miner may decide to specify other algorithms besides
the decision tree that the DME selected, change some of the decision
tree algorithm settings, or prepare the data differently to see if a better
lift can be achieved. If another model produced a higher lift for 40 per-
cent of the customers, perhaps 0.7, the data miner would likely choose
that model. If another model produced the lift of 0.6 at 35 percent of
the customers, DMWhizz may choose to send the campaign to fewer
customers while maintaining the same number of likely responses.

We now move on to the evaluation phase of the process.

6.5 Evaluation

In the evaluation phase, we are interested in understanding how well
the model meets the business objectives. We see from the test results of
the model produced above that the lift is .6. How does this meet our
business objectives? Out of 1 million customers, historically we know
that 3 percent, or 30,000, should respond. The lift results tells us that by
contacting the right 400,000 customers (or 40 percent of the 1 million
customer base), DMWhizz can get 60 percent of the likely responders,
or 18,000 (60 percent of 30,000). This is a response rate of 4.5 percent.

Given that DMWhizz’s original requirement was to increase the
response rate to 4 percent, the expected 4.5 percent provided by data
mining yields a comfortable margin. As a result, DMWhizz decides
to use this model to score the remaining 980,000 customers and pro-
ceed with the campaign.

6.6 Deployment

In the evaluation phase, DMWhizz found that the model meets the
objective and can be used to complete the campaign. Since we have
already contacted 20,000 of the 1 million customers for our sample
campaign, we apply the model to the remaining 980,000 customer
cases and send a mailing to the top 40 percent of customers predicted
to respond to the campaign. We use the code below to score these
customers in batch, that is, all at once, and produce a separate table
that includes the customer identifier and the probability that the
customer will respond. All the cases are ordered by their probability
in descending order.

To apply the model, we first create a physical dataset object from
the CUSTOMER_APPLY table. The CUSTOMER_APPLY table contains

128 Chapter 6 Getting Started

the same predictors as the CUSTOMER_RESPONSE table, but does
not contain the target attribute ‘response’ since that is what we are
predicting. We then create the object that indicates the results we are
interested in, namely, the customer ID, and the probability that the
customer will respond (response � 1). We then create the apply task
specifying the apply dataset, the model, the apply settings, and the
location for the apply result, namely, the scores. After executing the
task, we have a dataset with all the customers scored.

Now, we order the cases so that we can skim off the top 40 percent
(392,000) of likely responders. The following SQL orders the cases.

// Create the physical representation of the input data
PhysicalDataSetFactory pdsFactory � (PhysicalDataSetFactory)
 dmeConn.getFactory(”javax.datamining.data.PhysicalDataSet”);
PhysicalDataSet applyInputData �

 pdsFactory.create(”CUSTOMER_APPLY”, PhysicalDataSet.IMPORT_META_DATA);
dmeConn.saveObject(”customer_apply”, applyInputData, REPLACE);

// Create the output specification of apply
ClassificationApplySettingsFactory casFactory �

(ClassificationApplySettingsFactory) dmeConn.getFactory
(”javax.datamining.supervised.classification.ClassificationApplySettings”);
ClassificationApplySettings applySettings � casFactory.create();

java.util.Map sourceDestMap � new java.util.HashMap();
// Output column containing the customer id
sourceDestMap.put(”customer_id”, ”ID”);
applySettings.setSourceDestinationMap(sourceDestMap);
// Output column for the probability of response � 1
applySettings.mapClass (ClassificationApplyContent.probability,
 ”probability”);
dmeConn.saveObject(”response_apply_settings”, applySettings, REPLACE);

// Create a task for apply with dataset
DataSetApplyTaskFactory datFactory � (DataSetApplyTaskFactory)
 dmeConn.getFactory(”javax.datamining.task.apply.DataSetApplyTask”);
DataSetApplyTask applyTask �

 datFactory.create(”customer_apply”, ”resp_model_1”,
 ”response_apply_settings”, ”response_scores”);

dmeConn.saveObject(”response_apply_task”, applyTask, REPLACE);

// Execute the apply task
ExecutionHandle execHandle � dmeConn.execute(”responseApplyTask”);
execHandle.waitForCompletion(Connection.WAIT_FOR_COMPLETION);

SELECT customer_id
from RESPONSE_SCORES
order by probability

6.7 Summary 129

With this result, we proceed with the mailing and await the actual
customer responses. It will be important to compare actual responses
with those predicted to determine how accurate the model was in
practice. This type of feedback is key to determine if the introduction
of data mining indeed met the business objectives.

As part of deployment, the data miner produces a report summa-
rizing the steps necessary to introduce data mining to the campaign
process and the details of building and evaluating the models.

6.7 Summary

This chapter introduced the JDM API using a response modeling
business problem. We followed the phases of the CRISP-DM method-
ology to illustrate where the API applies, putting the use of the API
in the context of not only solving a data mining problem, but leverag-
ing its results. We saw how the notion of lift could be used to assess
the quality of a model and how it can impact the selection of a final
model or strategy. There are other techniques for assessing model
quality, such as a confusion matrix and receiver operating characteristics
(ROC), which will be introduced in Chapter 7.

References

[JDBC 2006] http://java.sun.com/products/jdbc.

[SQL 2003] ISO/IEC 9075–2:2003, Information technology–Database lan-
guage–SQL–Part 2: Foundation (SQL/Foundation), International Stan-
dards Organization, 2003.

[SQLJ 2003] ISO/IEC 9075–2:2003, Information technology–Database
languages–SQL–Part 10: Object Language Bindings (SQL/OLB), Inter-
national Standards Organization, 2003.

Part II

Standard

Part II focuses on the JDM standard itself, describing the conceptual
view and overall design. We target not only the Java API, but also the
XML Schema for JDM objects and data mining web services.

133

Chapter

7
Java Data Mining Concepts

The intension of a complex concept may be defined
 in terms of more primitive concepts.

—Aristotle

Data mining has its origins in conventional artificial intelligence,
machine learning, statistics, and database technologies, so it has much
of its terminology and concepts derived from these technologies. This
chapter further introduces data mining concepts for those new to data
mining, and will familiarize data mining experts with JDM-specific
data mining terminology and capabilities. Part I discussed various
business problems and the type of data mining functions that can be
used to solve these problems. An overview of general data mining
concepts relevant to Java Data Mining (JDM) also was given. This
chapter details and expands those concepts associated with each
mining function and algorithm by example. Although we discuss
higher-level details of each algorithm to give some intuition about
how each algorithm works, a detailed discussion of data mining
algorithms is beyond the scope of this book.

This chapter explores data mining concepts in financial services by
using a set of business problems faced by a hypothetical consumer
bank called ABCBank. ABCBank provides banking and financial ser-
vices for individuals and corporate businesses. It has branch offices

134 Chapter 7 Java Data Mining Concepts

throughout the country. In addition it has online banking services for
its customers. ABCBank offers products such as bank accounts for
checking, savings, and certificates, and many types of credit cards,
loans, and other financial services. ABCBank has a diverse customer
base, distributed nationally. Customer demographics vary widely in
income levels, education and professional qualifications, ethnic back-
grounds, age groups, and family status. As Dale Terrell, president of
BankOne Information Services Company, states, “Data mining is a
key to providing not only more information but deeper information”
on customers. Refer to [Johnston 1996] for other comments on the use
of data mining in the banking industry.

Each section of this chapter introduces a business problem faced
by ABCBank, its solution, and the concepts associated with the
related mining function as discussed in Chapter 4. While developing
a solution for the problem, we discuss the concepts related to the
data mining technique used to solve it. We follow a common descrip-
tion pattern for each problem, starting with a problem definition,
solution approach, data description, available settings for tuning the
solution, and an overview of relevant algorithms. For supervised
functions, we also describe how to evaluate a model’s performance,
and apply a model to obtain prediction results. For unsupervised
functions, we describe model content and how to use models to solve
the problem.

7.1 Classification Problem

7.1.1 Problem Definition: How to Reduce Customer Attrition?

ABCBank is losing customers to its competitors and wants to gain a
better understanding of the type of customers who are closing their
accounts. ABCBank also wants to be proactive in retaining existing
customers by taking appropriate measures to improve customer satis-
faction. This is commonly known as the customer attrition problem in
the financial services industry. Refer to [Hu 2005] for a thorough
study on banking attrition analysis.

7.1.2 Solution Approach: Predict Customers Who Are
Likely to Attrite

ABCBank can use customer data collected in its transactional and
analytical databases to find the patterns associated with customers

7.1 Classification Problem 135

likely, or unlikely, to attrite. Using the data mining classification
function, ABCBank can predict customers who are likely to attrite
and understand the characteristics, or profiles, of such customers.
Gaining a better understanding of customer behavior enables
ABCBank to develop business plans to retain customers.

Classification is used to assign cases, such as customers, to discrete
values, called classes or categories, of the target attribute. The target is
the attribute whose values are predicted using data mining. In this
problem, the target is the attribute attrite with two possible values:
Attriter and Non-attriter. When referring to the model build dataset,
the value Attriter indicates that the customer closed all accounts, and
Non-attriter indicates the customer has at least one account at
ABCBank. When referring to the prediction in the model apply
dataset, the value Attriter indicates that the customer is likely to
attrite and Non-attriter indicates that the customer is not likely to
attrite. The prediction is often associated with a probability indicat-
ing how likely the customer is to attrite. When a target attribute has
only two possible values, the problem is referred to as a binary classi-
fication problem. When a target attribute has more than two possible
values, the problem is known as a multiclass classification problem.

7.1.3 Data Specification: CUSTOMERS Dataset

As noted in Chapter 3, an important step in any data mining project
is to collect related data from enterprise data sources. Identifying
which attributes should be used for data mining is one of the chal-
lenges faced by the data miner and relies on appropriate domain
knowledge of the data. In this example, we introduce a subset of pos-
sible customer attributes as listed in Table 7-1. In real-world scenar-
ios, there may be hundreds or even thousands of customer attributes
available in enterprise databases.

Table 7-1 lists physical attribute details of the CUSTOMERS dataset,
which include name, data type, and description. The attribute name
refers to either a column name of a database table or a field name of a
flat file. The attribute data type refers to the allowed type of values
for that attribute. JDM defines integer, double, and string data types,
which are commonly used data types for mining. JDM conformance
rules allow a vendor to add more data types if required. Attribute
description can be used to explain the meaning of the attribute or
describe the allowed values. In general, physical data characteristics
are captured by database metadata.

136 Chapter 7 Java Data Mining Concepts

Users may also specify logical attribute characteristics specific to
data mining. For example, physical attribute names in the table or
file can be cryptic, such as, HHSIZE means household size representing
the number of people living as one family. Users can map physical
names to logical names to be more descriptive and hence easier to
understand. Logical data characteristics also include the specification

Table 7-1 Customers Table physical attribute details

Attribute name Data type Attribute description

CUST_ID INTEGER Unique customer identifier

NAME STRING Name of the customer

ADDRESS STRING Address of the customer

CITY STRING City of residence

COUNTY STRING County

STATE STRING State

EDU STRING Educational level, e.g., diploma, bachelor’s, master’s,
Ph.D.

MAR_STATUS STRING Marital status, e.g., married, single, widowed, divorced

OCCUPATION STRING Occupation of the customer, e.g., clerical, manager,
sales, etc.

INCOME DOUBLE Annual income in thousands of dollars

ETHNIC_GROUP STRING Ethnic group

AGE DOUBLE Age

CAP_GAIN DOUBLE Current capital gains or losses

SAV_BALANCE DOUBLE Average monthly savings balance

CHECK_BALANCE DOUBLE Average monthly checking balance

RETIRE_BALANCE DOUBLE Current retirement account balance

MORTGAGE_AMOUNT DOUBLE Current mortgage/home loan balance

NAT_COUNTRY STRING Native country

CREDIT_RISK STRING Relative credit risk, e.g., high, medium, low

ATTRITE STRING The target attribute indicating whether a customer will
attrite or not. Values include “attriter” and “non-attriter.”

7.1 Classification Problem 137

of data mining attribute type, attribute usage type, and data preparation
type to indicate how these attributes should be interpreted in data
mining operations. Table 7-2 lists the logical data specification details
for the CUSTOMERS dataset shown in Table 7-1.

The attribute type indicates the attribute data characteristics, such
as whether the attribute should be treated as numerical, categorical, or
ordinal. Numerical attributes are those whose values should be treated
as continuous numbers. Categorical attributes are those where attribute

Table 7-2 Customers Table logical data specification

Attribute name Logical name

Attribute

type

Usage

type Preparation

CUST_ID Customer Id Inactive

NAME Name Inactive

ADDRESS Address Inactive

CITY City Categorical Active Prepared

COUNTY County Categorical Active Prepared

STATE State Categorical Active Prepared

EDU Education Categorical Active Prepared

MAR_STATUS Marital Status Categorical Active Prepared

OCCU Occupation Categorical Active Prepared

INCOME Annual Income Level Numerical Active Not prepared

ETHNIC_GRP Ethnic Group Categorical Active Prepared

AGE Age Numerical Active Not prepared

CAP_GAIN Capital Gains Numerical Active Not prepared

SAV_BALANCE Avg. Savings Balance Numerical Active Not prepared

CHECK_BALANCE Avg. Checking Balance Numerical Active Not prepared

RETIRE_BALANCE Retirement Balance Numerical Active Not prepared

MORTGAGE_AMOUNT Home Loan Balance Numerical Active Not prepared

NAT_COUNTRY Native Country Categorical Active Prepared

CREDIT_RISK Credit Risk Ordinal Active Prepared

ATTRITE Attrite Target

138 Chapter 7 Java Data Mining Concepts

values correspond to discrete, nominal categories. Ordinal attributes
are also those with discrete values, but their order is significant. In
Table 7-2, the attribute type column specifies attributes such as city,
county, state, education, and marital status as categorical attributes. The
attribute capital gains is a numerical attribute as it has continuous data
values, such as $12,500.94. The attribute credit risk is an ordinal
attribute as it has high, medium, or low as ordered relative values.

The attribute usage type specifies whether an attribute is active—
should be used as input to mining; inactive—excluded from mining;
or supplementary—brought forward with the input values but not
used explicitly for mining. In Table 7-2, the usage type column
specifies attributes customer id, name, and address as inactive because
these attributes are identifiers or will not generalize to predict if a
customer is an attriter. All other attributes are active, and used as
input for data mining. In this example, we have not included supple-
mentary attributes. However, consider a derived attribute computed
as the capital gains divided by the square of age, called ageCapitalGain-
Ratio. From the user perspective, if the derived attribute ageCapital-
GainRatio appears in a model rule, it may be difficult to interpret the
underlying values as it relates to the business. In such a case, the
model can reference supplementary attributes, for example, age and
capital gain. Although these supplementary attributes are not directly
used in the model build, they can be presented in model details to
facilitate rule understanding using the corresponding values of age
and capital gain.

 In addition to usual ETL1 operations used for loading and
transforming data, data mining can involve algorithm-specific data
preparation. Such data preparation includes transformations such as
binning and normalization as introduced in Section 3.2. One may
choose to prepare data manually to leverage domain-specific knowl-
edge or to fine-tune data to improve results. The data preparation type
is used to indicate if data is manually prepared. In Table 7-2, the
preparation column lists which attributes are already prepared for
model building. For more details about data preparations refer to
[Pyle 1999].

1 Extraction Transformation and Loading (ETL) is the process of extracting data
from their operational data sources or external data sources, transforming the
data, which includes cleansing, aggregation, summarization, and integration;
and other transformations, and loading the data into a data mart or data
warehouse.

7.1 Classification Problem 139

7.1.4 Specify Settings: Fine-Tune the Solution to the Problem

After exploring attribute values in the CUSTOMERS dataset, the data
miner found some oddities in the data. The capital gains attribute has
some extreme values that are out of range from the general popula-
tion. Figure 7-1 illustrates the distribution of capital gains values in
the data. Note that there are very few customers who have capital
gains greater than $1,000,000; in this example such values are treated
as outliers. Outliers are the values of a given attribute that are
unusual compared to the rest of that attribute’s data values. For
example, if customers have capital gains over 1 million dollars, these
values could skew mining results involving the attribute capital gains
and should be treated as discussed in Section 3.2.

In this example, the capital gains attribute has a valid range of $2,000
to $1,000,000 based on the value distribution, shown in Figure 7-1. In
JDM, we use outlier identification settings to specify the valid range,
or interval, to identify outliers for the model building process. Some
data mining engines (DMEs) automatically identify and treat outliers
as part of the model building process. JDM allows data miners to
specify an outlier treatment option per attribute to inform algorithms
how to treat outliers in the build data. The outlier treatment specifies
whether attribute outlier values are treated asMissing (should be
handled as missing values) or asIs (should be handled as the original
values). Based on the problem requirements and vendor-specific
algorithm implementations, data miners can either explicitly
choose the outlier treatment or leave it to the DME.

In assessing the data, the data miner noticed that the state
attribute has some invalid entries. All ABCBank customers who are

Capital Gains

N
u

m
b

er
 o

f
C

u
st

o
m

er
s

2,000 20,000 > 1,000,000

 Outliers

Figure 7-1 Capital gains value distribution.

140 Chapter 7 Java Data Mining Concepts

U.S. residents must have the state value as a two-letter abbreviation
of one of the 50 states or the District of Columbia. To indicate valid
attribute values to the model build, a category set can be specified in
the logical data specification. The category set characterizes the values
found in a categorical attribute. In this example, the category set for
the state attribute contains values {AL, AK, AS, AZ, ..., WY}. The
state values that are not in this set will be considered as invalid
values during the model build, and may be treated as missing or
terminate execution.

Our CUSTOMERS dataset has a disproportionate number of
Non-attriters: 20 percent of the cases are Attriters, and 80 percent are
Non-attriters. To build an unbiased model, the data miner balances
the input dataset to contain an equal number of cases with each tar-
get value using stratified sampling. In JDM, prior probabilities are
used to represent the original distribution of attribute values. The
prior probabilities should be specified when the original target
value distribution is changed, so that the algorithm can consider
them appropriately. However, not all algorithms support prior
probability specification, so you will need to consult a given tool’s
documentation.

ABCBank management informed the data miner that it is more
expensive when an attriter is misclassified, that is, predicted as a
Non-attriter. This is because losing an existing customer and acquiring
a new customer costs much more than trying to retain an existing
customer. For this, JDM allows the specification of a cost matrix to
specify costs associated with possible false predictions. A cost matrix
is an N � N table that defines the cost associated with incorrect
predictions, where N is the number of possible target values. In this
example, the data miner specifies a cost matrix indicating that
predicting a customer would not attrite when in fact he would is
three times costlier than predicting the customer would attrite
when he actually would not. The cost matrix for this problem is
illustrated in Figure 7-2.

Non-attriter

Non-attriter

0 (TP)

$50 (FP)
Actual

Attriter

Attriter

Predicted

0 (TN)

$150 (FN)

Figure 7-2 Cost matrix table.

7.1 Classification Problem 141

In this example, we are more interested to know about the
customers who are likely to attrite, so the Attriter value is considered
the positive target value—the value we are interested in predicting. As
we will see in Section 7.1.6, the positive target value is necessary
when computing lift and the ROC test metric. The Non-attriter value
is considered the negative target value. This allows us to use the
terminology false positive and false negative. A false positive (FP) occurs
when a case is known to have the negative target value, but the
model predicts the positive target value. A false negative (FN) occurs
when a case is known to have a positive target value, but the model
predicts the negative target value. The true positives are the cases
where the predicted and actual positive target values are in
agreement, and true negatives are the cases where the predicted and
actual negative target values are in agreement. In Figure 7-2 note that
the false negative cost is $150 and the false positive is $50 and all
diagonal elements always have cost “O,” because there is no cost for
correct predictions.

7.1.5 Select algorithm: Find the Best Fit Algorithm

Since JDM defines algorithm selection as an optional step, most
data mining tools provide a default or preselected algorithm for
each mining function. Some data mining tools automate finding the
most appropriate algorithm and its settings based on the data and
user-specified problem characteristics. If the data miner does not
specify the algorithm to be used, the JDM implementation chooses
the algorithm.

If the JDM implementation does not select the algorithm automat-
ically, or the data miner wants control over the algorithm settings,
the user can explicitly select the algorithm and specify its settings.
Selection of the right algorithm and settings benefits from data min-
ing expertise, knowledge of the available algorithms, and often
experimentation to determine which algorithm best fits the problem.
Data miners will often try different algorithms and settings, and
inspect the resulting models and test results to select the best algo-
rithm and settings. This section provides a high-level overview of the
algorithms supported by JDM for classification problems: decision
tree, naïve bayes (NB), support vector machine (SVM), and feed forward
neural networks. For more detailed descriptions of these algorithms,
refer to [Jiawei� 2001] [Witten/Frank 2005].

142 Chapter 7 Java Data Mining Concepts

Decision Tree
The decision tree algorithm is one of the most popular algorithms
because it is easy to understand how it makes predictions. A decision
tree produces rules that not only explain how or why a prediction was
made, but are also useful in segmenting a population, that is, showing
which groupings of cases produce a certain outcome. Decision tree is
widely used for classification, and some implementations also support
regression. In this section, we give an overview of the decision tree
algorithm and discuss concepts behind its settings as defined in JDM.

Overview
Decision tree models are a lot like playing the game 20 Questions
[20QNET], where a player asks a series of questions of a person con-
cealing the name of an object. These questions allow the player to
keep narrowing the space of possible objects. When the space is suffi-
ciently constrained, a guess can be made about the name of the
object. In playing 20 Questions, we rely on a vast range of experience
acquired over many years to know which questions to ask and what
the likely outcome is. With decision trees, an algorithm looks over a
constrained set of experience, that is, the dataset. It then determines
which questions can be asked to produce the right answer, that is,
classify each case correctly.

In this example, let us assume the input dataset has only three
active attributes from the CUSTOMERS dataset introduced in
Section 7.1.3: age, capital gains, and average savings account balance
and 10 customer cases. Each case has a known target value as
shown in Table 7-3. Note that 5 out of 10 customers attrite, hence
there is a 50 percent chance that a randomly selected customer will
attrite. Using the attribute details in this dataset, a decision tree algo-
rithm can learn data patterns and build a tree as shown in Figure 7-3.

In a decision tree, each node-split is based on an attribute condi-
tion that partitions or splits the data. In this example, the tree root
node, node-1, shown in Figure 7-3, represents all 10 customers in the
dataset. From these 10 customer cases the algorithm learns that cus-
tomers whose age is greater than 36 are likely to attrite. So node-1
splits data into node-2 and node-3 based on the customer’s age.
Node-3 further splits its data into node-4 and node-5 based on the
customer’s savings account balance.

Each tree node has an associated rule that predicts the target value
with a certain confidence and support. The confidence value is a measure
of likelihood that the tree node will correctly predict the target value.

7.1 Classification Problem 143

Confidence is the ratio between the cases with correct predictions in the
node and the total number of cases assigned to that node. The support
value is a measure of how many cases were assigned to that node from
the build dataset. Support can be expressed as a count or the ratio
between the number of cases in the node and the total number of cases
in the build dataset.

Table 7-3 Customer attrition build data

Customer id Age Capital gain

Average saving

account balance Attrite

1 41 $4,500 $11,500 Attriter

2 35 $15,000 $3,000 Non-attriter

3 26 $3,400 $21,500 Attriter

4 37 $6,100 $36,000 Attriter

5 32 $14,500 $7,000 Non-attriter

6 40 $2,500 $15,000 Attriter

7 30 $11,000 $6,000 Non-attriter

8 21 $4,100 $2,000 Non-attriter

9 28 $10,000 $5,500 Non-attriter

10 27 $7,500 $31,500 Attriter

ATTRITER

1

2 3

4 5

Age > 36 Age <= 36

Saving balance <

 $21,500

Saving balance >=

$21,500

ATTRITER

NON-ATTRITER

NON-ATTRITER

Figure 7-3 Decision tree for customer attrition.

144 Chapter 7 Java Data Mining Concepts

Table 7-4 lists tree node details, such as node ID, rule, prediction,
the number of cases that belong to the node, and the confidence and
support of the rule. For example, node-2 has three cases (1, 4, and 6)
that satisfy the predicate age > 36 and all of them are attriters, hence
this node’s confidence value is 3/3 � 1, or 100 percent. However,
only 3 out of 10 cases support the rule defined by node-2, hence the
support value is 3/10 � 0.3. As node-2 has a confidence value of 1,
it is called a pure node and no further splits can be made. Node-3 can
be split further because its confidence value is less than 1, that is,
5/7 � 0.71, and confidence can be improved by using the average
savings balance attribute as shown in Table 7-4. In this tree, nodes 2, 4,
and 5 are called leaf nodes, because they do not have any child nodes.

Algorithm Settings
Algorithm settings allow users to exert finer control over the algorithm
to attain better results during the build process. Decision tree models
can be extremely accurate on the build data if allowed to overfit the
build data. This occurs by allowing the algorithm to build deeper
trees with rules specific to even individual cases. Hence, overfit mod-
els give very good accuracy with the build data, but do not generalize
well on new data, resulting in decreased predictive accuracy.

To avoid overfitting, users can apply stopping criteria and pruning
techniques. Algorithms typically iterate over the build data, learning
the patterns that exist in the data or making finer distinctions. Some
algorithms could continue this iteration practically indefinitely. As
such, algorithms often provide stopping criteria, which tell the algorithm
when to stop building the model. In the case of a decision tree algo-
rithm, stopping criteria are used to avoid model overfitting and con-
trol tree size. Decision tree stopping criteria include maximum depth of
the tree to avoid deep trees with too many predicates, minimum leaf

Table 7-4 Tree node details table

Node Rule Prediction #Cases Confidence Support

1 Attriter 10 5/10 � 0.5 5/10 � 0.5

2 Age > 36 Attriter 3 3/3 � 1.0 3/10 � 0.3

3 Age <� 36 Non-attriter 7 5/7 � 0.7 7/10 � 0.7

4 Age <� 36 and
Sav. Bal < 21,500

Non-attriter 5 5/5 � 1.0 5/10 � 0.5

5 Age <� 36 and
Sav. Bal >� 21,500

Attriter 2 2/2 � 1.0 2/10 � 0.2

7.1 Classification Problem 145

node size to avoid tree nodes with low support, maximum confidence
to avoid pure nodes, and minimum decrease in impurity to avoid node
splits that gain only minimal increase in predictive accuracy of the
prediction. Users can specify one or more of these stopping criteria,
and the tree will grow until the first stopping criteria is met.

Pruning is the process of removing the less significant tree nodes,
for example, those with insufficient support. There are two types of
pruning: pre-pruning and post-pruning. Pre-pruning avoids insignificant
node splits while building the tree by measuring the goodness of the
split. Post-pruning removes the insignificant nodes after building a
fully grown tree. Different measures called tree homogeneity metrics
are used to define the goodness of a node split, such as gini, entropy,
mean absolute deviation, mean square error, and misclassification ratio. Tree
homogeneity metrics are also known as information gain. Refer to [Han/
Kamber 2006] for more details about the tree homogeneity metrics.

Naïve Bayes
The naïve bayes algorithm is one of the fastest classification algo-
rithms. It produces results comparable to other algorithms, often out-
performing other classification algorithms. Naïve bayes works well
with large volumes of data.

Overview
Naive bayes is based on Bayes Theorem [Han/Kamber 2006] and
assumes that the predictor attributes are conditionally independent2

[Wikipedia-CI 2006] of each other with respect to the target attribute.
This assumption significantly reduces the number of computations
required to predict a target value and hence the naïve bayes algorithm
performs well with large volumes of data.

The naïve bayes algorithm involves computing the probability of
each target and predictor attribute value combination. To control the
number of such combinations, attributes that have either continuous
values or a high number of distinct values are typically binned. Refer
to Section 3.2 for more detailed discussion on binning. In this
example, to simplify the description of the naïve bayes algorithm,
consider two attributes age and savings balance from the CUSTOMERS
(Table 7-3) dataset. These attributes are binned to have two binned

2 Two events A and B are conditionally independent given a third event C
precisely if the occurrence or non-occurrence of A and B are independent events
in their conditional probability distribution given C. In other words,
Pr (A � B�C)� Pr(A�C) Pr(B�C).

146 Chapter 7 Java Data Mining Concepts

values to further simplify this discussion. For age, bin-1 contains values
less than or equal to 35 and bin-2 contains the values greater than 35.
For savings balance, bin-1 contains values less than or equal to $20,000
and bin-2 contains values greater than $20,000. In JDM, a naïve bayes
algorithm computes the probabilities of a target value for a given
attribute value using the cases in the build dataset. In this example,
we have two attributes with two binned values for a binary target.

Listing 7-1 shows the list of eight possible probabilities that are
computed as part of the naïve bayes model build. Using these proba-
bility values, the naïve bayes algorithm computes the most probable
target value for a given new case. In this example, for a new customer
whose age � 25 and savings balance � $13,300, the probability of being
an Attriter and Non-Attriter is computed as shown in Listing 7-2. Note
that in Listing 7-2 P(Attriter) and P(Non-Attriter) are prior-probabilities of
the target values that are specified as input to the model build. For
this new customer case, the probability of being a Non-attriter (0.31) is
more than that of an Attriter (0.03) and hence the model predicts this
customer as a Non-attriter. For a more detailed discussion on naïve
bayes and bayesian classification refer to [Han/Kamber 2006].

Algorithm Settings
In JDM, a naïve bayes algorithm has two settings, singleton threshold,
and pairwise threshold, that are used to define which predictor
attribute values or predictor-target value pairs should be ignored.

Listing 7-1 Naïve bayes algorithm computation of probabilities using build data
Probability of age < 35 when the customer is Attriter
 P(age < 35 / Attriter) � 2/6 � 0.33
Probability of age < 35 when the customer is Non-attriter
 P(age < 35 / Non-attriter) � 4/6 � 0.64

Probability of age > 35 when the customer is Attriter
 P(age > 35 / Attriter) � 3/4 � 0.75
Probability of age > 35 when the customer is Non-attriter
 P(age > 35 / Non-attriter) � 1/4 � 0.25

Probability of savings balance (SB) < 20000 when the customer is Attriter
 P(SB < 20000 / Attriter) � 3/7 � 0.43
Probability of savings balance (SB) < 20000 when the customer is Non-attriter
 P(SB < 20000 / Non-attriter) � 4/7 � 0.57

Probability of savings balance (SB) > 20000 when the customer is Attriter
 P(SB > 20000 / Attriter) � 3/3 � 1.00
Probability of savings balance (SB) > 20000 when the customer is Non-attriter
 P(SB > 20000 / Non-attriter) � 0/3 � 0.00

7.1 Classification Problem 147

When a naïve bayes model is built, a given value of a predictor
attribute is ignored unless there are enough occurrences of that
value. The frequency of occurrences in the build data must equal or
exceed the fraction specified by the singleton threshold. For example,
when a singleton threshold of 0.001 is specified and age � 15
occurred only 10 times out of 100,000 cases, then age � 15 is ignored
because (10/100000 � 0.0001) < 0.001.

Similarly, a pair of values between a predictor and target
attribute is ignored unless there are enough occurrences of that pair
in the build data. The frequency of occurrences in the build data
must equal or exceed the fraction specified by the pairwise threshold.
For example, when a pairwise threshold of 0.01 is specified and the
pair age � 25 and target value Attriter occurred 2,000 times out of
100,000 cases, then age � 25 is used by the model because (2000/
100000 � 0.02) > 0.01.

Support Vector Machine
The support vector machine (SVM) algorithm is one of the most
popular, relatively new supervised algorithms. SVM is proven to
give highly accurate results in complex classification problems, such
as gene expression analysis in which the number of known cases is
small but the number of attributes can be quite large [Brown� 2000].
SVM is gaining greater acceptance in solving traditional data mining
problems [DM Methods Poll 2006], including being a preferred
alternative to neural networks.

Overview
The SVM algorithm creates a hyperplane that separates target values
with a maximum-margin. A hyperplane is the plane that divides a
space into two spaces. For example, in two-dimensional space, as

Listing 7-2 Naïve bayes algorithm computing probability for a new case
Probability that customer is attriter given age � 35 and
savings balance (SB) � $13,300
P(Attriter / age�25 and SB � $13,300) �

P(age < 35/Attriter) � P(SB < $20000/Attriter) � P(Attriter) �

 0.33 � 0.43 � 0.2 � 0.03

Probability that customers is Non-attriter given age � 35 and
savings balance � $13,300
P(Non-attriter / age�25 and SB � $13,300) �

P(age < 35/Non-attriter) � P(SB < $20000/Non-attriter) � P(Non-attriter)�

0.67 � 0.57 � 0.8 � 0.31

148 Chapter 7 Java Data Mining Concepts

shown in Figure 7-4(a), the line that divides the target values
Attriter and Non-attriter is called a hyperplane. A hyperplane exists as
a complex equation that divides the space using N attribute
dimensions, where N is the number of predictor attributes. To
understand the concept of support vectors we look at two-dimensional
space. In Figure 7-4(b), the hyperplane that classifies Attriters from
Non-attriters and those data points that the margin pushes up
against are called support vectors. Margin is the minimal distance
between the data points and the hyperplane that divides Attriters
and Non-attriters.

SVM allows the selection of a kernel function. Kernel functions
morph data into high-dimensional vector space and look for relations
in such space. Many kernel functions have been introduced in the
data mining community. JDM includes kLinear, kGaussian, hypertangent,
polynomial, and sigmoid. For more details about the SVM and kernel
functions refer to [Cristianini/Shawe-Taylor 2000].

Feed Forward Neural Networks
Multilayer feed-forward neural networks with a back propagation
learning algorithm are one of the most popular neural network
techniques used for supervised learning. Despite the fact that neural
networks often take longer to build than other algorithms and they
do not provide interpretable results, they are popular for their
predictive accuracy and high tolerance to noisy data.

Overview
A neural network is an interconnected group of simulated neurons that
represent a computational model for information processing. A sim-
ulated neuron is a mathematical model that can take one or more
inputs to produce one output. The output is calculated by multiply-
ing each input by a corresponding weight, and combining them to

Hyperplane

Maximum

Margin

Support

Vectors

(a) (b)

Non-Attriter Attriter

Figure 7-4 Support vector machine: (a) two-dimensional
hyperplane, (b) with support vectors.

7.1 Classification Problem 149

produce an ouput, which may be subject to an activation function. An
activation function effectively is a transformation on the output,
which includes the specification of a threshold above which the out-
put is 1, otherwise zero. Figure 7-5(a) illustrates a neuron that takes
x1, x2, and x3 input value and w1, w2, and w3 as input weights to
produce output value y.

Back propagation is the most common neural network learning
algorithm. It learns by iteratively processing the build data, comparing
the network’s prediction for each case with the actual known target
value from the validation data.3 For each case, the weights are updated
in the opposite direction, so as to minimize the error between the
network’s prediction and actual target value.

Figure 7-5(b) illustrates a back propagation neural network that con-
sists of three types of layers: input, hidden, and output. The input
layer will have a number of neurons equal to the number of input
attributes, the output layer will have a number of neurons equal to
number of target values. The number of hidden layers and number
of neurons in each hidden layer can be determined by the algorithm
or specified by the data miner explicitly. In general, the addition of
a hidden layer can allow the network to learn more complex
patterns, but it can also adversely affect model build and apply
performance. For each neural layer, JDM allows specifying an
activation function that computes the activation state of each neuron

3 Validation data is a kind of test data used during model building, which the
algorithm may automatically create by partitioning the build data. Validation
data allows the algorithm to determine how well the model is learning the pat-
terns in the data. JDM allows users to provide an evaluation dataset explicitly in
a build task, if desired.

Neuron

x1

x2

x3 w3

w2

w1

y

(a)

N(0,1)

N(0,2)

N(0,3)

N(1,1)

N(1,2)

N(m,1)

N(m,2)

W(1,1,1)

W(1,1,2)

•••

N(m–1,1)

N(m–1,2)

W(1,3,2)

y1

y2

Input Layer Hidden Layer(s) Output Layer

(b)

x1

x2

x3

Figure 7-5 Neural networks: (a) Neuron representation, (b) back propagation neural
networks.

150 Chapter 7 Java Data Mining Concepts

in that layer. For more details about neural networks refer to [Han/
Kamber 2006].

7.1.6 Evaluate Model Quality: Compute Classification Test Metrics

It is important to evaluate the quality of supervised models before
using them to make predictions in a production system. As discussed
in Chapter 3, to test supervised models, the historical data is split
into two datasets, one for building the model, the other for testing it.
Test dataset cases are typically not used to build a model, in order to
give a true assessment of a model’s predictive accuracy.

JDM supports four types of popular test metrics for classification
models: prediction accuracy, confusion matrix, receiver operating charac-
teristics (ROC), and lift. These metrics are computed by comparing
predicted and actual target values. This section discusses these test
metrics in the context of the ABCBank’s customer attrition problem.

In the customer attrition problem, assume that the test dataset
has 1,000 cases and the classification model predicted 910 cases cor-
rectly, 90 cases incorrectly. The accuracy of the model on this dataset
is 910/1,000 � 0.91 or 91 percent.

Consider that out of 910 correct predictions 750 customers are
non-attriters and the remaining 160 are attriters. Out of 90 wrong
predictions 60 are predicted as Attriters when they are actually
Non-attriters and 30 are predicted as Non-attriters when they are
actually Attriters. This is illustrated in Figure 7-6. To represent this,
we use a matrix called a confusion matrix. A confusion matrix is a
two-dimensional, N � N table that indicates the number of correct
and incorrect predictions a classification model made on specific
test data, where N represents the number of target attribute values.
It is called a confusion matrix because it points out where the
model gets confused, that is, makes incorrect predictions.

Predicted
Attriter Non-attriter

160 30 (FN)

Non-attriter 60 (FP) 750
Actual

Attriter

Figure 7-6 Confusion matrix.

7.1 Classification Problem 151

The structure of this table looks similar to the cost matrix that was
illustrated in Figure 7-2, but the confusion matrix cells have the model’s
incorrect and correct prediction counts. If we consider Attriter as the
positive target value, false-positive (FP) prediction count is 60, and the
false-negative (FN) prediction count is 30.

Although the confusion matrix measures misclassification of target
values, in our example, false-negatives are three times costlier than
the false-positives. To assess model quality from a business perspec-
tive, we need to measure cost in addition to accuracy. The total cost
of false predictions is 3 � 30 �1 � 60 � 150. If with a different model
you get 40 false-positives and 40 false-negatives, then the overall
accuracy is better, however total cost is more at 3 � 40 �1 � 40 � 160. If
a cost matrix is specified, it is important to consider cost values to mea-
sure the performance and select the model with the least cost value.

Receiver operating characteristics (ROC) is another way to compare
classification model quality. An ROC graph places the false positive
rate on the X-axis and true positive rate on the Y-axis as shown in
Figure 7-7. Here, the false positive rate is the ratio of the number of
false positives and the total number of actual negatives. Similarly, the
true positive rate is the ratio of the number of true positives and the
total number of actual positives.

To plot the ROC graph, the test task determines the false positive
and true positive rates at different probability thresholds. Here, the
probability threshold is the level above which a probability of the
predicted positive target value is considered a positive prediction.
Different probability threshold values result in different false positive
rates and true positive rates. For example, when the Attriter predic-
tion probability is 0.4 and the probability threshold is set to 0.3, the
customer is predicted as an Attriter. Whereas if the probability
threshold is 0.5, the customer is predicted as a Non-attriter as
illustrated in Figure 7-7(a).

Figure 7-7(b) illustrates the ROC curves of two classification models
that are plotted at different probability thresholds. These models per-
form better at different false positive rates; for example, at a false
positive rate of 0.1, Model B has better true positives than Model A.
However, at 0.3 and above the false positive rate of Model A outper-
formed that of Model B. Based on the accepted false positive rate,
users can select the model and its probability threshold. The area
under the ROC curve is another measure of overall performance of a
classification model. The higher the area under the ROC curve, gen-
erally, the better the model performance.

152 Chapter 7 Java Data Mining Concepts

In the ROC graph, the point (0,1) is the perfect classifier4: it classifies
all positive cases and negative cases correctly. It is (0,1) because the
false positive rate is 0 (none), and the true positive rate is 1 (all). The
point (0,0) represents a classifier that predicts all cases to be negative,
while the point (1,1) corresponds to a classifier that predicts every
case to be positive. Point (1,0) is the classifier that is incorrect for all
classifications.

Lift and cumulative gain are also popular metrics to assess the
effectiveness of a classification model. Lift is the ratio between the
results obtained using the classification model and a random selec-
tion. Cumulative gain is the percentage of positive responses deter-
mined by the model across quantiles of the data. Cases are typically
divided into 10 or 100 quantiles against which the lift and cumula-
tive gain is reported, as illustrated later in Table 7.5. The lift chart
and cumulative gains charts are often used as visual aids for assess-
ing model performance. An understanding of how cumulative lift
and cumulative gains are computed helps in understanding the
cumulative lift and cumulative gains charts illustrated in Figure 7-8.

4 A classification model is also referred to as a classifier since it classifies cases
among the possible target values.

Customer Case

(a) Probability threshold

Model B RandomModel A

0.1

0.0

0.2

0.3

0.5

0.6

0.7

0.8

0.9

1.0

0.4

(b) ROC curves

False Positive Rate

0.5

0.3

0.4

P
o

si
ti

v
e

T
ar

g
et

 P
ro

b
ab

il
it

y

T
ru

e
P

o
si

ti
v
e

R
at

e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Predicted as

Attriter

Predicted as

Non-attriter

Figure 7-7 Receiver operating characteristics.

7.1 Classification Problem 153

Following are the typical high-level steps used to compute cumula-
tive lift and gain values:

• Compute the positive target value probability for all test
dataset cases.

• Sort cases in descending order of the positive target value
probability.

• Split the sorted test dataset cases into n groups, also known
as quantiles.

• Compute lift for each quantile—the ratio of the cumulative
number of positive targets and cumulative number of posi-
tive targets that can be found at random.

• Compute the cumulative gain for each quantile—the ratio
of cumulative predicted number of positive targets using
the model and total number of positive targets in the test
dataset.

Table 7-5 details lift and cumulative gain calculations for our cus-
tomer dataset example. Each row of this table represents a quantile
that has 100 customer cases. In the test dataset, there are 1,000 cases,
of which 190 are known to be attriters. Hence, picking a random
customer from this dataset, we have a 19 percent probability that the
customer is an attriter.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

C
u

m
u

la
ti

v
e
 L

if
t

C
u

m
u

la
ti

v
e
 G

a
in

0 1 2 3 4 5 6 7 8 9 10
0

20

30

40

50

60

70

80

90

100

10

Quantile NumberQuantile Number

With Attrition Model A With Attrition Model B Without Model (Random)

(a) (b)

Figure 7-8 Lift charts: (a) Cumulative lift, (b) cumulative gain.

154 Chapter 7 Java Data Mining Concepts

Using the classification model, the first quantile contains the top
100 customers that are predicted to be attriters. Comparing the pre-
diction against the known actual values, we find that the algorithm
was correct for 70 of these 100 customers. Therefore, the lift for the
first quantile is 70/19 � 3.684, where 70 is the number of attriters
found using the classification model and 19 is the number of customers
that would have been found given a random selection of customers.

Similarly, the cumulative gain value for this first quantile is the
percentage of the attriters in this quantile, that is, 70/190 � 0.368. In
Table 7-5, observe that the cumulative quantile lift values gradually
decrease, because the addition of each quantile includes fewer probable
cases, and the last quantile has lift value 1 because it includes all
1,000 cases. Cumulative gain values gradually increase, because the
addition of each quantile increases the proportion of attriters, and the
last quantile has cumulative gain of 100 percent because it includes all
1,000 cases.

In this example, suppose that ABCBank wants to launch a cus-
tomer retention campaign with a limited budget that can retain at
least 50 percent of the attriters. Here, the user can select the 200
customers in the first two quantiles whose cumulative gain is 57.9
percent and has a lift of 3.289.

Table 7-5 Lift computations table

Quantile

number

Number of

customers likely

to attrite

Cumulative number

of customers likely

to attrite

Cumulative

quantile lift Cumulative gain

1 70 70 70/19 � 3.684 70/190 � 36.8%

2 40 110 110/38 � 3.289 110/190 � 57.9%

3 25 135 135/57 � 2.368 135/190 � 71.5%

4 15 150 150/76 � 1.974 150/190 � 79.4%

5 12 162 162/95 � 1.705 162/190 � 85.7%

6 8 170 170/114 � 1.491 170/190 � 89.8%

7 7 177 177/133 � 1.331 177/190 � 93.4%

8 5 183 183/152 � 1.204 183/190 � 96.5%

9 5 188 188/171 � 1.099 188/190 � 99.0%

10 3 190 190/190 � 1.000 190/190 � 100%

7.1 Classification Problem 155

Let us say there are two attrition models, Model A and Model B,
that are built using different algorithms or with different settings
using the same algorithm. Figure 7-8 illustrates the cumulative lift
and cumulative gains charts plotted for these models to compare the
results. Note that Model A outperforms Model B in the first two
quantiles; however, Model B outperforms from the third quantile
onward. A user can pick Model A when the budget allows for at
most 20 percent of customers, otherwise the user can pick Model B if
more than 20 percent of customers are budgeted.

7.1.7 Apply Model: Obtain Prediction Results

After evaluating model performance using the test data, the user
selects the best model for the problem and applies it to predict target
values for an apply dataset. As noted for decision tree, some algorithms
may use a subset of the input attributes in the final model. This sub-
set of attributes is called the model signature, and it can be retrieved
from the model to determine which attributes are required to apply
the model.

In this section, we take the simple decision tree model discussed
in Section 7.1.5 to illustrate the model apply operation. This model
has three input attributes: age, capital gain, and average savings balance
as shown in Table 7-3 and the model uses only two of these, age and
average savings balance, as shown in Figure 7-9. These two attributes
form the model signature. Consequently, to use this model, the
apply dataset for this model needs only contain cases with age and
average savings balance attribute values. Consider an apply dataset
that has two customer cases for customers Jones and Smith as shown
in Table 7-6 to understand the apply process.

Figure 7-9 illustrates how the decision tree model predicts if these
customers are attriters. Jones is older than 36, so from the root node
he is assigned to node-2 that predicts him as an attriter. Smith is
younger than 36, so he is assigned to node-3 and node-3 further splits

Table 7-6 Customer apply table

Id

Customer

name Address City State Zip code Age

Average saving

account balance

A1 Jones 10 Main St. Boston MA 02101 41 $11,500

A2 Smith 120 Beacon St. Buffalo NY 14201 35 $3000

156 Chapter 7 Java Data Mining Concepts

based on average savings balance (SB). Because Smith’s average
savings balance is less than $21,500, he is assigned to node-4, which
predicts him as a Non-attriter.

The classification apply operation enables generating prediction
results with various types of content such as the predicted category—the
target value predicted by the model; probability—the probability that
the prediction is correct according to the model; cost—the cost associ-
ated with the model’s prediction (cost is computed only when cost
matrix is specified); and node-id—node or rule identifier used to make
the prediction (this is applicable only for models such as decision tree
that can provide a tree node or rule use for the prediction). In JDM the
apply prediction results can be presented in various forms, such as
the top prediction details, top-n or bottom-n predictions, probabilities
associated with all target values, and the probability of predicting a
specified target value(s). Selection of the prediction results depends
on the problem requirements and the type of information a user
wants to see. In this example, we produce the top prediction value
and its corresponding probability and cost to identify the attriters.

Even though applying a model to a dataset is common, predic-
tions and probabilities will likely change when customer attributes
change. For example, when a customer calls a bank to transfer a
large sum from his savings account to another bank, the call center
application can display a precomputed prediction that the customer
is likely to attrite. This would have been based on the customer’s
previous account balance. With the funds transfer, this may change

1

2 3

4 5

Jones
Age=41

Smith
Age=35

Smith
SB=$3000

 ATTRITER

ATTRITER

NON-ATTRITER

NON-ATTRITER

Age <= 36 Age > 36

SB < $21,500 SB >= $21,500

Figure 7-9 Apply decision tree to predict customer type.

7.2 Regression Problem 157

the model’s prediction for this customer. As such, it is useful to rescore
customers in real-time based on current data. This can be achieved
using the JDM single record apply capability, designed to provide
real-time response. Refer to [Middlemiss 2001] for an actual banking
industry use case involving real-time scoring.

7.2 Regression Problem

7.2.1 Problem Definition: How to Reduce Processing Time
of Residential Real-Estate Appraisals?

ABCBank wants to supplement the conventional real-estate
appraisal process by automated property evaluation to the current
system. Its objective is to reduce the processing time of home
mortgage-based loans and improve the customer experience. Refer to
[Rossini 2000] for a thorough study on real-estate value prediction.

7.2.2 Solution Approach: Property Value Prediction
Using Regression

ABCBank has accumulated data for the past year on real-estate
appraisal values for loans they process. In addition to appraisal values,
ABCBank acquired the real-estate details such as year built, home
size, features, and location details. Using the data mining regression
function, the bank can predict the property value, based on recent
trends and sales data. Depending on the confidence associated with
the prediction, where confidence refers to the width of the interval
around the prediction, the bank may heavily rely on the predicted
value in making a loan decision, which can reduce appraisal
evaluation time significantly. As real-estate value is a continuous
number, the regression function is the right technique to use. Refer to
Section 4.3 for an introduction of the regression function.

7.2.3 Data Specification: REAL_ESTATE_APPRAISALS Dataset

Concepts of physical and logical data specifications discussed in
Section 7.1.3 are the same for all data mining techniques. So in this
section we will not repeat the concepts covered earlier; instead we
illustrate the selected attributes for this problem and their logical
characteristics in Table 7-7. This table includes predictor attributes

158 Chapter 7 Java Data Mining Concepts

such as city, county, state, house size, year built, land size, number of
rooms, garages, pool type, number of schools, school rating, number
of nearby malls, crime rate, and the target appraisal value.

7.2.4 Select Algorithm: Find the Best Fit Algorithm

The algorithms discussed for classification in Section 7.2.1 can also be
used for regression. However, among them, support vector machine
(SVM), feed forward neural networks, and decision tree algorithms
are commonly used. There are other regression algorithms, such as
linear regression and generalized linear models (GLM) that are not cur-
rently included among the JDM supervised algorithms. Regression
model quality depends on data characteristics, algorithm choice, and
settings to find the most appropriate algorithm, or rely on selection
performed by the data mining engine.

Table 7-7 Real-estate appraisal data

Attribute name Logical name

Attribute

type

Usage

type Preparation

LOAN_ID Loan Id Inactive

CITY City Categorical Active Prepared

COUNTY County Categorical Active Prepared

STATE State Categorical Active Prepared

HOME_SIZE Size of the home in sq. ft Numerical Active Not prepared

YEAR_BUILT Year home was built Numerical Active Not prepared

LAND_SIZE Total land size in sq. ft Numerical Active Not prepared

NUM_ROOMS Number of rooms Numerical Active Not prepared

NUM_GARAGES Number of garages Numerical Active Not prepared

POOL_TYPE Type of pool (none,
inground, above ground)

Categorical Active Prepared

SCHOOLS Number of schools Categorical Active Prepared

NUM_MALLS Number of nearby malls Numerical Active Not prepared

CRIME RATE City crime rate Numerical Active Not prepared

SCHOOL RATING Avg. school ratings Numerical Active Not prepared

APPRAISAL_VALUE Home appraisal value Numerical Target

7.2 Regression Problem 159

7.2.5 Evaluate Model Quality: Compute Regression Test Metrics

In regression models, quality is measured by computing the cumulative
errors when comparing predicted values against known values. Gen-
erally, the lower the cumulative error the better the model perfor-
mance. There are many mathematical metrics that can be used to
quantify error, such as root mean squared (RMS) error, mean absolute
error, and R-squared error. Table 7-8 illustrates the computation of
some of these metrics by taking three cases. To compute the mean
absolute error, we take the ratio between the sum of the absolute
value of prediction errors and number of predictions. To compute the
root mean squared error, we first compute the mean of the prediction
error squares, then take the square root.

There is another metric called the R-squared value, which mea-
sures the relative predictive power of a model. R-squared is a
descriptive measure between 0 and 1. The closer it is to 1, the greater
the accuracy of the regression model. When R squared equals 1, the
regression makes perfect predictions. For more details about these
regression model evaluation metrics refer to [Witten/Frank 2005].

7.2.6 Apply Model: Obtain Prediction Results

After finding a regression model with minimum error, we apply that
model to new data to make predictions. The model signature, as
discussed for classification in Section 7.2.1, is also applicable for
regression. The apply data must provide all the attributes in the
model’s signature. Of course, attribute values for some cases may be
missing and most models can function normally in the presence of
some missing values. The regression apply operation can produce
contents such as predicted value (model predicted target value) and

Table 7-8 Regression test metrics

Promotion ID Predicted value Actual value

Prediction error

(predicted (p) � actual (a))

1 $950,000 $900,000 $50,000

2 $725,000 $745,000 �$20,000

3 $1,050,000 $970,000 $70,000

Mean Absolute Error (50,000 � 20,000 � 70,000)/3 $46,667

Root Mean Squared Error �50,0002 � 20,0002 � 70,0002/3 $50,990

160 Chapter 7 Java Data Mining Concepts

confidence (confidence associated with the model’s prediction). Typically
confidence values are either represented as a value between 0 and 1 or
as a percentage value between 0 and 100; 0 being the lowest confidence
and 1 being the highest confidence. Unlike classification that can pro-
duce multiple-target values and associated probabilities, regression
produces a single target value and associated confidence because tar-
get is a continuous value.

7.3 Attribute Importance

7.3.1 Problem Definition: How to Find Important
Customer Attributes

ABCBank has collected hundreds of attributes of its customers, and
the user wants to understand which attributes most greatly affect cus-
tomer attrition. Using ranking of attributes by importance, the user can
recommend that high ranking attributes be cleaned more carefully.
The user may also select a top n subset of these attributes to include in
model building. This might not only reduce the time required to build
a model and score, but also might improve model accuracy.

7.3.2 Solution Approach: Rank Attributes According to
Predictive Value

JDM defines the attribute importance function that can measure the
predictive power of each attribute in predicting a target and produces
a list of attributes ranked by their relative importance. Using this
function, analysts can select the attributes that are important to pre-
dicting attrition. As noted above, the attribute importance function
helps to automate the selection of attributes for predicting target
attribute values.

7.3.3 Data Specification, Fine-Tune Settings, and Algorithm
Selection

We use the same dataset as discussed in Section 7.1.3 for the classifi-
cation problem. The data specification for attribute importance is the
same as for classification.

JDM does not specify any algorithm settings for attribute impor-
tance. However, several algorithms can be used to support this

7.3 Attribute Importance 161

mining function such as minimum description length [Wikipedia 2005]
and even decision tree. Decision trees inherently select the best
attributes for branching in the tree and normally include far fewer
attributes in the resulting model than originally input.

JDM allows a model’s signature to contain attribute importance
rankings that result as a by-product of model building. After a model
is built, the user can determine the relative importance of the
attributes as determined by the specific algorithm. Since different
independent attribute importance algorithms can produce signifi-
cantly different results, having access to the importance assigned by
the algorithm is more accurate.

7.3.4 Use Model Details: Explore Attribute Importance Values

An attribute importance model produces relative importance values
by which attributes are ranked. In this example, Table 7-9 lists the

Table 7-9 Attribute importance values

Attribute name Importance Rank

Education 0.46 1

Occupation 0.40 2

Age 0.36 3

Marital Status 0.34 4

Avg. Savings Balance 0.31 5

Home loan balance 0.27 6

Annual Income 0.22 7

Retirement Balance 0.16 8

Avg. Checking Balance 0.10 9

Capital Gain 0.09 10

City 0.06 11

Ethnic Group 0.02 12

Native Country �0.03 13

County �0.06 14

State �0.11 15

162 Chapter 7 Java Data Mining Concepts

attributes sorted by their importance values and assigns ranks to
each attribute based on its importance value. In JDM, selecting
attributes can be based on a percentage of attributes, number of
attributes, or importance value threshold. For example, if a user
gives the importance threshold as 0.0, then native country, county, and
state attributes will be filtered from the returned set of attributes,
because they have negative importance values. Typically, attributes
with negative importance values may adversely impact model quality.
However, the interpretation of the importance values depends on the
implementation.

7.4 Association Rules Problem

7.4.1 Problem Definition: How to Identify Cross-Sell Products
for Customers

Part of ABCBank’s strategy for customer retention and increased
profits is to cross-sell products to existing customers. When customers
have multiple products with the same bank, they are less likely to
attrite, if for no other reason than the effort and complexity involved in
switching to another bank. As a result, ABCBank wants to understand
which set of products are normally purchased by customers, so that
ABCBank can recommend appropriate cross-sell products to customers
missing products in that set. Refer to [DeBlasio 2001] for a real-world
cross-sell scenario in the banking industry.

7.4.2 Solution Approach: Discover Product Associations
from Customer Data

ABCBank has customer data, which includes the products or services
each customer purchased along with some usage characteristics, for
example, average checking account balance. Using this data,
ABCBank wants to identify product associations, such as if a customer
has a single account with the bank, or in what other accounts or
financial services might that customer be interested.

Product associations are discovered and measured by learning
product purchase patterns from the historical purchase data. For
example, an association model may identify a rule indicating that a
customer with an average annual checking account between $3,000
and $5,000 and savings account greater than $15,000 is likely to open
a certificate of deposit.

7.4 Association Rules Problem 163

7.4.3 Data Specification: CUSTOMERS and Their Product
Purchase Data

In this example, to explain the association concepts, we consider
five customers and three product purchase details out of possibly
millions of customers. Table 7-10 illustrates the data for these five
customer accounts, where each case is represented as multiple
records (rows). A case here corresponds to the set of products the
customer uses and a value indicating average annual balance range.
For example, Customer 1 has three records that represent three
products used and his monthly average balance range. This type of
data format is known as multirecord case or transactional format,
where the Customer Id column is the case identifier, the attribute
name column represents the product name, and the value column
contains the average annual balance range.

7.4.4 Fine-Tune Settings: Filter Rules Based on Rule
Quality Metrics

In practice, business data can have thousands of products and
millions of product transactions. As a result, an association model
can derive a large number of rules. Rule quality thresholds are used

Table 7-10 Customer product transactions

Customer ID Attribute Name Amount Range

1 Checking Account $2,000 to $5,000

1 Savings Account $10,000 to $15,000

1 Certificate Account $2,500 to $15,000

2 Savings Account $10,000 to $15,000

2 Certificate Account $2,500 to $15,000

3 Checking Account $2,000 to $5,000

3 Savings Account $10,000 to $15,000

4 Checking Account $10,000 to $15,000

4 Money Market Account $5,000 to $10,000

5 Savings Account $10,000 to $15,000

5 Certificate Account $2,500 to $15,000

164 Chapter 7 Java Data Mining Concepts

to limit the number of rules, and hence reduce model size, allowing
users to focus on a more relevant subset of possible rules.

Rule quality can be specified using one or more metrics, such as
support, confidence, and lift. Figure 7-10 shows the rule “If customers
have a savings account, then they have a checking account” derived from
the data in the Table 7-10. A rule consists of a condition part, called
the antecedent, and a result part, called the consequent. Using this
example we illustrate the rule quality metrics. Figure 7-11 shows two
sets, the first represents the cases that conform to the antecedent and
the second represents the cases that conform to the consequent. The
intersection of these two sets represents the cases that conform to
both antecedent and consequent, that is, the rule.

The support of a rule is the ratio of cases that match the rule when
compared to the total number of records in the dataset. In this exam-
ple, there are two customers, 1 and 3, that conform to the rule out of
five customers, so support for this rule is 2/5 � 0.4.

The confidence of a rule is the ratio of the number of records that
include all items in the rule to the number of records that include all
items in the antecedent part of the rule. In this example, there are four
customers, 1, 2, 3, and 5, that match the antecedent portion of the rule,

If customer has savings Then customer will have checking

Antecedent Consequent

Figure 7-10 Association rule.

2, 5 1, 3 4

Customers

who have

savings

account

Customers

who have

checking

account

Customers who have

both checking and

savings accounts

Figure 7-11 Associations.

7.5 Clustering Problem 165

so the confidence is 2/4 � 0.5. Confidence is directional; when we
invert the rule, for example, “If a customer has a checking account, then
they have a savings account,” we will get a different confidence value.
For the inverted rule, there are only three customers, 1, 3, and 4, that
satisfy antecedent, so the confidence value of this rule is 2/3 � 0.67.
Note that the inverted rule has greater confidence than the original.

The lift is the ratio between the rule confidence and its expected
confidence. Expected confidence is the frequency of the consequent in
the data. Lift measures how much more likely the consequent is
when an antecedent happens. In this example, there are three
customers, 1, 3 and 4, that have a checking account, so the expected
confidence is 3/5 � 0.6. Hence lift for this rule is 0.4/0.6 � 0.66.

In addition to the rule quality metrics, JDM allows users to specify
taxonomy per attribute (Section 4.5), and settings that include the
maximum number of rules in the model and inclusion or exclusion of
model items. Section 9.7 will discuss more about these setting when
we discuss the API usage.

7.4.5 Use Model Content: Explore Rules From the Model

An association model primarily contains the association rules and
their support, confidence, and lift details. Even with the model rule
quality thresholds, this model may contain a large number of rules
based on the number of items and the relationships among these
items. To explore the rules, users often need a filter and to order the
rules to get an interesting or manageable subset. To this end, JDM
provides rule filtering capabilities.

Filtering criteria may include rule support, confidence, and lift
thresholds; inclusion or exclusion of the specified items from the rule
or specific rule components, that is, antecedent and consequent; and
rule or rule component length. Section 9.7 will discuss more about
the various types of filtering criteria using JDM.

7.5 Clustering Problem

7.5.1 Problem Definition: How to Understand Customer
Behavior and Needs

ABCBank has thousands of customers whose profiles and needs
widely differ from each other. ABCBank wants to understand customer
segments to design new products and personalize campaigns to

166 Chapter 7 Java Data Mining Concepts

increase revenues and market share. Refer to [Dragoon 2005] for
more details about customer segmentation.

7.5.2 Solution Approach: Find Clusters of Similar Customers

Using ABCBank’s customer data such as profiles, products owned,
and product usage, a clustering model can be built that identifies
customer segments. Each cluster in the model represents a customer
segment, that is, customers with similar characteristics. By under-
standing the characteristics of the customers in each segment,
ABCBank can gain greater insight into product design and achieve
more focused campaigns.

7.5.3 Data Specification and Settings

In this example, we use the CUSTOMERS dataset discussed in
Section 7.1 for finding the natural groupings of the customers based
on customer attribute values. Attributes used for segmentation may
vary from those used for classification. For example, you may omit
the target attribute attrite or add customer product purchase indica-
tors. Section 4.6 introduced the concepts of clustering and clusters,
and Section 12.3 will include a more detailed discussion on customer
segmentation.

Clustering techniques vary in their approach to find clusters, for
example, partitioning-based, hierarchical, density-based, and grid-based
algorithms. For more details on these techniques, refer to [Han/
Kamber 2006]. JDM defines a clustering mining function and one of
the popular partitioning-based clustering algorithms called k-means.

Partitioning based algorithms, such as k-means, typically require
users to specify the desired number of partitions, or clusters, k. The
algorithm then finds the clusters that have high intra-cluster similarity
but low inter-cluster similarity. The k-means algorithm randomly
selects k cases to serve as the seeds for the clusters. It then measures the
distance from each case to each cluster’s centroid and assigns the case
to the “nearest” cluster. New cluster centroids are computed based on
all the cases assigned to each centroid, and the process repeats.

To illustrate clustering concepts, we take a dataset with ten cus-
tomer cases of two attributes, age and income, listed in Table 7-11(a).
In clustering, one of the challenges is how to measure similarity
between cases. For example, numerical attributes may be in different
scales and categorical attributes may have discrete values, perhaps

7.5 Clustering Problem 167

with no clear notion of one value being close to another. To address
numerical attributes, the values can be normalized, as discussed in
Section 3.2, to bring numerical attributes to the same scale. After
normalizing the data in our example using min-max normalization,
the values of age and income are brought to the same scale—values
between 0 and 1. To address categorical attributes for a distance-
based algorithm like k-means, the attributes are exploded, as discussed
in Section 3.2. This converts the categorical attributes into multiple
attributes with numerical values.

Since our example is in two dimensions (attributes), we can easily
graph the clusters, as illustrated in Figure 7-12, and visually identify
the customer clusters. However, clustering problems can involve
hundreds or even thousands of attributes, requiring alternative
analysis and visualization techniques [Keahey 1999].

When two cases are compared, we can use distance or similarity.
Both distance and similarity can be computed by first comparing
pairs of attribute values and then aggregating the results to arrive at
a final comparison measure between the two cases. To this end, JDM
defines commonly used aggregation functions, such as euclidian dis-
tance, and attribute comparison functions, such as absolute difference
or similarity matrix. Using a similarity matrix for categorical
attributes, JDM allows the user to specify explicit similarity values
for categorical attributes using a similarity matrix. For example, if
credit_risk is a categorical attribute with values high, medium, and low,

Customer Age Income

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

(a) (b)

Customer Age Income

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

Normalize

70

17

30

65

27

35

45

20

15

25

55,000

30,000

25,000

45,000

60,000

1,30,000

1,20,000

5,000

6,000

45,000

0.182

0

0.091

0.545

0.364

0.218

0.909

0.273

0.036

1

0.32

0.008

0

0.92

1

0.44

0.32

0.16

0.2

0.4

Table 7-11 Customers’ (a) original attribute values and (b) normalized attribute values

168 Chapter 7 Java Data Mining Concepts

a similarity matrix can be expressed, as shown in Table 7-12. Here,
the diagonal values have similarity value 0 indicating that there is no
“distance” between two high values. Nondiagonal values can be set
as appropriate.

7.5.4 Use Model Details: Explore Clusters

Each cluster in a clustering model can have associated attribute
statistics and a rule that describes the cluster. Figure 7-13 illustrates

0.9

1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Age

C9

C3C2

C8

C1

C6

Cluster 1

In
co

m
e

Cluster 3

Cluster 2

C10

C7

C4

C5

Figure 7-12 Customer clusters.

Table 7-12 Similarity matrix for credit-risk attribute

High Medium Low

High 1 0.5 0

Medium 0.5 1 0.25

Low 0 0.25 1

7.5 Clustering Problem 169

the attribute histograms and the rule of Cluster 1. Users can visually
inspect the attribute value distributions in each cluster to understand
how they differ. In this case Cluster 1 can be described as customers
whose age is between 15 and 31.5 and whose income is between $5,000 and
$67,500.

7.5.5 Apply Clustering Model: Assign New Cases to the Clusters

A clustering model can be applied to the original cases or new cases
to assign each case a cluster ID. Clustering apply also computes the
probability that the case belongs to the cluster, and the distance of the
case from the centroid of the cluster to assess how well each case fits
a given cluster. Like classification, JDM supports assigning the top
cluster, mapping the top or bottom clusters for each case, and per
cluster probabilities.

Values

Rule:
IF
AGE <= 31.5 and AGE >= 15.0 and INCOME <= 67500.0 and INCOME >= 5000.0
THEN
Cluster equal 1
Support = 6/10=0.6

(a) Histogram for AGE

Values

(b) Histogram for INCOME

P
er

ce
n

ta
g

e

5
0

0
0

–
1

7
5

0
0

1
7

5
0

0
–

3
0

0
0

0

3
0

0
0

0
–

4
2

5
0

0

4
2

5
0

0
–

5
5

0
0

0

5
5

0
0

0
–

6
7

5
0

0

8
0

0
0

0
–

9
2

6
0

0

9
2

5
0

0
–

1
0

5
0

0
0

1
0

5
0

0
0

–
1

0
5

0
0

0
0

1
0

6
0

0
0

0
–

1
1

7
5

0
0

0

1
1

7
5

0
0

0
–

1
3

0
0

0
0

0

10

20

30

P
er

ce
n

ta
g

e

0

20

40

60

1
5

–
2

0
.5

2
0

.5
–

2
6

2
6

–
3

1
.5

3
1

.5
–

3
7

3
7

–
4

2
.5

4
2

.5
–

4
8

4
8

–
5

3
.5

5
3

.5
–

5
9

5
9

–
6

4
.5

6
4

.5
–

7
0

Figure 7-13 Cluster 1 details.

170 Chapter 7 Java Data Mining Concepts

7.6 Summary

This chapter illustrated various JDM concepts related to data specifi-
cations, classification, regression, attribute importance, association
rules, and clustering functions. We saw that data specifications are
divided into physical and logical specifications to facilitate reusabil-
ity. Model build settings provide function-specific settings and algo-
rithm settings that are used to tune the models for problem-specific
requirements. JDM provides test metrics for supervised models to
understand model quality. JDM supports model apply for super-
vised and clustering models, providing control over the output val-
ues. JDM defines algorithm settings for decision tree, support vector
machine, naïve bayes, feed forward neural networks, and k-means
algorithm settings. In the next chapter we explore how these con-
cepts are mapped to Java classes and interfaces in JDM.

References

[Brown� 2000] M. P. Brown, W. N. Grundy, D. Lin, N. Cristianini,
C. W. Sugnet, T. S. Furey, M. Ares Jr., D. Haussler, “Knowledge-Based
Analysis of Microarray Gene Expression Data by Using Support Vector
Machines,” Proc Natl Acad Sci USA, 97:262–7.

[Cluster Tutorial 2006] See http://www.elet.polimi.it/upload/matteucc/
Clustering/tutorial_html/index.html.

[Cristianini/Shawe-Taylor 2000] Nello Cristianini, John Shawe-Taylor, An
Introduction to Support Vector Machines and Other Kernel-based Learning
Methods, Cambridge, UK: Cambridge University Press, 2000.

[DeBlasio 2001] Agnes DeBlasio, “Data Mining Application Helps BB&T
Increase Cross-Sell Ratio, Bank Systems & Technology,” http://www.
banktech.com/features/showArticle.jhtml?articleID�14701565.

[DM Methods Poll 2006] “Latest KDnuggets Poll Results on Usage of
Data Mining Methods,” http://www.kdnuggets.com/polls/2006/data_
mining_methods.htm.

[Dragoon 2005] Alice Dragoon, “How to Do Customer Segmentation
Right?” CIO Magazine, October 2005, http://www.cio.com/archive/
100105/cus_segment.html.

[Han/Kamber 2006] Jiawei Han, Micheline Kamber, Data Mining, Second
Edition: Concepts and Techniques, San Francisco, Morgan Kaufmann,
2006.

7.6 Summary 171

[Hu 2005] Xiaohua Hu, “A Data Mining Approach for Retailing Bank
Customer Attrition Analysis,” Springer Science�Business Media B.V.,
formerly Kluwer Academic Publishers B.V., vol. 22, no. 1, http://
www.springerlink.com/(maecq445vroxvm33fwowiyua)/app/home/
contribution.asp?referrer�parent & backto� issue,5,6; journal,7,74;
linkingpublicationresults,1:100236,1.

[Johnston 1996] Stuart J. Johnston, “How to Get a Better Return on Data?”
http://www.informationweek.com/596/96bank.htm.

[Keahey 1999] T. Alan Keahey, “Visualization of High-Dimensional Clus-
ters Using Nonlinear Magnification,” Los Alamos National Laboratory,
MS B287, http://www.ccs.lanl.gov/ccs1/projects/Viz/pdfs/99-spie.pdf.

[Middlemiss 2001] Jim Middlemiss, “Bank of Montreal Aims to Score with
Clients Using Data Mining Product,” Bank Systems & Technology,
http://www.banktech.com/showArticle.jhtml?articleID� 14701805.

[Pyle 1999] Dorian Pyle, “Data Preparation for Data Mining,” San Fran-
cisco, Morgan Kaufmann, 1999.

[Rossini 2000] Peter Rossini, “Using Expert Systems and Artificial Intelli-
gence for Real Estate Forecasting,” Sixth Annual Pacific-Rim Real
Estate Society Conference, Sydney, Australia, January 24–27, 2000,
http: //www.unisanet .unisa .edu.au/staff /peterrossini /Documents /
Using%20Artificial%20Intelligence%20for%20Real%20Estate%20-
Forecasting.pdf.

[20QNET] http://www.20q.net.

[Wikipedia-CI 2006] http://en.wikipedia.org/wiki/Conditionally_independent.

[Witten/Frank 2005] Ian H. Witten, Eibe Frank, Data Mining: Practical
Machine Learning Tools and Techniques, San Francisco, Morgan Kauf-
mann, 2005.

173

Chapter

8
Design of the JDM API

Perfection (in design) is achieved not when there is nothing more to add,
but rather when there is nothing more to take away.

—Antoine de Saint-Exupéry

Designing a vendor-neutral standard application programming
interface (API) involves many constructive altercations to find a
common ground where all participants can agree on the standard.
Despite being widely used across many industries to solve business
problems, there previously was no data mining standard for Java
that allowed applications to include data mining solutions that are
portable across multiple data mining engines (DMEs). With the
advent of the Java Data Mining (JDM) standard, application develop-
ers can more easily use portable data mining functionality.

One of the challenges in designing a standard data mining API is
that DME capabilities differ significantly from one another. Even
though many of the data mining techniques and algorithms are pub-
lic and standardized, vendors differentiate themselves by improving
performance, automating settings selection, or specializing algo-
rithms for a particular domain or need.

174 Chapter 8 Design of the JDM API

In addition, not all vendors implement or expose the same level of
DME capabilities. JDM is designed to be flexible to adapt for any
vendor that supports at least one data mining function. Moreover,
JDM enables applications to discover DME capabilities at runtime.
This feature is particularly useful for the development of vendor-
neutral data mining tools or solutions.

To reduce the complexity of the implementation and integration
of data mining solutions, DMEs are providing advanced automation
for data preparation, attribute selection, algorithm selection, and
automated tuning of algorithm settings. This simplifies data mining
for novice users, allowing them to quickly reach a solution. The
expert group designed JDM to be flexible for defining both auto-
mated data mining processes and highly customized solutions
involving problem-specific settings by expert users.

This chapter discusses some of the design decisions made for
JDM. Readers will also become familiar with the JDM object model,
packages, and objects. This chapter uses Unified Modeling Lan-
guage [OMG_UML 2006] notation for class diagrams and package
diagrams.

8.1 Object Modeling of Data Mining Concepts

This section explores the JDM object model for representing the data
mining concepts discussed in Chapter 7: data specifications, the set-
tings used for data mining techniques and algorithms, function level
model contents, algorithm level model details, test metrics for
supervised models, and model apply. The JDM object model enables
developing data mining solutions using Java and Web services inter-
faces.

Figure 8-1 depicts the class diagram of mining objects in JDM—a
mining object in JDM is the prime object that can be saved with a
name to the mining object repository (MOR) via the DME. Applica-
tions can then retrieve mining objects by name from the MOR across
application executions. JDM divides mining objects into data specifi-
cation, settings, model, test metrics, and task objects. The gray boxes
in Figure 8-1 highlight the mining object categories Data Specification
Objects and Settings Objects. The MiningObject interface encapsulates
the common characteristics of these objects, such as name, descrip-
tion, object identifier, and the mining object type. We now explore
each mining object category in detail.

8.1 Object Modeling of Data Mining Concepts 175

8.1.1 Data Specification Objects

Data specification objects are used to describe the input data for
mining. It is important for the DME to know data attribute charac-
teristics so data can be mined effectively. For example, in the CUS-
TOMERS dataset, as discussed in Section 7.1.3, the attribute Marital
Status might have numerical values such as 1, 2, 3, 4 to represent
unmarried, married, divorced, and widowed, respectively. Here, the
DME needs to know this is a categorical attribute as opposed to a
numerical one.

JDM defines physical and logical data objects to encapsulate
input data details common across all mining functions. The Physical-
DataSet object captures the physical data characteristics, such as data
location, physical attribute names, data types, and what role the
attributes play. The LogicalData object specifies how to interpret the
data. It captures logical data characteristics, such as whether an
attribute is categorical/numerical/ordinal, prepared/unprepared,
and what are the valid values. Separating logical data from physical
data allows applications to manage them independently and map
multiple PhysicalDataSet objects to a single LogicalData object and
vice versa, thereby allowing reuse of both physical and logical spec-
ifications across mining operations and activities. For example, in a
production system, the physical data may change weekly such that
each dataset has a different table name, yet the way to interpret
those attributes logically remains the same. In this case, the data
miner maps multiple physical dataset objects with one logical data

javax.datamining.data
PhysicalDataSet

javax.datamining.data
LogicalData

javax.datamining.data
Taxonomy

javax.datamining.task.apply
ApplySettings

javax.datamining.base
BuildSettings

javax.datamining.supervised
TestMetrics

javax.datamining.base
Task

javax.datamining.base
Model

javax.datamining.supervised.classification
CostMatrix

Settings ObjectsData Specification Objects

javax.datamining
MiningObject

Figure 8-1 JDM mining objects.

176 Chapter 8 Design of the JDM API

object. Alternatively, during the modeling phase, a data miner may
have physical data that does not change until the solution is
deployed; however, the analyst changes the logical data to experi-
ment with various ways to interpret the logical characteristics of
attributes, in this case one physical dataset object with multiple logi-
cal data objects.

Figure 8-2 depicts the class diagram of the physical and logical
data-related objects and their relationships (objects with gray back-
grounds are enumerations). A PhysicalDataSet can have zero or
more physical attributes. This allows specifying only the dataset
URI without any physical attribute details and results in accepting
default characteristics for each physical attribute. Users can specify
physical attributes for a physical dataset to indicate per attribute
data type and role. In JDM the allowed data types and roles are rep-
resented as the enumerations AttributeDataType and Physical-
AttributeRole. The AttributeDataType has the enumerated values
double type, integer type, string type, and unknown type. The Physical-
AttributeRole defines the special roles some attributes may play in
the dataset. For example, the case id role is used to specify the
attribute that uniquely identifies each case in the dataset.

For the transactional data that was discussed in Section 7.4.3,
attributes and values are stored in multiple-records where the

javax::datamining
MiningObject

javax::datamining::data
PhysicalDataset

javax::datamining::data
PhysicalAttribute

javax::datamining::data
Attribute

javax::datamining::data
LogicalAttribute

javax::datamining::data
LogicalData

1 1

1

1

1

1

1

1

1

1

1

n n

javax::datamining::data
CategorySet

0..1

javax::datamining::data

javax::datamining::data

AttributeDataType

double Type

integerType

string Type
unknown Type

PhysicalAttributeRole
attributeName

attributeValue
caseld
data

taxonomyparentld

taxonomyChild

javax::datamining::data

javax::datamining::data

DataPreparationStatus

AttributeType
categorical

notSpecified

numerical
ordinal

prepared

unprepared

Figure 8-2 Physical and logical data objects and their relationship.

8.1 Object Modeling of Data Mining Concepts 177

attribute name role can be specified to indicate the column in the
dataset that has the attribute names and the attribute value role can
be specified to indicate the column that has the attribute values. In
addition to PhysicalDataSet, JDM defines PhysicalDataRecord to rep-
resent a single record that contains the PhysicalAttributes and associ-
ated attribute values for a single case. A PhysicalDataRecord instance
is used to apply a model on a single case. Section 9.4.6 will discuss
more about the single record apply.

For each physical attribute, there can be an associated logical
attribute specified in the logical data. In a LogicalAttribute object,
users can specify a list of values for a categorical attribute using a
CategorySet object. For example, one can specify the values {1, 2, 3, 4}
as the set of valid values for the Marital Status attribute and map
those values to unmarried, married, divorced, and widowed,
respectively.

Section 4.5 introduced the concept of taxonomy as used by the
association function. We consider a taxonomy a data specification
object since it captures characteristics of the data used for model
building.

JDM supports taxonomy representations as either external tables
or as native objects. Figure 8-3 depicts the taxonomy objects and
their relationships. Taxonomy is an abstract interface that general-
izes the two interfaces TaxonomyTable and TaxonomyObject. A Tax-
onomyTable object maps to an existing dataset containing the
taxonomy data. This design allows applications to maintain the
taxonomy separately from JDM and use the taxonomy in other
environments where table access via SQL may be necessary. A Tax-
onomyObject interface is used to create the taxonomy using the JDM
API. JDM provides full support for describing taxonomies as
objects when the sole use of the taxonomy is for mining with a
DME.

javax::datamining::data
Taxonomy

javax::datamining::data
TaxonomyTable

javax::datamining::data
TaxonomyObject

Figure 8-3 Taxonomy interfaces.

178 Chapter 8 Design of the JDM API

8.1.2 Settings Objects

Model building and model apply involve the specification of various
settings. JDM allows vendor-specific defaults for settings that users
can use or override. Default values are assigned as part of settings
object creation and applications can retrieve the vendor-specified
default values using various get methods. This section discusses the
settings objects available to control the build and apply process.

Build Settings
To build models, users specify settings at the mining function level,
and optionally at the algorithm level. A mining function can be sup-
ported by multiple algorithms, similarly, the same algorithm can
support multiple mining functions. For example, a classification
function can use any of the algorithms such as naïve bayes, decision
tree, support vector machine, or neural networks. However, many of
these algorithms can also support the regression function. From a
design perspective, separating function settings from algorithm set-
tings reduces redundant specification of algorithm settings per func-
tion, but also provides more flexibility to allow users to specify
function-level settings only.

Figure 8-4 depicts the build settings—related objects and their
relationships. Here, the BuildSettings object is used for function-level
settings and the AlgorithmSettings object is used for algorithm-level

javax::datamining

MiningObject

javax::datamining::base

BuildSettings
javax::datamining::base

AlgorithmSettings

javax::datamining::clustering

ClusteringSettings

javax::datamining::supervised::regression

RegressionSettings
javax::datamining::supervised::classification

ClassificationSettings

javax::datamining::supervised

SupervisedSettings
javax::datamining::attributeimportance

AttributeImportanceSetting
javax::datamining::association

AssociationSettings

1

0..1

Figure 8-4 Build settings objects and their relationships.

8.1 Object Modeling of Data Mining Concepts 179

settings. Note that BuildSettings has a “has a” relationship with
AlgorithmSettings. As mining functions are broadly divided into
supervised and unsupervised functions, the SupervisedSettings base
interface is used to represent all the supervised functions. For exam-
ple, classification is a supervised type function, so ClassificationSet-
tings inherits from SupervisedSettings. There are no common settings
for unsupervised functions, because these functions are significantly
different from each other. As a result, the settings for unsupervised
mining functions directly inherit from BuildSettings. For example,
clustering is an unsupervised type function, so ClusteringSettings
inherit from BuildSettings.

Figure 8-5 depicts the objects related to algorithm settings. Since
algorithms are used in the context of a function, AlgorithmSettings are
always used as part of a BuildSettings object. AlgorithmSettings is the
base interface for all algorithm settings. SupervisedAlgorithmSettings is
the base interface for algorithms supporting supervised functions.
For example, the decision tree algorithm is used for supervised
functions so TreeSettings inherits from SupervisedAlgorithmSettings.
Although many algorithms that can support classification and regres-
sion accept the same settings, some algorithms, such as support vec-
tor machine (SVM), differ enough to warrant their own interfaces.

javax::datamining::base
AlgorithmSettings

javax::datamining::culstering

javax::datamining::algorithm::kmeans
KMeansSettings

javax::datamining::association
AssocationRulesAlgorithmSettings

ClusteringAlgorithmSettings

javax::datamining::attributeimportance
AttributeImportanceAlgorithmSettings

javax::datamining::supervised
SupervisedAlgorithmSettings

javax::datamining::algorithm::naivebayes

NaiveBayesSettings

javax::datamining::algorithm::freedforwardneuralnet
FeedForwardNeuralNetSettings

javax::datamining::logorithm::tree

TreeSettings

javax::datamining::algorithm::svm::classification
SVMClassificationsSettings

javax::datamining::logorithm::svm::regression
SvmRegressionSettings

Figure 8-5 Algorithm settings objects and their relationships.

180 Chapter 8 Design of the JDM API

Each algorithm settings object is used to define algorithm-specific
parameters. For example, a TreeSettings object is used to specify deci-
sion tree algorithm—specific settings such as maximum depth of the
tree and maximum number of splits.

Cost Matrix
Section 7.1.4 discussed the use of a cost matrix for classification,
where a cost matrix is used to represent the costs associated with
incorrect predictions from a classification model. Since the cost
matrix supplements the build settings of a classification model, JDM
considers this object as one of the classification-specific settings
objects.

JDM defines a cost matrix as a named mining object that can be
managed separately by users and easily updated for model rebuild-
ing. A cost matrix can be specified for model build, apply, or test
operations depending on the capabilities of the particular JDM
implementation.

Figure 8-6 depicts the cost matrix object and its related objects.
Note that CostMatrix inherits from the CategoryMatrix, which repre-
sents any matrix that uses target values (a.k.a. categories) as row and
column header values. The CategorySet object, which is referenced by
the CategoryMatrix, contains the category values that are used to rep-
resent the matrix row and column values.

javax::datamining::data

CategorySet

javax::datamining::data

CategoryMatrix

javax::datamining::supervised::classification

CostMatrix

javax::datamining

MiningObject

1

1

Figure 8-6 Cost matrix interfaces.

8.1 Object Modeling of Data Mining Concepts 181

Apply Settings
JDM apply settings were designed to provide flexibility in defining
the results from model apply. Section 3.3.2 introduced the model
apply operation. In general, all supervised models and some unsu-
pervised models such as clustering can be applied to produce apply
results—a table or view in a database or a file in a file system.

Apply settings specify the desired contents in the apply output data.
The specific content varies by mining function, hence JDM defines
function-specific apply settings interfaces. Figure 8-7 depicts various
apply settings interfaces and their relationships. The ApplySettings is
the base interface that defines the common settings across all function-
level apply settings. ClassificationApplySettings, RegressionApplySettings,
and ClusteringApplySettings interfaces specify the settings for applying
classification, regression, and clustering models, respectively.

Apply for a classification model computes the target value and
corresponding probability for each case of the specified apply input
data. Normally, the target value with highest probability is consid-
ered the top prediction. However, the probability is not always the
best measure to find the top prediction. If the cost matrix is specified
for model build or apply, the cost values are computed in addition to
probability. We may want to select the target value that has the least
cost as the top prediction.

For example, in the customer attrition problem discussed in Sec-
tion 7.1, the target attribute attrite can have one of two possible tar-
get values Attriter or Non-Attriter. Note that the model cannot
predict attrition with 100 percent probability for each case. In this
example, let us say the model predicted that a customer is 30 per-
cent likely to attrite, meaning 70 percent unlikely to attrite. As such,
the value Non-attriter is selected as the top prediction since it has the

javax::datamining::task::apply
ApplySettings

javax::datamining::supervised:classification
ClassificationApplySettings

javax::datamining::clustering
ClusteringApplySettings

javax::datamining::supervised:regression
RegressionApplySettings

Figure 8-7 Apply settings objects.

182 Chapter 8 Design of the JDM API

highest probability. The first row of Figure 8-8(a) depicts this case.
However, if we use the cost matrix in Figure 8-8(b), the cost of pre-
dicting a Non-attriter value is computed as the cost the business
incurs when the actual value is Attriter and vice versa. If this cost
matrix is applied for the same customer case, the cost of predicting
Attriter is $30 and Non-attriter is $45 as shown in the second row of
Figure 8-8(a). Since we are choosing the lowest cost prediction, the
model predicts this same customer as an Attriter ($30 < $45).

Figure 8-9 shows the apply content options for each function that
supports apply using the JDM enumerations ClassificationApplyCon-
tent, RegressionApplyContent, and ClusteringApplyContent.

For classification models, JDM defines four possible contents—
predicted category, probability, cost, and node ID. The predicted category
results in the predicted target value in the apply output, similarly
probability and cost contents result in the probability or cost corre-
sponding to the predicted target value. The node id content is specific
to rules-based models such as decision tree that use a specific tree
node or rule for making a prediction. When node id content is speci-
fied, the node id that produced the prediction is provided in the
apply result. Node id is useful to show why a given prediction was
made.

Probability

Attriter Non-
Attriter

Non-Attriter

Predicted

Actual

Non-Attriter

Non-AttriterAttriter

Attriter

Attriter

Top
Prediction

0.30

0.7 $50
= $30

0.3 $150
= $45

0.70
0 (TP)

0 (TN)$50 (FP)

$150 (FN)

Cost

(a) (b)

Figure 8-8 Prediction Costs. (a) Computation of costs based on the (b) specified
cost matrix.

javax.datamining
Enum

ClasssificationApplyContent

predictedCategory

probability

cost

nodeld

ClasssificationApplyContent

clusterIdentifier

probability

qualityofFit

distance

RegressipnApplyContent

predictedValue

confidence

Figure 8-9 Apply contents.

8.1 Object Modeling of Data Mining Concepts 183

For regression models, JDM defines two possible contents:
predicted value and confidence. Unlike classification, regression predicts
a continuous value. It provides a confidence level associated with the
predicted value indicating the prediction quality. Generally, the more
narrow the confidence band, the more accurate the prediction. Confi-
dence values are represented as a percentage value or as a value
between 0 and 1, where 1 is the highest confidence and 0 the lowest.
For more details about confidence, refer to [Wikipedia-Confidence
2006].

For clustering models, JDM defines four possible contents: cluster
identifier, probability, quality-of-fit, and distance. The clustering apply
operation computes one or more of these contents for each case and
cluster combination. For example, when a clustering model has three
clusters, the apply operation can compute the probability, quality-of-
fit, and distance for each case with respect to each of the three clus-
ters. The cluster probability is a measure of the degree of confidence
by which a case belongs to a given cluster. The quality-of-fit indicates
how well a case fits the cluster. The distance indicates how “far” a
given case is from the cluster centroid.

Sections 9.4, 9.5, and 9.8 detail the use of these contents in apply
settings.

8.1.3 Models

A model object contains a compact representation of the knowledge
contained in the build data, providing details at the function and
algorithm level, as well as the build settings used to create the model.
Model is the base interface for all types of models. In JDM, each min-
ing function has an associated model object. A model may also con-
tain algorithm-specific representations implemented through the
base interface ModelDetail, which encapsulates algorithm-specific
details. For example, a model that is built using ClassificationSettings
with the decision tree algorithm has an instance of ClassificationModel
with TreeModelDetail. Here, the ClassificationModel instance provides
content that is common across all classification algorithms, such as
the attributes used by the model build, the target attribute used, and
the settings used to build the model. TreeModelDetail provides the
model details specific to the decision tree algorithm, such as the list of
tree nodes, their hierarchical structure, and node details like pre-
dicted target and probability.

184 Chapter 8 Design of the JDM API

Figure 8-10 depicts the class diagram of the model-related
objects. Each model has an associated BuildSettings object. A model
may have an associated ModelDetail object. The ModelSignature
object provides details of the attributes needed to apply the model.
ModelSignature is defined as a separate object because it can be
used as input to validate the attributes of the datasets supplied to
the apply and test operations. For example, the decision tree model
discussed in Section 7.1 uses Age and Savings Account Balance as
predictors and hence these attributes are considered part of the
model signature. When applying this model, these attributes
should be provided. In addition, ModelSignature can be used to cre-
ate a default instance of PhysicalDataRecord that can be used for
record apply—as used for real-time scoring. Refer to PhysicalDa-
taRecordFactory interfaces in [JDM11 2006] for more details about
the PhysicalDataRecord create options.

8.1.4 Test Metrics

The quality of supervised models is evaluated by generating metrics
based on comparing predicted target values with actual target val-
ues. These metrics provide valuable insight into how a model per-
forms relative to test data, as well as how a model compares with
other models.

javax::datamining
MiningObject

javax::datamining
BuildSettings

javax::datamining::base
ModelDetail

javax::datamining::base
Model

javax::datamining::base
ModelSignature

javax::datamining:attributeimportance
AttributeImportanceModel

javax::datamining::clustering
ClusteringModel

javax::datamining::association
AssociationModel

javax::datamining::supervised::classification
ClassificationModel

javax::datamining::supervised::regression
RegressionModel

javax::datamining::supervised
SupervisedModel

1

1

1

1

1 0..1

Figure 8-10 Model objects and their relationships.

8.1 Object Modeling of Data Mining Concepts 185

Figure 8-11 depicts the class diagram of the test metrics object
relationships. There are two types of test metrics: one for classifica-
tion and one for regression. TestMetrics is the base interface. Classifi-
cationTestMetrics contains the subobjects ConfusionMatrix, Lift, and
ReceiverOperatingCharacterics. The RegressionTestMetrics object con-
tains the various error metrics mentioned in Section 7.2.5. JDM
defines test metrics as a mining object that can be saved with a name
by the DME. This allows applications to manage test metrics inde-
pendently from the models or data that produced them and to com-
pare test metrics across models and over time.

8.1.5 Tasks

JDM defines a Task object to support the JDM operations for model
build, test, apply, compute statistics, as well as import and export.
Tasks can be executed synchronously or asynchronously in the
DME. In general, data mining operations can be long running, for
example, when scoring millions of records or building models
using compute-intensive algorithms. Applications can execute such
long running operations asynchronously to avoid blocking the
application. The Task object encapsulates the specification of input

javax::datamining::supervised

TestMetrics

javax::datamining::supervised::clasification

 ClassificationTestMetrics

javax::datamining::supervised::classification

 ConfusionMatrix

javax::datamining::supervised::classification

 Lift

javax::datamining::supervised::classification

 ReceiverOperatingCharacterics

javax::datamining::supervised::regression

 RegressionTestMetrics

111

0..1

0..1

0..1

Figure 8-11 Test metrics objects.

186 Chapter 8 Design of the JDM API

and output objects required to execute tasks in the DME. For
example, the BuildTask object is used to build a mining model and
takes data specifications, build settings, and the output model
name, among others, as arguments.

Figure 8-12 depicts the JDM task-related objects. For each opera-
tion, we define a specialized task object. TestTask is the common
superinterface for testing supervised model quality. ClassificationTest-
Task is used to test classification models and RegressionTestTask is
used to test regression models.

The ApplyTask object is used for the apply operation. The
DataSetApplyTask is used to perform apply on a dataset with many
cases, whereas the RecordApplyTask is used to perform the apply
operation for single case, enabling real-time scoring. From a design
perspective, JDM places apply functionality in a separate package to
enable conformance for DMEs as scoring engines.

The ComputeStatisticsTask object is used to compute the attribute
univariate statistics that are discussed in Section 3.1.2. This task takes
as input physical data and an optional logical data and produces per
attribute univariate statistics. The logical data attribute types can
influence the type of univariate statistics computed by the DME.

ExportTask and ImportTask objects are used to perform mining
object import to and export from a DME. These tasks are particu-
larly useful to export models and settings from a data mining solu-
tion development system and import them to a production
environment.

javax:datamining

MiningObject

javax::datamining::base

Task

javax::datamining::supervised::regression

RegressionTestTask

javax::datamining::supervised::classification

ClassificationTestTask

javax::datamining::task::

ComputeStatisticsTask

javax::datamining::task::apply

DatasetApplyTask
javax::datamining::task::apply

RecordsApplyTask

javax::datamining::task

BuildTask
javax::datamining::task

ImportTask
javax::datamining::task

ExportTask
javax::datamining::task::apply

ApplyTask
javax::datamining::supervised

TestTask

Figure 8-12 Task objects and their relationships.

8.2 Modular Packages 187

When a task is executed asynchronously, JDM provides ways to
retrieve task execution information from the DME using an Execu-
tionHandle object, which is returned to the client application. Using
an ExecutionHandle object, applications can monitor and control
task execution by using status retrieval and terminate methods. The
same task cannot be executed more than once concurrently to avoid
naming conflicts for the resulting objects. Once a task has com-
pleted, or terminated, it can be re-executed. However, the user
needs to remove any created objects prior to re-execution to avoid
naming conflicts.

8.2 Modular Packages

In JDM, we use Java packages to group collections of related classes
or interfaces with similar data mining functionality. Careful pack-
age design ensures that an API is easy to understand, adopt,
extend, maintain, and reuse. One of the challenges in defining a
standard Java Data Mining API is that not all vendors will support
all functions, algorithms, or features. Java packages provide an
effective way to modularize the API by mining functions and algo-
rithms so that vendors can choose the packages that they want to
implement.

Figure 8-13 depicts the package diagram and the relationships
between various JDM packages. The gray boxes highlight the pack-
age categories in JDM. Core packages contain classes with the
required API functionality. The mining function level packages are
organized one package per function. Similarly, algorithm level
packages are organized as one package per algorithm. Note that
there are two types of algorithm level packages: algorithm settings
and model details. Vendors who do not explicitly define algorithms
can ignore the implementation of either or both of these packages.
According to the JDM conformance requirements, a vendor can
selectively choose which mining functions and algorithms to imple-
ment. To be compliant with JDM, the core packages and at least one
mining function must be supported by the vendor product. For
applications to discover what a particular vendor supports, JDM
provides an API to discover DME capabilities. This API is discussed
in Section 8.8.

Based on the object relationships in the various packages, Java
packages will have implicit relationships; these dependencies are

188 Chapter 8 Design of the JDM API

shown as dotted arrows in Figure 8-13. For example, decision tree
model details package javax.datamining.modeldetail.tree depends on
the javax.datamining.rule package.

8.3 Connection Architecture

Most vendors offer the DME as a server component, where client
applications make an explicit connection to communicate with

Mining Algorithm Packages
Core Packages

Mining Function packages

Tasks Packages

uml package

javax::datamining::algorithm

naivebayes

uml package

javax::datamining::modeldetail

naivebayes

uml package

javax::datamining::modeldetail

feedforwardneuralnet

uml package

javax::datamining::algorithm

SVM

uml package

javax::datamining::modealdeatil

SVM

uml package

javax::datamining:algorithm::svm

classification

uml package

javax::datamining::algorithm::svm

regression

uml package

javax::datamining::modeldetail

tree

uml package

javax::datamining::algorithm

tree

uml package

javax::datamining:algorithm

kmeans

uml package

javax::datamining

data

uml package

javax::datamining

statistics

uml package

javax

datamining

uml package

javax::datamining

base

uml package

javax::datamining

resource

uml package

javax::datamining

task

uml package

javax::datamining::task

apply

uml package

javax::datamining

association

uml package

javax::datamining

supervised

uml package

javax::datamining

attributeimportance

uml package

javax::datamining

clustering

uml package

javax::datamining::supervised

classification

uml package

javax::datamining::supervised

regression

uml package

javax::datamining

rule

uml package

javax::datamining::algorithm

feedforwardneuralnet

Figure 8-13 JDM package dependency diagram.

8.3 Connection Architecture 189

the DME. For example, some database vendors offer data mining
capabilities where the DME is embedded in the database. Non-
database vendors provide the DME as a middle tier component that
accesses data from databases and file systems. How applications con-
nect to a DME depends on a vendor’s implementation choices. To
isolate vendor-specific dependencies, JDM uses a vendor-neutral
connector architecture that allows applications to connect to a DME
with interoperable code. Using the Java Naming and Directory Inter-
face (JNDI) and the factory method pattern, JDM isolates the vendor-
specific connection implementation. This section discusses the
details of the connection interfaces.

ConnectionFactory is the factory object that can create a Connection
object. The ConnectionFactory object has three overloaded getConnec-
tion methods. Each method supports a different type of DME con-
nection configuration. The getConnection(ConnectionSpec) method,
allows users to specify the DME location and authentication details
in a ConnectionSpec object to obtain a connection. In this approach,
the application must provide a ConnectionSpec object each time it
wants to obtain a connection. This would be suitable for applica-
tions where a user must log into the DME with credentials to do a
mining operation.

The getConnection(javax.resource.cci.Connection) method connects
to DMEs that support the J2EE Connector Architecture (JCA). In this
case, applications can use a DME’s JCA connection and supply it to
the getConnection method to obtain a JDM Connection object. This
approach is suitable for DMEs that provide JCA-based connections.

The third method, getConnection(), does not take any inputs from
the application. The ConnectionFactory holds the DME connection
details and creates a Connection object. This approach is suitable for
applications where the user does not need to provide DME details to
perform mining. Vendor products can support all three methods;
however, at least one of the getConnection methods must be
supported.

Figure 8-14 illustrates how a vendor, XYZ, might implement
connection-related interfaces using the factory method pattern.
Here, the ConnectionFactory interface provides getConnection meth-
ods to create a Connection object. Note that the XYZConnectionFac-
tory implements Serializable and Referenceable interfaces in addition
to the ConnectionFactory interface. This enables the connection fac-
tory object to register with a JNDI service, and applications can look
up the JNDI server to obtain the connection factory object in a

190 Chapter 8 Design of the JDM API

vendor-neutral way. Once the application gets access to the vendor-
specific ConnectionFactory, here the XYZConnectionFactory object, it
can instantiate a vendor-specific implementation of the Connection
object, that is, XYZConnection. This vendor-neutral DME connection
framework enables an application to interact with multiple DME
implementations.

8.4 Object Factories

In JDM, objects are defined as Java interfaces except for enumeration
and exception classes. A vendor must implement the JDM interfaces
to provide an implementation. All object factories inherit from a
common interface called Factory. Factory is defined as a marker inter-
face, that is an interface with no methods to distinguish the factory
objects from the other API objects. An application uses JDM object
factories, which are obtained through the Connection, to instantiate
mining objects. The Connection object serves as an abstract factory that
can create factory objects for any vendor-provided JDM interface
object. The getFactory method in Connection takes an object’s class
name as input and creates an associated factory object. For example,
to create a PhysicalDataSetFactory instance, users invoke getFac-
tory(“javax.datamining.data.PhysicalDataSet”). The abstract factory
pattern nicely hides the details of how the factory object is created by
the vendor-specific implementation.

Figure 8-15 depicts how a client application can create a
vendor-neutral object factory using the abstract factory pattern.

javax::datamining::resource
Connection

Connection dmeConn =
getConnection(...)

javax::naming
Referenceable

getReference () : Reference

java::10
Serializable

com::xyz::resource
XYZConnection

Creates

javax::datamining::resource
ConnectionFactory

getconnection (ConnectionSpec spec):
getconnection (Connection connection)
getconnection () : Connection

getconnection (ConnectionSpec spec):
getconnection (Connection connection)
getconnection () : Connection

com::xyz::resource
XYZConnectionFactory

...

...

Figure 8-14 XYZ vendors ConnectionFactory implementation details.

8.4 Object Factories 191

Note that the client application uses the vendor-specific Connection
instance to create a vendor-specific object factory. This enables
applications to connect to multiple vendor DMEs when developing
a data mining solution.

After the application creates an object factory using the connection,
it creates JDM objects using create methods provided in the factory
object. For example, to create a PhysicalDataSet object, users invoke the
create method in the PhysicalDataSetFactory object. Figure 8-16 depicts
PhysicalDataSetFactory-related objects. All other JDM objects follow the
same pattern to create JDM objects.

javax::datamining::resource
Connection

getFactory(String objectName) : Factory

com::vendorA::resource

VendorAConnection

getFactory(String objectName) : Factory

com::vendorB::resource

VendorBConnection

getFactory(String objectName) : Factory

com::vendorB::data

VendorBPhysicalDataFactory

com::vendorA::data

VendorAPhysicalDataFactory

com::client

ClientApplication

javax::datamining::data

PhysicalDataSetFactory

Creates_

Creates_

Uses_

Uses_

Figure 8-15 ObjectsFactory creation using Connection.

javax::datamining
Factory

javax::datamining::data

PhysicalDataSetFactory

create(String uri,boolean importMetaData) : PhysicalDataSet ...

Figure 8-16 PhysicalDataSetFactory.

192 Chapter 8 Design of the JDM API

8.5 Uniform Resource Identifiers for Datasets

Input data, in the form of build, test, or apply datasets, for data
mining can come in a wide variety of formats and locations. Struc-
tured data for data mining often comes from databases as tables or
views, but may also reside in a flat files in a file system in formats
like CSV, Excel file, etc. To support various formats and locations,
JDM defines a data location as a simple Uniform Resource Identifier
(URI) string. JDM recommends using a URI string in conformance
with the specification defined by RFC 2396: Uniform Resource Identifi-
ers (URI): Generic Syntax, amended by RFC 2732: Format for Literal
IPv6 Addresses in URLs.

For vendors who support data mining in the database, where the
database itself acts as the DME, users can specify the URI for data as
a table or view name, since the connection already authenticates and
connects the user to a database schema. Most database vendors sup-
port schemas within the database and remote database links; in those
cases they can use schemaName.tableName to identify tables or views
in other schemas. If a schema name is not specified, the data is con-
sidered to be in the user’s local schema.

For vendors who support data mining outside the database, but
mine data accessing from the database, users can leverage a JDBC
URL as the URI specification. Section 16.2.5 gives some examples of
these URIs. For vendors who support file input, users can leverage
the file URI, for example, file:///C:/DMData.

8.6 Enumerated Types

JDM uses type-safe enumerated types to define the possible values
for arguments and settings. For example, to list the possible values of
mining functions, JDM uses the javax.datamining.MiningFunction enu-
merated type. MiningFunction defines the following enumerated val-
ues that can be used in the API: association, attributeImportance,
classification, clustering, regression.

Enumerations are defined as classes to provide standard imple-
mentation for enumerations and also to be able to easily migrate to
the J2SE 5.0 Enum classes. Since JDM 1.0 and 1.1 must be compatible
with J2SE 1.4 and above, JDM does not use the J2SE 5.0 Enum and
other new language features. Instead, it defines a JDM-specific Enum
class that is compatible with J2SE 5.0.

8.6 Enumerated Types 193

Figure 8-17 illustrates the JDM Enum class diagram. Here
javax.datamining.Enum is an abstract base class for all the enumera-
tions defined in JDM. The Enum class has methods name(), equals(),
and compareTo(). The name() method is used to retrieve the name of
the enumeration. The Enum class overrides the Object.equals(obj)
method and does the comparison of this enumerated value with the
provided enumerated value. It returns true when both are equal;
otherwise it returns false. The compareTo(obj) method compares this
enumerated value with the provided enumerated value, it returns 0
when both the objects have same enumerated value. For more details
about these methods refer to [JDM11 2006].

Figure 8-17 also illustrates some JDM enumerations: MiningFunc-
tion, MiningTask, and MiningAlgorithm. These enumeration classes
have methods: values(), valueOf(name), and addExtension(name). For
MiningFunction the values() method returns an array of MiningFunc-
tion enumerations. The valueOf(name) method returns the Mining-
Function associated with the supplied name.

The method addExtension(name) is used to add vendor-specific
extensions to the JDM standard enumeration type. For example, it can
be used to add a vendor-specific mining function, say feature extraction
by calling addExtension(“featureExtraction”). This method adds feature-
Extraction as a MiningFunction at the end of the JDM standard enumera-
tion values. The addExtension method gives vendors the ability to add
new enumeration values to the existing standard Enum class at runtime.

javax::datamining
Enum

compare to (object obj) : int
equals (objects obj) : boolean

name () : String

javax::datamining
MiningFunction

association : MiningFunction

attributeImportance : MiningFunction

classification : MiningFunction

regression : MiningFunction

addExtension(string name) : void

values() : MiningFunction[]

valuesOf (String name) : MiningFunction

clustering : MiningFunction

javax::datamining
MiningAlgorithm

decisionTree : MiningAlgorithm

feedForwardNeuralNet : MiningAlgorithm

kMeans : MiningAlgorithm

naiveBayes : MiningAlgorithm

svmClassification : MiningAlogrithm
svmRegression : MiningAlogrithm

addExtension(String name) : void
values of(String name) : MiningAlgorithm
values() :MiningAlgorithm[]

javax::datamining
Mining Task

applyTask : MiningTask

buildTask : MiningTask

computeStatisticsTask : MiningTask

exportTask : MiningTask

importTask : MiningTask

addExtension(String name) : void
valueof(String name) : MiningTask
valueof() : MiningTask[]

testTask : MiningTask

Figure 8-17 JDM enumeration classes.

194 Chapter 8 Design of the JDM API

8.7 Exceptions

An exception is an event that occurs during the execution of a
program that disrupts the normal flow of instructions. Java provides
checked and unchecked exceptions. For checked exceptions, where
the application can take appropriate actions for anticipated errors,
JDM provides the javax.datamining.JDMException as the base class
that inherits from the standard Java exception. JDM provides sub-
classes of JDMException to allow specialized exception handling in
applications.

Unchecked exceptions result from unanticipated application
execution failure and may require stopping the application. For
unchecked exceptions, vendors may choose among several
options: throw standard Java RuntimeException objects, wrap these
exceptions as appropriate in JDMException or JDMRuntimeExcep-
tion objects, or throw the specific JDM subclass of a Java runtime
exception.

java::lang
Exception

javax::datamining
TaskException

javax::datamining
JDMException

java::lang
IllegalArgumentException

javax::datamining
JDMIllegalArgumentException

javax::datamining
InvalidURIException

javax::datamining
ConnectionFailureException

javax::datamining
IncompatibleSpecificationException

javax::datamining
InvalidObjectException

javax::datamining
DuplicateEntryException

javax::datamining
ObjectExistsException

javax::datamining
ObjectNotFoundException

javax::datamining
EntryNotFoundException

java::lang
UnsupportedOperationException

javax::datamining
JDMUnsupportedFeatureException

java::lang
RuntimeException

Figure 8-18 JDM exception classes.

8.7 Exceptions 195

To keep the number of JDMException and RuntimeException
subclasses relatively small, yet provide meaningful feedback to
applications and developers, JDM defines standard exception mes-
sages and error codes to support code portability. Vendors can
embed their specific error codes within the JDM exception-related
classes, as well as wrap other Java exceptions, as appropriate.

Figure 8-18 depicts the exceptions defined in the JDM API. Here
you can see JDM defines several specialized checked exceptions and
unchecked exceptions, also known as Runtime exceptions. All
checked exceptions inherit from the generic JDMException to enable
applications to catch either a generic exception or a specialized
exception. Table 8-1 details when these exceptions will be thrown in
the JDM API.

Table 8-1 JDM exceptions

Exception Description

ConnectionFailureException Thrown when the API client fails to connect to the DME. For
example, it is thrown either by the getConnection method of
ConnectionFactory or any method in Connection that is used for
communicating with the DME.

InvalidURIException Thrown when the user-supplied URI does not conform to the
vendor-supported format or the dataset specified by the URI is
not accessible.

IncompatibleSpecificationException Thrown when a method receives incompatible attributes. For
example, LogicalAttribute.setCategorySet method throws this
exception when a CategorySet object with string values is speci-
fied for a numerical type attribute.

InvalidObjectException Thrown when the given object is invalid. This exception
is a common superclass for further specialized exceptions,
such as ObjectExistsException that is thrown by the Connec-
tion.saveObject method when the specified object name already
exists in the DME. The ObjectNotFoundException is thrown
when the specified object does not exist in the DME. The
DuplicateEntryException is thrown when a duplicate entry is
added to an object; for example, a LogicalData object must
have unique names for its attribute. If a user adds a duplicate
named logical attribute, this exception is thrown. The
EntryNotFoundException is thrown by a method invocation
for the entry that does not exist in the object; for example,
LogicalData.getAttribute (attrName) throws this exception when
the specified attributeName does not exist in the LogicalData
object.

196 Chapter 8 Design of the JDM API

8.8 Discovering DME Capabilities

Since not all vendors support all mining algorithms and functions,
the JDM standard provides vendors the flexibility to adopt the stan-
dard without expanding their basic set of mining functions or algo-
rithms. However, having a standard that allows flexible feature
implementation poses challenges for writing interoperable applica-
tion code. To mitigate this, JDM provides the ability to discover DME
capabilities at runtime by defining a list of capabilities using enumer-
ation classes. For example, the capabilities of Connection are enumer-
ated using the ConnectionCapabilities enum. The ConnectionFactory
and Connection objects provide supportCapabilities methods to dis-
cover DME capabilities.

DME capabilities are broadly divided into three major types:
infrastructure capabilities, function and algorithm capabilities, and task
capabilities. Infrastructure capabilities include, for example, whether
the DME supports synchronous and asynchronous execution of the
tasks, the types of mining objects supported by the DME, and the
persistence options supported for mining objects by the DME.
Function capabilities include, for example, whether the CostMatrix is
supported for Classification. Algorithm capabilities include, for
example, whether tree node statistics output is supported by the
decision tree algorithm implementation.

Applications can check function and algorithm capabilities sup-
ported by a DME before using them, especially if application
designers want to run such applications across multiple vendor
DME implementations. To this end, the factory object associated

Exception Description

TaskException Thrown when there is failure in task execution or execution
status retrieval methods.

JDMIllegalArgumentException Thrown when the given method arguments are not valid. For
example, when the user gives a mining object name longer
than the supported name length, this exception is thrown.

JDMUnsupportedException Thrown when the application calls the methods that are not
supported by a JDM implementation. For example, if a JDM
implementation does not support the cost matrix capability for
a classification function, the cost matrix–related methods
would throw this exception.

Table 8-1 JDM exceptions (continued)

8.9 Summary 197

with each function and algorithm typically provides one or more
supportsCapability methods to discover DME capabilities. For exam-
ple, to discover the capabilities of a decision tree implementation,
invoke the supportCapability(TreeCapability) method in the TreeSet-
tingsFactory object. Here, TreeCapability is the enumeration that lists
the decision tree capabilities supported by a DME.

Applications can also check the task capabilities supported by a
DME. Specifically, applications can discover whether a particular
task is supported for a specific function, algorithm, or for a function
and algorithm pair, for example whether the apply task is supported
for the k-means algorithm of the clustering function. JDM also
defines optional capabilities at each task level, for example, whether
the BuildTask supports specification of validation data that is used as
part of the model build operation.

8.9 Summary

The JDM standard defines Java interfaces to enable application
designers and developers to develop comprehensive data mining
solutions that are also portable across multiple DMEs. JDM objects
are primarily divided into data specification, settings, model, task
and test metrics. For each mining function and algorithm, we define
separate packages, which also contain related objects. Since vendors
will not typically implement all JDM features, conformance to the
standard is a la carte, allowing a vendor to choose among a subset of
features. JDM provides the ability to explore the capabilities of a
DME at runtime to implement portable code.

References

[Gamma+ 1994] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software,
Reading, MA, Addison-Wesley Professional Computing Series, 1994.

[JDM11 2006] Java Data Mining 1.1 specification and API Java documen-
tation, http://jcp.org/aboutJava/communityprocess/mrel/jsr073.

[JDMSpec] JDM 1.0 Standard Specification, http://www.jcp.org/
aboutJava/communityprocess/final/jsr073/index.html.

[Wikipedia-Confidence 2006] http://en.wikipedia.org/wiki/Confidence
_Interval.

[OMG_UML 2006] Unified Modeling Language, http://www.uml.org.

199

Chapter

9
Using the JDM API

Data mining has become a must-have element of enterprise analytics.
However, there are many obstacles to broaden inclusion of data

mining in everyday operational business intelligence (BI).

––From a Seth Grimes article Intelligent Enterprise Magazine [IEM, 2004]

One of the obstacles to operationalizing data mining in a business
intelligence (BI) solution is not having a standard framework or effec-
tive application programming interface (API). JDM addresses this
obstacle by defining a standard API to enable data mining function-
ality in BI solutions. This chapter focuses on how to use the JDM API
to develop vendor-neutral data mining solutions.

We extend the discussion of JDM object design in Chapter 8 with
details of object methods and their use. Further, we provide code
samples for the problems discussed in Chapter 7 to explain function-
specific and algorithm-specific JDM interfaces. Part III carries this
one step further by providing more detailed code examples to
develop various data mining solutions and tools. This chapter is
important to understand JDM at the code level.

Although core JDM interfaces are used irrespective of the data
mining problem type, other JDM interfaces are very much tied to
the specific data mining problem. This chapter begins with the
details of the JDM core API functionality, such as connecting to the

200 Chapter 9 Using the JDM API

DME, exploring the DME metadata and capabilities, creating and
maintaining object factories, and using JDM enumerations, data
specifications, and base settings interfaces. Later in this chapter, we
explain the use of function level interfaces with code examples.

In JDM, javax.datamining is the base package. All JDM interfaces
and classes are declared either in this package or its subpackages. In
this chapter, we refer to the JDM packages, interfaces, and classes
using relative path names. For example, the interface javax.datamining.
base.Model is referred to as base.Model.

9.1 Connection Interfaces

Connecting to the data mining engine (DME) is the first step in a
JDM application to establish communication between the API and
the DME. The DME connection-related interfaces are declared under
the resource package. A brief description of these interfaces is pro-
vided in Table 9-1.

In the previous chapter, Section 8.3 briefly introduced different
ways to establish a DME connection using three different getCon-
nection methods declared in the resource.ConnectionFactory interface.
In this section, we extend that discussion with the comprehensive
details about all the connection-related interfaces, their methods, and
their use.

Table 9-1 javax.datamining.resource package interfaces and classes

Interfaces

ConnectionFactory Used to create a DME Connection using one of the getConnection methods.

ConnectionSpec Used to specify DME location, authentication, and locale information.

Connection Used to communicate with the DME. In addition, it provides methods to create
object factories, manage objects, and execute mining tasks.

ConnectionMetaData Provides DME metadata, such as DME and JDM version information.

Classes

ConnectionCapability Enumeration of the various DME connection capabilities.

PersistenceOption Enumeration of persistence options of named objects.

9.1 Connection Interfaces 201

9.1.1 Using the ConnectionFactory Interface

The resource.ConnectionFactory interface implementation is DME-
specific, because each DME may differ in the way it establishes a
connection to the DME. To write a DME-independent application,
JDM recommends that the ConnectionFactory object implement the
javax.naming.Referenceable and javax.io.Serializable interfaces, so that it
can be registered with a JNDI directory. The DME-specific connection
factory must be created and preregistered with the JNDI directory
such that a JDM application can look up a vendor’s connection
factory object. Listing 9-1 illustrates how to get the JDM connection
factory from a JNDI registry. In this example, the ConnectionFactory
object is registered with the name “MyConnFactory” under the direc-
tory “java:comp/env/jdm”.

In practice, simple Java applications (non-J2EE) may not have a
JNDI directory in their application architecture. In those cases, the
vendor-specific ConnectionFactory class can be used. For example, the
Oracle implementation of JDM has the oracle.dmt.jdm.resource.Ora-
ConnectionFactory class that implements the JDM standard Connec-
tionFactory interface. Listing 9-2 illustrates the creation of the
ConnectionFactory object when JNDI is not available. In this example,
when the DMEVendor attribute is Oracle, it uses an Oracle-specific
constructor; when it is KXEN, it uses a KXEN-specific constructor.
Note that only ConnectionFactory creation requires vendor-specific
code; the rest of a JDM application can be implemented in a vendor-
neutral approach. Chapter 13 illustrates more examples of Connec-
tionFactory creation in specific tool and application scenarios.

Listing 9-1 Lookup ConnectionFactory object from JNDI

1. //Lookup ConnectionFactory
2. javax.datamining.resource.ConnectionFactory connFactory =
3. (ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyConnFactory");

Listing 9-2 Create ConnectionFactory based on the type of the DME

1. javax.datamining.resource.ConnectionFactory connFactory = null;
2. //Based on the DME Vendor create the ConnectionFactory
3. if(DMEVendor == "Oracle")
4. connFactory = new oracle.dmt.jdm.OraConnectionFactory();
5. else if (DMEVendor == "KXEN")
6. connFactory = new com.kxen.kxJDMImpl.ConnectionFactoryImpl();
7. else if . . .

202 Chapter 9 Using the JDM API

After getting the ConnectionFactory object, the DME Connection
can be created using one of the getConnection methods. Table 9-2
lists all the methods in the ConnectionFactory interface. The getCon-
nection() method that takes no arguments is used when the Connec-
tionFactory maintains the DME location and authentication details.
In this case, no connection specification is required to get the DME
Connection from the ConnectionFactory. The ConnectionSpec interface
is used to specify the connection details, such as the location of the
DME, user name, password, and client locale information. Table 9-3
lists all the methods declared in the ConnectionSpec interface.

Method getConnectionSpec() in the ConnectionFactory is used to get
the ConnectionSpec of the DME. If ConnectionSpec is not pre-specified
in the ConnectionFactory, the method getConnectionSpec returns an
empty ConnectionSpec object and the application can set appropriate
DME details using its set methods, as shown in Table 9-3. In this
example, the method getConnection(ConnectionSpec) is used to get a
Connection. Listing 9-3 shows the code example for this case. In line 2,
method supportsCapability is used to ensure that the JDM implemen-
tation supports the ConnectionSpec approach to get a connection
before using this method. JDM-compliant implementations can sup-
port one or more of the getConnection methods.

Method getConnection(javax.connector.cci.Connection) is used to
create a DME connection using the J2EE Connector Architecture (JCA)
JSR-16. The JCA is generally used by J2EE tools vendors and system
integrators to create resource adapters that support access to
enterprise information systems (EISs). These EISs can then be plugged
into any J2EE product [J2EE Tutorial 2006]. If a DME vendor sup-
ports a JCA-compliant connection interface, it can use the getConnec-
tion method that creates a wrapper JDM-compliant connection using
the specified javax.resource.cci.Connection.

Table 9-2

Method Description

getConnection() Used to get the connection in container managed
scenarios.

getConnection(ConnectionSpec) Used to get the connection with the caller specified
connection details.

getConnection(javax.resource.cci.Connection) Used to get the connection using the J2EE Connector
API client connection.

javax.datamining.resource.ConnectionFactory interface

9.1 Connection Interfaces 203

9.1.2 Using the Connection Interface

The JDM resource.Connection interface provides methods to create
and manage mining objects, execute mining tasks, and explore the
capabilities of the DME. Table 9-4 lists all the methods in the
Connection interface. In this table, the Connection interface methods

Method Description

getConnectionSpec() Used to get the ConnectionSpec object if it is already
specified in the getConnection method. If it is not
specified, this method returns a newly created Con-
nectionSpec instance.

supportsCapability(ConnectionCapability) Used to find the connection capabilities of the DME.
Returns true if the specified capability is supported.

Table 9-3 javax.datamining.resource.ConnectionSpec interface

Method Description

set/getURI(String) Used to set and get the location of the DME with which the API will
interact.

set/getUsername(String) Used to set and get the user name used to connect to the DME.

set/getPassword(String) Used to set and get the password used to connect to the DME.

set/getLocale(Locale) Used to get the locale information of the client so that the DME can use
language-specific settings and error messages.

Listing 9-3 Get the Connection using ConnectionSpec

1. //If getConnection(ConnectionSpec) supported by the DME
2. if(connFactory.supportsCapability(ConnectionCapability.connectionSpec)) {
3. //Get the empty connection spec from the factory
4. ConnectionSpec connSpec = connFactory.getConnectionSpec();
5. //Specify the connection details
6. connSpec.setURI("DMELocation");
7. connSpec.setUsername("user");
8. connSpec.setPassword("passwd");
9. //Get the DME Connection
10. Connection dmeConn = connFactory.getConnection(connSpec);
11. }

Table 9-2 (continued)

204 Chapter 9 Using the JDM API

are categorized as core and non-core. Users of the JDM API need
to be familiar with the core methods. Core methods are subdivided
into object management, task execution, and other core methods.
Non-core methods are subdivided among supports capability,
metadata, object listing, and load methods. All of the core and
most of the non-core methods are required to be supported by the
JDM implementations. In this section, we discuss the use of the
core methods. For more details about these methods, refer to
the Java API document provided by the JDM 1.1 specification
[JDM11 2006].

Table 9-4

Core Object Management Methods Description

getFactory(className):Factory Used to create the object factory for the specified object types.

saveObject(objName, MiningObject,
replaceFlag)

Used to save mining objects in the DME with the specified
name. The replaceFlag indicates whether the existing object
with the same name should be replaced.

setDescription(objName,
NamedObject, desc)

Used to set the description of the object with the specified name
and type. The mining object type is specified using the Named-
Object enumeration of all named JDM objects.

getDescription(objName,
NamedObject):String

Used to retrieve the description of the mining object by its
name and type.

removeObject(objName,
NamedObject):String

Used to remove the mining objects from the DME by its name
and type.

retrieveObject(objName,
NamedObject):MiningObject

Used to retrieve the mining objects from the DME by its name
and type.

doesObjectExist(objName,
NamedObject):boolean

Returns true when the specified mining object exists in the
DME.

renameObject(oldObjName,
newObjName, NamedObject)

Renames the mining object with the specified name.

Core Task Execution Methods Description

execute(Task, Long timeOut):
ExecutionStatus

Executes the task synchronously and returns after task
completion. This method returns the status of the execution
using the javax.datamining.ExecutionStatus object. If the task
does not complete by the specified timeOut in seconds, it will be
terminated and the method returns with the terminated
ExecutionStatus.

javax.datamining.resource.ConnectionFactory interface

9.1 Connection Interfaces 205

Core Task Execution Methods Description

execute(taskName):ExecutionHandle Executes the task asynchronously. It returns after submitting
the task for execution in the DME. This method returns an
ExecutionHandle to the caller, so that applications can track
task execution.

getLastExecutionHandle(taskName):
ExecutionHandle

A task can be executed multiple times. Using this method, the
last execution handle can be retrieved to track the latest execu-
tion of the specified task.

Other Core methods Description

getLocale() Returns the locale specified at the time of Connection
creation.

setLocale(Locale) Overrides the locale specified at the ConnectionFactory object.

close() Closes and releases all the resources used by the DME Connec-
tion. Applications should call this method when finished with a
JDM connection. Any non-persistent objects created using this
connection will not be usable once the connection is closed.

Support capabilities methods Description

getSupportedFunctions():
MiningFunction[]

Returns the list of mining functions supported by the connected
DME.

getSupportedAlgorithms
(MiningFunction):Algorithm[]

Returns the list of mining algorithms supported for the speci-
fied mining function by the connected DME.

getNamedObjects
(PersistenceOption):NamedObject[]

Returns the list of named objects that supports the specified
persistence option.

supportsCapability
(MiningFunction, Mining-
Algorithm, MiningTask):boolean

Returns true if the specified combinations of mining function,
algorithm, and task are supported.

supportsCapability
(NamedObject, Persistence-
Option):boolean

Returns true if the specified named object supports the specified
persistence option.

Metadata methods Description

getConnectionMetaData():
ConnectionMetaData

Returns the resource.ConnectionMetadata object containing
the DME and JDM version information.

getMaxNameLength(): int Returns the maximum length of the name supported for the
named object by the DME. Not all DMEs have the same name
limit.

getMaxDescriptionLength(): int Returns the maximum description length supported for the
named objects by the DME.

Table 9-4 (continued)

206 Chapter 9 Using the JDM API

Object list methods Description

getObjectNames(NamedObject):
Collection

Returns the object names of the specified named object type. If
the object type is not specified, it lists all the object names.

getObjectNames(createdAfter,
createdBefore,
NamedObject):Collection

Returns the object names in the specified type and time range.

getObjectNames(createdAfter,
createdBefore,
NamedObject, minorType):Collection

Returns the object names that match the query criteria for time
range, named object type, and a minor type. Minor type is used
to further filter names. For example, using MiningFunction as
minor type, one can list function-specific build settings object
names, such as classification settings names.

getModelNames(MiningFunction,
MiningAlgorithm, createdAfter,
createdBefore):Collection

Returns the collection of model names with the specified min-
ing function and/or algorithm in the specified time range.

getCreationDate(objName, Named
Object):Date

Returns the creation date of the specified object.

retrieveObjects(NamedObject):
Collection

Retrieves the mining objects with the specified named object
type.

retrieveObjects(createdAfter, created-
Before, NamedObject): Collection

Retrieves the mining objects with the specified named object
type and the time range.

retrieveObjects(createdAfter,
createdBefore, NamedObject,
minorType): Collection

Retrieves the mining objects that match the query criteria for
time range, named object type and a minor type.

retrieveModelObjects(Mining-
Function, MiningAlgorithm, created-
After, createdBefore): Collection

Retrieves the models with the specified mining function, algo-
rithm and time range.

Load methods Description

requestDataLoad(dataURI) Some DMEs require explicit data loading before using the data
for mining. This method is used to load the data.

requestDataUnload(dataURI) Used to unload the data.

getLoadedData(): String[] Lists all the loaded data.

requestModelLoad(modelName) Some DMEs require explicit loading of the model before using
it for applying and exploring. This method is used to load the
model.

requestModelUnload(modelName) Used to unload the model.

getLoadedModels(): String[] Lists all the models loaded into the DME.

Table 9-4 (continued)

9.1 Connection Interfaces 207

Listing 9-4 gives the JDM code example that builds a classification
model for the customer attrition problem discussed in Section 7.1. The
CustomerAttrition class (line 6) builds a classification model called the
attrition_model using customers in CUSTOMERS_BUILD_DATA as
input data and the default classification settings. This class has four
methods: init, input, run, and output. The init method (line 29) creates
the DME connection and the object factories. The input method (line
41) creates and saves input object(s). The run method (line 49) exe-
cutes the task(s) and returns true if the tasks are successfully com-
pleted; otherwise it returns false. The output method (line 60) retrieves
the output object(s). Lastly, the reset method (line 65) removes the out-
put object(s) to reset the DME environment. In this chapter, we use
the CustomerAttrition Java class to illustrate the code for the JDM core
API and the classification-specific API. Listing 9-4 illustrates the use
of the Connection interface core methods.

The init method omits Connection creation code since it was intro-
duced in Section 9.1.1, but illustrates using Connection.getFactory to
create factory objects for the PhysicalDataSet, ClassificationSettings
input objects, and the BuildTask object. The input method instantiates
and saves input objects, as shown in lines 41 to 46. Objects are cre-
ated using the corresponding factory’s create method, and saved
using the Connection.saveObject method. The saveObject method takes
a boolean flag replaceExistingObject as an argument to control
whether to replace an existing object with the new one. In the exam-
ple, this flag is set to true to replace an existing object with the same
name. Based on application requirements, this flag can be set to false;
in this case, when there is an object name conflict the saveObject
method throws ObjectExistsException.

The run method creates a BuildTask object using the BuildTaskFac-
tory.create method (line 50). This method takes the names of the input
objects as arguments to create a task, namely, attritionBuildData, attri-
tionBuildSettings, and the name of the output object: attritionModel.
The Connection.execute method (line 53) executes the build task syn-
chronously; the next section details task execution and monitoring.
The output method uses the Connection.retrieveObject method to get
the model from the DME.

Listing 9-4 CustomerAttrition example class that illustrates the use of the Connection interface
 core methods

1. import javax.datamining.data.*;
2. import javax.datamining.supervised.classification.*;
3. import javax.datamining.task.*;

208 Chapter 9 Using the JDM API

4. import javax.datamining.resource.*;
5. /** This class build a classification model with default settings */
6. public class CustomerAttrition {
7. //Data members
8. static ConnectionFactory connFactory = null;
9. static Connection dmeConn = null;
10. static PhysicalDataSetFactory pdsFactory = null;
11. static PhysicalAttributeFactory paFactory = null;
12. static ClassificationSettingsFactory clsFactory = null;
13. static BuildTaskFactory btkFactory = null;

14. //Main method
15. public static void main(String args[]) throws Exception {
16. CustomerAttrition attrition_model = new CustomerAttrition();
17. try { attrition_model.reset() } catch(Exception anyCleanupFailures) {}//Ignore
18. try {
19. attrition_model.init(); //Create object factories
20. attrition_model.input(); //Create input objects
21. if(attrition_model.run()) //Execute model build task
22. attrition_model.output(); //Retrieve the model
23. } catch(Exception anyFailures) { anyFailures.printStackTrace();
24. } finally { if(dmeConn != null) dmeConn.close(); //Close connection
25. }
26. }

27. //Create object factories using the DME connection
28. public void init() throws JDMException {
29. //Create DME connection as shown in Listing 9.1 or 9.2
30. // . . .
31. //Create object factories for the objects in this example
32. pdsFactory = (PhysicalDataSetFactory)dmeConn.getFactory(
33. "javax.datamining.data.PhysicalDataSet");
34. clsFactory = (ClassificationSettingsFactory)dmeConn.getFactory(
35. "javax.datamining.supervised.classification.ClassificationSettings");
36. btkFactory = (BuildTaskFactory)dmeConn.getFactory(
37. "javax.datamining.task.BuildTask");
38. }

39. //Create and save input objects for build task
40. public void input() throws JDMException {
41. PhysicalDataSet pds = pdsFactory.create("CUSTOMERS_BUILD_DATA", false);
42. ClassificationSettings cls = clsFactory.create();
43. cls.setTargetAttributeName("Attrition");
44. boolean replaceExistingObject = true;
45. dmeConn.saveObject("attrition_build_data", pds, replaceExistingObject);
46. dmeConn.saveObject("attrition_build_settings", cls, replaceExistingObject);
47. }

48. //Create build task and execute it to build model
49. public boolean run() throws JDMException {
50. BuildTask btk = btkFactory.create("attrition_build_data",
51. "attrition_build_settings", "attrition_model");
52. Long timeOut=null;//Run until completion

9.1 Connection Interfaces 209

9.1.3 Executing Mining Operations

The Connection interface has two execute methods, one used for
synchronous task execution and another used for asynchronous task
execution. Listing 9-4 uses the synchronous execution in the run
method: Connection.execute(Task, timeOut) (line 53). This method
returns the status of task execution only after the task finishes execu-
tion in the DME. In line 52, the timeOut argument value is specified
as null to indicate that the code will block until the task finishes
execution, ending in either success or failure. However, one can
specify a maximum task duration in seconds. If task execution is not
completed by the specified timeOut period, it will be terminated and
the execute method returns, putting the task in a terminated state.
Often, synchronous execution will be used for short running tasks,
such as a record apply task where the apply results can be obtained
in real-time.

Listing 9-5 shows the asynchronous version of this example using
the attritionBuildTask and the method Connection.execute(taskName)
(line 5). This method takes the name of a task saved in the DME (line
4) before invoking the execute method. This method returns an Execu-
tionHandle object that is used to monitor the task execution in the
DME. To get task execution status, the application uses the getLatest-
Status method (line 7). Table 9-5 and Table 9-6 list the methods of the
ExecutionHandle and ExecutionStatus interfaces, respectively. Appli-
cations either can wait for the completion of an asynchronous task
using the ExecutionHandle.waitForCompletion method (line 10) or can
check the status as needed using the ExecutionHandle.getLatestStatus

53. ExecutionStatus status = dmeConn.execute(btk, timeOut);
54. if(ExecutionState.success.equals(status.getState()))
55. return true;
56. else
57. return false;
58. }

59. //Retrieve built model
60. public void output() throws JDMException {
61. ClassificationModel clsModel = (ClassificationModel)dmeConn.retrieveObject(
62. "attrition_model", NamedObject.model);
63. }
64. //Remove the model to be able to reexecute this example
65. public void reset() throws JDMException {
66. dmeConn.removeObject("attrition_model", NamedObject.model);
67.)

210 Chapter 9 Using the JDM API

method. Both methods return an ExecutionStatus object that is used to
get the execution state using the getState method. Figure 9-1 shows the
possible state transitions for task execution. When a task is executed,
it starts in the submitted state to indicate that the task is successfully
submitted to the DME for execution. Based on the DME implementa-
tion, the task execution can be queued or executed immediately.
When the task begins execution, it enters the executing state and
remains there until completion. When execution successfully com-
pletes, the execution status enters the success state, otherwise it enters
the error state. Using the ExecutionHandle.terminate method, a task can
be terminated when it is in either the submitted or executing states.
When the terminate method is invoked, the task enters the terminating
state, and after successful termination, it enters the terminated state.

The ExecutionStatus object encapsulates execution state entry time,
and any description or warnings associated with the state. A JDM
implementation can add implementation-specific states, for example,
a queued state between the submitted and executing states, etc.

Listing 9-5 Asynchronous execution of the task and monitoring of task execution

1. public boolean run() throws JDMException {
2. BuildTask btk = btkFactory.create("attritionBuildData",
3. "attritionBuildSettings", "attrition_model");
4. dmeConn.saveObject("attrition_build_task", btk, true);
5. ExecutionHandle btkExecHandle = dmeConn.execute("attrition_build_task");
6. //Get the status of the execution
7. ExecutionStatus btkExecStatus = btkExecHandle.getLatestStatus();
8. System.out.println(btkExecStatus.getState());
9. int waitUntilCompletion=0;
10. ExecutionStatus status = btkExecHandle.waitForCompletion(waitUntilCompletion);
11. if(ExecutionState.success.equals(status.getState()))
12. return true;
13. else
14. return false;
15. }

Submitted Executing

Terminating

Error

Success

Terminated

Figure 9-1 Task execution state transition.

9.1 Connection Interfaces 211

9.1.4 Exploring Mining Capabilities

The Connection interface provides methods to explore the capabilities
of the DME, such as what functions, algorithms, and tasks are sup-
ported. Listing 9-6 adds the validation of supported capabilities to
the init method for the CustomerAttrition class. Line 5 uses the Connec-
tion.supportsCapability(MiningFunction, MiningAlgorithm, MiningTask)
method to validate whether the DME supports the classification
function and build task. Because we are not using any algorithm in
Listing 9-4, the MiningAlgorithm argument is specified as null.

Table 9-5 javax.datamining.ExecutionHandle interface

Methods Description

getLatestStatus(): ExecutionStatus Returns the latest ExecutionStatus for the task.

waitForCompletion(int timeoutIn-
Seconds): ExecutionStatus

Waits synchronously for the specified time until the task associ-
ated with the handle completes, either successfully, in error, or as a
result of termination.

getStatus(fromTimestamp):
java.util.Collection

Returns a collection containing a time-ordered set of Execution-
Status instances since the specified timestamp.

terminate(): ExecutionStatus Issues an asynchronous termination request for the executing task.

getStartTime(): java.util.Date Returns the timestamp when task execution began.

getDurationInSeconds():
java.lang.Integer

Returns the duration of execution for the associated task in
seconds.

containsWarning(): boolean Returns true if there were any warnings during the execution.

getWarnings():ExecutionStatus[] Returns an array of ExecutionStatus objects that contain
warnings.

Table 9-6 javax.datamining.ExecutionStatus interface

Methods Description

getState(): returns ExecutionState Returns the ExecutionState of the task at a point in time.

getTimestamp(): returns java.util.Date Returns the timestamp of when a given ExecutionStatus
instance was created.

getDescription(): returns String Used to set the description of the object with the specified name
and type. Mining object type is specified using the Named
Object enumeration of named JDM objects.

containsWarning(): returns boolean Returns true if there is a warning reported in this Execution-
Status instance.

212 Chapter 9 Using the JDM API

Recall that Table 9-4 lists all support capabilities methods in the
Connection interface for your reference. These methods can be used
by applications to validate a DME’s capabilities before actually using
them to ensure application portability across JDM implementations.
Application designers determine how to check capabilities. For
example, an application can check all capabilities required immedi-
ately after connecting to the DME, or can check capabilities just
before using them.

9.1.5 Finding DME and JDM Version Information

Applications may need to find DME and JDM version information to
use capabilities based on a vendor product version. JDM supports the
retrieval of this information using the Connection.getConnectionMeta-
Data method. This method returns an object called resource.Connec-
tionMetaData that encapsulates DME and JDM version information.
Table 9-7 lists the methods in resource.ConnectionMetaData.

Listing 9-6 Explore DME-supported capabilities

1. public void init() throws JDMException {
2. //Create DME connection as shown in Listing 9.1 or 9.2
3. . . .
4. //validate required capabilities to execute this program
5. boolean capabilitiesExist =
 dmeConn.supportsCapability(MiningFunction.classification, null, MiningTask. build);
6. if(!capabilitiesExist) //If required capabilities doesn't exist throw exception
7. . . .
8. //Create object factories for the objects in this example
9. . . .
10.}

Table 9-7

Methods Description

getVersion(): String Returns the version of the JDM standard is supported by the
connected DME.

getProviderVersion(): String Returns the version of the connected DME. It is typically the
provider’s product version.

getProviderName(): String Returns the JDM implementation product/provider name.

javax.datamining.recorce.ConnectionMetaData interface

9.2 Using JDM Enumerations 213

9.1.6 Object List Methods
The Connection interface defines methods to list the objects available
to the DME and stored in the mining object repository (MOR). These
methods allow applications to explore the contents of the DME and
MOR. Table 9-4 shows the object list methods. Applications use these
methods—along with different filtering criteria, such as object type,
creation dates, etc.—to get either the names of the objects or the
objects themselves.

9.1.7 Model and data load methods
The Connection interface defines optional load methods that are used
to pre-load data and models to the DME. In general, explicit loading
is not required, however some DME implementations provide an
explicit option to load model and/or data to cache them in memory
for better performance.

9.2 Using JDM Enumerations
Section 8.6 discussed the design of JDM Enum classes. In this section,
we explore methods of the common abstract superclass for JDM enu-
merations (javax.datamining.Enum) and methods of the enumeration
classes.

Table 9-8 shows the MiningFunction enumerated values and the
instance methods declared in the base Enum class and the static
members declared in the MiningFunction enumeration class. Note
that MiningFunction defines the enumerated values as static data
members that can be referenced with the class name. For example,
MiningFunction.classification can be used to specify the classification
mining function.

The javax.datamining.Enum class provides common methods
implementations for name, equals, and compareTo; these are described
in Table 9-8. The MiningFunction class provides enumeration-specific
method implementations, such as values, valueOf and addExtension
methods as described in Table 9-8.

Methods Description

getMajorVersion(): int Returns the major version number. For the JDM1.1, it must be 1.

getMinorVersion(): int Returns the minor version number. For the JDM1.1, it must be 1.

Table 9-7 (continued)

214 Chapter 9 Using the JDM API

9.3 Using Data Specification Interfaces

The javax.datamining.data package contains all the data specification-
related interfaces. Table 9-9 lists the object interfaces and enumera-
tions under this package used to specify physical and logical data
specifications. This package also contains the object factory inter-
faces, which are not listed in this table. In subsequent sections of this
chapter factory interfaces will not be included, because they are
similar in structure. For example, the PhysicalDataSet interface has an
associated object factory called PhysicalDataSetFactory; similarly,
other objects have associated factories in the respective packages.

Table 9-8 javax.datamining.MiningFunction enum

javax.datamining.MiningFunction extends javax.datamining.Enum

Data Members

static MiningFunction association;

static MiningFunction attributeImportance;

static MiningFunction classification;

static MiningFunction clustering;

static MiningFunction regression;

Enum instance Methods Description

name(): String Returns the name of the enumeration value.

Equals(java.lang.Object obj):boolean Performs a shallow comparison to check if the enumera-
tion is the same as the specified enumeration.

compareTo(java.lang.Object obj): int Compares this object with the specified object for order.
Returns the difference between this object and the com-
pared object. Returns 0 if the two objects are the same
object, otherwise returns a non-zero number

MiningFunction static methods Description

static values(): MiningFunction[] Returns a list of all the defined MiningFunction
enumerations.

static valueOf(String name): MiningFunction Returns an instance of MiningFunction corresponding
to the specified name.

static addExtension(java.lang.String name):
void

Adds a vendor extension name to MiningFunction.

9.3 Using Data Specification Interfaces 215

Table 9-9 javax.datamining.MiningFunction enumerations

javax.datamining.data package

Physical data specification related interfaces

PhysicalDataSet A PhysicalDataSet instance describes data for mining. It encapsulates data loca-
tion and access information. It can have a set of physical attributes that describe
the physical nature of the data, such as attribute name, data type, and role.

PhysicalAttribute A PhysicalAttribute instance describes an attribute of a physical data source.

PhysicalDataRecord A PhysicalDataRecord instance represents a set of attribute name-value
pairs and enables singleton record scoring. Users can set specific values for
PhysicalAttribute instances.

Logical data specification related interfaces

LogicalData A LogicalData instance is a set of logical attributes that describes the logical
nature of the data used as input for model building.

LogicalAttribute A LogicalAttribute instance describes the data to be used as input to data
mining operations. As such, a logical attribute references additional metadata
that characterizes the attribute as either categorical or numerical.

CategorySet A CategorySet instance specifies a set of categorical values that constitute a
categorical attribute, cost matrix, or confusion matrix. Each category exists at
an index from 0 to N�1, where N is the cardinality of the set. To have NULL be
a valid value, it must be explicitly assigned or use the default property of
“valid”. To have NULL as a missing value, it must be explicitly identified as
“missing” using the CategoryProperty enumeration.

Data related enumerations

AttributeDataType AttributeDataType enumerates the JDM data types: integer, double, and string.

PhysicalAttributeRole A role defines how an algorithm or mining operation will interpret the values of
an attribute. PhysicalAttributeRole enumerations include case id, transactional
data attribute roles, and taxonomy-related attribute roles.

AttributeType AttributeType enumerates the options for indicating how an attribute is to be
interpreted by mining algorithms. For example, an attribute whose values are
integers may be treated as categorical instead of the default numerical.

DataPreparationStatus DataPreparationStatus enumerates the data preprocessing options for an
attribute: either prepared or unprepared. For example, to indicate that the
attribute needs no further preprocessing steps, the user can specify the attribute
as prepared.

CategoryProperty CategoryProperty enumerates the types of categorical attribute values, i.e.,
categories. For example, it can be used to specify whether the attribute NULL
values are treated as valid, invalid, missing, or error.

216 Chapter 9 Using the JDM API

Recall that in Listing 9-4 we use the simple data specifications,
where the data location is specified and all vendor defaults for the
data specification are accepted. However, in practice data specifica-
tions involve the specification of attribute roles, attribute types, data
preparation requirements, and attribute usage types that we dis-
cussed in Section 7.1.

Listing 9-7 extends the code in Listing 9-4 with additional data
specifications such as the physical data that specifies the case id
role for the cust_id attribute, logical data that specifies the valid
values, and data preparation status for marital status. The init and
input methods in Listing 9-7 create PhysicalAttribute, LogicalData,
CategorySet, and LogicalAttribute objects to specify these additional
settings. Lines 10 to 17 create the object factories associated with
these objects. Lines 22 and 23 create the physical attribute object
for the cust_id attribute, which has the integer data type and a role
of case id to uniquely identify each customer case. Line 26 creates
the LogicalData object and line 27 creates the LogicalAttribute object
that specifies the name as Marital Status and attribute type as
categorical.

The DME uses the implementation-specific defaults for the
attributes that don’t have an associated logical attribute. In this sim-
ple example, only the marital status attribute has a logical specifica-
tion; however, in practice more or all attributes may have logical
specifications. Lines 30 to 35 show the category set creation that spec-
ifies the valid values of the marital status attribute: married, single,
divorced, and widowed. A category set is an optional logical specifi-
cation for categorical attributes to inform the model build operation
of valid, missing, and invalid category values. When there is no cate-
gory set specification, algorithms use the JDM implementation
defaults to identify missing values. For example, null values are typi-
cally interpreted as missing. Unless otherwise specified, all values of
an attribute are typically considered valid.

In this example, the logical data object is saved with name
attrition_logical_data and is associated with the build settings object
using the setLogicalDataName method as shown in line 42. In the
build task, the physical dataset attributes can be explicitly mapped to
the logical data attributes as shown in lines 49 to 51. This mapping
allows the build operation to know which logical attribute specifica-
tions are associated with which physical attribute. If not explicitly
mapped, attribute name equivalence is used to associate physical
attributes to logical attributes.

9.3 Using Data Specification Interfaces 217

Listing 9-7 Specify PhysicalDataSet and LogicalData for the input dataset
1. static PhysicalAttributeFactory paFactory = null;
2. static LogicalDataFactory ldFactory = null;
3. static LogicalAttributeFactory laFactory = null;
4. static CategorySetFactory csFactory = null;
5.
6. public static void init() throws JDMException {
7. //Create DME connection other object factories as shown in Listing 9.4
8. //. . .
9. //Create object factories for the new objects not specified in listing 9.4
10. paFactory = (PhysicalAttributeFactory)dmeConn.getFactory(
11. "javax.datamining.data.PhysicalAttribute");
12. ldFactory = (LogicalDataFactory)dmeConn.getFactory(
13. "javax.datamining.data.LogicalData");
14. laFactory = (LogicalAttributeFactory)dmeConn.getFactory(
15. "javax.datamining.data.LogicalAttribute");
16. csFactory = (CategorySetFactory)dmeConn.getFactory(
17. "javax.datamining.data.CategorySet");
18. }
19. //Create input objects
20. public static void input() throws JDMException {
21. . . .
22. PhysicalAttribute paCustID = paFactory.create(
23. "cust_id", AttributeDataType.integerType, PhysicalAttributeRole.caseId);
24. pds.addAttribute(paCustID);
25.
26. LogicalData ld = ldFactory.create();
27. LogicalAttribute la = laFactory.create("Marital Status",
28. AttributeType.categorical);
29. //Create categoryset
30. CategorySet cs = csFactory.create(AttributeDataType.stringType);
31. cs.addCategory("Married", CategoryProperty.valid);
32. cs.addCategory("Single", CategoryProperty.valid);
33. cs.addCategory("Divorced", CategoryProperty.valid);
34. cs.addCategory("Widowed", CategoryProperty.valid);
35. //Set category set and data preparation status
36. la.setCategorySet(cs);
37. la.setDataPreparationStatus(DataPreparationStatus.prepared);
38. //Add logical attribute
39. ld.addAttribute(la);
40. boolean replaceExistingObject = true;
41. dmeConn.saveObject("attrition_logical_data", ld, replaceExistingObject);
42. cls.setLogicalDataName("attrition_build_logical_data");
43. . . .
44. }
45. //Create build task and execute it to build model
46. public boolean run() throws JDMException {
47. BuildTask btk = btkFactory.create("attrition_build_data",
48. "attritionBuildSettings", "attrition_model");
49. HashMap pdaLdaMap = new HashMap();
50. pdaLdaMap.put("mar_status", "Marital Status");
51. btk.setBuildDataMap(pdaLdaMap);
52. . . .
53. }

218 Chapter 9 Using the JDM API

9.4 Using Classification Interfaces

The javax.datamining.supervised.classification package contains classifi-
cation function interfaces, such as ClassificationSettings, Classification-
Model, ClassifiationApplySettings, ClassificationTestMetrics, etc. This section
illustrates the use of the classification interfaces and methods by extend-
ing the CustomerAttrition example in Listing 9-4, which illustrated a
simple classification model build using DME default settings. In this
section, we extend this code to illustrate advanced classification settings,
algorithm settings, model contents, and model evaluation. We also
provide code to apply the model to identify customers likely to attrite, in
line with the customer attrition problem discussed in Section 7.1.

9.4.1 Classification Settings

The ClassificationSettings interface allows us to specify outliers, prior
probabilities, a cost matrix, and various types of classification algo-
rithms. Table 9-10 lists the methods of the ClassificationSettings,
SupervisedSettings, and BuildSettings interfaces. BuildSettings is the
base interface for all function level settings that provide common
methods across all mining functions. SupervisedSettings inherits from
BuildSettings to specify supervised function-specific settings, such as
the target attribute name. ClassificationSettings inherits from Super-
visedSettings to specify classification-specific settings.

Listing 9-8 illustrates the use of the classification settings methods
to specify outliers and a cost matrix. Lines 5 and 6 show the specifi-
cation of outliers for the capital gains attribute using the setOutlierI-
dentification and setOutlierTreatment methods of the BuildSettings. The
outlier identification is used to set the valid value range for capital
gains ($2,000 to $1,000,000). The outlier treatment option is used to
specify how algorithms must treat outliers; in this example, outliers
are treated as missing values. Lines 8 to 12 show the creation and set-
ting of the prior probabilities for the Attrite target attribute values;
Attriters are 20 percent and Non-attriters are 80 percent in the original
dataset. Lines 14 to 24 show the creation of the cost matrix discussed
in Section 7.1.4. The CostMatrixFactory.create method creates the
default cost matrix using a given CategorySet object, with a cost value
“1” for all nondiagonal cells and value “0” for all diagonal cells of
the matrix. Using the CostMatrix.setCellValue method, an application
can override the default cost values. In this example, as shown in
lines 20 and 21, cost value is set to $150 for a false negative and $50
for a false positive. Recall that the cost matrix can be reused across

9.4 Using Classification Interfaces 219

algorithms since it is a named object. In this example, we named the
cost matrix attrition_cost_matrix and set it as input to the model build
using the ClassificationSettings.setCostMatrixName method.

Table 9-10 javax.datamining.supervised.classification.ClassificationSettings
interfaces

supervised.classification.ClassificationSettings extends supervised.SupervisedSettings

Methods Description

set/getPriorProbabilitiesMap(attrName,
priorsMap)

Used to set/get the map of prior probabilities between
attribute values and their prior probabilities per
attribute.

usePriors(boolean usePriors) Control the use of priors for the target attribute.

set/getCostMatrixName(costMatrixName) Used to set/get the name of a cost matrix that measures
the cost of incorrect predictions.

supervised.SupervisedSettings extends base.BuildSettings

Methods Description

set/getTargetAttributeName(attributeName) Used to set/get the target attribute by its name to be
used for supervised learning.

Base.BuildSettings extends MiningObject

Methods Description

set/getLogicalDataName
(java.lang.String name)

Used to set/get the logical data to reference a named
LogicalData object.

set/getOutlierIdentification(logicalAttr-
Name, Interval bounds)

Used to set/get the range of non-outliers values.

set/getOutlierTreatment
(java.lang.String logicalAttrName,
OutlierTreatment treatment)

Used to set/get the outlier treatment for numerical
attributes.

set/getUsage(java.lang.String logicalAttr-
Name, LogicalAttributeUsage usage)

Used to set/get the use of the specified logical attribute.

set/getAlgorithmSettings
(AlgorithmSettings)

Used to set/get the algorithm settings to be associated
with the build settings.

set/getDesiredExecutionTimeInMinutes
(int minutes)

Used to set/get the desired execution time specified by
the user, if any.

set/getWeight
(java.lang.String logicalAttrName,
double weight)

Used to set/get the weight of the specified logical
attribute by name.

220 Chapter 9 Using the JDM API

9.4.2 Algorithm Settings

The specification of algorithm settings is optional for JDM applications.
When it is not specified, the DME will select the algorithm, using
either a default algorithm or intelligent selection based on the
nature of the data. However, in vendor implementations that
support algorithms, users can specify algorithm settings to control
the choice of algorithm as well as to fine-tune the resulting model.

Methods Description

set/getWeightAttribute(java.lang.String
logicalAttrName)

Used to set/get the name of the attribute that
contains case (record) weights.

verify():VerificationReport Verifies if the settings are valid to some degree of
correctness as specified by the vendor.

Listing 9-8 ClassificationSettings use
1. public static void input() throws JDMException {
2. . . .
3. cls.setLogicalDataName("attritionBuildLogicalData");
4. //Capital Gain attribute outlier settings
5. cls.setOutlierIdentification("capital_gain", 2000�20000);//TODO How to create

 interval object
6. cls.setOutlierTreatment("capital_gain", OutlierTreatment.asMissing);
7. //Attrition prior probabilities settings
8. Map attritionPriors = new HashMap();
9. attritionPriors.put("Attriter", new Double(20.0));//Attrter
10. attritionPriors.put("Non-attriter", new Double(80.0));//Non-attriter
11. //Set Prior Probabilities
12. cls.setPriorProbabilitiesMap("Attrite", attritionPriors);
13. //Create cost matrix
14. CostMatrixFactory cmFactory = (CostMatrixFactory)dmeConn.getFactory(
15. "javax.datamining.supervised.classification.CostMatrix");
16. CategorySet csAttrition = csFactory.create(AttributeDataType.stringType);
17. csAttrition.addCategory("Attriters", CategoryProperty.valid);
18. csAttrition.addCategory("Non-attriters", CategoryProperty.valid);
19. CostMatrix cm = cmFactory.create(csAttrition);
20. cm.setCellValue("Attriters", "Non-attriters", 150);
21. cm.setCellValue("Non-attriters", "Attriters", 50);
22. dmeConn.saveObject("attrition_cost_matrix", cm, true);
23. //Set cost matrix
24. cls.setCostMatrixName("attrition_cost_mMatrix");
25. dmeConn.saveObject("attrition_build_settings", cls, replaceExistingObject);
26. }

Table 9-10 javax.datamining.supervised.classification.ClassificationSettings
interfaces (continued)

9.4 Using Classification Interfaces 221

The BuildSettings.setAlgorithmSettings method is used to specify
algorithm settings. JDM defines the algorithm settings interfaces
under the javax.datamining.algorithm package. Table 9-11 shows the
list of classification algorithm interfaces supported by JDM.

In Listing 9-9, we illustrate the creation of a simple decision tree
algorithm settings object, which specifies the maximum allowed
depth of the tree as 10, minimum node size as 5, and the tree homo-
geneity metric as gini, as shown in lines 6 to 12. Refer to the JDM API
documentation [JDM11 2006] for a complete listing of available algo-
rithm settings methods.

Table 9-11 javax.datamining.algorithm interfaces for classification function

javax.datamining.algorithm package

Decision Tree: javax.datamining.algorithm.tree package

TreeSettings A TreeSettings object encapsulates decision tree algorithm-specific settings,
such as maximum tree depth, minimum node size, homogenity metric, etc.

TreeHomogeneityMetric TreeHomogeneityMetric enumerates the various types of goodness measures
of a split.

TreeSelectionMethod TreeSelectionMethod enumerates the types of methodologies used for choosing
the best tree along the pruning path.

Naïve Bayes: javax.datamining.algorithm.naivebase

NaiveBayesSettings A NaiveBayesSettings object encapsulates naïve bayes algorithm-specific
settings, such as singleton and pairwise thresholds.

Support Vector Machine (SVM): javax.datamining.algorithm.svm.classification

SVMClassification-
Settings

A SVMClassificationSettings object encapsulates Support Vector Machine
(SVM) algorithm-specific settings used for classification function, such as
type of kernal function, complexity factor, etc.

Feed Forward NeuralNet: javax.datamining.algorithm.feedforwardneuralnet

FeedForwardNeural-
NetSettings

A FeedForwardNeuralNetSettings object captures the parameters associated
with a neural network algorithm, such as the type of learning algorithm,
hidden neural layers, maximum number of iterations, etc.

NeuralLayer A NeuralLayer object captures the parameters required to describe a layer in a
neural network model, such as activation function, number of nodes, bias, etc.

Backpropagation A Backpropagation object specifies the parameters used by the backpropaga-
tion learning algorithm, such as learning rate, momentum, etc.

ActivationFunction The enumeration ActivationFunction indicates the type of activation function
used by the neural layer.

222 Chapter 9 Using the JDM API

9.4.3 Model Contents

After the successful build of the attrition_model it can be retrieved
from the DME to explore its contents. Table 9-12 lists the methods of
the ClassificationModel, SupervisedModel, and Model interfaces. The
inheritance hierarchy of the ClassificationModel is similar to that of the
classification settings discussed in Section 9.4.1. The Model interface is
the base interface for all types of models. It provides the methods to
retrieve model metadata and basic contents. As shown in Table 9-12,
Model has methods for getting the model signature, algorithm-
specific model details, build settings specified by the user, the actual
build settings used by the algorithm, the model build time duration,
and version information.

The SupervisedModel interface is common for all supervised mod-
els, providing the target attribute name used to build the model. The
ClassificationModel interface contains methods to retrieve the target
category set, a flag to indicate whether a cost matrix was used by the
model, and the classification error if computed by the model. Listing
9-10 shows the output method that retrieves the attrition_model and
some of the model metadata and algorithm-specific model details.
JDM defines algorithm-specific model detail interfaces as shown in
Table 9-13.

Listing 9-10 in lines 5 to 12 shows the model signature retrieval
using the Model.getSignature() method that returns the data.ModelSig-
nature object. The model signature contains a collection of data.Signa-
tureAttribute objects that represent the actual attributes used for
model build. Line 14 shows how to get the mining algorithm from
the model, and lines 16 to 58 show the retrieval of model details

Listing 9-9 Specification of decision tree algorithm settings

1. public static void input() throws JDMException {
2. . . .
3. PhysicalDataSet pds = pdsFactory.create("customers", false);
4. ClassificationSettings cls = clsFactory.create();
5. cls.setTargetAttributeName("Attrite");
6. TreeSettingsFactory treeFactory = (TreeSettingsFactory)dmeConn.getFactory(
7. "javax.datamining.algorithm.tree.TreeSettings");
8. TreeSettings treeSettings = treeFactory.create();
9. treeSettings.setBuildHomogeneityMetric(TreeHomogeneityMetric.gini);
10. treeSettings.setMaxDepth(10);
11. treeSettings.setMinNodeSize(5, SizeUnit.percentage);
12. cls.setAlgorithmSettings(treeSettings);
13. . . .
14. }

9.4 Using Classification Interfaces 223

Table 9-12 javax.datamining.supervised.classificaton.ClassificationModel
interfaces

supervised.classification.ClassificationModel extends supervised.SupervisedModel

Methods Description

getTargetCategorySet():CategorySet Returns the set of target categories used in the model.

wasCostMatrixUsed(): boolean Returns true if a cost matrix was specified and used to build
the model.

GetClassificationError(): double Returns the percentage, expressed between 0 and 100, of the
incorrect predictions made by the model.

supervised.SupervisedModel extends base.Model

Methods Description

getTargetAttributeName(): String Returns the name of the LogicalAttribute that is the target.

base.Model extends MiningObject

Methods Description

getMiningFunction(): MiningFunction Returns the type of the mining function used to build the
model.

getMiningAlgorithm():
 MiningAlgorithm

Returns the type of the mining algorithm used to build the
model.

getSignature(): ModelSignature Returns the model signature, i.e., the set of required inputs
for applying the model, or as was used for building the
model.

getModelDetail(): ModelDetail Returns the algorithm-specific model detail for this model.

getAttributeStatistics():
 AttributeStatisticsSet

Returns the set of attribute statistics from the build data
computed with this model.

getBuildDuration(): Integer Returns the time in seconds that was taken to build the
model.

getBuildSettings(): BuildSettings Returns the build settings used to build the model, as
specified by the user.

getEffectiveBuildSettings(): BuildSettings Returns the build settings that were actually used by the
DME (with systemDefault and systemDetermined replaced
with actual values).

getUniqueIdentifier(): String Returns a string that can be used to uniquely reference the
JDM model.

getTaskIdentifier(): String Returns the identifier of the task used to build or import the
model.

224 Chapter 9 Using the JDM API

produced by different classification algorithms. Lines 16 to 26 show
retrieval of the TreeModelDetail object that encapsulates the decision
tree nodes; using its methods, applications can display the decision
tree. The TreeNode encapsulates a node’s prediction value, the num-
ber of cases per node, the rule associated with the node, and the
node’s child and parent node references.

In this example, we retrieve the first level node details. Lines 27
to 37 show retrieval of the NaiveBayesModelDetail object that encap-
sulates the target probability and pair probability details. We
retrieve the target probability associated with the target attrite
attribute value Attriter, pair probabilities associated with the capital
gains values, and the attrite value Non-attriter. Using these details
applications can show the target and attribute value correlations.
Lines 37 to 43 show the retrieval of the SVMClassificationModelDetail
object that encapsulates coefficients associated with the attribute
and target value pairs. In line 40, we retrieve the coefficients associ-
ated with the capital gains attribute values and the attrite value
Attriter. Lines 45 and 46 show the retrieval of the NeuralNetwork-
ModelDetail object that encapsulates the details of the weights associ-
ated with the neurons. In lines 47 to 58, we retrieve the weights
associated with each layer and the parent and child neuron possible
combinations.

Methods Description

getApplicationName(): String Returns the name of the application that generated this
model.

getVersion(): String Returns the JDM version by which the model was built.

getMajorVersion(): String Returns the major version of JDM by which the model was
built.

getMinorVersion(): String Returns the minor version of JDM by which the model was
built.

getProviderName(): String Returns the name of the JDM provider, i.e., the vendor, that
built the model.

getProviderVersion(): String Returns the version number of the JDM system provided by
a vendor that was used to build the model.

Table 9-12 javax.datamining.supervised.classificaton.ClassificationModel
interfaces (continued)

9.4 Using Classification Interfaces 225

Listing 9-10 Exploring model contents

1. //Retrieve built model
2. public void output() throws JDMException {
3. ClassificationModel clsModel = (ClassificationModel)dmeConn.retrieveObject(
4. "attrition_model", NamedObject.model);
5. //Print attributes actually used by this model i.e., model signature
6. ModelSignature signature= clsModel.getSignature();
7. Collection signatureAttrs = signature.getAttributes();
8. Iterator signatureAttrsIterator = signatureAttrs.iterator();
9. while(signatureAttrsIterator.hasNext()) {
10. SignatureAttribute attr = (SignatureAttribute)signatureAttrsIterator.next();
11. System.out.println(attr.getName() + " " + attr.getAttributeType().name());
12. }
13. //Get algorithm used by the model
14. MiningAlgorithm algorithm = clsModel.getMiningAlgorithm();
15. //Cast model details appropriately based on algorithm
16. if(MiningAlgorithm.decisionTree.equals(algorithm)) {
17. TreeModelDetail modelDetails = (TreeModelDetail)clsModel.getModelDetail();
18. TreeNode rootNode = modelDetails.getRootNode();
19. boolean hasNodes = true;
20. TreeNode[] firstLevelNodes = rootNode.getChildren();
21. for(int i=0; i < firstLevelNodes.length; i++) {
22. System.out.println("Nodes Prediction: " +
23. firstLevelNodes[i].getPrediction().toString());
24. System.out.println("Number of cases: " + firstLevelNodes[i].getCaseCount());
25. System.out.println("Node Rule: " + firstLevelNodes[i].getRule().toString());
26. }
27. } else if(MiningAlgorithm.naiveBayes.equals(algorithm)) {
28. NaiveBayesModelDetail modelDetails =
29. (NaiveBayesModelDetail)clsModel.getModelDetail();
30. Map pairProbabilities =

 modelDetails.getPairProbabilities("capital_gain", "Atttriter");
31. double targetProbability = modelDetails.getTargetProbability("Attriter");
32. System.out.println("Target Probability of the attrition value 'Attriter': " +
33. targetProbability);
34. System.out.println(
35. "Pair Probabilities of the capital gains values and attrition value 'Attriter': "
36. + pairProbabilities.toString());
37. } else if(MiningAlgorithm.svmClassification.equals(algorithm)) {
38. SVMClassificationModelDetail modelDetails =
39. (SVMClassificationModelDetail)clsModel.getModelDetail();
40. Map attributeCoefficients =

 modelDetails.getCoefficients("Attriter", "capital_gain");
41. System.out.println(
42. "Capital gain attribute coefficient values when the attrition value 'Attriter': " +
43. attributeCoefficients.toString());
44. } else if(MiningAlgorithm.feedForwardNeuralNet.equals(algorithm)) {
45. NeuralNetworkModelDetail modelDetails =
46. (NeuralNetworkModelDetail)clsModel.getModelDetail();
47. int[] layerIds = modelDetails.getLayerIdentifiers();

226 Chapter 9 Using the JDM API

48. for(int i=0; i < (layerIds.length-1); i++) {
49. int[] parentNeuronIds = modelDetails.getNeuronIdentifiers(layerIds[i]);
50. int[] childNeuronIds = modelDetails.getNeuronIdentifiers(layerIds[i+1]);
51. int parentLayerId = layerIds[i];
52. for(int j=0; j < parentNeuronIds.length; j++) {
53. for(int k=0; k < childNeuronIds.length; k++) {
54. System.out.println("Wight for the parent layer " + parentLayerId +
55. ", parent neuron id " + parentNeuronIds[j] +
56. ", child neuron id " + childNeuronIds[k] + " is " +
57. modelDetails.getWeight(parentLayerId, parentNeuronIds[j], childNeuronIds[k]));
58. }}}}
59.}

Table 9-13 javax.datamining.modeldetails interfaces for classification function

javax.datamining.modeldetails package

Decision Tree: javax.datamining.modeldetails.tree package

TreeModel TreeModelDetail contains details of a tree model, such as, tree struc-
ture, nodes and rule associated with each node.

TreeNode A TreeNode characterizes a partition of a multidimensional dataset.

Naïve Bayes: javax.datamining.algorithm.naivebayes

NaiveBayesModelDetail NaiveBayesModelDetail contains the counts of the occurrences of
each target value, and counts of the co-occurrences of predictor
values with target values.

Support Vector Machine (SVM): javax.datamining.algorithm.svm.classification

SVMModelDetail SVMModelDetail is the superinterface for classification and
regression SVM model details.

SVMClassificationModelDetail An SVMModelDetail contains details of the SVM classification
model. SVM model details contain the support vector details, such as
number of bounded and unbounded vectors, coefficients associated
with the target attribute value and predictor attribute value pairs.

SVMRegressionModelDetail An SVMModelDetail contains details of the SVM regression model.
Similar to SVM classification regression model detail contains the
support vector details. The difference is SVM regression contains
coefficients associated with the predictor attributes and their values
as target is continuous number in case of regression.

Feed Forward NeuralNet: javax.datamining.algorithm.feedforwardneuralnet

NeuralNetworkModelDetail NeuralNetworkModelDetail captures the detailed representation of a
fully connected, multilayer, feed-forward neural network model.

9.4 Using Classification Interfaces 227

9.4.4 Test Metrics for Model Evaluation

This section introduces interfaces and methods used to compute
and retrieve classification test metrics using JDM. Table 9-14 lists
the classification test metrics-related interfaces. JDM provides two
types of tasks for computing test metrics for supervised functions:
supervised.TestTask and supervised.TestMetricsTask. The TestTask
requires a supervised model and test data, whereas the TestMetric-
sTask interface uses apply output data that includes actual and pre-
dicted target values. In this example, we use ClassificationTestTask
and illustrate how the TestMetricsTask interface is used for the
regression example shown later in Section 9.5.

Listing 9-11 shows the code that extends the CustomerAttrition
class with the attrition_model evaluation. Recall that section 7.1.6
illustrates classification test metrics such as accuracy, error, confu-
sion matrix, lift, and receiver operating characteristics (ROC). Listing
9-11 shows the computation and retrieval of the classification test
metrics. Lines 15 to 22 show the creation and execution of the attri-
tionTestTask that computes the test metrics of the attrition_model
using the CUSTOMERS_TEST_DATA. Lines 27 to 29 show the
retrieval of the attrition_test_metrics object that was created by the test

Table 9-14 Classification test metrics-related interfaces

javax.datamining.supervised.classification package

ClassificationTestTask A ClassificationTestTask is used for testing a classification model to
measure the model quality on test data.

ClassificationTestMetrics A ClassificationTestMetrics encapsulates classification test metrics
such as confusion matrix, lift, and ROC. It provides get methods to
retrieve these metrics.

ConfusionMatrix A ConfusionMatrix specifies the statistics of the correct predictions
and errors.

Lift A Lift specifies the results of the lift computation. It contains the
lift, target denisity details for each quantile. Using this object, one
can plot the lift charts that are described in Chapter 7.

ReceiverOperatingCharacteristics A ReceiverOperatingCharacteristics specifies the result of receiver
operating characteristic computation. It contains the false and true
positive rates at various probability thresholds. Using this object,
one can plot the ROC charts described in Chapter 7.

ClassificationTestMetricsTask A ClassificationTestMetricsTask is a mining task used to compute
test metrics given an apply output data.

228 Chapter 9 Using the JDM API

task. Lines 31 to 35 show how to get the confusion matrix object from
the test metrics and retrieve model prediction accuracy, prediction error,
and the number of predictions for the specified actual and predicted
target values. Using these data, applications can construct a visual
representation of the confusion matrix as was shown in Table 7-6.
Lines 37 to 44 show how to get the lift object from the test metrics and
retrieve cumulative lift and gain values that can be used to plot
cumulative lift and gain charts as was shown in Figure 7-6. Lines 47
to 57 show how to get the ROC object from the test metrics and
retrieve true and false positive rates at various threshold points to
plot the ROC graph as was shown in Figure 7-7.

Listing 9-11 Classification test metrics computation

1. . . .
2. public class CustomerAttrition {
3. . . .
4. //Create and save input objects for build task
5. public void input() throws JDMException {
6. . . .
7. //After creating build task input objects, create test task input objects
8. PhysicalDataSet pdsTest = pdsFactory.create("CUSTOMERS_TEST_DATA", false);
9. dmeConn.saveObject("attrition_test_data", pdsTest, replaceExistingObject);
10. }

11. //Create test task and execute it to compute test metrics
12. public boolean run() throws JDMException {
13. . . .
14. //After successful completion of the build task create and execute test task
15. ClassificationTestTaskFactory csTestTaskFactory =
16. (ClassificationTestTaskFactory)dmeConn.getFactory(
17. "javax.datamining.supervised.classification.ClassificationTestTask");
18. ClassificationTestTask csTestTask =
19. csTestTaskFactory.create(
20. "attritionTestData","attrition_model","attrition_testMetrics");
21. dmeConn.saveObject("attrition_test_task", csTestTask, replaceExistingObject);
22. ExcutionStatus testTaskStatus = dmeConn.execute("attrition_test_task", timeOut);
60. if(ExecutionState.success.equals(testTaskStatus.getState()))
61. return true;
62. else
63. return false;
23. }

24. //Retrieve test metrics
25. public void output() throws JDMException {
26. . . .
27. ClassificationTestMetrics clsTestMetrics =

9.4 Using Classification Interfaces 229

9.4.5 Applying a Model to Data in Batch

After evaluating model performance, we often apply a model to new
data to predict target attribute values. JDM provides options for
applications to specify the content of apply output data according to
their requirements. In this section, we explore the interfaces related
to batch apply for classification models. Batch apply refers to applying
a model to cases stored in a database table or flat file.

Table 9-15 lists the interfaces related to the apply operation
including classification apply-specific interfaces. The task.apply pack-
age declares common interfaces used for model apply. The supervised.
classification package declares classification-specific apply settings
interfaces and an enumeration of classification-specific apply output
contents, such as predicted category, probability, cost, and node id.

28. (ClassificationTestMetrics)dmeConn.retrieveObject(
29. "attrition_test_metrics", NamedObject.testMetrics);
30. //Get model accuracy and confusion matrix details such as false prediction counts
31. ConfusionMatrix cfMatrix = clsTestMetrics.getConfusionMatrix();
32. double accuracy = cfMatrix.getAccuracy();
33. double error = cfMatrix.getError();
34. long falseNegatives = getNumberOfPredictions("Attriter", "Non-attriter");
35. long falsePositives = getNumberOfPredictions("Non-attriter", "Attriter");
36. //Get Lift object and cumulative lift and gain values to plot charts
37. Lift lift = clsTestMetrics.getLift();
38. double[] cumulativeLifts = new double[10];
39. double[] cumulativeGains = new double[10];
40. for(int quantile=1, index=0; qunatile <=10; quantile++, index++) {
41. cumulativeLifts[index] = lift.getCumulativeLift(quantile);
42. cumulativeGains[index] =
43. (double)lift.getCumulativePositiveCase(quantile)/(double)lift.getTotalCases();
44. }
45. //Get ROC object and retrieve true and false positive rates
46. //at various probability thresholds
47. ReceiverOperativeCurve roc = clsTestMetrics.getROC();
48. int numberOfThresholdPoints = roc.getNumberOfThresholdCandidates();
49. double[] thresholds = new double[numberOfThresholdPoints];
50. double[] truePositiveRates = new double[numberOfThresholdPoints];
51. double[] falsePositiveRates = new double[numberOfThresholdPoints];
 52. for(int threshold=1, index=0; threshold <= numberOfThresholdPoints;
 53. threshold++, index++) {
 54. thresholds[index] = roc.getProbabilityThreshold(threshold);
 55. truePositiveRates[index] = roc.getHitRate(threshold);
 56. falsePositiveRates[index] = roc.getFalseAlarmRate(threshold);
 57. }
 58. }

230 Chapter 9 Using the JDM API

The predicted category content is the predicted value of the target
attribute. In our example, it can be the values Attriter or Non-attriter.
The probability content provides the probability associated with the
model’s predictions for a given target class value. The cost content is
the cost associated with the model’s predictions based on the speci-
fied cost matrix. The node id is specific to decision tree models,
where it shows the node that was used for the prediction. Using this
node id, applications can retrieve the node details, such as rule, asso-
ciated with the prediction.

Listing 9-12 extends the CustomerAttrition example class to show
model apply to predict attrite values for customers in the
CUSTOMERS_APPLY_DATA. Lines 9 to 10 show the creation of the
physical dataset object that represents the input apply data. Lines
12 to 15 show the creation of the empty classification apply settings
object using the object factory create method. Lines 16 to 23 show
how to use the ClassificationApplySettings.mapTopPrediction method to
specify the apply output contents with the top prediction details. The
ClassificationApplySettings provides four types of map methods that
applications can choose to describe the apply output data. The map-
TopPrediction method is used when the application is mainly inter-
ested in the prediction value with the highest probability. Using the
ClassificationApplyContent enumeration, a user can choose the type of
content desired in the apply output table.

Table 9-15 Classification apply – related interfaces

Javax.datamining.task.apply package

ApplySettings An ApplySettings object captures a specification that describes the output
of an apply task.

ApplyTask An ApplyTask object captures the task of applying a mining model to data
that matches the model signature.

DataSetApplyTask A DataSetApplyTask object captures the task of applying a mining model
to a dataset with multiple records.

Javax.datamining.supervised.classification package

ClassificationApplySettings A ClassificationApplySettings object prescribes the output of an apply
task specific to a classification model.

ClassificationApplyContent ClassificationApplyContent enumerates the types of value to appear in the
apply output of a classification model.

9.4 Using Classification Interfaces 231

Listing 9-12 Applying classification model to compute predictions

1. . . .
2. public class CustomerAttrition {
3. . . .
4. //Create and save input objects for build task
5. public void input() throws JDMException {
6. . . .
7. //Create apply task input objects
8. //Create apply PhysicalDataSet
9. PhysicalDataSet pdsApply = pdsFactory.create("CUSTOMERS_APPLY_DATA", false);
10. dmeConn.saveObject("attrition_apply_data", pds, replaceExistingObject);
11. //Create apply settings
12. ClassificationApplySettingFactory csApplyFactory =
13. (ClassificationApplySettingFactory)dmeConn.getFactory(
14. "javax.datamining.supervised.classification.ClassificationApplySetting");
15. ClassificationApplySettings csApplySettings = csApplyFactory.create();
16. //Top prediction, probability and cost output
17. csApplySettings.mapTopPrediction(ClassificationApplyContent.predictedCategory,

 18. "PredictedAttrition");
 19. csApplySettings.mapTopPrediction(ClassificationApplyContent.probabity,
 20. "Probability");
 21. csApplySettings.mapTopPrediction(ClassificationApplyContent.cost,
 22. "Cost");
 23. //Specify carry forward attributes from the input dataset (source) to
 24. //output dataset (destination)
 25. Map sourceDestinationMap = new HashMap();
 26. sourceDestinationMap.put("CUST_ID", "CustomerId");
 27. csApplySettings.setSourceDestinationMap(sourceDestinationMap);
 28. //Save apply settings object
 29. dmeConn.saveObject("attrition_apply_settings",
 30. csApplySettings, replaceExistingObject);
 31. }

 32. //Create test task and execute it to compute test metrics
 33. public boolean run() throws JDMException {
 34. . . .
 35. //After successful completion of the test task create and execute apply task
 36. DataSetApplyTaskFactory csApplyTaskFactory =
 37. (DataSetApplyTaskFactory)dmeConn.getFactory(
 38. "javax.datamining.task.apply. DataSetApplyTask");
 39. DataSetApplyTask csApplyTask =
 40. csApplyTaskFactory.create(
 41. "attrition_apply_data","attrition_apply_settings",
 42. "attrition_model","attrition_top_prediction_apply_output");
 43. dmeConn.saveObject("attritionApplyTask", csApplyTask, replaceExistingObject);
 44. ExecutionStatus testTaskStatus = dmeConn.execute("attrition_apply_task", timeOut);
 45. if(ExecutionState.success.equals(testTaskStatus.getState()))
 46. return true;
 47. else
 48. return false;
 49. }

232 Chapter 9 Using the JDM API

In this example, top predicted category, probability, and cost
contents are specified to be computed by the apply task. In Table 9-16,
we describe the map methods of the ClassificationApplySettings inter-
face. For classification, JDM defines methods: mapTopPrediction—
maps apply contents to the top prediction, mapByRank—maps apply
contents for the predictions ordered by their probability rank, mapBy-
Category—maps apply contents by the target value, and mapPredic-
tions—maps apply contents for all possible predictions. These map
methods enable specifying various types of apply output contents
that will be produced in the apply output results. However, an apply
settings object can only specify contents from a single map method.
If a user calls multiple map methods, only the last map method’s con-
tents will be stored with the apply settings object. For example, when
a user invokes mapTopPrediction and mapByRank methods in
sequence, then the mapByRank overrides the mapTopPrediction
contents and the apply settings will have only the contents specified
by the mapByRank method calls.

 50. //Retrieve test metrics
 51. public void output() throws JDMException {
 52.
 53. //Access apply output data that will have following columns:
 54. // Customer Id, PredictedAttrition, Probability, Cost
 55. // . . . Use JDBC if the output is a table in the database . . .
 56.
 57. // . . . Use java.io if the output is a data file . . .
 58. }

Table 9-16

supervised.classification.ClassificationApplySettings extends task.apply.ApplySetting

Methods Description

mapTopPrediction(
 ClassificationApplyContent content,
 String destPhysAttrName)

Used to specify top prediction apply contents for the apply task.
After completion of the task, the apply output data will have the
specified apply contents associated with the top prediction. For
example, when a user calls the following method, the apply task
will compute the top prediction value and populate the top-
Prediction column with the computed prediction value.

mapTopPrediction(ClassificationApplyContent.predicted-
Category,“topPrediction”)

Classification apply settings methods

9.4 Using Classification Interfaces 233

mapByRank(
 ClassificationApplyContent content,
 String[] destPhysAttrNameArray,
 boolean fromTop)

Used to specify prediction rank based apply contents for the
apply task. The number of ranks and their order depends on the
size of the destPhysAttrNameArray and fromTop boolean
value. For example, when a user calls the following method the
apply task will compute the top two predictions and populate
the columns Rank_1 and Rank_2 with the prediction values.
A user can call this method multiple times with different apply
contents to obtain additional information.

mapByRank(ClassificationApplyContent.predicted-
Category, new String[] { “Rank_1”, “Rank_2”
}, true)

mapByCategory(
 ClassificationApplyContent content,
 Object categoryValue,
 String destinationAttrName)

Used to specify prediction category, i.e., target value, apply
contents for the apply task. A user can obtain the category set
from the model using the ClassificationModel.getCategory-
Set() method and can call this method for each target value. For
example, when a user calls the following methods, the apply
task computes the probabilities associated with the target values
Attriter and Non-attriter and populates the probability values
in the specified columns i.e., Attriter_probability and
NonAttriter_Probability.

mapByCategory(ClassificationApplyContent.
probability,“Yes”, “Yes_Probability”);

mapByCategory(ClassificationApplyContent.
probability,“No”, “No_Probability”);

mapPredictions(
 ClassificationApplyContent content,
 String baseDestPhysAttrName)

Used to specify all possible predictions for the apply task. When
this method is used, the apply output data will have apply con-
tents for all possible target values. The base attribute name
specified by the user is used to generate column names in the
apply output data. For example, when a user calls the following
methods where the input model has two possible predicted cate-
gories i.e., { Attriter, Non-attriter }, it creates apply output
data that has columns PredictedVlaue_1, PredictedVlaue_2,
Probability_1, Probability_2. The column Probability_1 will
have the probability value associated with the predicted value in
column PredictedValue_1. Similarly, column Probability_2
will have the probability value associated with the predicted
value in column PredictedValue_2.

mapPredictions(ClassificationApplyContent.predicted-
Category, “PredictedValue”);

mapPredictions(ClassificationApplyContent.probability,
“Probability”);

Table 9-16 (continued)

234 Chapter 9 Using the JDM API

9.4.6 Applying a Model to a Single Record—Real-Time Scoring

JDM supports a single record apply operation to enable real-time
performance for interactive applications such as those used for
online retail or in support of call center representatives. Listing 9-13
shows the code that computes the likelihood (probability) of a cus-
tomer to attrite for the given customer profile. In this example, the
getCustomerAttritionProbability method takes the customer profile
record as input and returns the probability that the customer will
attrite. Lines 9 to 26 show the initial setup required to execute a
record apply task. This setup involves creating the apply settings
object and using the mapByCategory method to specify having the
probability for the attrite value Attriter in the apply output. This
step further involves creating a RecordApplyTask object. Subsequent
invocations will reuse the task and settings objects. The customer
profile is set using the setInputRecord as shown in line 27. Line 29
shows the synchronous execution of the record apply task. After the
completion of the RecordApplyTask, we can retrieve the output
record using the getOutputRecord method and further retrieve the
probability value using the PhysicalDataRecord.getValue method as
shown in line 31.

Listing 9-13 Single record apply operation (real-time scoring)

 1. . . .
 2. public class CustomerAttrition {
 3. . . .
 4. RecordApplyTask csRecordApplyTask = null;
 5. //Create and save input objects for build task
 6. public double getCustomerAttritionProbability(PhysicalDataRecord customerProfile)
 7. throws JDMException {
 8. //When first time called setup all input setting and create record apply task
 9. if(csRecordApplyTask == null) {
 10. //Create input objects for the apply task
 11. ClassificationApplySettingFactory csApplyFactory =
 12. (ClassificationApplySettingFactory)dmeConn.getFactory(
 13. "javax.datamining.supervised.classification.ClassificationApplySetting");
 14. ClassificationApplySettings csApplySettings = csApplyFactory.create();
 15. //Use mapByCategory to get probability associated with the attriter value
 16. csApplySettings.mapByCategory(ClassificationApplyContent.probabity,
 17. "Attriter", "Probability");
 18. dmeConn.saveObject("category_attrition_apply_settings", csApplySettings,
 19. replaceExistingObject);
 20. RecordApplyTaskFactory csRecordApplyTaskFactory =
 21. (RecordApplyTaskFactory)dmeConn.getFactory(
 22. "javax.datamining.task.apply.RecordApplyTask");
 23. csRecordApplyTask =

9.5 Using Regression Interfaces 235

9.5 Using Regression Interfaces

The javax.datamining.supervised.regression package contains regression
function interfaces, such as RegressionSettings, RegressionModel,
RegressionApplySettings, RegressionTestMetrics, etc. Regression inter-
faces are similar to classification interfaces in many ways. The main
difference, however, is that regression predicts continuous values,
whereas classification predicts discrete values. Hence, regression
does not accept objects for cost matrix, target category set, or prior
probabilities. All JDM-specified algorithms discussed for the classifi-
cation can also be used for regression. However, in the case of the
support vector machine (SVM) algorithm, due to variations between
regression and classification JDM explicitly defines an algorithm set-
tings interface called SVMRegressionSettings. This section illustrates the
use of the regression-related interfaces by taking the prediction of the
real-estate appraisal value example that was discussed in Section 7.2.

Table 9-17 lists all the regression-specific interface method details.
Note that RegressionSettings doesn’t have any regression-specific
build settings. Even though there are no regression-specific settings,
this interface is defined to be consistent with other build settings for
future extensions. These setting do, however, inform the BuildTask
object to build a regression model when executed. A RegressionModel
object can return the R-squared error if the regression model validates
the model either on the build data itself or using the validate data
specified at build time. The RegressionApplySettings has only one map
method through which a user can specify the desired apply content
in the apply output table. The RegressionApplyContent allows users to
specify content for the predicted value and the prediction confidence.
The RegressionTestMetrics interface defines the get methods for
various types of regression error measures that were discussed in
Section 7.2.5. By extending the generic supervised.TestMetricsTask, the
RegressionTestMetricsTask computes test metrics using an apply out-
put table instead of a regression model.

 24. csApplyTaskFactory.create(
 25. customerProfile, "attrition_model", "attritionApplySettings");
 26. } else {
 27. csRecordApplyTask.setInputRecord(customerProfile);
 28. }
 29. dmeConn.execute(csRecordApplyTask, timeOut);
 30. PhysicalDataRecord outputRecord = csRecordApplyTask.getOutputRecord();
 31. return ((Number)outputRecord.getValue("Probability")).doubleValue();
 32. }

236 Chapter 9 Using the JDM API

Table 9-17

supervised.regression.RegressionSettings extends supervised.SupervisedSettings

Methods Description

None

supervised.regression.RegressionModel extends supervised.SupervisedModel

Methods Description

getRSquared Returns the proportional reduction in the variability
of the target associated with the predicted target
values.

supervised.regression.RegressionApplySettings extends supervised.ApplySettings

Methods Description

map(
 RegressionApplyContent content,
 String destPhysAttrName)

Maps the specified generated value for the prediction to
a destination attribute.

supervised.regression.RegressionTestMetricsTask extends supervised.TestMetrics

Methods Description

None

supervised.TestMetricsTask extends task.Task

Methods Description

set/getActualTargetAttrName(String) Used to set/get the attribute name of the actual targets
in the apply output data.

set/getApplyOutputDataName(String) Used to set/get the name of the apply output data.

set/getPredictedTargetAttrName(String) Used to set/get the attribute name of the predicted
targets in the apply output data.

set/getPredictionRankingAttrName(String) Used to set/get the attribute name of the ranking factors
for the predictions in the apply output data.

set/getTestMetricsName(String) Used to set/get the name of the test metrics to be created
as the result of test metrics task.

supervised.RegressionTestMetrics extends supervised.TestMetrics

Methods Description

getMeanAbsoluteError():java.lang.Double Returns the mean absolute error of predictions.

getMeanActualValue():java.lang.Double Returns the mean (i.e., average) actual target value.

getMeanPredictedValue():java.lang.Double Returns the mean predicted target value.

Regression-related interfaces

9.5 Using Regression Interfaces 237

Listing 9-14 shows the code that builds the appraisal_model,
computes test metrics named appraisal_test_metrics, and then applies
the model that outputs the APPRAISAL_APPLY_OUTPUT table
with the appraisal value predictions. The input method in lines 27 to 38
shows the creation and saving of input objects for model build. Simi-
lar to classification settings, regression settings require specification
of the target attribute name. Line 36 sets the appraisal value attribute
as the target attribute. Execution of the build task is the same as for
classification, as shown in lines 69 to 71. After successful execution of
the build task, the test metrics task is used to compute the regression
test metrics. Section 9.4.4 introduced the test task for classification.
Similarly, the RegressionTestTask can be used to compute Regression-
TestMetrics using the model and test data as input.

In contrast, JDM also defines a TestMetricsTask that takes the
apply output data computed using the test data as input instead of
the model. This approach may be useful for data miners who want to
keep the apply output results on test data for some other reasons,
such as to compute additional tests to visualize the results.

Lines 74 to 89 show application of the appraisal_model on the
APPRAISAL_TEST_DATA that produces the APPRAISAL_TEST_
APPLY_OUTPUT dataset. Lines 90 to 101 show the execution of the
RegressionTestMetricsTask that takes the appraisal_test_apply_output
physical dataset object. The actual and predicted target value col-
umns are the inputs that are used to produce the appraisal_test_
metrics object. Lines 104 to 109 show the execution of the apply task
that produces the APPRAISAL_APPLY_OUTPUT data with the tar-
get predictions. Apply using either a dataset for batch scoring or a
record for real-time scoring is similar to that of classification. Lines
127 to 139 show the retrieval of the regression model and the regres-
sion test metrics from the DME. The regression model also has con-
tents, such as model signature, model details, model version, and
model metadata. Using the get methods of RegressionTestMetrics,
users can retrieve the various types of prediction error measures

Methods Description

getRMSError():java.lang.Double Returns the root mean sum of squared errors of
predictions.

getRSquared():java.lang.Double Returns proportional reduction in the variability of the
target associated with the predicted target values.

Table 9-17 (continued)

238 Chapter 9 Using the JDM API

computed by the test task. Note that vendor implementations can
return null values for metrics they do not support.

Listing 9-14 Regression example code

1. public class RealEstateAppraisal {
2. //Data members
3. . . .
4. static RegressionSettingsFactory rgrFactory = null;
5. static RegressionApplySettingsFactory rgrApplySettingsFactory = null;
6.
7. . . .
8. static RegressionTestMetricsTaskFactory rttkFactory = null;
9.
10. //Main method
11. public static void main(String args[]) throws Exception {
12. try {
13. //Create DME connection as shown in Listing 9.1 or 9.2
14. // . . .
15. input(); //Create input objects
16. if(run()) //Execute model build task
17. output(); //Retrieve the model
18. } catch(Exception anyFailures) {anyFailures.printStackTrace();
19. } finally {if(dmeConn != null) dmeConn.close(); //Close connection
20. }
21. }
22.
23. //Create and save input objects
24. public static void input() throws JDMException {
25. //Create Input object factories
26. . . .
27. rgrFactory = (RegressionSettingsFactory)dmeConn.getFactory(
28. "javax.datamining.supervised.classification.RegressionSettings");
29. rgrApplySettingsFactory = (RegressionApplySettingsFactory)dmeConn.getFactory(
30. "javax.datamining.supervised.classification.RegressionApplySettings");
31.
32. boolean replaceObject = true;
33. //Input objects for building appraisal_model using appraisal_build_data dataset
34. PhysicalDataSet pdsBuild = pdsFactory.create("appraisal_build_data", false);
35. RegressionSettings regrSettings = rgrFactory.create();
36. regrSettings.setTargetAttributeName("APPRAISAL_VALUE");
37. dmeConn.saveObject("appraisal_build_data", pdsBuild, replaceObject);
38. dmeConn.saveObject("appraisal_builds_settings", regrSettings, replaceObject);
39.
40. //Input objects for testing appraisal_model using APPRAISAL_TEST_DATA dataset
41. PhysicalDataSet pdsTest = pdsFactory.create("APPRAISAL_TEST_DATA", false);
42. dmeConn.saveObject("appraisal_test_data", pdsTest, replaceExistingObject);
43.
44. //Input objects for applying appraisal_model for appraisal_apply_data dataset
45. PhysicalDataSet pdsApply = pdsFactory.create("appraisal_apply_data", false);
46. dmeConn.saveObject("appraisal_apply_data", pdsTest, replaceExistingObject);
47. RegressionApplySettings regApplySettings = rgrApplySettingsFactory.create();

9.5 Using Regression Interfaces 239

48. //Save predicted value in the predicted_appraisal_value column
49. regApplySettings.map(RegressionApplyContent.predictedValue,
50. "predicted_appraisal_value");
51. //Carry forward loan id column
52. Map sourceDestMap = new HashMap();
53. sourceDestMap.put("loan_id","loan_id");
54. dmeConn.saveObject("appraisal_apply_settings", regApplySettings, true);
55. }
56.
57. //Create and execute tasks
58. public boolean run() throws JDMException {
59. //Create task object factories
60. btkFactory = (BuildTaskFactory)dmeConn.getFactory(
61. "javax.datamining.task.BuildTask");
62. atkFactory = (DataSetApplyTaskFactory)dmeConn.getFactory(
63. "javax.datamining.task.apply.DataSetApplyTask");
64. rttkFactory = (RegressionTestMetricsTaskFactory)dmeConn.getFactory(
65. "javax.datamining.supervised.regrssion.RegressionTestMetricsTask");
66. //Run until completion when timeout is set to null
67. Long timeOut = null;
68. //Create and run build task
69. BuildTask btk = btkFactory.create("appraisalBuildData",
70. "appraisal_build_settings", "appraisal_model");
71. ExecutionStatus buildStatus = dmeConn.execute(btk, timeOut);
72. //If Build task is successful run test metrics task
73. if(ExecutionState.success.equals(buildStatus.getState())) {
74. //Apply on test data that produces the predicted appraisal value
75. //along with the actual appraisal value from the test dataset
76. RegressionApplySettings regTestApplySettings = rgrApplySettingsFactory.create();
77. //Save predicted value in the predicted_appraisal_value column
78. regTestApplySettings.map(RegressionApplyContent.predictedValue,
79. "predicted_appraisal_value");
80. //Carry forward actual appraisal_value column and loan id column
81. Map sourceDestinationMap = new HashMap();
82. sourceDestinationMap.put("loan_id","loan_id");
83. sourceDestinationMap.put("appraisal_value","actual_appraisal_value");
84. regTestApplySettings.setSourceDestinationMap(sourceDestinationMap);
85. dmeConn.saveObject("appraisal_test_apply_settings", regTestApplySettings, true);
86. DataSetApplyTask testApplyTask =
87. atkFactory.create("appraisalTestData","appraisal_model",
88. "appraisal_test_apply_settings", "APPRAISAL_TEST_APPLY_OUTPUT");
89. ExecutionStatus testApplyStatus = dmeConn.execute(testApplyTask, timeOut);
90. //If the apply task on test data is successful then run test metrics task
91. if(ExecutionState.success.equals(testApplyStatus.getState())) {
92. //Create Physical dataset for the test metrics task using the apply output data
93. PhysicalDataSet pdsTestApply = pdsFactory.create(
94. "APPRAISAL_TEST_APPLY_OUTPUT", false);
95. dmeConn.saveObject("appraisal_test_apply_output", pdsTestApply, true);
96.
97. //Regression Test Metrics task
98. RegressionTestMetricsTask rttk = rttkFactory.create(
99. "appraisal_test_apply_output", "actual_appraisal_value",

240 Chapter 9 Using the JDM API

9.6 Using Attribute Importance Interfaces

The javax.datamining.attributeimportance package contains attribute
importance function-specific interfaces, such as AttributeImportance-
Settings and AttributeImportanceModel. Table 9-18 lists the methods of
these interfaces. Attribute importance interfaces are designed to sup-
port finding important attributes for both supervised and unsuper-
vised mining functions. If the target attribute name is specified using

100. "predicted_appraisal_value", "appraisal_test_metrics");
101. ExecutionStatus testStatus = dmeConn.execute(rttk, timeOut);
102. //If the test data is successful then run test metrics task
103. if(ExecutionState.success.equals(testStatus.getState())) {
104. DataSetApplyTask applyTask =
105. atkFactory.create("appraisal_apply_data", "appraisal_model",
106. "appraisal_test_apply_settings", "APPRAISAL_APPLY_OUTPUT");
107. ExecutionStatus applyStatus = dmeConn.execute(applyTask, timeOut);
108. //If the apply task on test data is successful then run test metrics task
109. if(ExecutionState.success.equals(applyStatus.getState()))
110. return true;
111. else
112. return false;
113. } else {
114. System.out.println("Failed due to: " + testStatus.getDescription());
115. return false;
116. }} else {
117. System.out.println("Failed due to: " + testApplyStatus.getDescription());
118. return false;
119. }}
120. else {
121. System.out.println("Failed due to: " + buildStatus.getDescription());
122. return false;
123. }}
124.
125. //Retrieve built model and test metrics
126. public void output() throws JDMException {
127. //Retrieve regression model
128. RegressionModel regModel = (RegressionModel)dmeConn.retrieveObject(
129. "appraisal_model", NamedObject.model);
130. //Similar to classification model can retreive model signature and
131. //details as shown in Listing 9.4.2
132. . . .
133. //Retrieve regression test metrics
134. RegressionTestMetrics regTestMetrics =
135. (RegressionTestMetrics)dmeConn.retrieveObject(
136. "appraisal_test_metrics", NamedObject.testMetrics);
137. System.out.println(regTestMetrics.getMeanAbsoluteError());
138. System.out.println(regTestMetrics.getRMSError());
139. System.out.println(regTestMetrics.getRSquared());
140. }}

9.6 Using Attribute Importance Interfaces 241

AttributeImportanceSettings.setTargetAttributeName(String), the DME
will build a supervised attribute importance model. In this case, the
model ranks the attributes according to their ability to predict the
specified target attribute. The DME will build an unsupervised
model if a target attribute is not specified. In this case, the model
ranks attributes according to their contribution to the desired unsu-
pervised model.

Listing 9-15 shows the code that builds an attribute importance
model for the CUSTOMERS dataset to find the importance of predic-
tor attributes used for predicting the attrite target attribute. Lines 28
and 29 show the creation of an AttributeImportanceSettings object and
sets the target attribute to attrite.

In some domains, data may have thousands of attributes. For
example, in gene analysis, thousands of gene types can be collected to
find their effect on a particular disease; each type can be included as
an attribute in the dataset. To reduce the size of the attribute impor-
tance model by filtering the attributes at the time of model building,

Table 9-18 Attribute importance–related interfaces

attributeimportance.AttributeImportanceSettings extends base.BuildSettings

Methods Description

set/getMaxAttributeCount(int maxCount) Used to set/get the maximum number of attributes to be
included in the resulting model.

set/getTargetAttributeName(String) Used to set/get the target attribute for supervised
attribute importance.

isSupervised():boolean Returns true if a target attribute has been set.

attributeimportance.AttributeImportanceModel extends base.Model

Methods Description

getAttributesByPercentage(double percent,
 SortOrder ordering):Collection

Returns a collection of attributes whose rank is within
the specified percentage of the entire attributes.

getAttributesByRank(int lowerRank, int
 upperRank):Collection

Returns a collection of attributes whose rank is within
the specified range.

getAttributesByRank(SortOrder ordering):
 Collection

Returns a collection of all attributes in the specified
order.

getMaxRank():int Returns the rank number of the least important
attribute.

getAttributeCount():int Returns the number of attributes ranked in the model.

242 Chapter 9 Using the JDM API

users can specify the maximum number of attributes using the
AttributeImportanceSettings.setMaxAttributeCount(int) method. In addi-
tion, after building the model, applications can filter the set of
attributes further, either by the percentage of the important attributes
using AttributeImportanceModel.getAttributesByPercentage(double, Sort
Order) method, or by attribute rank range using the AttributeImpor-
tanceModel.getAttributesByRank(int lowerRank, int upperRank) method.
Lines 55 to 69 show the retrieval of the ai_model that ranks the impor-
tance of the predictor attributes. The get methods of this model return
the collection of SignatureAttribute objects that encapsulates the
attribute details, such as name, type, data type, rank, and importance
value. Lines 64 to 67 show the signature attribute usage.

Listing 9-15 Select important attributes for building attrition_Model

1. public class SelectImportantAttributes {
2. //Data members
3. . . .
4. static AttributeImportanceSettingsFactory aiSettingsFactory = null;
5. . . .
6. //Main method
7. public static void main(String args[]) throws Exception {
8. try {
9. //Create DME connection as shown in Listing 9.1 or 9.2
10. // . . .
11. input(); //Create input objects
12. if(run()) //Execute model build task
13. output(); //Retrieve the model
14. } catch(Exception anyFailures) { anyFailures.printStackTrace();
15. } finally { if(dmeConn != null) dmeConn.close(); //Close connection
16. }}
17.
18. //Create and save input objects
19. public static void input() throws JDMException {
20. //Create Input object factories
21. . . .
22. aiSettingsFactory = (AttributeImportanceSettingsFactory)dmeConn.getFactory(
23. "javax.datamining.attributeimportance.AttributeImportanceSettings");
24.
25. boolean replaceObject = true;
26. //Input objects for building appraisal_model using appraisal_build_data dataset
27. PhysicalDataSet pdsBuild = pdsFactory.create("customers", false);
28. AttributeImportanceSettings aiSettings = aiSettingsFactory.create();
29. aiSettings.setTargetAttributeName("attrite");
30. dmeConn.saveObject("ai_build_data", pdsBuild, replaceObject);
31. dmeConn.saveObject("ai_builds_settings", aiSettings, replaceObject);
32. }
33.

9.7 Using Association Interfaces 243

9.7 Using Association Interfaces

The javax.datamining.association package contains association function
interfaces, such as AssociationSettings, AssociationModel, Association-
Rule, RulesFilter, etc. JDM defines interfaces to build the association
model and retrieve the contents of the model. The AssociationSettings
interface provides the model settings to control model contents by
filtering criteria such as minimum rule support, confidence, maxi-
mum rule length, and items to be included or excluded. The Associa-
tionModel interface provides methods to retrieve model contents,
such as rules, items, and itemsets, using different types of filters.

34. //Create and execute tasks
35. public boolean run() throws JDMException {
36. //Create task object factories
37. btkFactory = (BuildTaskFactory)dmeConn.getFactory(
38. "javax.datamining.task.BuildTask");
39. //Run until completion when timeout is set to null
40. Long timeOut = null;
41. //Create and run build task
42. BuildTask btk = btkFactory.create("ai_build_data",
43. "ai_build_settings", "ai_model");
44. ExecutionStatus buildStatus = dmeConn.execute(btk, timeOut);
45. //If Build task is successful run test metrics task
46. if(ExecutionState.success.equals(buildStatus.getState()))
47. return true;
48. else
49. return false;
50. }
51.
52. //Retrieve built model and test metrics
53. public void output() throws JDMException {
54. //Retrieve regression model
55. AttributeImportanceModel ai_model =
56. (AttributeImportanceModel)dmeConn.retrieveObject("ai_model",NamedObject.model);
57. //List attributes in the descending order of importance and display rank and
58. //importance value
59. Collection impAttrs = ai_model.getAttributesByRank(SortOrder.descending);
60. Iterator impAttrsIterator = impAttrs.iterator();
61. SignatureAttribute attr = null;
62. System.out.println("AttributeName Rank Importance Value");
63. while(impAttrsIterator.hasNext()) {
64. attr = (SignatureAttribute)impAttrsIterator.next();
65. String attrName = attr.getName();
66. int rank = attr.getRank();
67. double importanceValue = attr.getImportanceValue();
68. System.out.println(attrName + " " + rank + " " + importanceValue);
69. }
70. }}

244 Chapter 9 Using the JDM API

Note that JDM does not have any algorithm-specific model details
defined for the association function since the model contents are con-
sidered general enough for most algorithms. Table 9-19 shows the list
of association-related interfaces and their methods.

Table 9-19 Association-related interfaces

association.AssociationSettings extends base.BuildSettings

Methods Description

get/add/removeItem
(Object item, boolean included))

Used to get/add/remove an item from/to the list of items to
be excluded from (if included flag is false) or included in
(if true) the frequent itemset building.

get/add/removeItems
(Object[] items, boolean included))

Used to get/add/remove an items from/to the list of items to
be excluded when building the frequent itemsets (if included
flag is false), or included when building the frequent
itemsets (if true).

set/getMinSupport(double support) Used to set/get the minimum support allowed for any
generated rule.

set/getMinConfidence
(double confidence)

Used to set/get the minimum confidence allowed for any
generated rule.

set/getMaxNumberRules(int maxRules) Used to set/get the maximum number of rules to be included
in the model.

set/getMaxRuleLength(int maxLength) Used to set/get the maximum number of items in a rule.

set/getMaxRuleComponentLength
(int maxLength, boolean isAntecedent)

Used to set/get the maximum number of items in a rule com-
ponent. The isAntecedent boolean flag is used to indicate
the antecedent (if true) or consequent (if false)

set/getTaxonomyName
(String attributeName, String
taxonomyName)

Used to set/get the name of the Taxonomy object to be used
for the specified attribute.

association.AssociationModel extends base.Model

Methods Description

getAverageTransactionSize():Double Returns the average number of items in the transactions in
the build data used when building the model.

getItems():Collection Returns a collection of all items used to build the model that
can be used to sequentially fetch items that occur in at least
one rule in the model.

getItemsets():Collection Returns a collection of all itemsets found that can be used to
sequentially fetch the itemsets that occur in at least one rule
in the model.

9.7 Using Association Interfaces 245

Table 9-19 (continued)

Methods Description

getItemsets(int itemsetSize): Collection Constructs and returns a collection of the itemsets of the
specified size that allows sequential inspection of the gener-
ated itemsets of the given size.

getMaxAbsoluteSupport(): int Returns the maximum support value of the rules contained
in the model.

getMinAbsoluteSupport(): int Returns the minimum support value of the rules contained
in the model.

getMaxConfidence(): Double Returns the maximum confidence value of the rules con-
tained in the model.

getMaxRuleLength(): int Returns the largest rule length in terms of the number of
items.

getMaxTransactionSize(): int Returns the number of items in the largest transaction in
the build data used when building the model.

getMinConfidence(): Double Returns the minimum confidence value of the rules con-
tained in the model.

getNumberOfItems(): int Returns the number of distinct items in the build data used
when building the model.

getNumberOfItemsets(): int Returns the number of itemsets whose support values are
equal to or exceed the support threshold specified in the
AssociationRulesSettings used when building the model.

getNumberOfTransactions(): long Returns the number of transactions used to build the model.

getRules(): Collection Constructs and returns a collection of all rules in the model
that allows sequential inspection of the generated rules.

getRules(RulesFilter filter): Collection Constructs and returns a collection of model rules as filtered
by the specified filter.

association.AssociationRule

Methods Description

getAbsoluteSupport(): int Returns the support for the given association rule in terms
of absolute count of transactions supporting this rule.

getAntecedent(): Itemset Returns the antecedent of the association rule.

getConsequent (): Itemset Returns the consequent of the association rule.

getSupport (): double Returns the support for the given association as a percent-
age of the total number of transactions. The percentage is a
number between 0 and 100, denoted as (0,100] where 100 is
included.

246 Chapter 9 Using the JDM API

Listing 9-16 shows the building of an association model that finds
the products that are sold together based on customer purchase data.
Lines 27 to 35 show the creation of a physical dataset object using a
transactional format table. Lines 37 to 41 show the creation of associ-
ation settings that specify the minimum support, confidence, maxi-
mum length, and maximum number of rules. Lines 49 to 61 show the
execution of the build task, which is similar to other models. Lines 67

Table 9-19 Association-related interfaces (continued)

Methods Description

getConfidence(): double Returns the confidence for the given association rule as the
total number of transactions with antecedent and conse-
quent divided by the number of transactions with the ante-
cedent as a percentage. The percentage is a number between
0 and 100, denoted as (0,100] where 100 is included.

getLift(): double Returns the lift for the given association rule defined as the
number of transactions with the confidence of the rule
divided by the number of transactions with the consequent.

getLength(): int Returns the number of items in the rule, which includes
both antecedent and consequent itemsets.

association.RuleFilter

Methods Description

set/getItems(Object[] itemArray,
RuleComponentOption
componentOption, boolean included)

Used to set/get the items to be included in the specified com-
ponent of the rules to be selected.

set/getMaxNumberOfRules
(int maxRules)

Used to set/get the maximum number of rules for the result.

set/getOrderingCondition
(RuleProperty[] orderByArray,
SortOrder[] sortOrderArray)

Used to set/get the ordering condition for the rules after
they are filtered.

set/getRange(RuleProperty type,
double minValue, double maxValue)

Used to set/get the range of the specified rule property. Rule
property can be antecedent, consequent or both.

set/getThreshold
(RuleProperty property,
ComparisonOperator compOp,
double thresholdValue)

Used to set/get the threshold value with a comparison opera-
tor. Rule property can be antecedent, consequent or both.
ComparisonOperator enumerates various operators, such as
=, <, >, <=, >=, != etc.

set/getOrderingCondition
(RuleProperty[] orderByArray,
SortOrder[] sortOrderArray)

Used to set/get the ordering condition for the rules after
they are filtered.

9.7 Using Association Interfaces 247

to 104 show retrieving the model and its contents using different
filters and displaying the rules. The association.RulesFilter interface
provides multiple filtering and sorting capabilities for selecting sub-
sets of model rules. Typically, association models contain a large
number of rules (tens or hundreds of thousands). Consequently,
applications need a powerful and flexible filtering mechanism to
obtain the rules of interest. Lines 72 to 79 show the creation of the
rules filter to obtain rules with support and confidence greater than
0.5 and to order those rules in descending order of the confidence
and support. Lines 81 to 85 show another type of rules filter used to
obtain rules with antecedent item “savings account” and consequent
item “certificate account.” Lines 87 and 88 show rules retrieval that
satisfies these two filtering criteria. Lines 87 to 105 show how to
display the retrieved rules; this highlights several AssociationRule
interface methods.

Listing 9-16 Build Association model to discover product associations

1. public class CrossSellProducts {
2. //Data members
3. . . .
4. static AssociationSettingsFactory arSettingsFactory = null;
5. . . .
6. //Main method
7. public static void main(String args[]) throws Exception {
8. try {
9. //Create DME connection as shown in Listing 9.1 or 9.2
10. // . . .
11. input(); //Create input objects
12. if(run()) //Execute model build task
13. output(); //Retrieve the model
14. } catch(Exception anyFailures) { anyFailures.printStackTrace();
15. } finally { if(dmeConn != null) dmeConn.close(); //Close connection
16. }}
17.
18. //Create and save input objects
19. public static void input() throws JDMException {
20. //Create Input object factories
21. . . .
22. arSettingsFactory = (AssociationSettingsFactory)dmeConn.getFactory(
23. "javax.datamining.association.AssociationSettings");
24.
25. boolean replaceObject = true;
26. //Input objects for building appraisal_model using appraisal_build_data dataset
27. PhysicalDataSet pdsBuild = pdsFactory.create("product_transactions", false);
28. PhysicalAttribute[] transactionalAttrs = new PhysicalAttribute[3];
29. transactionalAttrs[0] = psFactory.create("CustomerId",
30. AttributeDataType.integerType, PhysicalAttributeRole.caseId);

248 Chapter 9 Using the JDM API

31. transactionalAttrs[1] = psFactory.create("Product Name",
32. AttributeDataType.stringType, PhysicalAttributeRole.attributeName);
33. transactionalAttrs[2] = psFactory.create("Amount Range",
34. AttributeDataType.stringType, PhysicalAttributeRole.attributeValue);
35. pdsBuild.addAttributes(transactionalAttrs);
36.
37. AssociationSettings arSettings = arSettingsFactory.create();
38. arSettings.setMinConfidence(0.2);
39. arSettings.setMinSupport(0.2);
40. arSettings.setMaxRuleLength(10);
41. arSettings.setMaxNumberOfRules(100000);
42. dmeConn.saveObject("ar_build_data", pdsBuild, replaceObject);
43. dmeConn.saveObject("ar_build_settings", arSettings, replaceObject);
44. }
45.
46. //Create and execute tasks
47. public boolean run() throws JDMException {
48. //Create task object factories
49. btkFactory = (BuildTaskFactory)dmeConn.getFactory(
50. "javax.datamining.task.BuildTask");
51. //Run until completion when timeout is set to null
52. Long timeOut = null;
53. //Create and run build task
54. BuildTask btk = btkFactory.create("ar_build_data",
55. "ar_build_settings", "ar_model");
56. ExecutionStatus buildStatus = dmeConn.execute(btk, timeOut);
57. //If Build task is successful run test metrics task
58. if(ExecutionState.success.equals(buildStatus.getState()))
59. return true;
60. else
61. return false;
62. }
63.
64. //Retrieve built model and test metrics
65. public void output() throws JDMException {
66. //Retrieve regression model
67. AssociationModel arModel =
68. (AssociationModel)dmeConn.retrieveObject("ar_model",NamedObject.model);
69. //Create a rules filter object that filters the rules that have specified range of
70. //support and confidence. In addition filter can specify the sort order of the
71. //rules.
72. RulesFilterFactory rulesFilterFactory = dmeConn.getFactory(
73. "javax.datamining.association.RulesFilter");
74. RulesFilter filterByConfidenceSupport = rulesFilterFactory.create();
75. filterByConfidenceSupport.setRange(RuleProperty.confidence, 0.5, 1.0);
76. filterByConfidenceSupport.setRange(RuleProperty.support, 0.5, 1.0);
77. filterByConfidenceSupport.setOrderingCondition(
78. new RuleProperty[] { RuleProperty.confidence, RuleProperty.support },
79. new SortOrder[] { SortOrder.descending, SortOrder.descending });
80. //Create another filter that filters by items in antecedent and consequent

9.8 Using Clustering Interfaces 249

9.8 Using Clustering Interfaces

The javax.datamining.clustering package contains clustering function
interfaces, such as ClusteringSettings, ClusteringModel, Cluster, and
ClusteringApplySettings. Table 9-20 shows the clustering-related inter-
face methods. ClusteringSettings provides various set methods for
users to select the aggregation function, attribute comparison func-
tion, maximum number of model clusters, maximum and minimum
size of clusters allowed, etc. As a descriptive model, a clustering
model allows users to examine its contents. The ClusteringModel
interface provides methods to retrieve clusters, rules, and if it is a
hierarchical cluster model, the hierarchical structure. Table 9-20
shows the list of methods in ClusteringModel.

The Cluster interface provides methods to retrieve cluster-specific
details such as cluster id, name, attribute statistics, and number of
cases that substantiate the cluster. For hierarchical cluster models,
users can retrieve the cluster children, parent, and ancestors. Similar
to supervised models, clustering models can be applied to assign
apply data cases to the most closely matching cluster. The Clustering
ApplySettings object provides several map methods, as shown in

81. RulesFilter filterByItems = filterByItems.create();
82. filterByItems.setItems(new Object[] { "Savings Account" },
83. RuleComponentOption.antecedent, true);
84. filterByItems.setItems(new Object[] { "Certificate Account" },
85. RuleComponentOption.consequent, true);
86. //Get filtered rules
87. Collection rulesByConfidenceSupport=arModel.getRules(filterByConfidence Support);
88. Collection rulesByItems = arModel.getRules(filterByItems);
89. //Iterate and display rules by items
90. Iterator rulesByItemsIterator = rulesByItems.iterator();
91. while(rulesByItemsIterator.hasNext()) {
92. AssociationRule arRule = (AssociationRule)rulesByItemsIterator.next();
93. ItemSet arRule.getItemSet();
94. ItemSet antecedentItemSet = arRule.getAntecedent();
95. ItemSet consequentItemSet = arRule.getConsequent();
96. Object[] antecedentItems = antecedentItemSet.getItems();
97. Object[] consequentItems = consequentItemSet.getItems();
98. //Display rule contents
99. System.out.print("\n Rule-" + arRule.getRuleIdentifier() + ": IF");
100. for(int i=0; i < antecedentItems.length; i++)
101. System.out.print(antecedentItems[i].toString() + " ");
102. System.out.print(" THEN ");
103. for(int j=0; j < consequentItems.length; j++)
104. System.out.print(consequentItems[j].toString() + " ");
105. }} }

250 Chapter 9 Using the JDM API

Table 9-20, to specify apply output contents. Similar to classification,
clustering apply has methods: mapTopCluster—maps apply contents to
the top cluster, mapByRank—maps apply contents to the clusters by the
specified rank, mapByClusterIdentifier—maps apply contents to the
specified clusters, and mapClusters—maps apply contents to all clusters.

Table 9-20 Clustering-related interfaces

clustering.ClusteringSettings extends base.BuildSettings

Methods Description

set/getAggregationFunction(
AggregationFunction function)

Used to set/get the aggregation function to be used.

set/getAttributeComparison-
Function(String logicalAttribute-
Name,AttributeComparisonFunction
function)

Used to set/get the attribute comparison function to be used.

set/getMaxNumberOfClusters(
int maxClusters)

Used to set/get the maximum number of clusters allowed in
the model.

set/getMinClusterCaseCount(
long minCaseCount)

Used to set/get the minimum number of cases allowed per
cluster.

set/getMaxLevels(int numberOfLevels) Used to set/get the maximum level, or hierarchy depth, for
hierarchical clustering.

set/getSimilarityMatrix(
String logicalAttributeName,
SimilarityMatrix matrix)

Used to set/get the similarity values to be used for the speci-
fied attribute. The SimilarityMatrix represents the similar-
ity values between attribute values.

clustering.ClusteringModel extends base.Model

Methods Description

getClusters(): Collection Returns the collection of Cluster objects in the clustering
model.

getLeafClusters(): Collection Returns the collection of leaf Cluster objects in the clustering
model.

getNumberOfClusters(): int Returns the number of clusters in the model.

getCluster(int identifier): Cluster Returns the Cluster object in the model with the specified
identifier.

getNumberOfLevels(): int Returns the number of levels in the ClusteringModel.

getRootClusters(): Collection Returns a collection of the root clusters of the Clustering-
Model.

getRules(): Collection Returns a collection of the rules from the clustering model.

9.8 Using Clustering Interfaces 251

Table 9-20 (continued)

Methods Description

getSimilarity(int clusterIdentifier1,
int clusterIdentifier2): Double

Returns the similarity of two clusters represented as a value
between 0 and 1.

hasProperty(ClusteringModelProperty
property): boolean

Returns true if the specified property is supported by the
clustering model. ClusteringModelProperty is an enumera-
tion of properties, such as centroid, hierarchy, cluster rules,
attribute statistics etc.

clustering.Cluster

Methods Description

getClusterId(): int Returns the cluster identifier.

getCaseCount(): long Returns the number of cases from the build data assigned to
the cluster during the model build, inclusive of children
counts.

getName(): String Returns the name of the cluster designated by the clustering
algorithm.

getStatistics(): AttributeStatisticsSet Returns the AttributeStatisticsSet object that characterizes
the cases assigned to the cluster.

getRule(): Rule Returns the cluster rule.

getCentroidCoordinate
(java.lang.String numericalAttribute-
Name): Double

Returns the center point of the specified numerical attribute
for the cluster.

getCentroidCoordinate
(java.lang.String categoricalAttribute-
Name, java.lang.Object category):
java.lang.Double

Returns the center point of the specified categorical attribute
for a specific category value for the cluster.

getSupport(): double Returns the support defined as a percentage of cases assigned
to this cluster relative to the total number of cases in the
build data.

getLevel(): int Returns the level in the clustering hierarchy associated with
the Cluster object.

getAncestors(): Cluster[] Returns the ancestors of the cluster.

getChildren(): Cluster[] Returns an array of Cluster objects that are children of the
cluster node.

getParent(): Cluster Returns the parent of the cluster.

getSplitPredicate(): Predicate Returns a Predicate object that stores information on how
cases are assigned to the cluster node’s children.

252 Chapter 9 Using the JDM API

Table 9-20 Clustering-related interfaces (continued)

Methods Description

isLeaf(): boolean Returns true if the cluster is a leaf node in a hierarchical clus-
tering model and false if it is an internal node.

isRoot(): boolean Returns true if the cluster is a root node in a hierarchical
clustering model and false if it is an internal node.

clustering.ClusteringApplySettings extends task.apply.ApplySettings

Methods Description

mapTopCluster(
 ClusteringApplyContent content,
 String destPhysAttrName)

Maps the cluster with the highest prediction metric to appear
in the apply output under the specified attribute name. After
task completion, apply output data contains the specified
apply contents associated with the top cluster. For example,
when a user calls the following method, the apply task will
compute the top prediction value and populate topPredic-
tion column with the computed prediction value.

mapTopCluster
(ClusteringApplyContent.clusterIdentifier,“topCluster”)

mapByRank(
 ClusteringApplyContent content,
 String[] destPhysAttrNameArray,
 boolean fromTop)

Maps the specified generated values for the predictions with the
specified ranks to an array of destination attributes. Used to
specify the prediction rank based apply contents for the apply
task. The number and order of ranks depends on the size of the
destPhysAttrNameArray and fromTop boolean value. For
example, when a user calls the following method, the apply task
will compute the top two clusters and populate columns
Top_1_Cluster and Top_2_Cluster with the appropriate clus-
ter ids. A user can call this method multiple times with differ-
ent types of apply contents to obtain additional information.

mapByRank(ClusteringApplyContent.clusterIdentifier,
new String[] { “Top_1_Cluster”, “Top_2_Cluster” },
true)

mapByClusterIdentifier(
 ClusteringApplyContent content,
 int clusterIdentifier,
 String destinationAttrName)

Maps the specified content value for the specified cluster
identifier to the named destination attribute. For example,
when a user calls the following methods, the apply task will
compute the probabilities associated with clusters 1 and 2
and populate the probability values in the specified columns
i.e., cluster_1_probability and cluster_2_probability.

mapByClusterIdentifier
(ClusteringApplyContent.
probability, “1”, “Cluster_1_Probability”);

mapByClusterIdentifier
(ClusteringApplyContent.
probability, “2”, “Cluster_2_Probability”);

9.8 Using Clustering Interfaces 253

Listing 9-17 shows the code that illustrates the use of clustering
interfaces for the customer segmentation problem discussed in
Section 7.5. Lines 34 to 41 show the creation of the clustering settings
object that specifies the aggregation function as euclidean and the
attribute comparison function for age attribute as absolute difference in
values. All other attributes use the DME’s default attribute compari-
son function. In addition, the maximum number of clusters is speci-
fied as 50 and the cluster case count must be between 500 and 100,000
cases. Building this segmentModel is similar to building the other
types of models, as shown from lines 69 to 71. Once the segmentModel
is built, we apply this model to the apply input data to find the most
probable cluster id using the ClusterApplySettings.mapTopCluster
method. Lines 47 to 53 show the creation of the apply settings object
and lines 74 to 79 show the execution of the dataset (batch) apply
task. Similar to classification and regression, clustering models can
also support real-time single record apply operations. Lines 95 to 119
show retrieving the clustering model and each cluster’s details. In
this example, we show retrieving the age attribute statistics details
such as frequencies and how applications can obtain further cluster
details from the model.

Table 9-20 (continued)

mapClusters(
 ClusteringApplyContent content,
 String baseDestPhysAttrName)

Maps all clusters in the model and the specified content
value to a set of named destination attributes. When this
method is used, the apply output data will have apply con-
tents for all the leaf clusters. The base attribute name speci-
fied by the user will be used to generate the columns in the
apply output data. For example, when a user calls the fol-
lowing methods where the input model has four leaf clusters
i.e.,{ 1, 2, ,3 ,4 }, the apply task creates apply output data
with columns ClusterId_1, ClusterId_2, ClusterId_3,
ClusterId_4, Probability_1, Probability_2,
Probability_3, Probability_4. The column Probability_1
has the probability value associated with the cluster id value
in column ClusterId_1. Similarly, the other columns will
have cluster ids and associated probabilities.

mapClusters
(ClusteringApplyContent.clusterIdentifier,
“ClusterId”);

mapClusters
(ClusteringApplyContent..probability,
“Probability”);

254 Chapter 9 Using the JDM API

Listing 9-17 Clustering example code

1. public class CustomerSegmentation {
2. /Data members
3. . . .
4. static ClusteringSettingsFactory clusFactory = null;
5. static ClusteringApplySettingsFactory clusApplySettingsFactory = null;
6.
7. . . .
8.
9. //Main method
10. public static void main(String args[]) throws Exception {
11. try {
12. //Create DME connection as shown in Listing 9.1 or 9.2
13. // . . .
14. input(); //Create input objects
15. if(run()) //Execute model build and apply task
16. output(); //Retrieve the model
17. } catch(Exception anyFailures) { anyFailures.printStackTrace();
18. } finally { if(dmeConn != null) dmeConn.close(); //Close connection
19. }
20. }
21.
22. //Create and save input objects
23. public static void input() throws JDMException {
24. //Create Input object factories
25. . . .
26. clusSettingsFactory = (ClusteringSettingsFactory)dmeConn.getFactory(
27. "javax.datamining.clustering.ClusteringSettings");
28. clusApplySettingsFactory = (ClusteringApplySettingsFactory)dmeConn.getFactory(
29. "javax.datamining.clustering.ClusteringApplySettings");
30.
31. boolean replaceObject = true;
32. //Input objects for building appraisal_model using appraisal_build_data dataset
33. PhysicalDataSet pdsBuild = pdsFactory.create("CUSTOMERS_BUILD_DATA ", false);
34. ClusteringSettings cluSettings = cluSettingsFactory.create();
35. cluSettings.setAggregationFunction(AggregationFunction.euclidean);
36. cluSettings.setAttributeComparisonFunction("age"
37. ,AttributeComparisonFunction.absDiff);
38. cluSettings.setMaxNumberOfClusters(50);
39. cluSettings.setMaxClusterCaseCount(100000);
40. cluSettings.setMinClusterCaseCount(500);
41. dmeConn.saveObject("segment_build_data", pdsBuild, replaceObject);
42. dmeConn.saveObject("segment_builds_settings", clusSettings, replaceObject);
43.
44. //Input objects for applying segmentModel for CUSTOMERS_APPLY_DATA dataset
45. PhysicalDataSet pdsApply = pdsFactory.create("CUSTOMERS_APPLY_DATA", false);
46. dmeConn.saveObject("segment_apply_data", pdsTest, replaceExistingObject);
47. ClusteringApplySettings clusApplySettings = clusApplySettingsFactory.create();
48. //Save predicted value in the predicted_appraisal_value column
49. clusApplySettings.mapTopCluster(ClusteringApplyContent.clusteridentifier,

9.8 Using Clustering Interfaces 255

50. "segment_id");
51. //Carry forward customer id column
52. Map sourceDestMap = new HashMap();
53. sourceDestMap.put("cust_id","Customer id");
54. clusApplySettings.setSourceDestinationMap(sourceDestMap);
55. dmeConn.saveObject("segmentApplySettings", clusApplySettings, true);
56. }
57.
58. //Create and execute tasks
59. public boolean run() throws JDMException {
60. //Create task object factories
61. btkFactory = (BuildTaskFactory)dmeConn.getFactory(
62. "javax.datamining.task.BuildTask");
63. atkFactory = (DataSetApplyTaskFactory)dmeConn.getFactory(
64. "javax.datamining.task.apply.DataSetApplyTask");
65.
66. //Run until completion when timeout is set to null
67. Long timeOut = null;
68. //Create and run build task
69. BuildTask btk = btkFactory.create("segment_build_data",
70. "segment_build_settings", "segment_model");
71. ExecutionStatus buildStatus = dmeConn.execute(btk, timeOut);
72. //If Build task is successful run apply task
73. if(ExecutionState.success.equals(buildStatus.getState())) {
74. DataSetApplyTask applyTask =
75. atkFactory.create("segment_apply_data", "segment_model",
76. "segment_apply_settings", "segment_apply_output");
77. ExecutionStatus applyStatus = dmeConn.execute(applyTask, timeOut);
78. //If the apply task on test data is successful then run test metrics task
79. if(ExecutionState.success.equals(applyStatus.getState()))
80. return true;
81. else
82. return false;
83. } else {
84. System.out.println("Failed due to: " + testApplyStatus.getDescription());
85. return false;
86. }}
87. else {
88. System.out.println("Failed due to: " + buildStatus.getDescription());
89. return false;
90. }}
91.
92. //Retrieve built model and test metrics
93. public void output() throws JDMException {
94. //Retrieve regression model
95. ClusteringModel clusModel = (ClusteringModel)dmeConn.retrieveObject(
96. "segment_model", NamedObject.model);
97. //Get clusters
98. Collection clusters = clusModel.getLeafClusters();
99. Iteraor clusterIterator = clusters.iterator();
100. while(clusterIterator.hasNext()) {

256 Chapter 9 Using the JDM API

9.9 Summary

JDM provides a comprehensive API to build data mining solutions
and tools. JDM provides an API to build, apply, test, and describe
models. Vendors can easily extend the standard API to add more
implementation-specific non-JDM standard functions, algorithms,
and settings. The Connection interface provides methods for inter-
acting with the DME, such as saving and exploring mining objects,
and executing mining tasks. Data specification interfaces provide
various types of data description capabilities and function and algo-
rithm level settings specification. JDM supports specifying minimal
settings for mining operations via simple object representations and
DME defaults. JDM also supports highly customized settings with
options for detailed DME control. For descriptive models, JDM pro-
vides the function and algorithm-specific model details that appli-
cations can retrieve and present to the user. For supervised and
clustering models, the apply task can produce apply outputs for
multi-record or single-record data, supporting batch and real-time
applications, respectively. Test metrics can be computed to evaluate
the quality of supervised models.

101. //Display cluster details
102. Cluster c = (Cluster)clusterIterator.next();
103. System.out.println("Cluster: " + c.getClusterId());
104. System.out.println("Number of cases: " + c.getCaseCount());
105. //Display age attribute details of the cluster
106. Double centroidValue = c. getCentroidCoordinate("age");
107. System.out.println("CentroidCoordinate for Age attribute: "
108. + centroidValue.toString());
109. AttributeStatisticsSet clusterAttrStatitics = c.getStatistics();
110. UnivariateStatitics ageAttrStatistics =
111. clusterAttrStatitics.getStatistics("age");
112. if(ageAttrStatistics != null) {
113. System.out.println("Age attribute values distribution:");
114. Object[] ageValues = ageAttrStatistics.getValues();
115. long[] frequencies = ageAttrStatistics.getFrequencies();
116. for(int i=0; i< ageValues.length; i++)
117. System.out.println("Age:" + ageValues[I].toString() + " -> Frequency " +
118. frequencies[i]);
119. }}}}

9.9 Summary 257

References

[JDM11 2006] Java Data Mining 1.1 specification and API Java documen-
tation, http://jcp.org/aboutJava/communityprocess/mrel/jsr073

[J2EE Tutorial 2006] J2EE 1.4 Tutorial, http://java.sun.com/j2ee/1.4/docs/
tutorial/doc

[IEM 2004] Data Mining for the Masses by Seth Grimes available at http://
www.intelligententerprise.com/showArticle.jhtml?articleID=21400394

259

Chapter

10
XML Schema

We now have 80% of data living in the messy horror world of proprietary
formats. If those 80% are taken over by XML, that’s a big step forward.

 —Alexander Jerusalem on the XML Developers mailing list

Extensible Markup Language (XML) is becoming the ubiquitous
choice for data representation in a machine-readable format and for
data exchange [W3CXML 2006]. An XML Schema provides mech-
anisms to define and describe the structure, content, and to some
extent semantics of XML documents [W3CXML-SCHEMA 2006].

In Java Data Mining (JDM), we defined an XML Schema for JDM
objects to complement the Java application programming interface
(API) and provide a standards-based data model. JDM XML Schema
definitions supported multiple uses, such as interchanging data
mining objects among data mining engines (DMEs), defining Web
services, storing data mining objects as XML documents, and inte-
grating JDM implementations with non-Java applications. Readers
of this chapter are expected to be familiar with XML and XML
Schema concepts [Ray 2003].

This chapter provides an overview of the JDM Schema, the
structure of JDM-compliant XML documents, JDM Schema complex
types, use cases for XML Schema, and lastly, how the JDM Schema
complements the Predictive Model Markup Language [DMG-PMML

260 Chapter 10 XML Schema

2006]. Throughout this chapter, we refer to the JDM XML Schema as
the JDM Schema and a JDM XML document as a JDM document.

10.1 Overview

Chapters 8 and 9 introduced various JDM objects. Most of these
objects were defined as Java interfaces that define associated methods
but no data members. The JDM standard uses an interface-based
approach to provide data mining vendors greater flexibility when
implementing JDM functionality. However, the lack of a standard
data model causes interoperability issues for exchanging JDM objects
between implementations. The JDM Schema fills this gap by defining
a standard data model using XML for JDM objects. For example,
the javax.datamining.MiningObject interface has a corresponding
complex type called MiningObject that defines a data model, as shown
in Listing 10-1. Note that each element and attribute defined in this
complex type has a corresponding get method defined in the
javax.datamining.MiningObject interface. Similarly, all other JDM API
interfaces and classes have an associated JDM Schema type.

10.2 Schema Elements

The JDM Schema’s elements structure is fairly simple. Listing 10-2
illustrates the JDM Schema snippet that defines the element structure
and related complex types. In Line 1, we specify the namespace used
for the JDM Schema, http://www.jsr-73.org/2004/JDMSchema. This
namespace includes the Java Specification Request (JSR) number and
the release year of the standard to uniquely identify the major
releases of the JDM Schema. For JDM maintenance releases, the
namespace will not be changed, because the changes are limited to
simple fixes. Currently, this JDM Schema is not hosted on the Internet

Listing 10-1 JDM Schema MiningObject complexType

<xsd:complexType name="MiningObject">
 <xsd:sequence>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="type" type="NamedObjectType" use="optional"/>
 <xsd:attribute name="creatorInfo" type="xsd:string" use="optional"/>
 <xsd:attribute name="creationDate" type="xsd:date" use="optional"/>
 <xsd:attribute name="objectIdentifier" type="xsd:string" use="optional"/>
</xsd:complexType>

10.2 Schema Elements 261

at the specified namespace; applications have to access this schema
by downloading it from [JDM11 2006]. Line 2 of Listing 10-2 shows the
root element called JDM. The JDM element can have children as one
header element (line 3) and multiple object elements (line 4). The header

Listing 10-2 JDM Schema elements

1. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.jsr-73.org/2004/JDMSchema"
 targetNamespace="http://www.jsr-73.org/2004/JDMSchema"
 elementFormDefault="qualified">
2. <xsd:element name="JDM">

 <xsd:complexType>
 <xsd:sequence>

3. <xsd:element name="header" type="Header"/>
4. <xsd:element name="object" type="NamedObject" minOccurs="0"
 maxOccurs="unbounded"/>

 </xsd:sequence>
5. <xsd:attribute name="version" type="xsd:string" use="required"/>

 </xsd:complexType>
 </xsd:element>

6. <xsd:complexType name="Header">
 <xsd:sequence>
 <xsd:element name="copyright" type="xsd:string" minOccurs="0"/>
 <xsd:element name="timestamp" type="xsd:date" minOccurs="0"/>
 <xsd:element name="applicationName" type="xsd:string" minOccurs="0"/>
 <xsd:element name="applicationVersion" type="xsd:string" minOccurs="0"/>
 <xsd:element name="description" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
</xsd:complexType>

7. <xsd:complexType name="NamedObject">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="task" type="Task"/>
 <xsd:element name="buildSettings" type="BuildSettings"/>
 <xsd:element name="model" type="Model"/>
 <xsd:element name="logicalData" type="LogicalData"/>
 <xsd:element name="physicalDataSet" type="PhysicalDataSet"/>
 <xsd:element name="testMetrics" type="TestMetrics"/>
 <xsd:element name="taxonomy" type="Taxonomy"/>
 <xsd:element name="costMatrix" type="CostMatrix"/>
 <xsd:element name="applySettings" type="ApplySettings"/>

 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>

 . . . JDM complexTypes . . .
</xsd:schema>

262 Chapter 10 XML Schema

element is of type Header (line 6) and encapsulates the optional
details. It provides human-readable information about the doc-
ument, such as the application that created it, when it was created,
document description, and copyright information.

The object element is of type NamedObject (line 7) and encapsulates
one of the JDM named objects, such as task and build settings. One
JDM element can encapsulate multiple object elements. There is a
required version attribute (line 5) of the JDM element used to specify
the JDM Schema version.

Listing 10-3 illustrates a JDM document that conforms to the JDM
Schema’s elements structure. This document encapsulates a classifi-
cation build settings object using the decision tree algorithm. Note
that the buildSettings element (line 4) uses xsi:type�“ClassificationSet-
tings” to indicate that it is a ClassificationSettings complex type. Sim-
ilarly its child element algorithmSettings (line 5) uses
xsi:type�”TreeSettings” to indicate that it is a TreeSettings complex
type.

10.3 Schema Types

JDM Schema types have a one-to-one mapping with the JDM API
classes or interfaces. JDM Schema types use the same name of the asso-
ciated Java classes or interfaces, and maintain the same object inherit-
ance and relationships as in the API whenever possible. In addition,

Listing 10-3 Example JDM document (Classification settings object with decision tree algorithm)

<?xml version="1.0"?>
1. <JDM version="1.1"

 xmlns="http://www.jsr-73.org/2004/JDMSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

2. <header>
<copyright>Copyright (c) 2004, 2005, Oracle. All rights reserved.</copyright>
<timestamp>2005-12-06</timestamp>
<applicationName>XYZ Predictive Analytics</applicationName>
<applicationVersion>10.2</applicationVersion >
<description>Provides settings to build customer attrition model</description>

 </header>
3. <object>
4. <buildSettings xsi:type="ClassificationSettings"

miningFunction="classification" targetAttributeName="customer_type">
5. <algorithmSettings xsi:type="TreeSettings"

miningAlgorithm="decisionTree" maxDepth="10" />
 </buildSettings>
 </object>

 </JDM>

10.3 Schema Types 263

the JDM Schema follows JAX-RPC Java-XML data type mapping
guidelines [JAXRPC-SPEC 2006]. For example, Figure 10-1 depicts the
class diagram and schema diagram for the PhysicalDataSet related
objects illustrating the similarity between the API and the schema. In
the class diagram, the PhysicalDataSet interface inherits from the Mining-
Object interface, similarly in the schema diagram, the PhysicalDataSet-
complex type inherits from the MiningObject complex type. In the class
diagram, PhysicalDataSet has a one-to-many relationship with Physical-
Attribute and it may have an AttributeStatisticsSet that gives statistics
details of the data. Similarly, the schema diagram shows that the Physi-
calDataSet complex type can have a one-to-many relationship with the
PhysicalAttribute type elements and it may have an AttributeStatisticsSet
element. Maintaining these similarities between the JDM API and
XML Schema simplifies the implementation of the marshalling and
unmarshalling of Java objects to and from XML, and the developer
who understands the API can easily understand the schema.

The rest of this section explores some of the complex types
defined in the JDM Schema to illustrate how various JDM API
objects discussed in previous chapters are mapped to the schema.

The task objects discussed in Section 8.1.5 have more flexible options
in the JDM Schema than the API to reduce the number of server invoca-
tions to perform a mining operation. Consider the following example.
The BuildTask is used to build a mining model using input such as the
build data and build settings. The javax.datamining.task.BuildTask API

(a) Java API Class Diagram for
 PhysicalDataSet related interfaces

(b) JDM Schema Diagram for PhysicalDataSet complex type

javax.datamining

MiningObject

javax.datamining.data

PhysicalDataSet

javax.datamining.data

PhysicalAttribute
javax.datamining.statistics

AttributeStatisticsSet

0..1

1 1

*

attributeStatistics
type
AttributeStatisticsSet

statisticsTimestamp

numberOfCases

AttributeStatisticsSet

MiningObject

name
type
creatorinfo
creationDate
objectidentifier

attributeCount

PhysicalDataSet
extends
MiningObject

name
description
dataType
role

physicalAttribute
type PhysicalAttribute

attrStatistics
type
UnivariateStatistics

attributeName
0:�

0:�

–

uri
type xsd:anyURI

description
type xsd.string

Figure 10-1 JDM API and Schema mappings for PhysicalDataSet-related objects.

264 Chapter 10 XML Schema

interface has get and set methods for specifying names of the input
and output objects, as shown in Listing 10-4(a). Whereas in the JDM
Schema, the BuildTask complex type gives applications the option of
specifying either an object name or the object itself, as shown in
Listing 10-4(b).

Listing 10-4(a) javax.datamining.task.BuildTask interface

1. public interface BuildTask extends Task {
2. public String getBuildDataName();
 public void setBuildDataName(String name) throws JDMException;
3. public String getBuildSettingsName();
 public void setBuildSettingsName(String name) throws JDMException;
4. public String getValidationDataName();

public void setValidationDataName(String validationDataName) throws JDMException;
5. public String getModelDescription();
 public void setModelDescription(String description);
6. public Map getBuildDataMap();
 public void setBuildDataMap(Map buildDataMap) throws JDMException;
7. public Map getValidationDataMap();
 public void setValidationDataMap(Map validationDataMap) throws JDMException;
8. public String getModelName();
 public void setModelName(String name) throws JDMException;
9. public String getInputModelName();
 public void setInputModelName(String modelName) throws JDMException;
10. public String getApplicationName();
 public void setApplicationName(String name);
 }

Listing 10-4(b) BuildTask XML complex type

1. <xsd:complexType name="BuildTask">
<xsd:complexContent>
<xsd:extension base="Task">
 <xsd:sequence>

2. <xsd:choice>
<xsd:element name="buildDataName" type="xsd:string"/>
<xsd:element name="buildData" type="PhysicalDataSet"/>

 </xsd:choice>
3. <xsd:choice>

<xsd:element name="buildSettingsName" type="xsd:string"/>
<xsd:element name="buildSettings" type="BuildSettings"/>

 </xsd:choice>
4. <xsd:choice>

<xsd:element name="validationDataName" type="xsd:string" minOccurs="0"/>
<xsd:element name="validationData" type="PhysicalDataSet" minOccurs="0"/>

 </xsd:choice>
5. <xsd:element name="modelDescription" type="xsd:string" minOccurs="0"/>
6. <xsd:element name="buildDataMap" type="LogicalAttrNameMap" minOccurs="0"
 maxOccurs="unbounded"/>

10.3 Schema Types 265

In the API, task input objects are always referenced by name, so
input objects must be saved and made available for task execution.
Since the XML Schema gives the choice of specifying task input
object contents, the task element can encapsulate all required inputs
to execute the task with no object dependency. Applications using
Web services can gain performance benefits by reducing the number
of DME service calls; this can be accomplished by using a task with
input objects instead of named references. However, with unnamed
inputs, objects in the task cannot be reused by other tasks.

The JDM Schema maps the JDM matrix objects using a sparse rep-
resentation. In the JDM API, there are three types of matrix objects:
cost matrix, confusion matrix, and similarity matrix. For example, con-
sider the simple cost matrix shown in Figure 10-2. Here the target
attribute has two values: Yes and No. Note that the diagonal elements
for a cost matrix are always zero, because there is no cost associated
with the correct predictions. For nondiagonal elements, the default
cost value is 1. Therefore, to create this cost matrix object, the user
specifies only the nondiagonal element that has nondefault cost
value 3. Listing 10-5(a) shows the XML document for this cost
matrix; it first lists all the target values using the category element and
then specifies the false-negative (FN) cell that has cost value 3.
Because it is known that all diagonal elements have cost value 0 and
unspecified nondiagonal elements have cost value 1, these elements
do not have to be specified in the document.

7. <xsd:element name="validationDataMap" type="AttributeNameMap" minOccurs="0"
 maxOccurs="unbounded"/>
</xsd:sequence>

8. <xsd:attribute name="modelName" type="xsd:string" use="required"/>
9. <xsd:attribute name="inputModelName" type="xsd:string" use="optional"/>
10. <xsd:attribute name="applicationName" type="xsd:string" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Predicted

 Yes No
Yes 0 3 (FN)

1 (FP)
Actual

No 0

Figure 10-2 Cost matrix table.

266 Chapter 10 XML Schema

Listing 10-5(b) illustrates the JDM Schema for the CostMatrix
complex type. In line 2, we define the category elements of type Data-
ValueType to list the target values in the cost matrix. The DataValueType
is used to specify any target attribute value. The CategoryMatrixEle-
ment type (line 4) is used to define a cell of the matrix.

The JDM API extensively uses enumerations to provide a type-safe
list of values and the ability to extend standard enumeration values
with vendor-specific extensions. Listing 10-6 shows the schema defi-
nitions for the javax.datamining.MiningAlgorithm enumeration class.

Listing 10-5(a) Cost Matrix XML document

<JDM version="1.1"> <object>
 <costMatrix>
 <!--List of target values -->
 <category string="Yes">
 <category string="No">
 <!-- False Negative cost cell -->
 <costElement value="3">
 <predictedCategory string="No"/>
 <actualCategory string="Yes"/>
 </costElement>
</object> </JDM>

Listing 10-5(b) CostMatrix complex type

1. <xsd:complexType name="CostMatrix">
 <xsd:complexContent>
 <xsd:extension base="MiningObject">
 <xsd:sequence>

2. <xsd:element name="category" type="DataValueType" minOccurs="2"
 maxOccurs="unbounded"/>

3. <xsd:element name="costElement" type="CategoryMatrixElement"
 minOccurs="1" maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

4. <xsd:complexType name="CategoryMatrixElement">
 <xsd:sequence>
 <xsd:element name="predictedCategory" type="DataValueType"/>
 <xsd:element name="actualCategory" type="DataValueType"/>
 </xsd:sequence>

 <xsd:attribute name="value" type="xsd:double" use="required"/>
</xsd:complexType>

10.4 Using PMML with the JDM Schema 267

The MiningAlgorithmStd simple type (line 1) is used to specify the
enumeration of JDM standard algorithms. The MiningAlgorithm simple
type (line 2) is the union of values defined in MiningAlgorithmStd,
and EnumerationExtension. JDM implementations can optionally define
EnumerationExtension to add vendor specific enumeration values.
The EnumerationExtension type (line 3) is a string type whose value
starts with “ext:”. For example, a vendor can add a new genetic algo-
rithm to the MiningAlgorithm enumerations as “ext:genetic” using the
EnumerationExtension.

10.4 Using PMML with the JDM Schema

The Predictive Model Markup Language (PMML) is a data mining
XML standard that defines the XML Schema for representing mining
model contents and model details [DMG-PMML 2006]. Instead of
redefining schema for model details, the JDM Schema defines only
JDM-specific model details and allows vendors to specify PMML-
compatible model contents as part of it.

Listing 10-7 illustrates a sample decision tree classification model
XML document that is compatible with JDM and PMML 3.0 XML
Schemas. Note that a JDM model element can encapsulate a PMML
model, as shown in line 3.

Listing 10-6 MiningAlgorithm enumeration

1.<xsd:simpleType name="MiningAlgorithmStd">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="svmClassification"/>
 <xsd:enumeration value="svmRegression"/>
 <xsd:enumeration value="decisionTree"/>
 <xsd:enumeration value="naiveBayes"/>
 <xsd:enumeration value="kMeans"/>
 <xsd:enumeration value="feedForwardNeuralNet"/>
 </xsd:restriction>
</xsd:simpleType>

2. <xsd:simpleType name="MiningAlgorithm">
 <xsd:union memberTypes="MiningAlgorithmStd EnumerationExtension"/>

</xsd:simpleType>

3. <xsd:simpleType name="EnumerationExtension">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="ext:\S.*"/>
 </xsd:restriction>
 </xsd:simpleType>

268 Chapter 10 XML Schema

Listing 10-7 JDM and PMML compatible decision tree classification model XML document

 <?xml version="1.0"?>
 1. <JDM version="1.1" xmlns="http://www.jsr-73.org/2004/JDMSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <header>

 <applicationName>XYZ Predictive Analytics</applicationName>
 </header>
 2. <object>

 <model xsi:type="SupervisedModel" targetAttributeName="customer_type">
 3. <modelDetail format="PMML3.0">
 <PMML version="3.0" xmlns="http://www.dmg.org/PMML-3_0">
 <Header copyright="All rights reserved."/>
 <DataDictionary numberOfFields="3">
 <DataField name="ATTRITION" optype="categorical"/>
 <DataField name="AGE" optype="continuous"/>
 <DataField name="SAVINGS_BALANCE" optype="continuous"/>
 </DataDictionary>
 <TreeModel modelName="AttritionTreeModel" functionName="classification"

 splitCharacteristic="binarySplit">
 <MiningSchema>
 <MiningField name="ATTRITION" usageType="predicted"/>
 <MiningField name="AGE" usageType="active"/>
 <MiningField name="SAVINGS_BALANCE" usageType="active"/>
 </MiningSchema>
 <Node id="1" score="0" recordCount="10">
 <True/>
 <ScoreDistribution value="No" recordCount="5"/>
 <ScoreDistribution value="Yes" recordCount="5"/>
 <Node id="2" score="Yes" recordCount="3">
 <SimplePredicate field="AGE" operator="greaterThan" value="36"/>
 <ScoreDistribution value="Yes" recordCount="3"/>
 <ScoreDistribution value="No" recordCount="0"/>
 </Node>
 <Node id="3" score="No" recordCount="7">
 <SimplePredicate field="AGE" operator="lessOrEqual" value="36"/>
 <ScoreDistribution value="Yes" recordCount="2"/>
 <ScoreDistribution value="No" recordCount="5"/>

 <Node id="4" score="No" recordCount="5">
 <SimplePredicate field="SAVINGS_BALANCE" operator="lessThan" value="21500"/
 <ScoreDistribution value="Yes" recordCount="0"/>
 <ScoreDistribution value="No" recordCount="5"/>

 </Node>
 <Node id="5" score="Yes" recordCount="2">
 <SimplePredicate field="SAVINGS_BALANCE"operator="greaterOrEqual"value="21500"/>
 <ScoreDistribution value="Yes" recordCount="2"/>
 <ScoreDistribution value="No" recordCount="0"/>
 </Node>
 </Node>
 </Node>
 </TreeModel>
 </PMML>

10.4 Using PMML with the JDM Schema 269

Listing 10-8 depicts the Model and ModelDetail complex types
defined in the JDM Schema. Lines 1 to 6 illustrate the Model complex
type that contains the JDM standard model metadata types, such as
signature, buildSettings, effectiveBuildSettings, attributeStatistics, and
modelDetail, that we discussed in Sections 8.1.3 and 9.4.3. Lines 7 to 9
illustrate the ModelDetail complex type that uses the xsd:any to allow
any type of content as model detail (line 8). An optional format
attribute can be specified using the enumerated values defined in the
ImportExportFormat enumeration that defines some of the industry
standard data mining formats, such as PMML. As a result, the JDM
Schema allows specifying model details in any vendor-specific for-
mat. However, vendors can extend the JDM Schema to enforce spe-
cific formats such as PMML.

</modelDetail>
 </model>
 </object>
</JDM>

Listing 10-8 XML Schema complex types for the mining model and model details

 1. <xsd:complexType name="Model">
 <xsd:complexContent>
 <xsd:extension base="MiningObject">
 <xsd:sequence>
 2. <xsd:element name="signature" type="ModelSignature" minOccurs="0"/>
 <xsd:choice>
 3. <xsd:element name="buildSettingsName" type="xsd:string"
 minOccurs="0"/>

 <xsd:element name="buildSettings" type="BuildSettings" minOccurs="0"/>
 </xsd:choice>
 4. <xsd:element name="effectiveBuildSettings" type="BuildSettings"
 minOccurs="0"/>

 5. <xsd:element name="attributeStatistics" type="AttributeStatisticsSet"
 minOccurs="0"/>

 6. <xsd:element name="modelDetail" type="ModelDetail" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="uniqueIdentifier" type="xsd:string" use="optional"/>
 <xsd:attribute name="version" type="xsd:string" use="optional"/>
 <xsd:attribute name="majorVersion" type="xsd:string" use="optional"/>
 <xsd:attribute name="minorVersion" type="xsd:string" use="optional"/>
 <xsd:attribute name="providerName" type="xsd:string" use="optional"/>
 <xsd:attribute name="providerVersion" type="xsd:string" use="optional"/>
 <xsd:attribute name="applicationName" type="xsd:string" use="optional"/>
 <xsd:attribute name="miningFunction" type="MiningFunction"
 use="optional"/>

 <xsd:attribute name="miningAlgorithm" type="MiningAlgorithm"
 use="optional"/>

270 Chapter 10 XML Schema

10.5 Use Cases for JDM XML Schema and Documents

A well-designed data model defined using XML Schema can enable
designers and developers to create innovative applications using
compatible XML documents. For example, ebXML (Electronic Busi-
ness using Extensible Markup Language) enabled enterprises to con-
duct various types of businesses over the Internet [ebXML 2006].
XML is widely used for anything from simple file representations,
such as configuration files, to complex data model representations,
such as those used at NASA [NASA-XML 2006]. Similarly, applica-
tions can use the JDM XML Schema in numerous ways. This section
identifies a few use cases for the JDM Schema.

A primary purpose of the JDM Schema is to provide a standard,
interchangeable data format for JDM objects among DMEs. For
example, from a data mining model built by an analyst with a sample
dataset in a local development environment, a user can export the
model’s logical data representation, build settings, and build task
objects as JDM XML documents to a production environment. In the
production environment, new models are built with production
datasets using the analyst specified settings.

Via the JDM Schema, we define the data model for JDM Web ser-
vices. JDM Web services use XML types defined in the JDM Schema
to represent the Web service messages. For example, in support of
real-time scoring, RecordApplyTask and RecordElement complex types
are used to represent the executeTask message. Similarly, all other
complex types defined in the JDM Schema are used to represent mes-
sages in the JDM Web services.

Even though the JDM standard does not require XML as a stor-
age format for its mining objects in the mining repository, some
implementations may choose to use a JDM XML Schema object

 <xsd:attribute name="taskIdentifer" type="xsd:string" use="optional"/>
 <xsd:attribute name="buildDuration" type="xsd:int" use="optional"/>

 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>

 7.<xsd:complexType name="ModelDetail">
 <xsd:sequence>

 8. <xsd:any minOccurs="0"/>
 </xsd:sequence>
 9. <xsd:attribute name="format" type="ImportExportFormat" use="optional"/>
 </xsd:complexType>

10.6 Summary 271

representation. By using the JDM definition, designers and developers
reduce data model design time, gain flexibility to store JDM objects
in file systems or databases, and avoid any conversion from a propri-
etary format to standard JDM XML format when importing or
exporting mining objects or using them in JDM Web services.

Other uses of JDM Schema include combining JDM XML Schema
objects with XML process or workflow definition standards such as
Business Process Execution Language (BPEL) [Wikipedia_BPEL
2006], and representing XML-based configuration files of a deployed
mining solution.

10.6 Summary

The JDM XML Schema provides a comprehensive data model for
JDM objects. It follows the same design principles and object model
as the API to maintain consistency between the API and the schema.
The JDM Schema provides the same level of extensibility as that of
the API for JDM implementations to support vendor-specific exten-
sions. Complex types defined in JDM Schema will be included in the
JDM Web services definitions discussed in the next chapter.

References

[DMG-PMML 2006] http://www.dmg.org.

[JAXRPC-SPEC 2006] http://java.sun.com/webservices/jaxrpc/docs.html.

[JDM11 2006] http://www.jcp.org/en/jsr/detail?id=73.

[NASA-XML 2006] http://xml.nasa.gov.

[Ray 2003] Erik T. Ray, Learning XML, 2nd ed., Sebastopol, CA O’Reilly &
Associates Inc., September 2003.

[W3CXML 2006] http://www.w3.org/XML.

[W3CXML-SCHEMA 2006] http://www.w3.org/XML/Schema.

[Wikipedia_BPEL 2006] http://en.wikipedia.org/wiki/BPEL.

273

Chapter

11
Web Services

Web Services will dominate deployment of new application
solutions for Fortune 2000 companies.

—Gartner Analysts

Web services are evolving as the key technology that enables software
application functionality as services, which can be discovered and
used by other applications over a network. Users developing service-
oriented applications and integrating existing applications are
becoming increasingly interested in Web services. This results from
the evolution of multiple standards, such as Simple Object Access
Protocol (SOAP), Web Service Description Language (WSDL) that are
unanimously supported by the software industry, and the increased
availability of tools and software platforms, such as J2EE and .Net,
that ease the development of Web service applications.

The Java Data Mining (JDM) standard defines Web services that
complement the Java application programming interface (API).
These vendor-neutral Web services fulfill the strategic objective of
providing broad architectural choices for application architects to
integrate data mining functionality. This chapter briefly explores
Web services and service-oriented architecture (SOA) before going
into a detailed discussion of JDM Web services (JDMWS) and how

274 Chapter 11 Web Services

JDM vendors can enable JDMWS using the JDM API and J2EE
platform.

11.1 What Is a Web Service?

There are many industry definitions for Web services. The latest W3C
Web Services Architecture document defines a Web service as follows:

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP-messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related
standards. [WS-ARCH 2006]

Even though this definition may be difficult to understand at first,
Web services are similar to real-world services. This section uses a
fictitious pizza service, Eat Fat Pizza in New York City, to compare
concepts and workings of Web services with those of real-world
services.

Eat Fat Pizza offers custom pizzas to customers by delivery or
pickup. It offers two delivery options: deliver by bike to avoid delays
due to city traffic or by car if the customer is not within two miles of
its location. Typically, customers make a phone call and inquire about
the types of pizzas available, and then order the pizza, specifying
toppings, drinks, etc. In response to a customer request, the Eat Fat
Pizza service provider prepares and delivers the pizza according to
the request. Eat Fat Pizza publishes its services in the local yellow
pages, flyers, and advertisements.

Figure 11-1 illustrates the similarities between the workings of a
pizza service and the workings of a Web service. When a customer
calls, the pizza service provider gives the details of the services they
offer. Similarly, in the case of a Web service, the provider gives the
details of the services they offer using a machine interpretable XML
document to the service requester. This XML document is written
using the Web Service Description Language (WSDL, often pro-
nounced as “Whiz-Dull”). WSDL describes the types of XML ele-
ments used and the contents of the service request and response
messages, available service operations, message format, and service
provider location details. After processing the provider’s WSDL doc-
ument, the requester knows which services are provided, and how to
place a request to the provider.

11.1 What Is a Web Service? 275

As with the pizza service, where the customer must provide
required information such as type of pizza, toppings, and delivery
location, a Web service requester also must provide required inputs
for an operation to the provider so that it can process the requested
service. Web services use the Simple Object Access Protocol (SOAP)
standard for exchanging the XML messages between requester and
provider. (SOAP is the industry accepted XML messaging standard
for Web services; for details refer to [Haefel 2003].) The Web service
requester sends a message using the SOAP protocol and the provider
processes the request and responds with the appropriate SOAP
response message as defined in the WSDL document. Because the
requester has the provider’s WSDL document, it knows what to
expect for a response and the semantics of the response message for
the specific request.

In the pizza service example, we assumed that the customer
already knows the contact details of Eat Fat Pizza. If the customer
doesn’t know the local pizza services, then he typically searches in
the yellow pages to find the list of pizza providers and selects one
from which to order the pizza. Similarly, in the case of a Web service,
the provider can also publish its services by registering the WSDL
documents in Web service registries.

1 – Call for pizza and

get the service details,

such as available

pizzas, toppings, etc.

2 – Place request with

the pizza details and

delivery location.

3 – Prepare and

deliver pizza to the

requester.

1–WSDL

2–SOAP Request

3–SOAP Response

Pizza Requester

Web Service

Requester

Pizza Provider

Web Service

Provider

Figure 11-1 Simple Web services comparison with a real-world
pizza service.

276 Chapter 11 Web Services

Figure 11-2 illustrates a Web services architecture with a
discovery service, which finds the appropriate Web service(s)
requested by the requester. When a requester sends a service
request to a discovery service, the service finds the available
provider service, which matches the request criteria and provides
the WSDL associated with the provider to the requester. From the
WSDL specification the requester understands the location of the
provider and semantics for communicating with the provider and
places SOAP requests as discussed in the simple Web services
architecture above.

There are three types of discovery services: registry, index, and
peer-to-peer (P2P). Registry services centrally control the registry of
Web services, where a provider registers in the centrally managed
registry so that it can be discovered by the requester. Index services
do not centrally control the information, rather index services com-
pile information about services and a requester can search there for
appropriate services. P2P allows services to discover each other
dynamically in a network. In P2P, a requester broadcasts service
requirements; peers in the network that satisfy these requirements
respond with the WSDL.

Universal Description, Discovery, and Integration (UDDI) is
accepted as an industry standard for registry services. There are
public Internet UDDI business registries in which one can register
the provider Web services; thus any requester can find via the Inter-
net the available providers for a service. The UDDI registry can be
installed in a private network, so that requesters in the same network
can find available providers.

WSDL, SOAP, and XML Schema are developed by the W3C stan-
dards group; for more details about these technologies refer to
[W3C 2006]. The UDDI standard, other Web services standards such
as the Business Process Execution Language (BPEL), WS-Security,

Web Service

Requester

2-SOAP Requests

3-SOAP Responses
Web Service

Provider

1a-Service
Request

1c-WSDL

Discovery

Service 1b-Register Service

Figure 11-2 Web services architecture with Discovery Service.

11.2 Service-Oriented Architecture 277

WS-Reliability, Security Assertion Markup Language (SAML), and
other XML-based e-commerce standards such as ebXML are
developed by the OASIS standards group; for more details on these
standards refer to [OASIS 2006]. The WS-I, a Web services interoper-
ability organization, defines Web services usage recommendations
based on real-world issues to promote interoperability between var-
ious software platforms; for more details refer to [WSI 2006].
JDMWS is compliant with WS-I Basic Profile 1.0.

11.2 Service-Oriented Architecture

With the advent of Web services and other XML standards, Service-
Oriented Architecture (SOA) is gaining acceptance as an application
architecture. SOA provides needed flexibility for ever-changing busi-
ness requirements. SOA typically uses Web services as the base tech-
nology that enables legacy application functionality as services that
can be orchestrated using standards such as the Business Process
Execution Language (BPEL, often pronounced “bee-pel”) to define
business processes. BPEL is an XML-based business process design
and execution standard language that is receiving wide adoption by
applications to define and manage business processes. There are
many commercial BPEL engines [BPEL-ENGINES 2006], which typi-
cally are used to design business processes using a graphical tool and
deploy these processes to a BPEL engine. The BPEL engine executes
the BPEL processes and provides graphical user interfaces for man-
aging these deployed processes. For more details refer to [BPEL
2006].

Figure 11-3 illustrates the typical SOA layers. The bottom layer,
Layer 1, represents the legacy systems and applications that evolved
in an enterprise over time; these can come from a variety of sources
including mainframe systems, open systems, prepackaged software
like ERP, CRM applications, or homegrown applications. Layer 2
represents the components layer that uses container-based technolo-
gies such as Enterprise Java Beans (EJB) in J2EE. Typically this layer
is built using components-based design patterns to define reusable
components at a higher-level of abstraction than the detailed object
level functionality. Layer 3 represents the services layer. A service can
be a composite service that uses the functionality of multiple compo-
nents. Layer 4 defines the business process flows using orchestration
services such as BPEL. Layer 5 represents the presentation layers,
such as portals, and dashboards. Layer 6 enables integration
of services popularly known as the Enterprise Service Bus (ESB).

278 Chapter 11 Web Services

ESB provides an abstraction layer on top of enterprise messaging
systems that are used for services integration. Layer 7 enables
management and monitoring of the deployed services. Layers 6 and 7
provide common infrastructure capabilities that can be accessed by
other layers and hence they are shown as vertical layers in
Figure 11-3. For more details about SOA refer to [Erl 2005].

Enterprise level adoption of SOA has many challenges. These
include complexities in changing monolithic legacy applications,
fundamentally changing the IT organization’s approach to software
development, security of services, and performance overhead due to
loose coupling of applications. Even though SOA has fundamental
benefits, due to the complexities involved SOA projects often start
small and evolve over time. SOA adoption will increase as more soft-
ware applications and products provide out-of-the-box standards-
based Web services, and tools evolve to simplify SOA application
development and management. As data mining functionality is typi-
cally integrated with existing applications, adopting an SOA archi-
tecture with JDMWS will provide a flexible, reusable, and extensible
integration strategy. Section 11.3.2 discusses a JDMWS use case of
how JDMWS and SOA help integrate data mining functionality in an
enterprise.

11.3 JDM Web Service

The JDM standard defines a Web service’s interface (JDMWS) that
uses the XML Schema discussed in Chapter 10 and provides func-
tionality consistent with the JDM Java API. The concepts and object
model discussed in Chapters 7 and 8 for the Java API are applicable
for the JDMWS interface. However, unlike a Java API, Web services
typically define a small number of operations with relatively large

Layer-5: Presentation (6) (7)

ESB

Layer-4: Process Orchestration

Layer-3: Services

Layer-2: Reusable Components

Layer-1: Legacy Systems

Security
Management
Monitoring

Figure 11-3 SOA layered architecture.

11.3 JDM Web Service 279

messages to reduce the number of service calls to be made. JDM Web
services define 11 operations. This section gives an overview of
JDMWS operations and provides an example of an SOA application
integration scenario. The section also describes the details of the JDM
WSDL and explains how JAX-RPC can be used to enable JDM Web
services.

11.3.1 Overview of JDMWS Operations

The JDM Java API discussed in Chapter 9 defines mining classes and
interfaces with many methods for designing and developing object-
oriented applications. In contrast, JDMWS is designed to develop
service-oriented applications and as such defines a small number of
operations with large messages. The JDM standard maintains the
interchangeable object model between the Java and Web Services API
by defining a consistent data model using the JDM XML Schema dis-
cussed in Chapter 10. JDMWS operations are designed to be consis-
tent with those of the Java API. This enables a JDM API interface
provider to support JDMWS more easily. It also enables developers
familiar with the Java API to understand the workings of JDMWS
more readily.

JDMWS operations are categorized into three types: mining task
execution and monitoring, mining object management, and capabil-
ity discovery. Table 11-1 lists the JDMWS operations with signatures
and a brief description of each operation. In this table, the simplified
notations [in] and [out] are used to represent the service request
message and response message. For detailed syntax of these opera-
tions, refer to [JDMWSDL 2006].

The JDMWS executeTask operation is similar to the resouce.Con-
nection.execute method in the Java API. However, unlike the Java
API where the application must save input objects before executing
the task, JDMWS allows users to specify the contents of input
objects as part of the mining task. This is an important distinction
that allows applications to perform a complete mining operation
with one JDMWS call. For example, in the Java API, before the
model build task is executed, the task input objects (physical data,
logical data, and build settings) must be saved. In JDMWS, on the
other hand, users can specify the contents of all the input objects
within the build task itself to submit a mining task for execution.

280 Chapter 11 Web Services

Table 11-1

JDM Web service interfaces

Task Execution and Monitoring operations Description

executeTask (
[in] task object or name
[out] execution status)

Used to execute the task in the DME synchronously or
asynchronously. This operation takes either a task object
or task name as input and returns the status of the task
execution as output. When a task object is passed as input,
it runs synchronously. When a task name is passed as
input, it runs asynchronously.

getExecutionStatus (
[in] task name
[out] execution status)

Used to get the status of a task submitted for execution
asynchronously. This operation takes the task name as
input and returns the latest execution status as output.

terminateTask (
[in] task name
[out] execution status)

Used to terminate the task that is currently executing in
the DME and returns the termination status of the task. If
the task already completed by the time of this operation’s
invocation, this method throws an exception with a failure
to terminate message.

Mining Object Management operations Description

SaveObject (
 [in] object name
 [in] overwrite flag
 [in] verify flag
 [in] mining object details
 [out] verification report)

Used to save input mining objects: physical data, logical
data, build settings, apply settings, cost matrix,
taxonomy, and task objects. When the overwrite flag is
set to TRUE, this operation will overwrite the old object
with the specified new object. When the verify flag is set
to TRUE, this operation includes object verification
before saving the mining object. If there are object verifi-
cation issues, a verification report will be generated
and returned to the requester. For example, when a
model build task is saved with the verification flag set to
TRUE and the specified input data for the build task
doesn’t exist in the DME, the verification report will be
generated.

getObject (
[in] object name
[in] object type
[out] mining object)

Used to retrieve a mining object from the DME. By
specifying the object name and type, the requester can
retrieve the object with that name from the DME. If no
object exists conforming to the request message, this
operation responds with the ‘object not found exception’
message.

JDM Web service operations

11.3 JDM Web Service 281

Similar to the Java API, JDMWS provides the ability to execute a
task synchronously or asynchronously based on the executeTask
request message. A task is executed synchronously when the request
message contains the whole task object. When the request message

getSubObjects (
[in] content type
[in] object name
[in] object type
[out] subobjects)

Instead of getting all the contents of an object, this
operation is used to retrieve specific subobjects of mining
object(s). This operation is useful when the requester is
interested in specific details of the mining object. For
example, an application that wants to process only the
model signature of a model can use this method by
specifying content type as modelSignature and the
object details. This saves network traffic and client
processing time.

listContents (
[in] object filter
[out] mining object header(s))

Used to list mining object headers that satisfy the specified
object filtering criteria. Mining object header contains the
primitive details of the object, such as name, type, when it
was created, etc. When there is no object with the specified
criteria it responds with an object not found exception
message.

removeObject (
[in] object name
[in] object type
[out] object name
[out] object type)

Used to remove object from the DME. This operation
returns the object name and type after successfully
removing the specified object. If the object removal fails,
this method responds with a failure message.

renameObject (
[in] from name
[in] to name
[in] object type
[out] from name
[out] to name
[out] object type)

Used to rename the mining objects in the DME. This
operation returns with the new and old object names and
the object type as response message. When the object
rename fails this method responds with the failure
message.

verifyObject (
[in] object name (or) object
[in] object to be verified
[out] verification report)

Used to explicitly verify the provided object oe one that is
already saved in the DME. When the object has valid
contents this method responds with an empty verification
report; otherwise it returns the error and warning
messages embedded in the verification report.

DME Capabilities Discovery Operations Description

getCapabilities (
[out] capabilities report)

 Used to retrieve the list of capabilities of the DME as an
XML report. The requester can process this capabilities
report to discover the DME capabilities before placing a
request.

Table 11-1 (continued)

282 Chapter 11 Web Services

has only the name of the task, it is executed asynchronously. With a
named task object, the client can inquire about the status of the task
execution by task name. Typically, short running operations such
as single record apply are executed synchronously and long-running
operations such as model building and batch apply are executed
asynchronously.

In addition to the executeTask operation, there are two other task-
related operations: getExecutionStatus and terminateTask that can be
used to monitor and control the execution of tasks in a data mining
engine (DME). The getExecutionStatus operation retrieves the status
of tasks that are currently submitted for execution, executing or
already completed. Since mining tasks can be long running, the ter-
minateTask operation is used to terminate task execution in the DME.

Chapters 8 and 9 discussed various types of mining objects: phys-
ical data, logical data, build settings, task, model, apply settings, and
test metrics. Similar to the Java API, JDMWS provides operations to
manage these objects. Table 11-1 describes all the mining object man-
agement operations that are used to save, retrieve, remove, and
rename mining objects.

The JDM standard allows vendors to provide a subset of the full
standard capabilities, while allowing them to extend those capabili-
ties. In the JDM API, appropriate supports capability methods are
defined in Factory objects so that applications can discover DME
capabilities at runtime. In the JDMWS, the getCapabilities operation is
used to retrieve the list of capabilities supported by a DME as a sin-
gle parsable XML document, which the requester can process to find
the capabilities of the DME. This operation is useful to customize
requests based on DME capabilities. For example, if the requester
prefers using the support vector machine (SVM) algorithm for classi-
fication and also wants to be interoperable with DMEs that do not
support SVM, it can have an internal rule such as “if the DME
supports SVM then use it, otherwise use the default classification
algorithm.” The request can then be customized based on supported
capabilities retrieved from the getCapabilities operation.

11.3.2 JDMWS Use Case

Chapter 7 described business problems for ABCBank and explained
how data mining techniques can be used to solve those problems.
This section extends the discussion by mapping these solutions to
JDM Web services and SOA design principles.

11.3 JDM Web Service 283

ABCBank has an internal data mining lab (DM Lab) that is
responsible for finding data mining solutions for given business
problems. DM Lab has business analysts and data analysts that work
together to define the mining attributes and data needed for the busi-
ness problems and to define the model building process. DM Lab
coordinates with the ABCBank information technology (IT) depart-
ment to acquire the relevant data from various data sources for min-
ing. DM Lab then communicates back to IT with the final results
produced using the data. IT integrates the data mining results with
the appropriate applications, so that company executives can view
the results. Figure 11-4 depicts the high-level view of the current
scheme of integrating data mining results with the production
applications.

The current scheme is not efficient due to delays in delivering
the data mining results to the organization’s information consum-
ers. Even though DM Lab generates accurate models, ABCBank is
dissatisfied with the time it takes DM Lab to produce results and
IT to incorporate those results into applications and reports. For
example, for the customer attrition problem, the attrition model pro-
duces good results at DM Lab. However, by the time the model is
deployed to the call center, some valuable customers have already
left. In addition, ABCBank would like to expand the use of data

Data Mining Lab IT Department

Specify needed attributes to IT

Provide the data to DM Lab

Collect the DM Lab specified data from
the various data sources

Integrate data mining results given by
DM Lab with the associated applications

Acquire data from IT
Build and evaluate models
Produce deployable mining results
Monitor performance of deployed results

Enterprise Applications

Provide DM results to specialized

analytics applications that are not

integrated with production applications

Figure 11-4 ABCBank’s current data mining model deployment process without
using JDMWS.

284 Chapter 11 Web Services

mining to many production applications. But the current process is
not scalable for its needs because data analysts must maintain hun-
dreds of models and produce results manually. Moreover, the IT
group needs to integrate data mining results manually by deploy-
ing to the appropriate applications. In addition, ABCBank wants to
be able to change DMEs used in the production environment and
to have the ability to integrate with multiple DMEs. Due to legacy,
their enterprise applications are written using multiple computer
languages such as Java, C++, C, and COBOL.

From the perspective of ABCBank’s business analysts, automat-
ing data mining processes and embedding the results with produc-
tion applications will produce more fruitful results than the current
limited integration. Embedding data mining results in the produc-
tion applications will enable business executives of all levels to
make more informed decisions using the latest data. In addition,
ABCBank call-center representatives can interact with customers
more effectively if the customer attrition likelihood, profitability,
and appropriate cross-sell products are displayed along with the
customer profile.

From the perspective of ABCBank’s data analysts, to ensure the
quality of the data mining results they would like to maintain con-
trol of the specification of model build settings such as algorithm
and function level settings and the attributes to be used; they
would also like to be able to add or remove attributes. Once the
mining attributes and model build settings are specified for a
specific problem, model quality can be maintained if the model is
periodically updated with the new data, thereby learning new pat-
terns. In the future, analysts would like to build a mining solution
once for a problem and deploy the required settings to production
applications. The automated processes should be able to rebuild the
mining models with new data at the specified intervals. Over time,
if the models do not meet quality thresholds, DM Lab must be
notified to improve them. Automation enables the data analysts to
manage many models easily, and allows them to focus on improv-
ing non-performing models and addressing new business prob-
lems.

From the perspective of ABCBank’s IT department, the data
mining and application integration architecture must be flexible
enough to support both current and future applications. The IT
department also must be able to run computationally intensive data
mining operations in a separate machine without affecting produc-
tion applications. To have the flexibility to change DMEs to avoid

11.3 JDM Web Service 285

vendor lock-in and having to rewrite applications, IT prefers a
standards-based solution.

Because the integration solution requires programming language
and DME independence, as well as a low impact on existing produc-
tion applications, JDM Web services with an SOA architecture fits
well for these needs. Now, we detail changes to the process and
application architecture to fulfill ABCBank’s application integration
needs. We also explain which JDMWS operations can be used to
automate the data mining process using BPEL and which JDMWS
operations can be used to get data mining results reflecting real-time
changes.

Figure 11-5 depicts the new architecture and department responsi-
bilities. In the proposed system, DM Lab finds the best performing
model(s), provides the necessary settings to build models, and com-
municates results and quality thresholds to IT. IT integrates the pro-
posed data mining solution in coordination with DM Lab using
BPEL process designer tools and JDMWS. IT verifies the process and
deploys it to the BPEL engine. Unlike the old integration where DM
Lab was responsible for producing results every time data was
updated, in the new process DM Lab needs only to define the initial
model, and the model will be automatically rebuilt at specified inter-
vals with new data. When a model is not producing results within
the specified limits, DM Lab will be notified to improve the model.

Data Mining Lab

Define attributes for a data mining problem

Find the best model(s) using sample data

Provide the best model and quality thresholds to IT

Fix notified model performance issues

Enterprise Applications

Integrate automated data mining processes

Embed data mining results with
production applications as needed

Embed single-record scoring to enable
real-time decisioning

BPEL processes

JDM Web Service

JDM API

Data Mining Engine

IT Department

Automate the data collection for DM Lab

Automate data mining process using JDMWS and BPEL

Integrate model performance issue notifications to DM Lab

Provide ability to view model performance to DM Lab

Figure 11-5 ABCBank’s proposed data mining process integration with JDMWS.

286 Chapter 11 Web Services

The IT department builds the automated process using a BPEL
process designer tool and deploys these processes using a BPEL
engine in the production system. For more details about available
BPEL tools and engines, refer to [BPEL-ENGINE 2006]. Figure 11-6
illustrates a BPEL process that builds a model using the initial model
given by the DM Lab; this figure gives side-by-side the BPEL process
flow and associated JDMWS calls. The left side flow shows the
process definition along with each node description. The right side
flow diagram shows the corresponding JDMWS call.

Import the new

settings given

by DM Lab.

No No

No

Yes Yes

Yes

No

Yes

Are there any

new exported

settings from

DM Lab for this

process?

Are test metrics

within

limits?

Notify DM
Lab to
improve the
model to
produce
better results.

Build model using the

current model with the

production data.

Test model with the new

test data.

Apply model with the new

data and make results

available for the relevant

applications.

Are there any

new exported

settings from

DM Lab for this

process?

Call get Object
with the test

metrics name and
check the values

Notify DM Lab

to improve the

model to produce

better results

Call

execute Task

with Build Task object

Call

executeTask

with ImportTask

object

Call

execute Task

with Test Task object

Call

execute Task

with Data Set Apply Task

object

Figure 11-6 BPEL process flow for automating DM process using JDMWS operations.

11.3 JDM Web Service 287

This process begins by checking for any newly exported settings
by DM Lab in their repository for the associated business problem. If
settings exist, they are imported to the production system using the
executeTask operation with the appropriate ImportTask message and
the new imported settings are used to rebuild the production model
with the latest data. Otherwise, the process continues and rebuilds
the model with the current settings and the latest data available
in the system. We assume that IT automated dataset creation, used
up-to-date data collection for building, and automated testing and
applying the model. This is typically done using data warehousing
tools. The executeTask method is used to build, test, and apply the
model in the subsequent steps of the process as shown in Figure 11-6.

Before the model is applied to produce the prediction results, an
automated process will validate the test metrics with the DM Lab-
specified quality limits. If the computed test metrics are within limits
the apply operation will be performed; otherwise a notification will
be sent to DM Lab to improve the model.

Another need for the new system is getting real-time predictions
to production applications. Consider the case of a customer call
center application where an attrition model discussed in Section 7.1
is used to display customer attrition likelihood along with the customer
profile to the call center representative. The attrition likelihood mea-
sure is precomputed using batch apply with the existing customer
profile. However, when a customer calls a representative and
changes any of the attributes used to build the model, the customer
attrition likelihood displayed is no longer valid because the batch
apply does not reflect the recent changes. JDMWS record apply
allows the application to dynamically re-score the customer based on
the new customer data. Figure 11-7 shows the BPEL process used for
record apply results when the attributes are changed in the
application.

This process begins with the retrieval of the model’s signature
attributes, which are used to verify whether any of the signature
attribute values have changed in the current application session. In
the call center example, suppose the customer marital status is in the
model signature. When a customer calls the representative and says
that he was recently married and wants to add his wife as a joint
owner of his account, the process identifies that a model signature
attribute has changed and executes the record apply task with the
updated customer profile. The executeTask operation takes the newly
updated record as part of the record apply task and responds with

288 Chapter 11 Web Services

the updated prediction details for the customer. The application can
display this result immediately.

11.3.3 JDM WSDL

This chapter so far has discussed JDMWS operations and presented a
use case where JDMWS and SOA can be used to solve data mining
process integration problems. This section introduces the JDM WSDL
specification. An understanding of JDM WSDL contents is important
when developing applications using JDMWS.

The JDM standard defines the WSDL specification for data min-
ing Web services that is conformant with WSDL 1.1 specifications.

Call getSub Objects

to retrieve the model
signature and find

values of any attributes that
have changed in the

application.

No

Yes

Create RecordApplyTask
using RecordElement with

the new values from the
application and call

executeTask.

Get the new updated apply
results from the updated

RecordElement in the
executeTaskResponse

message.

Get the new score/apply
details and display the

results in the application.

Re-score the customer
with the new

values.

Have any record
values of the

 model signature
attributes
changed?

No

Yes

Figure 11-7 BPEL process flow real-time record apply results using JDMWS
operations.

11.3 JDM Web Service 289

Figure 11-8 depicts a representation of JDM WSDL contents from
Oracle JDeveloper [JDEV 2006]. The first column in the figure, Ser-
vices, shows that JDM WSDL contains a service called
DataMiningService with one port called IDataMiningPort to which a
service requester can communicate. The second column, Bindings,
shows the details of the operation binding, message formats, and
protocols to which IDataMiningPort is binded. The third column,
PortTypes, defines the operations and the messages used in those
operations. The last column, Messages, shows the list of defined
messages.

Listing 11-1 illustrates the structure and contents of JDM WSDL
[JDM-WSDL 2006]. This listing shows the WSDL’s seven important
elements—types, import, message, portType, operations, binding, and
service—that are under the common parent element definitions. The
definitions element (line 2) has a name attribute to define the name
of the WSDL document; the targetNameSpace attribute refers to the
JDM Web services namespace http://www.jsr-73.org/2004/webservices
that defines the types and elements specific to the JDMWS. The
namespace is different from the JDM Schema namespace to

Figure 11-8 JDM WSDL view from Oracle JDeveloper 10.1.3 WSDL Viewer.

290 Chapter 11 Web Services

differentiate JDM Schema elements from the Web services–specific
elements. One of the reasons for splitting JDM Schema elements from
JDMWS is that JDM Schema elements can be used outside Web ser-
vices. (Note that these namespace URLs host neither JDM Schema
nor WSDL files. To get JDM Schema and WSDL files, download the
specification bundle from [JDM11 2006].)

The types element (line 8) declares the JDM Web services–specific
complex types and elements, xsd:import (line 12) is used to import the
JDM Schema types and elements that are used to define Web services–
specific types and elements. JDM WSDL follows the naming pattern
of using operation name for the associated complex types, elements,
and message names. For example, the saveObject operation’s input
and outputs are represented using saveObjectElement (line 28) and
saveObjectResponseElement (line 29); these elements are of types
saveObject (line 14) and saveObjectResponse (line 22), and the associ-
ated message names are IDataMining_saveObject (line 34) and
IDataMining_saveObjectResponse message (line 44). Because these
operation-related elements are defined at different parts of the WSDL
document, the use of the operation name simplifies their identifica-
tion in the WSDL document. For all messages the IDataMining_
prefix is used, so that when the JDMWS messages are mixed with
other Web services, the prefix identifies that the message is related to
data mining. These naming conventions are introduced to ease read-
ing of the WSDL documents and to get proper names for the
interfaces created from the WSDL by the code generators, such as
WSDL-to-Java, WSDL-to-C#. These mappings in the JAX-RPC
context are discussed further in Section 11.4.

The portType element defines the list of operations provided by
the Web service and defines the input, output, and fault messages
associated with the operations. For example, the saveObject operation
(line 42) element has sub-elements input (line 43), output (line 44), and
fault (line 45) used to define operation inputs, outputs, and exception
messages.

The binding element defines the protocol bindings for the message
format and transport protocol. JDMWS follows the WS-I Basic Profile
1.0 guidelines and uses the SOAP binding (line 50) with document
style (line 51) with literal content (line 55) for all the operations. For
more details about the message formats and WS-I Basic Profile 1.0
refer to [Haefel 2003].

11.3 JDM Web Service 291

Listing 11-1 JDM WSDL structure

1. <?xml version="1.0" encoding="UTF-8"?>
2. <definitions name="DataMiningService"
3. targetNamespace="http://www.jsr-73.org/2004/webservices"
4. xmlns:jdmws="http://www.jsr-73.org/2004/webservices"
5. xmlns="http://schemas.xmlsoap.org/wsdl/"
6. xmlns:xsd="http://www.w3.org/2001/XMLSchema"
7. xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
8. <types>
9. <xsd:schema targetNamespace="http://www.jsr-73.org/2004/webservices"
10. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
11. xmlns:jdm="http://www.jsr-73.org/2004/JDMSchema">
12. <xsd:import namespace="http://www.jsr-73.org/2004/JDMSchema"
13. schemaLocation="jdm.xsd"/>
14. <xsd:complexType name="saveObject">
15. <xsd:sequence>
16. <xsd:element name="object" type="jdm:MiningObject"/>
17. </xsd:sequence>
18. <xsd:attribute name="objectName" type="xsd:string" use="required"/>
19. <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>
20. <xsd:attribute name="verify" type="xsd:boolean" use="optional"/>
21. </xsd:complexType>
22. <xsd:complexType name="saveObjectResponse">
23. <xsd:sequence>
24. <xsd:element name="report" type="jdm:VerificationReport" minOccurs="0"/>
25. </xsd:sequence>
26. </xsd:complexType>
27.
28. <xsd:element name="saveObjectElement" type="jdmws:saveObject"/>
29. <xsd:element name="saveObjectResponseElement"
30. type="jdmws:saveObjectResponse"/>
31.
32. </xsd:schema>
33. </types>
34. <message name="IDataMining_saveObject">
35. <part name="parameters" element="jdmws:saveObjectElement"/>
36. </message>
37. <message name="IDataMining_saveObjectResponse">
38. <part name="result" element="jdmws:saveObjectResponseElement"/>
39. </message>
40.
41. <portType name="IDataMining">
42. <operation name="saveObject">
43. <input message="jdmws:IDataMining_saveObject"/>
44. <output message="jdmws:IDataMining_saveObjectResponse"/>
45. <fault name="jdmExceptionMsg" message="jdmws:IDataMining_exception"/>
46. </operation>
47.
48. </portType>
49. <binding name="IDataMiningBinding" type="jdmws:IDataMining">
50. <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

292 Chapter 11 Web Services

11.3.4 Data Exchange and Security in JDMWS

JDMWS does not define standards for large input and output data
exchange between the data mining service provider and requester.
Data mining processes often involve large input and output
datasets, on the order of gigabytes, which are not efficiently sent
through Web services protocols. This is a problem for any Web ser-
vice that needs to process large volumes of data, and it is expected
that users of JDMWS will leverage existing protocols, standards,
and mechanisms to achieve vendor-neutral data exchange. In this
release, JDM assumes that the requester provides the data input
and output location details to the JDMWS provider and the pro-
vider has appropriate privileges and mechanisms for data
exchange.

JDMWS intentionally does not define the DME connection details
specification as part of the operation payload. This is because Web
services security details are typically handled as part of the SOAP
headers and JDMWS assumes that security is dealt with separately as
part of the overall Web services framework.

51. style="document"/>
52. <operation name="saveObject">
53. <soap:operation style="document" soapAction=""/>
54. <input>
55. <soap:body use="literal"/>
56. </input>
57. <output>
58. <soap:body use="literal"/>
59. </output>
60. <fault name="jdmExceptionMsg">
61. <soap:fault name="jdmExceptionMsg" use="literal"/>
62. </fault>
63. </operation>
64.
65. </binding>
66. <service name="DataMiningService">
67. <port name="IDataMiningPort" binding="jdmws:IDataMiningBinding">
68. <soap:address location="http://www.jsr-73.org/2004/web services/
 DataMiningService"/>
69. </port>
70. </service>
71. </definitions>

11.4 Enabling JDM Web Services Using JAX-RPC 293

11.4 Enabling JDM Web Services Using JAX-RPC

One of the objectives of defining JDMWS as part of the JDM Standard
is to maintain a consistent API for both Java and Web services
applications, thereby allowing them to share the same JDM
implementation. JAX-RPC provides an easy way to wrap the JDM
API implementation as JDMWS. Figure 11-9 illustrates the higher-
level implementation architecture of the JDMWS using JAX-RPC and
JDM API. JAX-RPC provides tools to generate the wrapper Java
objects for the types defined in JDM WSDL and XML Schema.

This section gives a brief overview of JAX-RPC, and explains how
to build JDMWS using JAX-RPC. In particular, this discussion will
benefit Java developers who want their applications to communicate
with an existing JDMWS implementation.

11.4.1 Overview of JAX-RPC

JAX-RPC is the Java API for XML-based Remote Procedure Call
(RPC) defined under JSR-101 and included as part of J2EE 1.4. JAX-
RPC API is used to develop Java-based portable Web services using
WSDL-to-Java and Java-to-WSDL standard mappings. The JAX-RPC
runtime system automates the conversion of Java method calls and
objects to appropriate SOAP request and response messages in a Web
services environment.

Figure 11-10 illustrates the high-level steps involved in a JAX-RPC
runtime system. In this figure, the functionalities shown in gray
boxes are handled by the JAX-RPC runtime—the user does not have
to write any code for these functions. When a Web services Java cli-
ent invokes a service provider operation, the JAX-RPC runtime

JDMWS
JAX-RPC Wrapper Objects

Data Mining Engine

JDM API

Figure 11-9 JDMWS higher-level implementation architecture.

294 Chapter 11 Web Services

converts this call to the XML-based SOAP protocol–compliant
request message and sends this message to the remote service pro-
vider using HTTP protocol as shown in steps 1 and 2. Once the service
provider receives this message, it converts the SOAP request message
to the appropriate Java service method call as shown in step 3. After
the completion of the Java method execution by the service provider,
the method’s return parameter is converted to the appropriate SOAP
response message and sent to the requester over HTTP protocol, as
shown in steps 4 and 5 in Figure 11-10. The service requester receives
the response message and converts it to the appropriate Java object
that can be used by the Java client program as a regular method
return parameter. For more details on JAX-RPC, refer to [Haefel
2003] and [JAX-RPC 2006].

11.4.2 Building JDMWS Using JAX-RPC

This section describes how to use JAX-RPC to build a JDM Web
service that can be portable across multiple JDM vendor implemen-
tations. The JDM API defines Java interfaces; hence there are no
data members defined in the API. As a result, it is not feasible to
directly map the JAX-RPC from the JDM standard API to JDM
Schema and WSDL definitions. However, as the JDM Schema maps
to the JDM API object structure, by using JAX-RPC tools one can

H

T

T

P

HTTP

JAX-RPC Service Requester

1) JAX-RPC client

 invokes service

 provider operation

2) Convert call to XML-

 based SOAP request

 message

6) Receive SOAP

 response message and

 convert it to Java object

3) Receive SOAP request

 message and convert the

 call to Java service call

4) Perform Java operation

 and return the response

 object

5) Convert response to

 XML based SOAP

 response message

JAX-RPC Service Provider

Figure 11-10 JAX-RPC runtime.

11.4 Enabling JDM Web Services Using JAX-RPC 295

easily implement JDMWS. The following steps describe how to
build a JDMWS.

Step 1: Convert JDM WSDL and JDM Schema to Java Objects

Typically, JAX-RPC runtime provides the WSDL-to-Java tool; one
can use this tool to convert the JDM WSDL to JDM objects. As JDM
WSDL imports the JDM Schema, the WSDL-to-Java tool converts
all the JDM Schema elements to the associated JAX-RPC compati-
ble objects. Figure 11-11 illustrates the typical Java files generated
by a WSDL-to-Java tool. Because JDM uses different namespaces
for schema and Web services, generated files will have associated
packages. For example, all JDM Schema–related Java classes will
be generated under the jdmws.schema package and all Web
services–related Java classes will be generated under the jdmws.
webservices package.

Step 2: Implement the PortType Interface

The next step to building the JDMWS is to implement the Java
remote interface generated by the WSDL-to-Java tool. This interface
can use either a wrapper on the JDM API (to be portable across JDM
standard–compatible DMEs) or a DME-specific implementation.
Because the JDM API maps to the Web services objects, JDMWS is
easier to implement using the JDM API. For example, Listing 11-2

JDM Schema and

WSDL Types

Message Types

Port Type and

Operations

Service

Serializable Java classes for all the types

and elements defined in the JDM Schema

and WSDL type

Serializable Java classes for message types

Java Remote Interface with all the

operations defined in the port type

Java class that extends

javax.xml.rpc.Service

JDM WSDL JAX-RPC Compatible Java Files

Figure 11-11 WSDL-to-Java mapping.

296 Chapter 11 Web Services

shows the executeTask operation defined under the portType element
and has an associated Java method signature as shown in Listing 11-3.
Note that this interface method is not taking input parameters using
JDM API objects. Instead it is taking the mapping objects in the
jdmws.webservices package generated by the JAX-RPC WSDL-to-Java
tool, because the JAX-RPC runtime automates the object serialization
and deserialization for these objects. The implementation of the exe-
cuteTask method uses the JDM API Connection.execute method and
returns the ExecutionTaskResponse by wrapping ExecutionStatus in the
JDM API.

Step 3: Deploy the Service

Based on the JAX-RPC runtime, define the deployment profile and
deploy as a service. For more details about the JAX-RPC deployment
refer to [Haefel 2003] and [JAXRPC 2006]. The JAX-RPC is one of the
most popular frameworks for enabling JDMWS and interacting with
JDM implementations. However, developers can choose any other
framework, such as .Net [.Net 2006], to enable JDMWS.

11.5 Summary

JDMWS provides the functionality consistent with the JDM Java API
and increases the breadth of options available to application archi-
tects for integrating data mining functionality with existing applica-
tions. JDMWS fits well with the requirements of SOA and enables
enterprises to adopt more flexible and standards-based data mining
integration. JDMWS defines the WSDL document that describes the
standard JDM Web services operations and messages. JDMWS can be
enabled either by wrapping existing JDM implementations using
JAX-RPC or by using any vendor-specific implementation. As Web

Listing 11-2 executeTask WSDL portType operation

1. <operation name="executeTask">
2. <input message="jdmws:IDataMining_executeTask"/>
3. <output message="jdmws:IDataMining_executeTaskResponse"/>
4. <fault name="jdmExceptionMsg" message="jdmws:IDataMining_exception"/>
5. </operation>

Listing 11-3 JDM WSDL structure

public jdmws.webservices.ExecuteTaskResponse executeTask(
 jdmws.webservices.ExecuteTask parameters)
 throws java.rmi.RemoteException

11.5 Summary 297

services technologies evolve, JDMWS will take a primary role in the
JDM standard to support vendor-neutral data mining application
development.

References

[BPEL 2006] http://en.wikipedia.org/wiki/BPEL.

[BPEL-ENGINES 2006] http://en.wikipedia.org/wiki/List_of_BPEL_
engines.

[Erl 2005] Thomas Erl, Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design, Service-Oriented Computing Series, Upper Saddle
River, NJ, Prentice Hall, 2005.

[Haefel 2003] Richard Monson-Haefel, J2EE Web Services, Boston,
Addison-Wesley, 2003.

[JAVA-RMI 2006] http://java.sun.com/products/jdk/rmi.

[JAX-RPC 2006] http://java.sun.com/webservices/jaxrpc/index.jsp.

[JDEV 2006] http://www.oracle.com/technology/products/jdev/index.
html.

[JDM-WSDL 2006] http://www.jcp.org/en/jsr/detail?id=73.

[.Net 2006] http://en.wikipedia.org/wiki/.NET_Framework.

[MS-DCOM 2006] http://msdn.microsoft.com/library/en-us/dndcom/
html/msdn_dcomtec.asp.

[OASIS 2006] http://www.oasis-open.org.

[OMG-CORBA 2006] http://www.omg.org/gettingstarted/corbafaq.htm.

[WS-ARCH 2006] http://www.w3.org/TR/ws-arch.

[W3C 2006] http://www.w3c.org.

[WS-I 2006] http://www.ws-i.org.

Part III

Practice

301

Chapter

12
Practical Problem Solving

In theory, there is no difference between theory and practice.
But, in practice, there is.

—Jan L. A. van de Snepscheut (1953–1994),
computer scientist and educator

It is one thing to use a well-defined process, such as CRISP-DM
presented in Chapter 3, to define a business problem and data
mining solution. However, it’s quite another, as a developer, to
implement that solution to realize business value and return on
investment. In theory, a well-defined and thorough process should
lead us more readily to success. In practice, we need concrete exam-
ples and guidance to ensure this.

This chapter presents several business scenarios, proposes an
application design to solve the problems faced in each scenario, and
provides Java code implementing the solution. This gives Java archi-
tects and programmers a starting point for writing applications using
each of the major functionalities available in Java Data Mining
(JDM). We focus not only on the specific tasks concerning data min-
ing, such as building a model and deploying it, but also the opera-
tions that must be used to realize data mining solutions in a real
environment. We complement this programmatic exercise with some

302 Chapter 12 Practical Problem Solving

considerations about the practical problems to be solved, and the
skills needed to solve them.

Each scenario is associated with its business environment, the
main actors involved in the process, and the specifications leading to
the actual Java implementation. When needed, the scenario itself is
broken down into operations or tasks.

12.1 Business Scenario 1: Targeted Marketing Campaign

As discussed in Chapter 2, there are many potential applications of
data mining in customer relationship management (CRM). For exam-
ple, response modeling can be used to determine whether a customer
will respond positively to a campaign: often, the offer is made via a
marketing campaign that can be a mass e-mailing, paper brochure, or
call center solicitation to propose a new product to consumers. We
have selected a scenario in this domain to illustrate the classification
mining function. The scenario description follows.

The company High End Widgets (HEW) sells high-tech appliances
to wealthy individuals. Because it is a very dynamic environment,
HEW must perform marketing campaigns to its base of a million cus-
tomers to present their new offers. On average, the company offers
two new products every month. So, currently, all HEW customers are
contacted twice a month. The HEW marketing department has been
asked to reduce the cost of mailing campaigns as well as to reduce the
number of mails per customer, because some of these customers are
now complaining about the number of mails they receive from
HEW—customer fatigue. The current response rate of each campaign
is about 2 percent, which means that roughly 2 percent of the people
contacted through these campaigns actually buy products.

Because these mailings are done twice a month, the HEW market-
ing department has decided to develop a specific application to tar-
get the consumers to contact. In marketing, this is called targeting or
campaign optimization. This application will be realized in Java and
will be used by a campaign manager. The following section describes
the specifications of this application example.

12.1.1 Campaign Specifications

To both reduce the number of mails and avoid contacting customers
not interested by the new offers, HEW has decided to focus its

12.1 Business Scenario 1: Targeted Marketing Campaign 303

marketing campaigns using starter campaigns. A starter is a first wave
of mails sent to a sample of the population, say 5,000 prospects, to col-
lect responses. The starter campaign informs HEW which customers
actually bought the products following the mailing, and can be used
in conjunction with other customer information to produce a build
dataset. The build dataset contains demographic data such as age,
marital status, and zip code, or behavioral data such as aggregate val-
ues on previously purchased products per product category. These
attributes serve as predictors and will be associated with a binary tar-
get to represent whether or not the person selected in the sample has
bought the product. From the build dataset, HEW can produce a clas-
sification model for generating a probability that customers not
selected for the starter campaign will buy the product. Combining
this probability with the mailing cost structure, such as the per-item
cost, and the profit generated when the customer buys the product,
allows minimizing the number of mails sent for a predicted profit.

In this scenario, there are three actors: the campaign manager, the
information technology (IT) department, and the contact agency. For
each marketing campaign, the HEW marketing department nomi-
nates a campaign manager who will use the proposed predictive
application. This campaign manager will be in contact with the HEW
IT department in charge of database administration tasks, such as
performing data extracts as requested by the campaign manager. The
third actor is the contact agency (TCA), which is an external organi-
zation used by HEW to conduct the mailings: TCA must be provided
with lists of names and addresses to be contacted for starter cam-
paigns, collect the responses of the contacted persons, and return
these responses to the campaign manager. TCA will also be used to
contact the list of prospective customers, which will be provided in
the same format as for the starter campaign.

The following is a step-by-step outline of the targeting campaign
scenario process:

• HEW marketing department nominates a campaign manager.

• The campaign manager creates a new campaign in the
application and defines campaign contents (such as the
message of the mail) outside of the application.

• The campaign manager asks for a database extract showing
all active customers, and specifies the information that must
be associated with these prospects, such as demographic or
behavioral data (also not done in the application). This data

304 Chapter 12 Practical Problem Solving

extract is provided as a logical view or a physical table in
the operational marketing database (OMDB).

• The campaign manager uses the application to sample
customers from this extract for the starter campaign. The
first version of the application permits selection of a simple
random sample; however, subsequent versions will imple-
ment more sophisticated sampling strategies. Because the
sampling technique may vary, sampling is not directly
performed by the IT department. The sample is provided as
a table in the OMDB that contains columns: customer name,
customer address, and response, which will be filled later
by values indicating Responded or Did-not-respond. In this
example, HEW’s customers are offered a single product, so
the value Responded means that the customer purchased the
proposed product. More complex situations can be met
when mailing catalogs in which consumers choose possibly
several products.

• HEW IT sends this extract to TCA as a text file.

• Some weeks later, HEW IT loads the customer prospect
responses obtained by TCA in the OMDB.

• The campaign manager uses the application to produce a
build dataset, to build classification models, and to forecast
the expected profit of a large-scale campaign associated
with a specific cost structure. The cost structure is
composed of fixed costs, the unitary cost per mail, and the
profit generated when the customer buys the product.
Using this cost structure, the application optimizes the
number of mails sent to maximize expected profit. It then
reports this profit for each model built.

• The campaign manager uses the application to select the
most effective model and uses this model to generate the
prospective customers list for the large-scale mailing. This
list will be stored in an OMDB table. The application reports
the number of actual mails to be sent, the expected profit,
and the expected number of respondents.

• HEW IT sends this prospective customers list to TCA as
a file.

• Some weeks later, HEW IT loads the “response” values
associated with the customers in the OMDB table.

12.1 Business Scenario 1: Targeted Marketing Campaign 305

• The campaign manager uses the application to assess model
accuracy by comparing expected and actual profit and
predicted and actual number of respondents.

This process is illustrated in Figure 12-1.

12.1.2 Design of the “Campaign Optimization” Object

Here you are, a Java programmer, hired to implement this applica-
tion. You are in charge of implementing the business layer of this
project. Some other team members will be in charge of the user
interface layer or the infrastructure layer such as the business layer
persistence.

After a first look at the specifications, you know you will need
two things: (1) Java Database Connectivity (JDBC) for some direct

Select model

and select

customers

Customers

HEW Campaign

Manager

HEW

IT
TCA

Extract active Customers!

Sample

Sample
Mails

(starter)

Responses

Send Sample

Sample

Responses

Customers

Send Selected
Customers

Mails
(Real

campaign)

Responses

Check

revenue

Compute

expected

revenue

2weeks

2weeks

Create build

dataset and

build models

Figure 12-1 Targeting campaign scenario.

306 Chapter 12 Practical Problem Solving

data manipulation, such as sampling, or merging of tables and
(2) JDM to create a classification model for each campaign.

For simplicity, we will implement all services of the business layer
in a single class called CampaignOptimizer. (This may not be the best
design choice, but we wanted to focus on the implementation of the
application.)

Because this chapter presents a lot of Java code, some naming con-
ventions for variable names have been adopted:

• Input arguments are prefixed with i.

• Output arguments are prefixed with o.

• Member variables of objects are prefixed with m.

• Local variables are prefixed with l.

12.1.3 Code Examples

This section details the code of the CampaignOptimizer class that fol-
lows the steps described earlier.

The constructor creates a new campaign optimization object with
a name and a creation date. Because our object must deal with some
basic data manipulations as well as data mining operations, we pro-
vide it with two valid connections (JDBC and JDM). This is reflected
in the following code:

The name of a CampaignOptimizer can be used by the persistence
layer to save and retrieve CampaignOptimizer objects from repositories.

The next step involves sampling customers for the starter cam-
paign, using a simple random sample as defined earlier for the first
implementation of our application.

1. public CampaignOptimizer(String iName,
2. java.sql.Connection iJDBCConnection,
3. Connection iJDMConnection) {
4. mName � iName;
5. mCreationDate � Calendar.getInstance().getTime();
6. mJDBCConnection � iJDBCConnection;
7. mJDMConnection � iJDMConnection;
8. }

12.1 Business Scenario 1: Targeted Marketing Campaign 307

The first method collects the sampling parameters such as the
data table name, name of columns to be used as mining attributes,
the name of the customer identifier column, and the percentage of
records to be kept in the sampled dataset. Some sanity checks can be
performed when collecting parameters, for example, verifying that
the input table and identified column names exist. These are identi-
fied as “TODO” items. The code reads as follows:

The next method uses the JDBC connection to generate an SQL
statement to produce the sample. In the following code, we assume that
the customer identifier is an integer to allow SQL code that could be
used on any database. When the remainder of dividing the customer
identifier by 100 is below the sample percentage provided, we add that
record to the sample. This approach has limitations, but it can work rea-
sonably well if the customer identifiers’ last two digits are uniformly
distributed. Most of the commercial databases now provide specific
SQL extensions to perform random sampling, such as the SAMPLE
statement for Oracle,1 but these extensions are not yet standardized.

The output table is generated with a column called RESPONSE
filled with NULL values. This column will later be filled by the IT
department with actual customer responses obtained from the
starter campaign; these will be used as the target values to build a

1. public void defineSamplingParameters(String iInputTableName,
2. Collection iColumnNames,
3. String iIdentifierColumnName,
4. double iPercentage,
5. String iOutputTableName) throws SQLException {
6. mInputTableName � iInputTableName;
7. mColumnNames � iColumnNames;
8. mPercentage � iPercentage;
9. mIdentifierColumnName � iIdentifierColumnName;
10. mOutputTableName � iOutputTableName;
11. //TODO: add test about presence of the input table.
12. //TODO: add tests about the existence of columns
13. //TODO: add test about absence of the output table.
14. mCurrentState � CampaignOptimizerState.SAMPLE_SELECTING;
15. }

1 The Oracle sample clause can be used as follows:
SELECT * FROM tablename SAMPLE (20) SEED (4)

In this example, a sample containing about 20 percent of the records in “table-
name” will be returned. A “seed” value can be provided to ensure either the
same sample is returned or a different sample is returned upon subsequent
invocations.

308 Chapter 12 Practical Problem Solving

classification model. Once the output table is created, the number
of customers selected in this table is reported. This is reflected in
the following code:

For example, if you have requested to extract two columns,
NAME and EMAIL, and a sample of 5 percent of the customer table
called CUSTOMERS for which the primary identifier is a column
called CUSTOMER_ID, the generated select statement follows:

It is expected, in this specific scenario, that some period of time
will elapse between the previous operation and when TCA returns
the actual responses to the IT department for loading into the OMDB.
The RESPONSE column contains a “1” if the customer responded

1. public void exportSample() throws SQLException {
2. // 1- Prepare the SQL statement and execute it
3. String lSQLQuery � "create table " �mOutputTableName �" as select ";
4. lSQLQuery �� mIdentifierColumnName;
5. for (Iterator lColNamesIter � mColumnNames.iterator();
 lColNamesIter.hasNext();) {
6. String lColName � (String) lColNamesIter.next();
7. lSQLQuery �� ", " � lColName;
8. }
9. lSQLQuery �� ", cast(NULL as INT) as RESPONSE";
10. lSQLQuery �� " from " � mInputTableName;
11. lSQLQuery ��

 " WHERE (mod(" � mIdentifierColumnName � ", 100)) � " � mRatio;
12. Statement lStatement � mJDBCConnection.createStatement();
13. lStatement.executeQuery(lSQLQuery);
14. // 2- Now determine the exported number of records
15. String lSQLCountQuery � " select count(*) from " � mOutputTableName;
16. Statement lStatementCount � mJDBCConnection.createStatement();
17. ResultSet lResultSetCount �

 lStatementCount.executeQuery(lSQLCountQuery);
18. lResultSetCount.next();
19. mSamplingCount � lResultSetCount.getInt(1);
20. report("SamplingCount: " � mSamplingCount);
21. mExportDate � Calendar.getInstance().getTime();
22. mCurrentState � CampaignOptimizerState.SAMPLE_SELECTED;
23. }

create table STARTER_CUSTOMERS as
 select CUSTOMER_ID, NAME, EMAIL, cast(NULL as INT) as RESPONSE
 from CUSTOMERS
 where (mod(CUSTOMER_ID, 100)) � 5;

12.1 Business Scenario 1: Targeted Marketing Campaign 309

positively to the mail by buying the product, and “0” if the customer
did not respond.

At this point, we begin model building using the responses from
the starter campaign (which serve as the target values) and the corre-
sponding customer demographics and other predictor attributes.
This is done using an SQL join statement, which basically maps the
RESPONSE column to the corresponding customer predictor
attributes using the customer identifier in each table. For example, if
the table containing the original information is CUSTOMERS and the
sample table is STARTER_CUSTOMERS, the SQL statement used to
create the training dataset looks like:

For those not familiar with SQL, here is an explanation of the
“left outer join” in this context. The statement will return all the
customers contained in STARTER_CUSTOMERS (which is our sam-
ple list) for which the response has been provided (either 1 or 0)
and join the information known about them contained in the CUS-
TOMERS table. Because the STARTER_CUSTOMERS list has been
obtained from a sample of the CUSTOMERS table, as soon as the
RESPONSE field is valid, this statement will return a table with one
line for each customer in our sample and all the known information
about these customers. This statement is created in the code of the
method buildSQLStatement, shown between lines 2 and 6 in the next
code listing.

Our specification mentioned that the campaign manager would
have to select a number of attributes used to build models. To express
this, we have two options: One is to use the JDM LogicalData feature
that allows users to indicate if attributes are ACTIVE or INACTIVE
via AttributeUsageType. The second is to design SQL select statements
that retrieve only the columns (attributes) explicitly selected. We will
show the use of logical data; however, the implementation of Logical-
Data is optional in JDM and should be checked through the capabili-
ties of the particular data mining engine (DME).

select c.*, sc.RESPONSE
 from STARTER_CUSTOMERS sc left outer join
 CUSTOMERS c on sc.CUSTOMER_ID � c.CUSTOMER_ID
 where sc.RESPONSE IS NOT null

310 Chapter 12 Practical Problem Solving

The method buildSQLStatement is shown here:

Now, we have to transform this SQL select statement into something
that can be used by the JDM implementation as a PhysicalDataSet for
use in the classification build task. In JDM, physical datasets are speci-
fied using a uniform resource identifier (URI) with a vendor-specific
syntax. Hence, the code that translates the SQL statement into a dataset
URI is vendor-specific. We have placed this code into the method get-
VendorJDMDataSetURI.

A vendor implementation may allow the use of a select statement
as part of the URI, perhaps creating a table using a CREATE TABLE
AS statement, or, the vendor implementation may allow the use of a
select statement directly, avoiding the creation of an intermediate
table. The next code listing contains this vendor-specific code start-
ing from an SQL statement at line 9. We set the case identifier
attribute in lines 12 to 14.

Then, LogicalData is used to select the active attributes. The list of
active attributes is provided by the campaign manager. We could use
the LogicalAttributeFactory to create logical attributes and provide the
AttributeType explicitly to the create method for LogicalAttribute.
However, we will rely on the data mining engine (DME) to automati-
cally create the logical attributes from the physical dataset. This is
done at line 19. In this case, the DME assigns the AttributeType to
each attribute, and declares all the logical attributes to be active by
default. The LogicalData is saved at line 23. Note that all available
attributes will be used to build the model if the user specifies an
empty attribute list.

Next, a ClassificationSettings object is created and associated with
the target attribute name RESPONSE, as shown at line 34. If the user
has specified a list of active attributes, this ClassificationSettings object
must reference the saved LogicalData and the active attributes must
be specified. Recall that when logical attributes are created from the
physical dataset, they are declared as active by default. We first set all

1. public String buildSQLStatement(){
2. String lSQLStatement � "select c.*, sc.RESPONSE from "
3. � mOutputTableName � " sc left outer join "
4. � mInputTableName � " c on sc."
5. � mIdentifierColumnName � " � c." � mIdentifierColumnName
6. � " where (sc.RESPONSE IS NOT null)";
7. return lSQLStatement;
8. }

12.1 Business Scenario 1: Targeted Marketing Campaign 311

logical attributes to inactive, and then the attributes provided as
input arguments are set to active at lines 50 to 52. Once this operation
is completed, the ClassificationSettings object is saved.

Finally, we create the BuildTask to associate the build settings, the
build dataset, and the user-specified model name at line 61. This task
is verified at line 67 and saved in the mining object repository (MOR)
at line 72, and then executed at line 73. Upon successful execution of
this build task, a model with the specified name can then be used for
scoring.

Some advanced users could write equivalent methods to specifi-
cally build a decision tree or a neural network. All these models will
be remembered by their names in the campaign optimization object.
The next section shows that it is possible to compare models to select
the best.

The following code assumes that the JDM implementation can
build a model on “unprepared” data, as described in Chapter 7. If the
JDM implementation requires data preparation, some specific code
will have to be included to perform this preparation.

1. public void buildModel(String iModelName, Collection iActiveAttributes)
2. throws JDMException, InterruptedException {
3. String lDataSetName � iModelName � "_DS";
4. String lBuildDataSQLStatement � buildSQLStatement();
5. mBuildDataSQL � lBuildDataSQLStatement;
6. PhysicalDataSetFactory lPdsFactory �

7. (PhysicalDataSetFactory) mJDMConnection.getFactory(
8. "javax.datamining.data.PhysicalDataSet");
9. String lDataSetURI � getVendorDatasetURI(lBuildDataSQLStatement);
10. PhysicalDataSet lBuildData � lPdsFactory.create(lDataSetURI, false);
11. lBuildData.importMetaData();
12. PhysicalAttribute lAttr
13. � lBuildData.getAttribute(mIdentifierColumnName.toUpperCase());
14. lAttr.setRole(PhysicalAttributeRole.caseId);
15. mJDMConnection.saveObject(lDataSetName, lBuildData, true);
16. LogicalDataFactory lLDFactory �

17. (LogicalDataFactory) mJDMConnection.getFactory(
18. "javax.datamining.data.LogicalData");
19. LogicalData lLogdata � lLDFactory.create(lBuildData);
20. String lLogicalDataName � iModelName � "_LD";
21. if (0 � iActiveAttributes.size())
22. {
23. mJDMConnection.saveObject(lLogicalDataName,
24. lLogdata,
25. true);

312 Chapter 12 Practical Problem Solving

26. }
27. String lSettingsName � iModelName � "_S";
28. ClassificationSettingsFactory lCsFactory �

29. (ClassificationSettingsFactory) mJDMConnection.getFactory(
30. "javax.datamining.supervised.classification"
31. � ".ClassificationSettings");
32. ClassificationSettings lClassificationSettings �

33. lCsFactory.create();
34. lClassificationSettings.setTargetAttributeName("RESPONSE");
35. if (0 � iActiveAttributes.size()) {
36. lClassificationSettings.setLogicalDataName(lLogicalDataName);
37. Collection lLogAttributes � lLogdata.getAttributes();
38. for (Iterator lAttrIter � lLogAttributes.iterator();
39. lAttrIter.hasNext();){
40. String lAttributeName �

41. ((LogicalAttribute)(lAttrIter.next())).getName();
42. lClassificationSettings.setUsage
43. (lAttributeName,
44. LogicalAttributeUsage.inactive);
45. }
46. for (Iterator lActiveAttrIter � iActiveAttributes.iterator();
47. lActiveAttrIter.hasNext();){
48. String lAttributeName � ((String)(lActiveAttrIter.next())).
49. toUpperCase();
50. lClassificationSettings.setUsage
51. (lAttributeName,
52. LogicalAttributeUsage.active);
53. }
54. lClassificationSettings.setUsage("RESPONSE",
55. LogicalAttributeUsage.active);
56. }
57. mJDMConnection.saveObject(lSettingsName,
58. lClassificationSettings,
59. true);
60. String lTaskName � iModelName � "_T";
61. BuildTaskFactory lBuildTaskFactory �

62. (BuildTaskFactory) mJDMConnection.getFactory(
63. "javax.datamining.task.BuildTask");
64. BuildTask lBuildTask � lBuildTaskFactory.create(lDataSetName,
65. lSettingsName,
66. iModelName);
67. VerificationReport lVerifTask � lBuildTask.verify();
68. if (lVerifTask !� null) {
69. reportError(lVerifTask.getReportText());
70. return;
71. }
72. mJDMConnection.saveObject(lTaskName, lBuildTask, true);
73. boolean lSuccess � executeTask(lTaskName);
74. if (!lSuccess) {
75. report("Did not manage to build classification model!");
76. return;
77. }

12.1 Business Scenario 1: Targeted Marketing Campaign 313

The user can run the buildModel method several times, for example,
keeping only the demographic attributes, then keeping only the
behavioral data. This can be done by invoking the method described
earlier with different values for the iActiveAttributes argument. All
models successfully built are saved into a member variable of the
CampaignOptimizer object called mModelNames, which is a map asso-
ciating the name of the built model with the list of active attributes
used by this model. This list of model names will be used to select the
best model later. More complex scenarios could use specific algo-
rithm settings to create several decision trees with different settings.

The next step will be to select the best model based on the cost
structure, and associate this model with a specific threshold to decide
whether or not mail should be sent to a given customer. As in any
response model, the model predicts not only if the customer will
respond, but also a probability that a customer will respond. The
campaign manager must select a threshold probability such that cus-
tomers scoring above that threshold will receive the offer. To tune
this probability, we use the receiver operating characteristics (ROC)
curve returned by the TestMetrics task.

The ROC curve was discussed in Chapter 7. Table 12-1 provides
an example of data that is returned in the ROC object.

78. mModelNames.put(iModelName, iActiveAttributes);
79. mCurrentState � CampaignOptimizerState.ANALYZING;
80. }

Table 12-1 ROC Object—example data contents

False Alarm Hit Rate True Neg. False Neg. True Pos. False Pos.

Probability

Threshold

0.0 0.0 37155 11687 0 0 1.000

 0.05 0.526724 35297 5531 6155 1857 0.451

0.1 0.674433 33439 3804 7882 3715 0.365

 0.15 0.768535 31581 2705 8981 5573 0.280

0.2 0.83775 29724 1896 9790 7431 0.212

 0.25 0.887242 27866 1317 10369 9288 0.161

0.3 0.922603 26008 904 10782 11146 0.110

314 Chapter 12 Practical Problem Solving

The data points contained in this table are often depicted as the
ROC curve gains chart, which shows the true positive rate, or hit
rate, against the false positive rate, or false alarm rate, as shown in
Figure 12-2. For each point on this curve, JDM also provides all ele-
ments of the confusion matrix associated with the probability thresh-
old. In other words, the third row of Table 12-1 tells you that, if you
select all the customers with a probability higher than 0.36 (value of
the last column), it will return 7,882 � 3,715 “positive” customers
(the sum of the true positive and false positive cases). Here, remem-
ber that positive/negative means selected/not selected by the model,
and true/false means correctly/incorrectly classified. Table 12-1’s
first row entry means that the probability threshold is so high that no
customers are selected. In the last row entry, the threshold is so low
that all customers are selected. Now, to come back to the third row,
7,882 customers were correctly classified, which means that, in our
scenario, they are buying the product proposed by HEW, and 3,715
were contacted but did not buy the product. The nice thing about all

False Alarm Hit Rate True Neg. False Neg. True Pos. False Pos.

Probability

Threshold

 0.35 0.945291 24150 639 11047 13004 0.075

0.4 0.960988 22293 455 11231 14862 0.071

 0.45 0.973021 20435 315 11371 16719 0.039

0.5 0.982192 18577 208 11478 18577 0.034

 0.55 0.988682 16719 132 11554 20435 0.012

0.6 0.992834 14862 83 11603 22293 0.007

 0.65 0.995267 13004 55 11631 24150 0.006

0.7 0.997004 11146 35 11651 26008 0.004

 0.75 0.998207 9288 20 11666 27866 0.003

0.8 0.998736 7431 14 11672 29724 0.003

 0.85 0.999135 5573 10 11676 31581 0.002

0.9 0.999436 3715 6 11680 33439 0.002

 0.95 0.9997 1857 3 11683 35297 0.001

1.0 1.0 0 0 11687 37155 0

Table 12-1 ROC Object—example data contents (continued)

12.1 Business Scenario 1: Targeted Marketing Campaign 315

these numbers is that they can be used to pick the probability thresh-
old to optimize the revenue if we know the cost associated with each
of the 3,715 negative responses and the profit associated with the
7,882 positive responses.

Given these numbers, we can select—for each model, based on the
ROC curve obtained on the test dataset—the probability threshold
that will maximize revenue. The following code shows how to per-
form that computation by creating a TestMetrics task for each model
and asking for the ROC curve, which is specified at line 20. We scan
through the different threshold candidates of the ROC curve. Each
threshold candidate provides access to the elements shown in Table
12-1. In particular, we can get back the number of true positives and
false positives, and compute the expected profit if we set the thresh-
old at this level. The expected return will be the difference between
the number of true positives (the customers that are contacted and
responded positively) times the individual profit, and the number of
false positives (the customers that are contacted but did not respond
positively) times the individual cost.

Expected Return � (number of true positives � individual profit)
� (number of false positives � individual cost)

True Positive Rate

versus

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Figure 12-2 The ROC Curve of data points of Table 12-1.

316 Chapter 12 Practical Problem Solving

The loop started at line 35 selects the threshold candidate with
the highest expected return at line 40. This expected return is asso-
ciated with the model (it is the best functioning point of a given
model), and the model with the highest expected return is then
selected at line 45. For this, we need to provide the method with an
individual cost (the cost of a mailing to a customer), an individual
profit (how much does HEW get when a customer buys the prod-
uct), and a fixed cost (usually the cost associated with the design/
graphics of the mailing). The fixed cost, being the same for all mod-
els and all threshold candidates, is not taken into account in the
selection of the best model but will be used to compute the
expected profit.

1. public void selectBestModel(double iGlobalCost,
2. double iIndividualCost,
3. double iIndividualProfit)
4. throws JDMException, InterruptedException {
5. mGlobalCost � iGlobalCost;
6. mIndividualCost � iIndividualCost;
7. mIndividualProfit � iIndividualProfit;
8. ClassificationTestTaskFactory lTestTaskFactory �

9. (ClassificationTestTaskFactory) mJDMConnection.getFactory(
10. "javax.datamining.supervised.classification.ClassificationTestTask");
11. String lBestModelName � null;
12. double lModelsBestProba � 0.0;
13. double lModelsBestValue � 0.0;
14. for (Iterator lModelNameIter � mModelNames.keySet().iterator();
15. lModelNameIter.hasNext();) {
16. String lModelName � (String) lModelNameIter.next();
17. ClassificationTestTask lTestTask � lTestTaskFactory.create(
18. lModelName � "_DS", lModelName, lModelName � "_Metrics");
19. lTestTask.computeMetric(
20. ClassificationTestMetricOption.receiverOperatingCharacteristics,
21. true);
22. mJDMConnection.saveObject(lModelName � "_TT", lTestTask, true);
23. boolean lSuccess � executeTask(lModelName � "_TT");
24. if (!lSuccess) {
25. return;
26. }
27. ClassificationTestMetrics lMetrics
28. � (ClassificationTestMetrics) mJDMConnection
29. .retrieveObject(lModelName � "_Metrics",
30. NamedObject.testMetrics);
31. ReceiverOperatingCharacterics lROC � lMetrics.getROC();
32. int lCount � lROC.getNumberOfThresholdCandidates();
33. double lBestValue � 0;
34. double lBestProba � 0;

12.1 Business Scenario 1: Targeted Marketing Campaign 317

Then, the selected model will be used to generate the probabilities
associated with each individual customer. To do this, we create the
appropriate ApplySettings, asking to generate the probability of being
in the desired category (the Responded category). We show how to
apply the model to customers for the large-scale campaign, and
exclude those from the starter campaign. For this, we create an SQL
statement with logic opposite from the one we used for the build
dataset. The following SQL selects the customers for which we do
not have any response during the starter mailing campaign.

When creating the ApplyTask, we specify the name of the dataset
where the scored results, that is, probabilities, are placed. In our
design, these results will be stored in an intermediate table as speci-
fied in the variable iApplyOutputDataName with an “_ALL” suffix, as
shown at line 39. This table contains only intermediate results
because we need to filter those customers meeting the probability
threshold requirement. Those customers selected are placed in the
final result dataset named in iApplyOutputDataName.

35. for (int lIdx � 0; lIdx � lCount; lIdx��) {
36. long lTP � lROC.getPositives(lIdx, true);
37. long lFP � lROC.getPositives(lIdx, false);
38. double lValue � (lTP * iIndividualProfit) -
39. (lFP * iIndividualCost);
40. if (lBestValue � lBestValue) {
41. lBestValue � lValue;
42. lBestProba � lROC.getProbabilityThreshold(lIdx);
43. }
44. }
45. if (lModelsBestValue � lBestValue) {
46. lModelsBestValue � lBestValue;
47. lModelsBestProba � lBestProba;
48. lBestModelName � lModelName;
49. }
50. }
51. mBestModelName � lBestModelName;
52. mBestModelProbaThreshold � lModelsBestProba;
53. }

select c.*
from CUSTOMERS c left outer join

STARTER_CUSTOMERS sc on c.CUSTOMER_ID � sc.CUSTOMER_ID
where (sc.RESPONSE IS null)

318 Chapter 12 Practical Problem Solving

To perform this selection, a view is created in the OMDB to select
only the customers with a probability higher than the threshold,
which is executed at line 57. The contents of this view will be for-
warded to TCA together with the names and addresses of the pro-
spective customers to contact.

We can also report the expected number of responses prior to
sending the mailing. This is obtained by summing the probabilities
for all customers in this dataset. The expected number of responders
can be used to compute the expected profit prior to sending the
actual mailings. Again this is done in SQL and executed at line 63.
Multiplying the individual profit by the expected positive responses
and subtracting from this the individual cost times the expected
negative responses leads to an estimation of the global profit of this
campaign, as shown between lines 68 and 70.

1. public void applymodel(String iTargetKey,
2. String iApplyOutputDataName)
3. throws JDMException, InterruptedException, SQLException {
4. String lApplyDSSettName � getBestModelName() � "_ApplyS";
5. ClassificationApplySettingsFactory lApplySettFactory �

6. (ClassificationApplySettingsFactory) mJDMConnection.getFactory(
7. "javax.datamining.supervised.classification.ClassificationApplySettings");
8. ClassificationApplySettings lApplySett � lApplySettFactory.create();
9. lApplySett.mapByCategory(ClassificationApplyContent.probability,
10. iTargetKey,
11. "Proba");
12. mJDMConnection.saveObject(lApplyDSSettName, lApplySett, true);
13.
14. String lApplyDataSetName � getBestModelName() � "_ApplyDS";
15. String lApplyDataSQLStatement � "select a.* from "
16. � mInputTableName � " a left outer join "
17. � mOutputTableName � " b on a."
18. � mIdentifierColumnName � " � b." � mIdentifierColumnName
19. � " where (b.RESPONSE IS null)";
20. mApplyDataSQL � lApplyDataSQLStatement;
21. PhysicalDataSetFactory lPdsFactory �

22. (PhysicalDataSetFactory) mJDMConnection.getFactory(
23. "javax.datamining.data.PhysicalDataSet");
24. String lDataSetURI � getVendorDatasetURI(lApplyDataSQLStatement);
25. PhysicalDataSet lApplyData � lPdsFactory.create(lDataSetURI, false);
26. lApplyData.importMetaData();
27. PhysicalAttribute lAttr
28. � lApplyData.getAttribute(mIdentifierColumnName.toUpperCase());
29. lAttr.setRole(PhysicalAttributeRole.caseId);
30. mJDMConnection.saveObject(lApplyDataSetName, lApplyData, true);
31. mApplyOutputDataName � iApplyOutputDataName;
32. DataSetApplyTaskFactory lApplyTaskFactory �

33. (DataSetApplyTaskFactory) mJDMConnection.getFactory(

12.1 Business Scenario 1: Targeted Marketing Campaign 319

Once the full campaign is complete, the last operation is to
check that the actual revenue is in line with the expected revenue.
This can be done using the following method, which assumes that
the responses have been collected in the table used to hold results
of the apply of the model. The name of that table can be obtained
through the member variable called mApplyOutputDataName. For
example, assuming that the table name iApplyOutputDataName
was set to SCORE in calling the method applyModel, the table
SCORE_ALL was created with a column RESPONSE with only

34. "javax.datamining.task.apply.DataSetApplyTask");
35. DataSetApplyTask lApplyTask � lApplyTaskFactory.create(
36. lApplyDataSetName,
37. getBestModelName(),
38. lApplyDSSettName,
39. getVendorJDMDatasetURI(iApplyOutputDataName � "_ALL"));
40.
41. VerificationReport lVerifTask � lApplyTask.verify();
42. if (lVerifTask !� null) {
43. reportError(lVerifTask.getReportText());
44. return;
45. }
46.
47. mJDMConnection.saveObject(getBestModelName() � "_ApplyT",
48. lApplyTask,
49. true);
50. boolean lSuccess � executeTask(getBestModelName() � "_ApplyT");
51. if (!lSuccess) {
52. return;
53. }
54. String lSQLQuery � "create view " � iApplyOutputDataName
55. � " as (select * from " � iApplyOutputDataName � "_ALL"
56. � " where Proba � " � mBestModelProbaThreshold � ")";
57. Statement lStatement � mJDBCConnection.createStatement();
58. lStatement.executeQuery(lSQLQuery);
59. String lSQLCountQuery � " select count(*), sum(Proba) from "
60. � iApplyOutputDataName;
61. Statement lStatementCount � mJDBCConnection.createStatement();
62. ResultSet lResultSetCount
63. � lStatementCount.executeQuery(lSQLCountQuery);
64. lResultSetCount.next();
65. mApplyCount � lResultSetCount.getInt(1);
66. mExpectedResponses � lResultSetCount.getInt(2);
67.
68. mExpectedProfit � ((mExpectedResponses * mIndividualProfit)
69. � ((mApplyCount - mExpectedResponses) * mIndividualCost))
70. � mGlobalCost;
71. report("Expected Profit using model [" � getBestModelName() � "]: "
72. � mExpectedProfit);
73. }

320 Chapter 12 Practical Problem Solving

empty values. If we assume that this RESPONSE column is filled
later with the actual responses of 1 (positive response), 0 (negative
response), or it remains NULL if the customer has not been con-
tacted, then we can use SCORE_ALL to check the expected revenue
with the actual revenue generated by the campaign. Computing
revenue, taking into account the cost structure, is exactly the same
as the formula used to predict the expected profit, as shown in lines
13 to 15.

That concludes the project, in which JDM and JDBC were used to
improve target marketing campaigns.

12.1.4 Scenario 1 Conclusion

The code in this section has been tested. It shows how to write an
operational application using JDBC for basic data manipulation and
JDM for data mining operations. One important aspect of the preced-
ing code is that it did not require extensive data mining knowledge.
The most complex part of the code implies a clear understanding of
the values returned by the ROC curve obtained through a TestMetrics
task. The second important thing to notice is the compactness of the
code. The number of lines is small compared to its business value
for HEW.

1. public void checkRevenue()
2. throws SQLException {
3. String lSQLCountQuery � " select count(*), sum(RESPONSE) from "
4. � mApplyOutputDataName � "_ALL "
5. � "where RESPONSE IS NOT NULL and Proba � " � mBestModelProbaThreshold;
6. Statement lStatementCount � mJDBCConnection.createStatement();
7. ResultSet lResultSetCount
8. � lStatementCount.executeQuery(lSQLCountQuery);
9. lResultSetCount.next();
10. int lResponseCount � lResultSetCount.getInt(1);
11. int lActualResponses � lResultSetCount.getInt(2);
12. doublelActualProfit � 0.0;
13. lActualProfit � ((lActualResponses * mIndividualProfit)
14. � ((lResponseCount - lActualResponses) * mIndividualCost))
15. � mGlobalCost;
16. report("Actual Profit using model [" � getBestModelName() � "]: "
17. � lActualProfit � " to be compared with expected "
18. � mExpectedProfit);
19. }

12.2 Business Scenario 2: Understanding Key Factors 321

To achieve code compactness, we made two assumptions about
the JDM implementation:

• Its ability to build classification models on unprepared data:
If the JDM implementation does not work directly on unpre-
pared data, the code presented above must be augmented
with data preparation code. Because data preparation is
algorithm-specific, the Java programmer must understand
how to prepare data for the specific algorithm.

• Its ability to build classification models when the ratio of
positive cases is small (such as 2 percent): If a JDM
implementation does not offer an algorithm giving good
results when the number of positive cases is low, the code
presented earlier must be modified before building models.
Specifically, the build dataset must be produced with all
possible positive cases and a subsample of the negative
cases—a stratified sample allowing a more balanced (50% to
50%) proportion of positive versus negative cases in the
build dataset. When such stratified sampling is used, the
JDM feature for specifying prior probabilities can be used in
the ClassificationBuildSettings.

12.2 Business Scenario 2: Understanding Key Factors

HEW has used the CampaignOptimizer code to compare several JDM
implementations in one experimental campaign, and was particu-
larly impressed with the results, both in terms of ease of use and per-
formance, but the campaign manager wanted more information
about how the models were making their predictions. As an example,
he would have loved to see which attributes were most used by the
DME to compute the probability that a prospective customer will
respond to that mailing.

12.2.1 Code Example

With this new objective, the user has decided to complement the
CampaignOptimizer object with a feature to indicate key factors. This
is a small enhancement to the previous project, which does not
require any new design considerations.

In JDM, the notion of key factors can be obtained through attribute
importance. There are two ways to obtain a list of the important

322 Chapter 12 Practical Problem Solving

attributes: (1) as a side effect of model building or (2) by building a
specific model of type AttributeImportanceModel.

The first technique can be used by a business user to deepen his
confidence in the quality of the models, and the second technique
can be used before building any classification models to have a
reduced set of attributes on which to build models.

We augment the CampaignOptimizer with these two possibilities.
When several models have been built, one can use the method called
findKeyFactorsFromModels to retrieve the important attributes from
each model, or one can use the method called findKeyFactors to spe-
cifically compute the attribute importance independently of any clas-
sification model. Both methods take the number of attributes that the
campaign manager wants to inspect.

Following is the code for findKeyFactorsFromModels:

In this method, we scan the different models that were built in the
CampaignOptimizer instance. We retrieve them from the DME at line 8,
and obtain their respective model signatures. As noted in Chapter 7,
the attribute ranking information is stored in this signature and

1. public void findKeyFactorsFromModels(int iAttributeCount)
2. throws JDMException, InterruptedException {
3. for (Iterator lModelNameIter � mModelNames.keySet().iterator();
4. lModelNameIter.hasNext();) {
5. String lModelName � (String) lModelNameIter.next();
6. // We need to present the key factors to the campaign manager
7. ClassificationModel lModel � (ClassificationModel)
8. mJDMConnection.retrieveObject(lModelName,
9. NamedObject.model);
10. Collection lAttributes � lModel.getSignature().
11. getAttributesByRank(SortOrder.descending);
12. if (0 � lAttributes.size()) {
13. intlAttrIdx � 1;
14. for (Iterator lAttrIter � lAttributes.iterator();
15. (lAttrIter.hasNext()) && (lAttrIdx � iAttributeCount);) {
16. AttributelAttribute � (Attribute) lAttrIter.next();
17. report("Attribute " � lAttrIdx
18. � " is " � lAttribute.getName());
19. lAttrIdx ��;
20. }
21. } else {
22. report("This JDM DME does not support attribute ranking!");
23. }
24. }
25. }

12.2 Business Scenario 2: Understanding Key Factors 323

accessed using the method getAttributesByRank, as shown at line 11.
The attributes, sorted in descending order, are reported to the user.
If the JDM implementation does not support this feature, the size of
the collection returned will be 0 and, thus, we report it to the campaign
manager as shown by the test at line 12 and the message at line 22.

If the campaign manager wants to know, before building any
model, which key factors affect predictions, he can execute the fol-
lowing method, called findKeyFactors:

1. public Vector findKeyFactors(int iAttributeCount)
2. throws JDMException, InterruptedException {
3. Vector lFactors � new Vector();
4. String lModelName � "KeyFactors";
5. String lSettingsName � lModelName � "_S";
6. AttributeImportanceSettingsFactory lCsFactory �

7. (AttributeImportanceSettingsFactory) mJDMConnection.getFactory(
8. "javax.datamining.attributeimportance"
9. � ".AttributeImportanceSettings");
10. AttributeImportanceSettings lAttributeImportanceSettings �

11. lCsFactory.create();
12. lAttributeImportanceSettings.setTargetAttributeName("RESPONSE");
13. mJDMConnection.saveObject(lSettingsName,
14. lAttributeImportanceSettings,
15. true);
16.
17. String lDataSetName � lModelName � "_DS";
18. String lBuildDataSQLStatement � buildSQLStatement();
19. PhysicalDataSetFactory lPdsFactory �

20. (PhysicalDataSetFactory) mJDMConnection.getFactory(
21. "javax.datamining.data.PhysicalDataSet");
22. String lDataSetURI � getVendorDatasetURI(lBuildDataSQLStatement);
23. PhysicalDataSet lBuildData � lPdsFactory.create(lDataSetURI, false);
24. lBuildData.importMetaData();
25. PhysicalAttribute lAttr
26. � lBuildData.getAttribute(mIdentifierColumnName.toUpperCase());
27. lAttr.setRole(PhysicalAttributeRole.caseId);
28. mJDMConnection.saveObject(lDataSetName, lBuildData, true);
29.
30. String lTaskName � lModelName � "_T";
31. BuildTaskFactory lBuildTaskFactory �

32. (BuildTaskFactory) mJDMConnection.getFactory(
33. "javax.datamining.task.BuildTask");
34. BuildTask lBuildTask � lBuildTaskFactory.create(lDataSetName,
35. lSettingsName,
36. lModelName);
37. VerificationReport lVerifTask � lBuildTask.verify();
38. if (lVerifTask !� null) {
39. reportError(lVerifTask.getReportText());
40. return lFactors;
41. }

324 Chapter 12 Practical Problem Solving

In lines 1 to 42, all the objects needed to create an attribute impor-
tance model are created and saved. Then, the BuildTask is executed
and, if successful, the model is retrieved from the MOR at line 50.
The attribute names are extracted from the AttributeImportanceModel
in descending order at line 53 and the most important attributes are
collected into a vector, which is returned by this method at line 63.
The vector of attribute names returned by this method can be directly
fed into the argument iActiveAttributes of the buildModel method.

12.2.2 Scenario 2 Conclusion

The attribute importance-related code presented in this section will
likely be used in conjunction with other modeling techniques. In the
previous scenario, we designed our CampaignOptimizer methods in a
way that makes it possible to directly take the output of the findKey-
Factors method and to use it as the input for building a classification
model.

Again, the assumption that we made here is that the JDM imple-
mentation can work on unprepared data for attribute importance.

42. mJDMConnection.saveObject(lTaskName, lBuildTask, true);
43. boolean lSuccess � executeTask(lTaskName);
44.
45. // Check success/error
46. if (lSuccess) {
47. // We need to present the key influencers to the campaign manager
48. AttributeImportanceModel lModel
49. � (AttributeImportanceModel) mJDMConnection
50. .retrieveObject(lModelName,
51. NamedObject.model);
52. Collection lAttributes � lModel.
53. getAttributesByRank(SortOrder.descending);
54. intlAttrIdx � 1;
55. for (Iterator lAttrIter � lAttributes.iterator();
56. (lAttrIter.hasNext()) && (lAttrIdx �� iAttributeCount);) {
57. StringlAttrName � (String) lAttrIter.next();
58. report("Attribute " � lAttrIdx � " is " � lAttrName);
59. lAttrIdx ��;
60. lFactors.add(lAttrName);
61. }
62. }
63. return lFactors;
64. }

12.3 Business Scenario 3: Using Customer Segmentation 325

12.3 Business Scenario 3: Using Customer Segmentation

HEW has been successfully using the previous applications to
optimize direct marketing campaigns. The chief marketing officer
(CMO) now wants to advertise in select mass media. For this, he
needs to know more about the customer profiles to target the proper
magazines and TV channels.

The marketing term for getting these profiles is segmentation. Cus-
tomer segmentation can be done in many ways, and those familiar
with the CRM space know that the subject of customer segmentation
could fill a book of its own; in fact, many books have been written on
the subject (see, for example, Optimal Database Marketing: Strategy,
Development and Data Mining [Drozenko/Drake 2002]). Most cus-
tomer segmentation efforts are designed to optimize promotional
product offerings and are generally made in several stages. First,
customer segments are made based on information available in the
customer database, such as customers engaged in fraud, a “do-not-
promote” segment of those who do not want to be contacted
anymore, and high risk accounts to be discarded from the next mass
mailings.

Then, the remaining population can be segmented using what is
called life-stage segmentation, which is primarily based on demo-
graphic and psychographic data obtained internally or externally.
These segments can be used to determine the future needs of HEW
customers or to adapt promotions or messages to customer interests.

12.3.1 Customer Segmentation Specifications

To perform the customer segmentation operation, the CMO will buy
psychographic data, such as customer hobby, music, movie, or book
preferences, from an external service bureau or data enhancement
facility. In this example, the service bureau is called “The Service
Bureau” (TSB). This company can augment a file containing names
and addresses with both demographic information, such as house-
hold size, household income, the age of the head of household in
years, and psychographic information, such as interests and hobbies.

This data will be used to create a small number of clusters
(between 5 and 10) for the entire HEW customer database. Then,
these clusters will be characterized in terms of important demo-
graphic and psychographic attributes and each cluster will manually
be assigned a descriptive name. Recognizing a good clustering from

326 Chapter 12 Practical Problem Solving

a bad one is difficult. There is no mathematical formula that can be
used. A good clustering is one that “talks” to the marketers.

To get this profile information, we will use counts obtained from
the OMDB to compare profiles from psychographic attributes for
each obtained cluster, or we can use the profiles from buying patterns
with respect to each product line. These profiles will be presented to
and validated by the CMO. The marketing manager then uses this
information to select, for each product line, appropriate magazines or
TV channels.

Again, because the CMO expects this process to be done on a reg-
ular basis, especially because he would like to be able to compare
profiles easily for each cluster, HEW has decided to build a “tool” to
perform these operations. This tool will be referred as the Customer
Segmenter in this section.

The following are the step-by-step operations that should be sup-
ported by this tool:

• HEW CMO commences the process of psychographic
enhancement.

• The marketing manager uses the tool to start this process.
The tool selects the customers without psychographic
enhancement and extracts a file to be provided to the
service bureau with the customer identifier, name, and
address.

• HEW IT sends this extract to TSB for enhancement.

• TSB uses proprietary algorithms to match the name and
addresses with their internal database and complement
each customer with demographic and psychographic
information. In this particular scenario, about 100 attribute
values are assigned to each customer. TSB sends back a file
with proper enhancement data to HEW.

• HEW IT department loads the enhanced data as a specific
table in the OMDB.

• HEW marketing manager then builds the clustering models.
In this scenario, HEW CMO estimates that this strategic
segmentation should generate between 5 and 10 clusters. So
the system will create different clustering models with
different maximum numbers of clusters. A table associating
each individual customer to cluster identifiers in the OMDB
will be generated. These clusters are kept in a specific table

12.3 Business Scenario 3: Using Customer Segmentation 327

of the OMDB. This table could in turn be used by an online
analytical processing (OLAP) tool.

• HEW IT provides a table in the OMDB containing, for each
customer, the number of products bought per product line
in the past 12 months. In HEW, there are 10 product lines.

• HEW marketing manager then asks for profiles based on
the enhanced data as well, and on the buying behavior per
product line. For this, SQL count statements will be pro-
vided as reports to the marketing manager, who will
prepare a thorough report to the CMO.

• The CMO selects one clustering model and associates
cluster identifiers with names used for marketing purposes.

This process is presented in Figure 12-3.

12.3.2 Design of the CustomerSegmenter Object

Now that you’ve had success with the first two applications of JDM,
you are asked to design and implement the business layer for this
project. Some other team members will be in charge of the user inter-
face layer and the infrastructure layer. Of course, you will use the

Compute

profiles on

enhanced data

and

buying data

HEW Marketing

Manager

HEW

IT
TSB

Extract names and

addresses!

Send List

Enhance

data

2 weeks

Customers

Build

Training

dataset and

train

clustering

 models

Select one

clustering

Figure 12-3 Customer Segmenter scenario.

328 Chapter 12 Practical Problem Solving

same techniques: JDBC for some data manipulations and JDM to
create clustering models.

Again, for the sake of simplicity, we will implement all services of
the business layer in a single class called CustomerSegmenter.

12.3.3 Code Examples

This section details the code of the CustomerSegmenter class that
follows the steps described in the previous section. As presented ear-
lier, the constructor creates a new campaign optimization object with
a name and a creation date. Because our object must deal with some
basic data manipulations as well as data mining operations, we pro-
vide it with two valid connections (JDBC and JDM). This is reflected
in the following constructor:

The following sections detail the code of the CustomerSegmenter
class that follows the steps described earlier. The first step consists of
extracting some file to be provided to TSB for enhancement. This
code is very similar to the one described in the CampaignOptimizer
project except that no sampling is involved. This code starts with the
name of the table containing at least the customer identifier, name,
and address as iCustomerTableName. These attributes are mandatory
to allow the recognition of the individuals by the enhancement ser-
vice and they are provided as a list of names in iColumnNames. The
identifier attribute must also be provided because it will be the one
used to reconcile the data provided by TSB with the customer data-
base. Finally, the table name to be generated is provided in iOutput-
TableName.

1. public CustomerSegmenter(String iName,
2. java.sql.Connection iJDBCConnection,
3. Connection iJDMConnection) {
4. mName � iName;
5. mCreationDate � Calendar.getInstance().getTime();
6. mJDBCConnection � iJDBCConnection;
7. mJDMConnection � iJDMConnection;
8. }

1. public void export(String iCustomerTableName,
2. Collection iColumnNames,
3. String iIdentifierColumnName,
4. String iOutputTableName)

12.3 Business Scenario 3: Using Customer Segmentation 329

This code generates the SQL statement that creates the desired
table from the select statement as shown in lines 10 to 17. The number
of records produced is reported to the user, because it may be linked
with payment to TSB.

Then some time is needed by TSB to enhance the data and return
the enhanced file, which is loaded by the IT team into the OMDB.
This enhanced table is used as the basis for building the clustering
models. As described for this scenario, several clustering models
with different numbers of clusters are built. This is done by the
method called buildModelAndApply. Once the clustering models are
built, they are used to assign each customer of the enhanced table
with their cluster identifiers.

In the buildModelAndApply method, the parameter iModelPrefix is
used together with the number of clusters found in that model to
generate the model names. For example, if the prefix is “MyModel”
and iMinClusterCount is set to 5, and iMaxClusterCount is set to 7,
then the models “MyModel5,” “MyModel6,” and “MyModel7” will
be built by this routine. The argument iEnhancedTableName is the
table name containing demographic and psychographic data filled
by the IT department from the file returned by TSB.

5. throws SQLException {
6. mCustomerTableName � iCustomerTableName;
7. mColumnNames � iColumnNames;
8. mIdentifierColumnName � iIdentifierColumnName;
9. mOutputTableName � iOutputTableName;
10. String lSQLQuery � "create table " � mOutputTableName � " as select ";
11. lSQLQuery �� mIdentifierColumnName;
12. for (Iterator lColNamesIter � mColumnNames.iterator();
13. lColNamesIter.hasNext();) {
14. String lColName � (String) lColNamesIter.next();
15. lSQLQuery �� ", " � lColName;
16. }
17. lSQLQuery �� " from " � mCustomerTableName;
18. Statement lStatement � mJDBCConnection.createStatement();
19. lStatement.executeQuery(lSQLQuery);
20. String lSQLCountQuery � " select count(*) from " � mOutputTableName;
21. Statement lStatementCount � mJDBCConnection.createStatement();
22. ResultSet lResultSetCount � lStatementCount.
23. executeQuery(lSQLCountQuery);
24. lResultSetCount.next();
25. int lSamplingCount � lResultSetCount.getInt(1);
26. mCurrentState � CustomerSegmenterState.EXPORTED_FOR_ENHANCEMENT;
27. report("Count for enhancement: " � lSamplingCount);
28. }

330 Chapter 12 Practical Problem Solving

The parameter iApplyOutputPrefix is the prefix of the table used to
contain cluster assignments. For example, if iApplyOutPrefix is set to
“Clusters,” and iModelPrefix is set to “MyCluster,” the system will
apply the clustering models to generate a table called “Clusters5” in
which there will be an attribute for the customer identifier and an
attribute called “MyCluster5” containing the clusters associated with
the customers.

In fact, we have left the possibility for the user, through the Bool-
ean member variable mUseApplyOutPrefix, to either create a new
table for each clustering model (this is the default option that is
described here) or to create a single table (in this case the prefix will
not be concatenated with the number of clusters) with one column
for each clustering model. In general, the second solution requires
less database maintenance because fewer tables are created, but the
applications of the different clustering models will require either
inserting or updating in this table. The first clustering model will
insert the lines for the first assignment between customer identifiers
and clusters, but all the other models will have to update the values
for the new clustering assignments and this update operation can be
long if the number of customers is large.

Figure 12-4 shows the different situations when models with 5 to 7
clusters are built.

Customer_id MyCluster7

Clusters7

‘mUseApplyOutPrefix’ true
‘iModelPrefix’ “MyCluster”
‘iApplyOutPrefix’ “Cluster”

‘mUseApplyOutPrefix’ false
‘iModelPrefix’ “MyCluster”
‘iApplyOutPrefix’ “Cluster”

Customer_id MyCluster6

Clusters6

Customer_id

Clusters5

Customer_id

Clusters

 MyCluster5

MyCluster5 MyCluster6 MyCluster7

Figure 12-4 Tables containing cluster association using different settings.

12.3 Business Scenario 3: Using Customer Segmentation 331

In these first 21 lines, we created the PhysicalDataSet that is used
for both building the model and then applying it to assign customers
a cluster identifier. The following code creates models with increas-
ing numbers of clusters from the minimum to the maximum speci-
fied by the user.

1. public void buildModelAndApply(String iModelPrefix,
2. int iMinClusterCount,
3. int iMaxClusterCOunt,
4. String iEnhancedTableName,
5. String iApplyOutputPrefix)
6. throws JDMException, InterruptedException {
7. mModelPrefix � iModelPrefix;
8. mApplyOutputPrefix � iApplyOutputPrefix;
9. String lDataSetName � iModelPrefix � "_DS";
10. mEnhancedTableName � iEnhancedTableName;
11. String lBuildDataSQLStatement � "select * from " � iEnhancedTableName;
12. PhysicalDataSetFactory lPdsFactory �

13. (PhysicalDataSetFactory) mJDMConnection.getFactory(
14. "javax.datamining.data.PhysicalDataSet");
15. String lDataSetURI � getVendorDatasetURI(lBuildDataSQLStatement);
16. PhysicalDataSet lBuildData � lPdsFactory.create(lDataSetURI, false);
17. lBuildData.importMetaData();
18. PhysicalAttribute lAttr
19. � lBuildData.getAttribute(mIdentifierColumnName.toUpperCase());
20. lAttr.setRole(PhysicalAttributeRole.caseId);
21. mJDMConnection.saveObject(lDataSetName, lBuildData, true);

22. for (int lClusterCount � iMinClusterCount;
23. lClusterCount �� iMaxClusterCOunt;
24. lClusterCount��) {
25. String lModelName � iModelPrefix � "_" � lClusterCount;
26. String lSettingsName � lModelName � "_S" � lClusterCount;
27. ClusteringSettingsFactory lCsFactory �

28. (ClusteringSettingsFactory) mJDMConnection.getFactory(
29. "javax.datamining.clustering"
30. � ".ClusteringSettings");
31. ClusteringSettings lClusteringSettings �

32. lCsFactory.create();
33. lClusteringSettings.setMaxNumberOfClusters(lClusterCount);
34. mJDMConnection.saveObject(lSettingsName,
35. lClusteringSettings,
36. true);
37. String lBuildTaskName � lModelName � "_T";
38. BuildTaskFactory lBuildTaskFactory �

39. (BuildTaskFactory) mJDMConnection.getFactory(
40. "javax.datamining.task.BuildTask");
41. BuildTask lBuildTask � lBuildTaskFactory.create(lDataSetName,
42. lSettingsName,

332 Chapter 12 Practical Problem Solving

The previous lines create as many build tasks as needed. These
tasks only differ with the maximum number of clusters in the Clus-
teringSettings object, which is set at line 33. The purpose of this oper-
ation is to compare cluster models started with different maximum
numbers of clusters. The JDM clustering mining function does not
require that the effective number of clusters will be the same as the
maximum number of clusters specified in the build settings. This is
often dependent on the algorithm used. As such, it could be that
some models built through this process have the same number of
effective clusters. However, even if two models have the same effec-
tive number of clusters, their resulting clusters could be different,
and comparing these cluster models could prove useful. The overall
process will stop if any problem is found.

The following code applies the clustering model to the build
dataset to assign customer cluster identifiers.

43. lModelName);
44. VerificationReport lVerifTask � lBuildTask.verify();
45. if (lVerifTask !� null) {
46. reportError(lVerifTask.getReportText());
47. return;
48. }
49. mJDMConnection.saveObject(lBuildTaskName, lBuildTask, true);
50. boolean lSuccess � executeTask(lBuildTaskName);
51. if (!lSuccess) {
52. report("Did not manage to build clustering model!");
53. return;
54. }

55. ClusteringApplySettingsFactory lApplySettFactory �

56. (ClusteringApplySettingsFactory) mJDMConnection.getFactory(
57. "javax.datamining.clustering.ClusteringApplySettings");
58. ClusteringApplySettings lApplySett � lApplySettFactory.create();
59. String lApplyDSSettName � lModelName � "_AS" � lClusterCount;
60. String lClusterAttributeName � iModelPrefix � "_" � lClusterCount;
61. lApplySett.mapTopCluster(ClusteringApplyContent.clusterIdentifier,
62. lClusterAttributeName);
63. mJDMConnection.saveObject(lApplyDSSettName, lApplySett, true);
64. DataSetApplyTaskFactory lApplyTaskFactory �

65. (DataSetApplyTaskFactory) mJDMConnection.getFactory(
66. "javax.datamining.task.apply.DataSetApplyTask");
67. String lApplyOutTableName � iApplyOutputPrefix;
68. if (mUseApplyOutPrefix)
69. lApplyOutTableName �� "_" � lClusterCount;
70. DataSetApplyTask lApplyTask � lApplyTaskFactory.create(

12.3 Business Scenario 3: Using Customer Segmentation 333

As can be seen at line 60, we specify that we want to generate the
cluster identifiers into an attribute with a name obtained with the
model name prefix concatenated with the maximum number of clus-
ters for this model. After this method is executed, we have clusters
associated with the customers inserted into specific table columns.

Once each customer in the database is associated with clusters
from the different clustering models, the next step is to decide which
clustering model should be kept. The technique generally used to
compare clustering models is called profiling. This consists of com-
paring the distributions of some attributes for customers belonging
to each cluster with the distribution of the same attributes for the
customers not belonging to this cluster, that is, the distribution
between attributes values for cases assigned to a given cluster and
the reaming cases is far apart). With this analysis, the marketer
decides to name a given cluster with the attribute names and values
that best describe the cluster.

For example, an attribute describing “work class” could be pro-
filed for a specific cluster to see if this attribute has a distribution
very different from the profile obtained on the population not
belonging to this cluster. Profiling can be done on the attributes used
to build the clustering model as well as other attributes. In our exam-
ple, the clusters are made out of the psychographics data provided
by the service bureau, but the marketer could very well profile the
different clusters on attributes representing behavioral information,
such as how customers buy the product.

71. lDataSetName,
72. lModelName,
73. lApplyDSSettName,
74. getVendorDatasetURI(lApplyOutTableName));
75. lVerifTask � lApplyTask.verify();
76. if (lVerifTask !� null) {
77. reportError(lVerifTask.getReportText());
78. return;
79. }
80. String lApplyTaskName � lModelName � "_ApplyT";
81. mJDMConnection.saveObject(lApplyTaskName,
82. lApplyTask,
83. true);
84. lSuccess � executeTask(lApplyTaskName);
85. if (!lSuccess) {
86. return;
87. }
88. }
89. }

334 Chapter 12 Practical Problem Solving

OLAP tools can be used to get the basic counts and frequencies on
the different populations of customers, but these tools do not really
help when the user is looking for the most distinctive attributes. We
will show code that computes the profiles on the population “belong-
ing” and “not belonging” to a cluster, and that returns the distance
between these two distributions. This distance can be used to sort the
attributes. Attributes with the largest distance can be considered as
distinctive for the specified cluster.

In the next section, we will show how to compare distributions of
discrete variables for one cluster with respect to all the others. This
will be done through expressions using the SQL “group by” state-
ment. We have chosen this design for the method computeProfile. In
this method, the user specifies a table name and an attribute name to
be profiled. Again, this table does not have to be the one used for
model building as long as there is an identifier attribute that can be
used to merge the information from this table and the generated
cluster assignments.

In the following code for method computeProfile, iInputTableName
is the table containing the attribute to be profiled and iAttributeName
is the attribute to be profiled. The argument iClusterCount is a way to
point to interest, because each model was created with a different
number of clusters, and iClusterIdx is the cluster identifier to be
profiled against all the others. In this code, we assume that cluster
identifiers are integers, which is normally the case.

1. public double computeProfile(String iInputDataSet,
2. String iAttributeName,
3. int iClusterCount,
4. int iClusterIdx)
5. throws JDMException, InterruptedException, SQLException {
6. double lDistance � 0.0;
7. String lClusterTableName � mApplyOutputPrefix;
8. String lClusterAttributeName � mModelPrefix � "_" � iClusterCount;
9. if (mUseApplyOutPrefix)
10. lClusterTableName �� "_" � iClusterCount;
11. String lSQLCountQuery � "select count(*), " � iAttributeName � " from "
12. � iInputDataSet � " a left outer join "
13. � lClusterTableName � " b on a."
14. � mIdentifierColumnName � " � b." � mIdentifierColumnName
15. � " where (b." � lClusterAttributeName � " � " � iClusterIdx � ")"
16. � " group by a." � iAttributeName;
17. Statement lStatement � mJDBCConnection.createStatement();
18. ResultSet lResultSetCount �

19. lStatement.executeQuery(lSQLCountQuery);

12.3 Business Scenario 3: Using Customer Segmentation 335

In these first lines, we have created the statement used to obtain
the number of customers in the specified cluster for each possible
value of the specified attribute. For example, if the selected attribute
is “PurchaseA,” which indicates how many times the customer
bought product A in the last month, contained in the table “Pur-
chases,” and the selected cluster is 1 from a clustering done with
5 clusters, we will get the following statement:

In this statement, we have used “MyCluster” as the model name
prefix and “CLUSTER_TABLE” as the apply table name prefix.
Assume that we have customers that have bought product A 0, 1, 2,
or 3 times. We will have, as a result of the execution of the previous
statement, the number of customers that have bought this product 0,
1, 2, or 3 times belonging to cluster 1. The following lines show how
to retrieve the results from this statement.

If we want to compare the profiles of the distribution of the
selected attribute, we must perform the same operation for the
customers that are not in this cluster, and get back the number of
customers for each possible value of this attribute, as shown below:

select count(*), PurchaseA
From Purchases a left outer join CLUSTER_TABLE_5 b
on a.CUSTID � b.CUSTID
where (b.MyCluster_5 � 1)
group by a.PurchaseA;

20. int lTotalSize � 0;
21. Map lCategories � new HashMap();
22. while (lResultSetCount.next()) {
23. int lCategorySize � lResultSetCount.getInt(1);
24. String lCategory � lResultSetCount.getString(2);
25. lTotalSize �� lCategorySize;
26. lCategories.put(lCategory, new Integer(lCategorySize));
27. report("Category: " � lCategory � ": " � lCategorySize);
28. }

29. lSQLCountQuery � "select count(*), " � iAttributeName � " from "
30. � iInputDataSet � " a left outer join "
31. � lClusterTableName � " b on a."
32. � mIdentifierColumnName � " � b." � mIdentifierColumnName
33. � " where (b." � lClusterAttributeName � " �� "�iClusterIdx � ")"
34. � " group by a." � iAttributeName;

336 Chapter 12 Practical Problem Solving

To compute and compare frequencies in the two cases, we have
used hash maps to store the results and we have collected the global
number of customers in each case. For this, we scan through the two
maps and compare both categories and report this to the user. If we
go back to the situation in which we apply this to “PurchaseA,” we
could have received the following results for cluster 1:

And the following results for the population not in cluster 1:

These two result sets have been saved into two Java maps in order
to compute the profile in terms of relative frequencies and compute
the distance between these two distributions. The distance is based
on the average between the frequencies of the categories for each
population, as shown at line 58.

35. lResultSetCount �

36. lStatement.executeQuery(lSQLCountQuery);
37. int lOtherTotalSize � 0;
38. Map lOtherCategories � new HashMap();
39. while (lResultSetCount.next()) {
40. int lCategorySize � lResultSetCount.getInt(1);
41. String lCategory � lResultSetCount.getString(2);
42. lOtherCategories.put(lCategory, new Integer(lCategorySize));
43. lOtherTotalSize �� lCategorySize;
44. }

Count PurchaseA
2345 1
45603 2
21342 3

Count PurchaseA
17546 1
31846 2
4275 3

45. Set lCategoryNames � lCategories.keySet();
46. Iterator lIter;
47. for (lIter � lCategoryNames.iterator();
48. lIter.hasNext();) {
49. String lCategory � (String)lIter.next();
50. double lOtherCategoryFreq � 0.0;

12.3 Business Scenario 3: Using Customer Segmentation 337

We also scan through the second map to ensure that we do not
neglect the categories present in this second map that do not appear
in the first one.

The returned distance can be used to sort the attributes, showing,
for example, the ones that are the most different for the two popula-
tions. Another implementation could define an object that contains
the compared profile for later graphic display of histograms, as
shown in Figure 12-5, for example, which takes the values shown in
the example of “PurchaseA” statistics.

This code can be extended through profiling of continuous
attributes using binned ranges of possible values, or just report the dif-
ference between the minimums, maximums, averages and standard

51. double lCategoryFreq �

 (double)(((Integer)(lCategories.get(lCategory))).
52. intValue())/(double)(lTotalSize);
53. if (lOtherCategories.containsKey(lCategory)) {
54. lOtherCategoryFreq �

 (double)(((Integer)(lOtherCategories.get(lCategory))).
55. intValue())/(double)lOtherTotalSize;
56. }
57. report("Category: " � lCategory � ": " � lCategoryFreq �

58. " to be compared to: " � lOtherCategoryFreq);
59. lDistance �� java.lang.Math.abs(lCategoryFreq -
 lOtherCategoryFreq);
60. }

61. Set lOtherCategoryNames � lOtherCategories.keySet();
62. for (lIter � lOtherCategoryNames.iterator();
63. lIter.hasNext();) {
64. String lOtherCategory � (String)lIter.next();
65. double lCategoryFreq � 0.0;
66. if (!lCategories.containsKey(lOtherCategory)) {
67. double lOtherCategoryFreq � (double)(((Integer)
68. (lOtherCategories.get(lOtherCategory))).
69. intValue())/(double)(lOtherTotalSize);
70. report("Category: " � lOtherCategory � ": " � lCategoryFreq �

71. " to be compared to: " � lOtherCategoryFreq);
72. lDistance �� java.lang.Math.abs(lCategoryFreq -
 lOtherCategoryFreq);
73. }
74. }
75. return lDistance;
76. }

338 Chapter 12 Practical Problem Solving

deviations of a continuous attribute in both cases (in or out of the
specified cluster).

12.3.4 Scenario 3 Conclusion

We have shown in this section that, in conjunction with JDBC, the
Java developer can easily complement clustering information with
profiling. Profiling is a key element allowing business users to recog-
nize a good clustering from a bad one.

12.4 Summary

This chapter demonstrated how to design and implement software to
solve practical business problems using data mining. We used JDM
and also JDBC since data manipulations such as filtering datasets or
computing some aggregate values are needed in such projects and
readily performed in SQL. We have shown how to mix data mining
operations with cost structures to improve business performance and
how the JDM TestMetrics can be used for this. And we have shown,
through the use of AttributeImportance and Clustering models, how to
help business users make greater use of business data.

We have taken examples from customer relationship management
(CRM) since the foundations of CRM processes, such as marketing

C
lu

st
er

 1

N
o

n
 C

lu
st

er
 1

1
2

3

0
10000
20000
30000
40000
50000

PurchaseA [Distance: 0.1954]

1

2

3

Figure 12-5 Graphical profiling of one cluster with distance
information.

12.4 Summary 339

campaign optimization or customer segmentation, can be presented
in a way that most readers will understand, making it possible for
them to focus on the design and implementation of the use case sce-
nario. CRM is also a domain in which data mining is becoming more
frequently used.

With the advent of JDM, once the business problem is defined in
terms of data mining (for example, using classification, regression,
or any mining function associated with JDM), writing software
becomes quite easy.

References

[Drozenko/Drake 2002] R. G. Drozenko, P. Drake, eds., Optimal Database
Marketing: Strategy, Development and Data Mining, Sage Publications,
2002.

341

Chapter

13
Building Data Mining

Tools Using JDM

A tool is but the extension of a man’s hand, and a machine is but a
complex tool. And he that invents a machine augments the

power of a man and the well-being of mankind.

 —Henry Ward Beecher, Proverbs from Plymouth Pulpit

This chapter presents the design and implementation of three user
interfaces developed in Java Swing. This exercise exposes design
principles for writing tools that work with different vendor imple-
mentations. The proposed interfaces can connect to known data min-
ing engine (DME) implementations, thereby realizing the benefits of
standards-based interfaces. These interfaces have been tested on the
vendor implementations that will be introduced in Chapter 16.

So far this book has looked at the main functional domains
covered by the major data mining tools vendors; we now examine
how these functions can be implemented on top of Java Data Mining
(JDM) through three graphical user interfaces (GUI).

The first user interface provides access to named objects saved in
a mining object repository (MOR). The second provides access to the
main functions of the DME itself, such as building and saving

342 Chapter 13 Building Data Mining Tools Using JDM

models. The third interface can be used to compute test metrics on a
previously saved model.

Whereas Chapter 12 was directed to developers supporting business
users, this chapter is directed to users and developers of data mining
tools.

13.1 Data Mining Tools

The previous chapter focused on practical application implementation.
This chapter focuses more on showing the JDM features for the entire
modeling life cycle, and on a vendor-independent implementation, by
heavily using the JDM notion of capability introduced in Chapter 8.

One purpose of this chapter is to show how some traditional data
mining functionalities, or modules, can be implemented using JDM.
Tools are often aligned with data mining methodologies such as
CRISP-DM (discussed in Chapter 3). This chapter shows how to easily
build tools to cover aspects of:

• Data exploration

• Model building

• Model validation

• Model and task management

To illustrate these, we build graphical user interfaces (GUI). The
purpose of these demonstration interfaces is not to show off fancy
graphics but to be functionally usable. Hence, the user interfaces are
straightforward and simple. We have based these GUIs on Java
Swing classes because Swing is a portable graphical layer; it is rela-
tively simple and powerful. None of the Java Swing classes are
detailed in this implementation; only the code referring to JDM is
commented on in the following sections.

The first user interface is designed to allow basic maintenance
operations on an MOR, such as viewing saved objects like models,
build settings, and tasks on a per class basis. This interface also allows
deleting objects from the MOR and renaming them. DME capabilities
are used to detect what classes can be persisted since implementa-
tions are not required to persist all MOR objects. The second user
interface is designed to show the mining functions supported by the
DME, to allow creating models for each of these functions, and using
the general settings associated with each function. The third user

13.1 Data Mining Tools 343

interface allows reusing a previously built model to compute quanti-
tative quality metrics on a dataset specified by the user.

Whenever possible, we highlight good JDM programming prac-
tices, such as use of the verify method to minimize the chance of
exceptions after the tasks have been scheduled.

13.1.1 Architecture of the Demonstration Interfaces

The three graphical user interfaces, referred to as consoles hereafter,
need five graphical windows, as shown in Figure 13-1.

The demonstration interface source code can be found under http://
www.kxen.com/products/analytic_framework/kjdm.php. This source code is
organized into the following files:

• JDMConsole.java contains the common methods defined
for all three user interfaces. The class JDMConsole can serve
as the basis for any Java user interface looking like a console
(see following text).

• JDMAdminConsole.java contains the class defining the user
interface to browse the objects persisted in the MOR.

• JDMBuildConsole.java contains the class defining the user
interface to build models of all data mining functions sup-
ported by the DME.

• JDMTestConsole.java contains the class defining the user
interface to apply a model previously built on new datasets.

These files are complemented by the following utility files:

• DescriptiveStatisticDisplayer.java contains the class defin-
ing the user interface to visualize descriptive statistics.

• TestMetricsDisplayer.java contains the class defining the
user interface to display quantitative metrics about classifi-
cation and regression models.

Finally, this file deals with exception handling:

• UnexpectedJDMException.java is another Java RuntimeEx-
ception used to encapsulate JDM exceptions. In Java, a Run-
timeException does not have to be explicitly declared and this
feature can be beneficial, as discussed in the next section.

JDM Admin Console JDM Build Console

controlling the

Statistics

JDM Apply Console

controlling the Test

Metrics

Figure 13-1 A view of the three “consoles” with dependent windows.

13.1 Data Mining Tools 345

For brevity, the proposed user interfaces have no facility to view
model details such as the rules of an association model, or the nodes
of a decision tree model.

This chapter follows the same naming conventions as Chapter 12
about variable names used in the source code:

• Input arguments are prefixed with i.

• Output arguments are prefixed with o.

• Member variables of objects are prefixed with m.

• Local variables are prefixed with l.

13.1.2 Managing JDM Exceptions

One purpose of the tools developed here is to show how to deal with
different JDM implementations. Since applications will have to deal
with exceptions, it is worth spending some time on JDM exception
management before writing portable JDM code.

How to deal with exceptions is a subject of debate among Java
users; there is no clear consensus. For example, some Java projects
make maximum reuse of the existing Java exception classes; others
define a single root Java exception class for the functional domain of
interest. For JDM, the expert group decided to create a single root for
all JDM java exceptions, plus two specializations of runtime excep-
tions (see Chapter 8). Almost all methods of the application program-
ming interface (API) have been declared to throw the generic JDM
exception.

Regular exceptions defined by JDM are: ConnectionFailureException,
IncompatibleSpecificationException, InvalidObjectException (decomposed
into DuplicateEntryException, EntryNotFoundException, ObjectExistsEx-
ception, ObjectNotFoundException), InvalidURIException, and TaskExcep-
tion. Except for the ConnectionFailureException, all exceptions can be
avoided by proper design of the calling program. Through the use of
capabilities and verify methods, JDM provides mechanisms to prepare
arguments to invoked methods, and to check that these invocations
are compatible with the connected DME. For example, when design-
ing a graphical interface to ask a user to enter a dataset uniform
resource identifier (URI), a programmer could either use the DME
vendor documentation to write verification code to check that the
provided URI has the proper syntax, or the programmer could provide
the URI directly to the DME and handle the InvalidURIException with

346 Chapter 13 Building Data Mining Tools Using JDM

a message provided by the DME vendor. When the second design is
chosen, the JDM exception classes allow easier fallbacks from the
user interface: In the previous example, if the system receives an
InvalidURIException, it can easily ask the user to enter a new one.

The two runtime exceptions defined by JDM are JDMIllegalArgu-
mentException and JDMUnsupportedFeatureException. Runtime excep-
tions result from unanticipated application execution failure and
may require stopping the application or, at least, restarting a session.

The JDM ConnectionFailureException has not been declared as a
RuntimeException and thus could occur in many situations. This
means that all methods using JDM calls should either process all
JDM exceptions or declare them in their signature for transfer to the
caller method. For the consoles we highlight in this chapter, we
avoided exception management to improve code readability. We
have created a specific RuntimeException that takes a JDMException as
argument. In effect, this translates the JDMException into a Java Run-
timeException and avoids chaining JDMException declarations in all
methods. The code of UnexpectedJDMException is provided in the file
UnexpectedJDMException.java and is shown below:

13.2 Administrative Console

The first GUI demonstrates the use of JDM API services to list,
rename, or delete the persistent representations of JDM named
objects from the MOR. Of course, this assumes the vendor imple-
mentation exposes persistent named objects (such as model, tasks, or
build settings).

Figure 13-2 depicts the GUI where the user has connected to a
DME and asked to view the list of tasks in the MOR. Elements of this
window will be explained later. Tasks are presented with their name,
description, creation date, duration, and final status.

1. public class UnexpectedJDMException extends RuntimeException {
2. private JDMException mJDMException;
3. public UnexpectedJDMException(JDMException iJDMException) {
4. mJDMException � iJDMException;
5. }
6. protected final JDMException getJDMException() {
7. return mJDMException;
8. }
9. }

13.2 Administrative Console 347

The main graphical object of this user interface is a table displaying
persisted objects. We have extended the graphical TableModel (this is
a Java Swing notion) to show the description and creation date of
each object. The table used when displaying Tasks has two additional
columns showing the task execution duration and status, as shown
in Figure 13-2.

Furthermore, the user can change the name of an existing object
by typing a new name in place of the old one. Names displayed in
the first column are editable. Name changes can be validated when
the user hits the RETURN key after having edited the name of the
object displayed in the first column or discarded when the user hits
the ESC key.

13.2.1 Creating the Connection

The code to create the connection is the same for all three consoles
presented. It is provided in a file called JDMConsole.java. All user
interfaces presented in this chapter inherit from this basic console.

Figure 13-2 A view of the “admin” console.

348 Chapter 13 Building Data Mining Tools Using JDM

The entry point of any program using JDM is the creation of the
ConnectionFactory. In this example, we show the ability to switch
easily from one JDM implementation to another using the Java
introspection mechanism. The argument provided in the text field
associated with the label “Connection Factory Implementation” is
stored in a JDMConsole member variable called mConnectionText-
Field. This argument, including the full package path, is used as the
Java class name to the vendor-specific ConnectionFactory class. This
value is used as the first argument, called iConnectionFactoryImpl, of
the getJDMFactory method and is used as a Class.forName() argument
to instantiate a factory. We use this mechanism to dynamically switch
between vendor implementations provided the correct jars are in the
class path.

As presented in Chapter 9, there are three ways to create a valid
connection object to a DME in JDM. It is expected that most vendors
will provide the ability to create a connection through a URI. The
GUI allows users to specify a URI from three text fields: the vendor
connection factory, user name, and password. These text fields are
called mURICombo, mNameTextField, and mPasswordTextField. The
first one is a drop-down list (called a combo box or combo later in this
chapter) because we provided some default values for the URI used
to connect to a DME.

Once the user provides the required information, he can click on
the Connect button. The following code is then called:

1. private final void handlerConnectButton() {
2. String lMsg � "";
3. try {
4. mDmeConn � getJDMConnection(mConnectionTextField.getText(),
5. (String)mURICombo.getSelectedItem(),
6. mNameTextField.getText(),
7. mPasswordTextField.getText());
8. ConnectionMetaData lMeta � mDmeConn.getMetaData();
9. if (lMeta !� null) {
10. lMsg � "Provider Name: " � lMeta.getProviderName() � " "
11. � "Provider Version: " � lMeta.getProviderVersion() � " "
12. � "Version: " � lMeta.getVersion();
13. } else {
14. lMsg � "No Vendor Information";
15. }
16. mMaxNameLength � mDmeConn.getMaxNameLength();
17. mMaxDescriptionLength � mDmeConn.getMaxDescriptionLength();
18. start(mDmeConn);
19. } catch (JDMException lException) {
20. JOptionPane.showMessageDialog(this,

13.2 Administrative Console 349

This code shows how to get a connection object. This connection
instance will be used throughout each of the GUI examples. The
code of getJDMConnection is explained later, but assuming that the
connection is established, the code shows how to retrieve vendor
information between lines 9 and 12.

 If a JDM exception occurs at that point, it will be mainly a badly
formed URI. The only thing the designer can do in this case is to
display the vendor message obtained from lException.getMes-
sage(). A more carefully designed application should use the ven-
dor documentation to ensure that the URI is properly formatted.
The ClassNotFoundException will be raised if the user provides a
class name that does not correspond to any valid JDM connection
factory class.

The code also shows how to retrieve the maximum length of the
names and descriptions that can be associated with named objects.
From an application perspective, it is important to retrieve this infor-
mation since the GUI must ensure name length limitations to avoid
DME-generated exceptions.

Once a connection is established, there is a call to start, which is
defined by each console to initialize the graphical display, as shown
at line 18.

The getJDMConnection method creates the factory from its Java
class name, and uses this factory to create the connection. Its code is
presented here:

21. "JDMException Occured: "
22. � lException.getMessage());
23. lException.printStackTrace();
24. } catch (ClassNotFoundException lException) {
25. JOptionPane.showMessageDialog(this,
26. "The specified Connection factory was not found. "
27. � "Verify the class name and the classpath.");
28. } catch (Exception lExce) {
29. lMsg � "Error occured while collecting vendor information.";
30. } finally {
31. mMetaInfo.setText(lMsg);
32. }
33. }

1. protected final static Connection getJDMConnection(
2. String iConnectionFactoryImpl,
3. String iURI, String iUserName, String iPassword)

350 Chapter 13 Building Data Mining Tools Using JDM

When using the introspection mechanism, we can receive an
InstantiationException or an IllegalAccessException. The Instantiation-
Exception would be raised if the specified class object cannot be
instantiated because it is an interface or an abstract class. The
IllegalAccessException would be raised if the application was trying to
reflectively create an instance but the currently executing method
does not have access to the definition of the specified class, field,
method, or constructor (if, for example, the constructor has been
declared as private). These two exceptions are low-level exceptions
that would be raised if the system can access the class specified by
the user but cannot use it for instantiation. Not much can be done to
offer any fallback in these scenarios. The ClassNotFoundException,
which is thrown when the user-specified factory Java class name is
invalid, is re-raised to the caller. As a result, the graphical interface
will show an error message to ask for another connection factory
implementation.

13.2.2 Retrieving the List of Classes That Can Be Saved

As presented in Chapter 7, vendors may choose to implement the
persistence of certain named objects into a repository. If objects are
not persisted, they are discarded when the connection is closed. The
first operation performed by the administrative (Admin) console is
to determine which of the named objects are persisted and to pro-
vide them as a drop-down list for selection by the user. This list is
stored into a graphical combo box, mPersistentObjectsCombo, which

4. throws JDMException, ClassNotFoundException {
5. Class lClass � Class.forName(iConnectionFactoryImpl);
6. ConnectionFactory lConnectionFactory;
7. try {
8. lConnectionFactory � (ConnectionFactory) lClass.newInstance();
9. ConnectionSpec lCSpec � lConnectionFactory.getConnectionSpec();
10. lCSpec.setURI(iURI);
11. lCSpec.setName(iUserName);
12. lCSpec.setPassword(iPassword);
13. return lConnectionFactory.getConnection(lCSpec);
14. } catch (InstantiationException lException) {
15. lException.printStackTrace();
16. } catch (IllegalAccessException lException) {
17. lException.printStackTrace();
18. }
19. return null;
20. }

13.2 Administrative Console 351

we fill with a ComboBoxModel instance. A ComboBoxModel is the object
underlying the graphical combo box that holds the values that can be
accessed by position.

It may be confusing in the following discussion that objects in Java

Swing holding values for underlying graphical representations are

called “models.” We will nevertheless use this terminology,

because it is the one used by user interface programmers. We will,

however, be precise, when necessary, and specify the type of

graphical model we are talking about, such as ComboBoxModel
mentioned above or TableModel. All graphical “models” provide

access to the values (for example, the values of a drop-down list)

based on the position (or the rank) of the values.

We have created a small extension of a DefaultComboBoxModel
to retrieve the names of the selected persisted named object
classes. The NamedObjectComboModel extends the DefaultComboBox-
Model and allows the returning of the object name at a given posi-
tion but also the casting of this object as a NamedObject for further
program use.

In line 5, the call to getNamedObjects returns the types of named
objects persisted by this DME implementation. The JDM enumera-
tion PersistenceOption provides two values: persistentObject and
transientObject. In this example, we are only interested in persistent
objects.

The method handlerUpdateTableContent executed at line 9 in the
previous code obtains the GUI user-selected named object class, and

1. protected void start(Connection iConnection) {
2. mDmeConn � iConnection;
3. try {
4. final NamedObject[] lPersistence
5. � mDmeConn.getNamedObjects(PersistenceOption.persistentObject);
6. NamedObjectComboModel lComboModel �

7. new NamedObjectComboModel(lPersistence);
8. mPersistentObjectsCombo.setModel(lComboModel);
9. handlerUpdateTableContent();
10. } catch (JDMException lExce) {
11. throw new UnexpectedJDMException(lExce);
12. }
13. }

352 Chapter 13 Building Data Mining Tools Using JDM

then retrieves the names of the corresponding persisted mining
objects. The handlerUpdateTableContent code is shown here:

This code fills the TableModel associated with the Java Swing
graphical table used to display these objects. The graphical table
used to display named objects has three columns to display their
name, description, and creation date. The table used to display tasks
has two more columns to display task duration and status, and thus,
these columns have a specific TableModel. A TableModel is the object
underlying the graphical component that holds the values accessed
by row and column indices. The TableModel also provides the graphi-
cal component for the number of rows and columns to be displayed.
The code of getMiningObjects is detailed in 13.2.3.

13.2.3 Retrieving the List of Saved Objects

Retrieving the list of object names for a given named object class is
shown below.

1. private void handlerUpdateTableContent() {
2. NamedObject lNamedObject � getSelectedNamedObjectType();
3. String[] lMiningObjects � getMiningObjects(lNamedObject);
4. if (lNamedObject �� NamedObject.task) {
5. mDisplayObjectsTable.setModel(
6. new TaskTableModel(
7. mDmeConn,
8. lMiningObjects,
9. getSelectedNamedObjectType()));
10. } else {
11. mDisplayObjectsTable.setModel(
12. new MiningObjectsTableModel(
13. mDmeConn,
14. lMiningObjects,
15. getSelectedNamedObjectType()));
16. }
17. }

1. private String[] getMiningObjects(NamedObject iNameObject) {
2. Collection lMiningObjects � null;
3. try {
4. lMiningObjects � mDmeConn.getObjectNames(iNameObject);
5. } catch (JDMException lException) {
6. throw new UnexpectedJDMException(lException);

13.2 Administrative Console 353

This object name array is provided to the MiningObjectsTableModel
or the TaskTableModel. As presented earlier these TableModels must
provide to the graphical layer the values to display in the cell at a
given row and column through the call to getValueAt. The construc-
tors of these TableModels store the connection as well as the named
object class to ask for information when required. Below is the code
of the MiningObjectsTableModel constructor method. The TableModel
has three member variables: the connection in mModelConnection, the
list of the object names of the named object class in mMiningObjects,
and the value of this named object class in mModelNamedObject.

We provide here the code for the method getValueAt associated
with the MiningObjectsTableModel because this code calls JDM func-
tions. Mining objects other than tasks are represented in a table with
three columns showing their name, description, and creation date.
Column index 0 returns the name; column index 1 returns the associ-
ated description; and column index 2 returns the creation date.

7. }
8. return (String[])
9. lMiningObjects.toArray(new String[lMiningObjects.size()]);
10. }

1. MiningObjectsTableModel(
2. Connection iConnection,
3. String[] iMiningObjects,
4. NamedObject iModelNamedObject) {
5. mMiningObjects � iMiningObjects;
6. mModelConnection � iConnection;
7. mModelNamedObject � iModelNamedObject;
8. }

1. public Object getValueAt(int iRowIndex, int iColumnIndex) {
2. String lMiningObject � mMiningObjects[iRowIndex];
3. try {
4. switch (iColumnIndex) {
5. case 0: return lMiningObject;
6. case 1:
7. String lDescription � "No Description";
8. try {
9. lDescription � mModelConnection.getDescription(
10. lMiningObject, mModelNamedObject);
11. } catch (JDMUnsupportedFeatureException lException) {

354 Chapter 13 Building Data Mining Tools Using JDM

To retrieve task duration and status, we provide a specific TaskTa-
bleModel class that inherits from the MiningObjectsTableModel and
retrieves the duration and status by extending the getValueAt method
shown here:

This code will work even if we later add new columns to the
parent class.

12. // do nothing
13. }
14. return lDescription;
15. case 2:
16. return mModelConnection.
17. getCreationDate(lMiningObject, mModelNamedObject);
18. default:
19. throw new IllegalArgumentException("Bad Column Index");
20. }
21. } catch (JDMException lExce) {
22. JOptionPane.showMessageDialog(null,
23. "JDMException Occured: "
24. � lExce.getMessage());
25. return null;
26. }
27. }

1. public Object getValueAt(int iRowIndex, int iColumnIndex) {
2. if (iColumnIndex < super.getColumnCount()) {
3. return super.getValueAt(iRowIndex, iColumnIndex);
4. }
5. int lColumn � iColumnIndex � super.getColumnCount();
6. try {
7. Task lTask � mTaskArray[iRowIndex];
8. ExecutionHandle lExecutionHandle � lTask.getExecutionHandle();
9. switch (lColumn) {
10. case 0:
11. return lExecutionHandle.getDurationInSeconds();
12. case 1:
13. return lExecutionHandle.getLatestStatus().getState().name();
14. default:
15. throw new IllegalArgumentException(
16. "BadColumn Number: " � iColumnIndex);
17. }
18. } catch (JDMException lException) {
19. JOptionPane.showMessageDialog(null,
20. "JDMException Occured: " � lExce.getMessage());
21. return "JDMException Occured";
22. }

13.2 Administrative Console 355

13.2.4 Rename a Saved Object

In this Admin console, when the user enters a new object name in the
“Name” column on the GUI screen and validates this new name by
hitting the RETURN key, the Java graphical framework throws an
event which is translated as a setValueAt method call on the underly-
ing TableModel. The code of setValueAt is shown here:

This code shows that our system accepts only the first column to
be edited as shown by the test at line 4. It resets the old value in
case of error and displays the cause to the user. Of course, besides
changing the value in the GUI, the action must rename the object in
the MOR; this is the role of the method called handlerRename shown
here:

The call to renameObject at line 4 asks the DME to perform the
operation in the MOR.

1. public void setValueAt (Object iValue,
2. int iRowIndex,
3. int iColumnIndex) {
4. if (iColumnIndex �� 0) {
5. String lOldName � (String) getValueAt(iRowIndex, iColumnIndex);
6. String lNewName � (String) iValue;
7. try {
8. handlerRename(lOldName, lNewName);
9. } catch (JDMException lException) {
10. lNewName � lOldName;
11. displayJDMException(lException);
12. } finally {
13. mMiningObjects[iRowIndex] � lNewName;
14. }
15. }
16. }

1. private void handlerRename(String iOldName,
2. String iNewName) throws JDMException {
3. NamedObject lNamedObject � getSelectedNamedObjectType();
4. mDmeConn.renameObject(iOldName, iNewName, lNamedObject);
5. }

356 Chapter 13 Building Data Mining Tools Using JDM

13.2.5 Delete a Saved Object from the MOR

When the user clicks on the Delete button, the intention is to remove
the persisted object from the repository, and execute the handler-
DestroyButton method from the JDMAdminConsole class. To show the
result of this deletion, we must refresh the table showing the list of
objects, which is contained in the TableModel object. This object can be
obtained through the member variable mDisplayObjectsTable that is
initialized when the graphical display is initialized. We have defined
a method called fireTableDataChanged to refresh the values contained
in the TableModel. The handler of the button is presented here:

The call to removeObject in line 6 asks the DME to perform the opera-
tion on the MOR. This concludes the description of the first user
interface.

13.3 User Interface to Build and Save a Model

The second graphical user interface demonstrates using JDM in
practice to build models. Mining models created through this inter-
face could then be used through Web services for real-time apply as
demonstrated in Chapter 14, or other Java applications for batch or
real-time apply. In this example, we focus on the mining function
level, without addressing algorithm level interfaces. We start the
code example from the exchange with the DME to determine the
mining function it supports. We assume connections have already
been addressed, as noted in Section 13.1.

1. private void handlerDeleteButton() {
2. NamedObject lNamedObject � getSelectedNamedObjectType();
3. String lObjectToRemove � getSelectedObjectName();
4. if (lNamedObject !� null && lObjectToRemove !� null) {
5. try {
6. mDmeConn.removeObject (lObjectToRemove, lNamedObject);
7. ((MiningObjectsTableModel) mDisplayObjectsTable.getModel()).
8. fireTableDataChanged();
9. } catch (ObjectNotFoundException lExce) {
10. JOptionPane.showMessageDialog(this,
11. "Object: " � lNamedObject �

12. " does not exist");
13. } catch (JDMException lExce) {
14. displayJDMException(lExce);
15. }
16. }
17. }

13.3 User Interface to Build and Save a Model 357

13.3.1 General Introduction

The proposed graphical user interface is depicted in Figure 13-3. This
GUI, designed to be simple, will not use LogicalData. It exposes the
data mining functions supported by the vendor implementation, and
allows building models for each supported function. A minimum
number of parameters will be provided for each function. For classifi-
cation and regression, parameters include the name of the target
attribute. For attribute importance, parameters include the optional
target, as well as the number of desired top attributes. For clustering,
parameters include the maximum number of clusters. And for asso-
ciation, parameters include the minimum support, minimum confi-
dence, and maximum rule length for association rules.

This user interface also exposes the URI to reference the build
datasets. Recall that the URI syntax for such datasets is vendor-
specific.

To allow experimentation with vendor implementations, we
have added the ability to overwrite all objects saved in the connec-
tion. When the “overwrite” box is unchecked, an exception should
be thrown if the user specifies an object with a name already in
the MOR.

Figure 13-3 A view of the generic interface to build and save
models.

358 Chapter 13 Building Data Mining Tools Using JDM

The Check button imports the metadata on the dataset specified by
the URI. JDM does not fully specify the results of import metadata,
but the list of dataset attributes should be provided at that time.
Some vendors may also compute some basic attribute statistics. This
is why, when the user selects “Check,” the drop-down lists containing
the possible attribute names are updated. For example, on the screen
shown in Figure 13-3, the drop-down list allowing the selection of the
key attribute, and the one used to select a target attribute have been
updated with the list of columns contained in the dataset referenced
by the URI “file:///./Data/Census.csv.”

The Stats button is only active when the vendor implementation
supports the ComputeStatisticsTask interface. This allows quick data
exploration, providing univariate statistics that are displayed in a
pop-up window (described in Section 13.3.5).

Note that while the user specifies only the model name, this appli-
cation uses this name as a base name from which to generate names
of other persisted objects, such as tasks, build settings, and physical
datasets. We will see that automated name creation must be validated
against the maximum name length supported by the DME, assuming
that uniqueness is guaranteed by the user-provided names.

The source code is contained in the file JDMBuildConsole.java.

As explained for the administration console, once a connection is
obtained, the application invokes the start method. Following is the
code for the BuildConsole:

1. protected void start(Connection iConnection) {
2. mDmeConn � iConnection;
3. try {
4. setDatasetSettingsEnabled(true);
5. MiningFunction[] lFunctions � mDmeConn.getSupportedFunctions();
6. List lFunctionList � Arrays.asList(lFunctions);
7. mFunctionPane.setEnabledAt(ATTRINDEX,
8. lFunctionList.contains(MiningFunction.attributeImportance));
9. mFunctionPane.setEnabledAt(CLASSIFINDEX,
10. lFunctionList.contains(MiningFunction.classification));
11. mFunctionPane.setEnabledAt(CLUSTERINGINDEX,
12. lFunctionList.contains(MiningFunction.clustering));
13. mFunctionPane.setEnabledAt(REGINDEX,
14. lFunctionList.contains(MiningFunction.regression));
15. mFunctionPane.setEnabledAt(ASSOCINDEX,
16. lFunctionList.contains(MiningFunction.association));
17. handlerCheckDataSet();
18. } catch (JDMException lException) {

13.3 User Interface to Build and Save a Model 359

The call to setDatasetSettingsEnabled at line 4 enables the buttons
Check, Stats, and Build Model because the connection has just been
established with the DME. In line 5, getSupportedFunctions returns the
list of supported functions. Each mining function is then processed to
enable its associated pane (sometimes called a tab in other environ-
ments) corresponding to the proper build settings. Once this is done,
we also validate the default URI through the call of handlerCheck-
DataSet.

13.3.2 Getting the Metadata

When the user hits RETURN after changing the Physical Dataset URI text
field, or when clicking on the Check button when creating the connec-
tion, the handlerCheckDataSet operation is performed as shown here:

At line 3, we set the cursor to a shape indicating that the user must
wait because the metadata retrieval may take a while, for example,
when the connection to a database must be initialized. The cursor is
reset to its original shape at line 13.

Once the metadata has been populated, the list of attributes can
be retrieved from the PhysicalDataSet. This list is used to update a

19. setDatasetSettingsEnabled(false);
20. throw new UnexpectedJDMException(lException);
21. }
22. }

1. private void handlerCheckDataSet() {
2. try {
3. setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
4. createDatasetAndImportMetaData(mPhysicalDataset.getText());
5. String[] lAttributesNames � getAttributeNames();
6. // Comment the following line if you want the natural order
7. Arrays.sort(lAttributesNames);
8. populateCombos(lAttributesNames);
9. } catch (UnexpectedJDMException lException) {
10. JOptionPane.showMessageDialog(this, "Exception Occured: "
11. � lException.getMessage());
12. } finally {
13. setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
14. }
15. }

360 Chapter 13 Building Data Mining Tools Using JDM

number of combo boxes in the user interface to propose choices to
the user. Depending on the vendor implementation, more informa-
tion could be obtained, such as descriptive statistics, or simply the
list of categories of the nominal attributes. These operations are per-
formed by the method called createDatasetAndImportMetaData.

Integrators can comment (line 7) if they want to keep the list of
attributes in the retrieved order as provided by the metadata, but it is
sometimes easier to select attributes from a sorted list.

After this code is executed, the console member variable mBuild-
Data references a valid PhysicalDataSet object populated with meta-
data information. The following code shows how to retrieve the list
of attribute names from the PhysicalDataSet object.

The list of attributes is retrieved immediately once the metadata
has been imported. More information could be extracted, such as the
data itself. These attribute names are used in many combo boxes that
are updated through the populateCombos method, as shown here:

1. private void createDatasetAndImportMetaData(String iDatasetName) {
2. try {
3. PhysicalDataSetFactory lPdsFactory �

4. (PhysicalDataSetFactory)mDmeConn.
5. getFactory("javax.datamining.data.PhysicalDataSet");
6. mBuildData � lPdsFactory.create(iDatasetName, false);
7. mBuildData.importMetaData();
8. } catch (JDMException lException) {
9. throw new UnexpectedJDMException(lException);
10. }
11. }

1. private String[] getAttributeNames() {
2. int lAttr � mBuildData.getAttributeCount();
3. Vector lAttributesNames � new Vector();
4. for (int i � 0; i < lAttr; i��) {
5. lAttributesNames.add(mBuildData.getAttribute(i).getName());
6. }
7. return (String[]) lAttributesNames.toArray(new String[lAttr]);
8. }

1. private void populateCombos(String[] iAttributesNames) {
2. mTargetNameAttr.setModel(

13.3 User Interface to Build and Save a Model 361

The reader should now be familiar with the notion of ComboBox-
Model, which contains the data underlying the graphical compo-
nents. The combo box updated at line 2 enables selecting the
attribute that will be used as a target for the attribute importance
mining functions. The one updated at line 4 is for the target of the
classification function, and the one updated at line 6 is for the regres-
sion function. The one at line 8 allows the user to select a key (unique
identifier) attribute. This is required for association rules, but the key
attribute will also be forwarded to all build settings objects.

13.3.3 Computing Statistics

When the user clicks on the Stats button of the GUI, the following
code is executed:

3. new DefaultComboBoxModel(iAttributesNames));
4. mTargetNameClassif.setModel(
5. new DefaultComboBoxModel(iAttributesNames));
6. mTargetNameRegression.setModel(
7. new DefaultComboBoxModel(iAttributesNames));
8. mKeyForAssociation.setModel(
9. new DefaultComboBoxModel(iAttributesNames));
10. }

1. private void handlerRetrieveStatistics() {
2. try {
3. boolean lDoesSupport
4. � mDmeConn.supportsCapability(null,
5. null,
6. MiningTask.computeStatisticsTask);
7. if (!lDoesSupport) {
8. displayLongMessage(this, "Unsupported feature",
9. "This implementation does not support "
10. � "the compute statistics task",
11. JOptionPane.INFORMATION_MESSAGE);
12. return;
13. }
14. PhysicalDataSet lStatData � retrievePhysicalDataset();
15. if (lStatData �� null) {
16. return;
17. }
18. JDialog lDialog � new JDialog(this,
19. "Descriptive Statistics for URI:"
20. � lStatData.getURI());
21. lDialog.getContentPane().add(
22. new DescriptiveStatisticDisplayer(lStatData));

362 Chapter 13 Building Data Mining Tools Using JDM

Statistical information is obtained through the PhysicalDataSet
attribute information. It is expected that not all DME implementa-
tions will support statistics computations, so the capability Mining-
Task.computeStatisticsTask must be tested. The actual work occurs in
the retrievePhysicalDataSet method. To avoid redundant computation
if the Stats button is clicked twice on the same URI reference, we will
save the PhysicalDataSet into the MOR with its statistics (giving it the
specific name RetrieveStatsDS); if we retrieve this dataset from the
MOR with a URI equal to the one currently specified, we will not
rerun the task to update the statistical information, as shown next:

23. lDialog.pack();
24. lDialog.setVisible(true);
25. } catch (JDMException lException) {
26. displayJDMException(lException);
27. }
28. }

1. private PhysicalDataSet retrievePhysicalDataset() throws JDMException {
2. if (mDmeConn.doesObjectExist("RetrieveStatsDS",
3. NamedObject.physicalDataSet)) {
4. PhysicalDataSet lPhysicalDS �

5. (PhysicalDataSet) mDmeConn.retrieveObject(
6. "RetrieveStatsDS", NamedObject.physicalDataSet);
7. if (lPhysicalDS.getURI().equals(mBuildData.getURI())) {
8. return lPhysicalDS;
9. }
10. }
11. ComputeStatisticsTaskFactory lTaskFactory �

12. (ComputeStatisticsTaskFactory) mDmeConn.getFactory(
13. "javax.datamining.task.ComputeStatisticsTask");
14. mDmeConn.saveObject("RetrieveStatsDS", mBuildData, true);
15. ComputeStatisticsTask lTask �

16. lTaskFactory.create("RetrieveStatsDS");
17. VerificationReport lVerifTask � lTask.verify();
18. if (lVerifTask !� null) {
19. displayLongMessage(this, "Wrong Task",
20. lVerifTask.getReportText(),
21. JOptionPane.INFORMATION_MESSAGE);
22. return null;
23. }
24. mDmeConn.saveObject("RetrieveStatsTask", lTask, true);
25. // Run the task.
26. ExecutionHandle lBuildHandle �

27. mDmeConn.execute("RetrieveStatsTask");
28. if (monitorTaskExecution(lBuildHandle)) {
29. return (PhysicalDataSet) mDmeConn.retrieveObject(

13.3 User Interface to Build and Save a Model 363

Line 2 checks if the PhysicalDataSet named RetrieveStatsDS exists
in the MOR. If it does, we retrieve the PhysicalDataSet and check that
its URI is the same as the one of the current console, which is stored
in the member variable mBuildData. If so, we return the restored
PhysicalDataSet that should contain statistical information from a
previous execution of the ComputeStatisticsTask object.

When the PhysicalDataSet called RetrieveStatsDS does not match,
we save a new version of the PhysicalDataSet named RetrieveStatsDS
in the repository (note the last argument on line 14 overwrites any
previous version). We then create the ComputeStatisticsTask associ-
ated with this dataset and save, verify, and execute. Note that the
PhysicalDataSet was saved before task creation because the Compute-
StatisticsTaskFactory needs a named PhysicalDataSet, as shown in line
16. When the task successfully completes, it saves a new version of
this PhysicalDataSet with the statistical information.

In JDM, vendors are required to support synchronous execution;
while asynchronous execution is optional. We have chosen to illustrate
asynchronous execution for our tool examples. We monitor task exe-
cution using the method monitorTaskExecution for all tasks executed
from the JDMConsole. The code for this method is provided here:

30. "RetrieveStatsDS", NamedObject.physicalDataSet);
31. }
32. return null;
33. }

1. protected boolean monitorTaskExecution(ExecutionHandle iExecHandle)
2. throws JDMException {
3. ExecutionState lState � iExecHandle.getLatestStatus().getState();
4. boolean lIsTerminated � false;
5. while (!lIsTerminated) {
6. lState � iExecHandle.getLatestStatus().getState();
7. lIsTerminated � (lState.equals(ExecutionState.success)
8. || lState.equals(ExecutionState.error));
9. try {
10. Thread.sleep(100);
11. } catch (InterruptedException lException) {
12. JOptionPane.showMessageDialog(this,
13. "InterruptedException Occured: "
14. � lException.getMessage());
15. }
16. }
17. return lState.equals(ExecutionState.success);
18. }

364 Chapter 13 Building Data Mining Tools Using JDM

If task objects are persisted and executed asynchronously, any
application that can login to the corresponding DME for the named
user can check the execution status of that user’s tasks. The JDMAd-
minConsole can be used to check task execution status as well. To per-
form synchronous execution, change lines 24 to 28 of the method
retrievePhysicalDataSet with the following lines:

In this case, the ComputeStatisticsTask need not have been per-
sisted in the repository and synchronous execution ends when the
statistical information is computed and stored in the PhysicalDataSet.

13.3.4 Retrieving the Statistics Information

After the statistics task completes, the statistics are displayed in a
dialog that is filled with a JPanel called DescriptiveStatisticDisplayer, as
shown in Figure 13-4. We do not describe the layout setup of this
specific displayer. The basic layout is a list of attributes on the left
side allowing the user to select one attribute. The right side of the

1. ExecutionState lState � mDmeConn.execute(lTask, null).getState();
2. if (lState.equals(ExecutionState.success)) {

Figure 13-4 A view of the statistics on an example of a numerical attribute, “age,” and a
discrete attribute, “marital-status.”

13.3 User Interface to Build and Save a Model 365

layout is filled with information on the selected attribute’s statistics.
We will focus on the methods of this class that retrieve information
before displaying it. Three types of statistical information can
be retrieved. Numerical attributes have statistics such as the
minimum, maximum, and quantile information. Discrete attri-
butes have statistics such as the frequency of attribute categories.
Continuous attributes have statistics based on a segmentation of
the values into bands described with their sum, frequency, and
average.

The DescriptiveStatisticsDisplayer has several member variables to
hold the graphical components and other member variables to hold
the statistical information retrieved from the PhysicalDataSet. The
main variables are:

• AttributeStatisticsSet mAttributeStatisticsSet is the set of sta-
tistics used to initialize the variable mStatistics.

• Collection mStatistics contains all retrieved statistics for all
attributes.

• ContinuousStatistics mSelectedContinuousStatistics is the con-
tinuous statistics associated with the selected attribute.

• NumericalStatistics mSelectedNumericalStatistics is the num-
erical statistics associated with the selected attribute.

• DiscreteStatistics mSelectedDiscreteStatistics is the discrete
statistics associated with the selected attribute.

When a DescriptiveStatisticsDisplayer object is created, the following
code is executed:

1. public DescriptiveStatisticDisplayer(PhysicalDataSet iPhysicalDataSet) {
2. try {
3. mAttributeStatisticsSet �

4. iPhysicalDataSet.getAttributeStatistics();
5. } catch (JDMException lException) {
6. JOptionPane.showMessageDialog(
7. this,
8. lException.getMessage(),
9. "JDMException",
10. JOptionPane.WARNING_MESSAGE);
11. lException.printStackTrace();
12. return;
13. }
14. try {

366 Chapter 13 Building Data Mining Tools Using JDM

In this example, we removed the code dealing with graphical ini-
tialization. After the graphical component is created, the member
variable mStatistics holds the collection of all attribute statistics. The
code removed (noted by an ellipsis, …) around line 41 contains
graphical initialization as well as the following lines, which are also
activated whenever the user selects a new attribute:

In line 3, the statistics of the selected attribute are retrieved and
then the three kinds of statistics (continuous, discrete, and numerical)

15. if (mAttributeStatisticsSet �� null) {
16. JOptionPane.showMessageDialog(
17. this,
18. "No Statistics Available",
19. "Null Statistics",
20. JOptionPane.WARNING_MESSAGE);
21. return;
22. }
23. mStatistics � mAttributeStatisticsSet.getStatistics();
24. } catch (JDMException lException) {
25. JOptionPane.showMessageDialog(
26. this,
27. lException.getMessage(),
28. "JDMException",
29. JOptionPane.WARNING_MESSAGE);
30. lException.printStackTrace();
31. return;
32. }
33. if (mStatistics �� null) {
34. JOptionPane.showMessageDialog(
35. this,
36. "Descriptive Statistics not supported",
37. "JDM",
38. JOptionPane.WARNING_MESSAGE);
39. return;
40. }
41. …
42. }

1. String lVarName � (String) mVariableList.getSelectedValue();
2. UnivariateStatistics lStats �

3. mAttributeStatisticsSet.getStatistics(lVarName);
4. mSelectedContinuousStatistics � lStats.getContinuousStatistics();
5. ((AbstractTableModel) mContinuousStatisticsTable.getModel()).
6. fireTableDataChanged();
7. mSelectedDiscreteStatistics � lStats.getDiscreteStatistics();
8. updateDiscreteStatistics();
9. mSelectedNumericalStatistics � lStats.getNumericalStatistics();
10. updateNumericalStatistics();

13.3 User Interface to Build and Save a Model 367

are retrieved and stored in the associated member variables. The
DME will not produce statistics if the attribute type is not compatible, hence
the result will be NULL. The code updating the Swing TableModels
used to show the collected information is contained in updateDis-
creteStatistics and updateNumericalStatistics that will be detailed later
in the chapter.

The following code shows how the tool example obtains this
information on distributions of numerical attributes.

1. private void updateNumericalStatistics() {
2. ((AbstractTableModel) mNumericalQuantileTable.getModel()).
3. fireTableDataChanged();
4. if (mSelectedNumericalStatistics �� null) {
5. mNumericalMinLabel.setText("");
6. mNumericalMaxLabel.setText("");
7. mNumericalMeanLabel.setText("");
8. mNumericalMedianLabel.setText("");
9. mNumericalStandardDeviationLabel.setText("");
10. mNumericalVarianceLabel.setText("");
11. mNumericalInterQuartileRangeLabel.setText("");
12. return;
13. }
14. NumberFormat lFormat � NumberFormat.getNumberInstance();
15. lFormat.setGroupingUsed(false);
16. double lMinValue � mSelectedNumericalStatistics.getMinimumValue();
17. mNumericalMinLabel.setText(lFormat.format(lMinValue));
18. double lMaxValue � mSelectedNumericalStatistics.getMaximumValue();
19. mNumericalMaxLabel.setText(lFormat.format(lMaxValue));
20. double lMeanValue � mSelectedNumericalStatistics.getMeanValue();
21. mNumericalMeanLabel.setText(lFormat.format(lMeanValue));
22. double lMedianValue � mSelectedNumericalStatistics.getMedianValue();
23. mNumericalMedianLabel.setText(lFormat.format(lMedianValue));
24. double lVariance � mSelectedNumericalStatistics.getVariance();
25. mNumericalVarianceLabel.setText(lFormat.format(lVariance));
26. double lInterQuantileRange �

27. mSelectedNumericalStatistics.getInterQuartileRange();
28. mNumericalInterQuartileRangeLabel.setText(
29. lFormat.format(lInterQuantileRange));
30. double lStandardDeviation �

31. mSelectedNumericalStatistics.getStandardDeviation();
32. mNumericalStandardDeviationLabel.setText(
33. lFormat.format(lStandardDeviation));
34. double lRange � lMaxValue � lMinValue;
35. double lMeanPercent � (lMeanValue � lMinValue) / lRange;
36. double lMedianPercent � (lMedianValue � lMinValue) / lRange;
37. mNumericalMeanSlider.setModel(
38. new DefaultBoundedRangeModel((int)(lMeanPercent * 100),
39. 1, 0, 100));
40. if (lMedianValue > lMinValue && lMedianValue < lMaxValue)

368 Chapter 13 Building Data Mining Tools Using JDM

Lines 2 and 3 update the TableModel used to display the quantile
information and will be detailed later. The code shows that a lot of
statistical information can be obtained for numerical attributes. We
highlight the difference between the mean and median values by
showing them on sliders scaled with the minimum and maximum
values of the attribute. The standard deviation can also be compared
to the interquantile range. The update of the quantile information is
done with the following code extracted from the class QuantileModel,
which extends the AbstractTableModel class.

Note that the DME determines the number of quantiles and pro-
vides the associated quantile limits.

Since most numerical attributes are also continuous, we use the
following code to extract continuous statistics from the class Continu-
ousStatisticsModel, which extends the AbstractTableModel class.

41. mNumericalMedianSlider.setModel(
42. new DefaultBoundedRangeModel((int)(lMedianPercent * 100),
43. 1, 0, 100));
44. }

1. public Object getValueAt(int iRowIndex, int iColumnIndex) {
2. if (mSelectedNumericalStatistics �� null
3. || mSelectedNumericalStatistics.getQuantileLimits() �� null) {
4. return null;
5. }
6. double lQuantileLimit �

7. mSelectedNumericalStatistics.getQuantileLimits()[iRowIndex];
8. switch (iColumnIndex) {
9. case 0:
10. return new Double(
11. lQuantileLimit);
12. case 1:
13. return new Double(
14. mSelectedNumericalStatistics.getQuantile(
15. lQuantileLimit));
16. }
17. return null;
18. }

1. public Object getValueAt(int iRowIndex, int iColumnIndex) {
2. if (mSelectedContinuousStatistics �� null) {
3. return null;
4. }

13.3 User Interface to Build and Save a Model 369

The code for intervalToString is shown below. It uses the closure
type to produce a readable representation of the interval.

5. Interval lInterval �

6. mSelectedContinuousStatistics.getIntervals()[iRowIndex];
7. switch (iColumnIndex) {
8. case 0:
9. return intervalToString(lInterval);
10. case 1:
11. return new Long(
12. mSelectedContinuousStatistics.getFrequency(
13. lInterval));
14. case 2:
15. return new Double(
16. mSelectedContinuousStatistics.getSum(
17. lInterval));
18. case 3:
19. return new Double(
20. mSelectedContinuousStatistics.getSumOfSquares(
21. lInterval));
22. }
23. return null;
24. }

1. private static String intervalToString(Interval iInterval) {
2. String lStart � "";
3. String lEnd � "";
4. String lString;
5. if (iInterval.getIntervalClosure().
6. equals(IntervalClosure.closedClosed)) {
7. lStart � "[";
8. lEnd � "]";
9. } else if (iInterval.getIntervalClosure().
10. equals(IntervalClosure.closedOpen)) {
11. lStart � "[";
12. lEnd � "[";
13. } else if (iInterval.getIntervalClosure().
14. equals(IntervalClosure.openClosed)) {
15. lStart � "]";
16. lEnd � "]";
17. } else if (iInterval.getIntervalClosure().
18. equals(IntervalClosure.openOpen)) {
19. lStart � "]";
20. lEnd � "[";
21. }
22. lString � lStart � String.valueOf(
23. iInterval.getStartPoint()) � " ; "
24. � String.valueOf(iInterval.getEndPoint()) � lEnd;
25. return lString;
26. }

370 Chapter 13 Building Data Mining Tools Using JDM

Finally, the information on the discrete attributes is obtained
through the following code extracted from the class DiscreteStatistics-
Model, which also extends the AbstractTableModel class.

This closes the section on retrieval of statistical information,
which is rather complete in JDM for univariate statistics.

13.3.5 Saving the Physical Dataset, Build Settings, and Tasks

When the user clicks on the Build Model button, the JDMBuildConsole
executes the method handlerCreateModelButton. The goal is to create
an appropriate BuildSettings object and BuildTask, and then to execute
the task. Because this method covers several pages of code, we will
discuss it in sections.

1. public Object getValueAt(int iRowIndex, int iColumnIndex) {
2. if (mSelectedDiscreteStatistics �� null) {
3. return null;
4. }
5. Object[] lValues �

6. mSelectedDiscreteStatistics.getDiscreteValues();
7. Object lValue � lValues[iRowIndex];
8. switch (iColumnIndex) {
9. case 0:
10. return lValue;
11. case 1:
12. try {
13. return new Long(
14. mSelectedDiscreteStatistics.
15. getFrequency(lValue));
16. } catch (JDMException e) {
17. return "No Frequency";
18. }
19. }
20. return null;
21. }

1. private void handlerCreateModelButton() {
2. try {
3. setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));
4. createDatasetAndImportMetaData(mPhysicalDataset.getText());
5. setDatasetKey((String) mKeyForAssociation.getSelectedItem());
6. String lDSName � getDatasetName(mModelNameTextField.getText());
7. if (lDSName !� null) {
8. saveDataset(lDSName, mOverwriteCheckBox.isSelected());
9. } else {

13.3 User Interface to Build and Save a Model 371

In line 3, we set the cursor to indicate to the user that the model
build execution time can be long. We reuse the createDatasetAndIm-
portMetaData method to ensure the mBuildData is aligned with the
last dataset URI entered by the user and that the dataset metadata
has been retrieved. The member mKeyForAssociation contains the
name of the attribute selected by the user as a key, which will be used
when creating the specific mining function BuildSettings. Line 8
shows that we use the check box value to ask the DME to overwrite
objects already existing in the MOR. We get back the selected mining
function through the associated selected pane (or tab). In line 13, we
prepare a string to contain a short prefix depending on the user-
selected mining function. This prefix will be used to generate names
of objects, such as BuildSettings or PhysicalDataSet, to be saved.

We extract the user-selected target attribute name from the associ-
ated member variable pointing to a combo box. This is the only infor-
mation needed for classification. The section for regression follows.

We extract the user selected target attribute name from the associ-
ated member variable pointing to a combo box. This is the only
needed information for regression.

10. return;
11. }
12. int lSelectedFunction � mFunctionPane.getSelectedIndex();
13. String lFunctionNameShort � "";
14. BuildSettings lBuildSettings � null;

15. switch (lSelectedFunction) {
16. //Classification
17. case CLASSIFINDEX :
18. lFunctionNameShort � "Cla";
19. lBuildSettings � createClassificationSettings(
20. (String) mTargetNameClassif.getSelectedItem());
21. break;

22. case REGINDEX :
23. lFunctionNameShort � "Reg";
24. lBuildSettings � createRegressionSettings(
25. (String) mTargetNameRegression.getSelectedItem());
26. break;

372 Chapter 13 Building Data Mining Tools Using JDM

We extract the user selected target attribute name from the associ-
ated member variable pointing to a combo box and also the maxi-
mum number of attributes that should be returned by the attribute
importance model.

We extract the value selected by the user as the maximum number
of clusters desired for the clustering model.

Association requires a minimum of three values to be set in their
associated build settings.

27. case ATTRINDEX :
28. lFunctionNameShort � "AI";
29. lBuildSettings � createAttributeImportanceSettings(
30. (String) mTargetNameAttr.getSelectedItem(),
31. ((Integer) mMaxAttributeCount.getValue()).intValue());
32. break;

33. case CLUSTERINGINDEX :
34. lFunctionNameShort � "Clu";
35. Integer lNbCluster � (Integer) mClusterNumber.getValue();
36. lBuildSettings � createClusteringSettings(
37. lNbCluster.intValue());
38. break;

39. case ASSOCINDEX :
40. lFunctionNameShort � "Ass";
41. int lMaxRule �

42. Integer.valueOf(mMaxRuleLengthTextField.getText())
43. .intValue();
44. double lMinConfidence �

45. Double.valueOf(mMinConfidenceTextField.getText())
46. .doubleValue();
47. double lMinSupport �

48. Double.valueOf(mMinSupportTextField.getText())
49. .doubleValue();
50. lBuildSettings � createAssociationSettings(
51. lMaxRule, lMinConfidence, lMinSupport);
52. break;

53. default :
54. throw new IllegalStateException("Wrong Pane Index");
55. }

13.3 User Interface to Build and Save a Model 373

This closes the section using the information entered by the user
in the graphical interface to create the necessary build settings.

The BuildSettings object is verified through the preceding code. If
the user-provided values are not compatible with the selected mining
function (for example, selecting a continuous attribute as the target
for a classification model), we expect the DME implementation to
provide a meaningful error report. We then save the build settings
and execute the task.

The code above reuses the same method to monitor the build task
execution that we used to monitor the execution of the Compute-
StatisticsTask.

Finally, the last section deals with the eventual exceptions that
may be raised in the process.

56. VerificationReport lVerifBS � lBuildSettings.verify();
57. if (lVerifBS !� null) {
58. displayLongMessage(this, "Wrong Settings",
59. lVerifBS.getReportText(), 0);
60. return;
61. }

62. ExecutionHandle lBuildHandle �

63. saveBuildSettingsAndExecuteTask(
64. lFunctionNameShort,
65. lDSName,
66. lBuildSettings);
67. if (lBuildHandle �� null) {
68. return;
69. }
70. boolean lTaskSucceed � monitorTaskExecution(lBuildHandle);
71. // Check success/error
72. if (lTaskSucceed) {
73. JOptionPane.showMessageDialog(this, "Execution Successful");
74. } else {
75. JOptionPane.showMessageDialog(this,
76. "Execution failed: "
77. � lBuildHandle.getLatestStatus().getState().name() � " ["
78. � lBuildHandle.getLatestStatus().getDescription() � "]");
79. }

80. } catch (InvalidURIException lInvalidURIException) {
81. JOptionPane.showMessageDialog(this,

374 Chapter 13 Building Data Mining Tools Using JDM

We have isolated the code that creates the minimum BuildSettings
associated with each data mining function. The following is the code
for classification and association; code for the other mining functions
can be easily extrapolated from these. The code for classification is
shown here.

The code for association is shown here.

82. "Please verify the physical "
83. � "dataset URI, and try again.");
84. } catch (JDMException lJdme) {
85. JOptionPane.showMessageDialog(this, "JDMException Occured: "
86. � lJdme.getMessage());
87. } finally {
88. setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
89. }
90. }

1. private BuildSettings createClassificationSettings(
2. String iTargetAttributeName) throws JDMException {
3. ClassificationSettingsFactory lCsFactory �

4. (ClassificationSettingsFactory) mDmeConn.getFactory(
5. "javax.datamining.supervised.classification"
6. � ".ClassificationSettings");
7. ClassificationSettings lClassificationSettings �

8. lCsFactory.create();
9. if (iTargetAttributeName !� null &&
10. iTargetAttributeName.length() >� 0) {
11. lClassificationSettings.setTargetAttributeName(
12. iTargetAttributeName);
13. }
14. return lClassificationSettings;
15. }

1. private AssociationSettings createAssociationSettings(
2. int iMaxRules,
3. double iMinConfidence,
4. double iMinSupport) throws JDMException {
5. AssociationSettingsFactory lAssociationFactory �

6. (AssociationSettingsFactory) mDmeConn.getFactory(
7. "javax.datamining.association.AssociationSettings");
8. AssociationSettings lAssociationSettings
9. � lAssociationFactory.create();
10. lAssociationSettings.setMaxRuleLength(iMaxRules);
11. lAssociationSettings.setMinConfidence(iMinConfidence);
12. lAssociationSettings.setMinSupport(iMinSupport);
13. return lAssociationSettings;
14. }

13.3 User Interface to Build and Save a Model 375

To be complete, we expose the code of the saveBuildSettingsAnd-
ExecuteTask method, which saves the task object before execution.

Both the BuildSettings and the Task are saved in this method. Note
that the value of the check box indicating that the objects should be
overwritten is used each time a named object is saved to the MOR. If
this is not checked, the operation will fail if there is an object with the
same name in the MOR. The BuildSettings name is based on the

1. private ExecutionHandle saveBuildSettingsAndExecuteTask(
2. String iFunctionName,
3. String iDatasetName,
4. BuildSettings iBuildSettings) throws JDMException {
5. String lBuildSettingsName �

6. getBuildSettingsName(iFunctionName,
7. mModelNameTextField.getText());
8. mDmeConn.saveObject(lBuildSettingsName,
9. iBuildSettings,
10. mOverwriteCheckBox.isSelected());
11. BuildTaskFactory lBuildTaskFactory �

12. (BuildTaskFactory) mDmeConn.getFactory(
13. "javax.datamining.task.BuildTask");
14. BuildTask lBuildTask �

15. lBuildTaskFactory.create(
16. iDatasetName,
17. lBuildSettingsName,
18. mModelNameTextField.getText());
19. VerificationReport lVerifTask � lBuildTask.verify();
20. if (lVerifTask !� null) {
21. displayLongMessage(this, "Wrong Task",
22. lVerifTask.getReportText(),
23. JOptionPane.INFORMATION_MESSAGE);
24. return null;
25. }
26.
27. String lTaskName � iFunctionName � "Task_"
28. � mModelNameTextField.getText();
29. if (lTaskName.length() > getMaxNameLength()) {
30. displayLongMessage(this, "String Too Long",
31. "The task name is too long, please change "
32. � "your model name.",
33. JOptionPane.ERROR_MESSAGE);
34. return null;
35. }
36. mDmeConn.saveObject(lTaskName, lBuildTask,
37. mOverwriteCheckBox.isSelected());
38. // Run the task.
39. return mDmeConn.execute(lTaskName);
40. }

376 Chapter 13 Building Data Mining Tools Using JDM

mining function name, a symbol indicating it is a BuildSettings, and
the user-specified model name. It is returned by the getBuildSet-
tingsName method. This method validates the length of the generated
name per DME requirements. The BuildTask is initialized with the
build dataset name, the generated build settings name, and the
desired model name. As before, the BuildTask is verified before it is
saved at line 19.

Then, the task name itself is generated using the prefix specific to
the mining function, a symbol indicating it is a task object, and the
model name. It is also checked for length compatibility with the
DME implementation. The code of getBuildSettingsName is shown
here:

13.4 User Interface to Test Model Quality

In our example, we have also created a small user interface to
compare model performance, either when the models are created
through the same DME, or through tables of scores.

This graphical user interface allows users to select supervised
models saved in the MOR and to create a test task using a selected
model on the user-specified apply data. After connecting to a DME,
the user selects a model and specifies a URI to a physical dataset,
and executes the test task. Test metrics include a confusion matrix
and lift and ROC curves for classification models, and for regres-
sion models, the mean absolute error, mean actual value versus the
mean predicted value, root mean square error, and the R-squared
error.

1. private String getBuildSettingsName(String iFunctionName,
2. String iModelName) {
3. String lBuildSettingsNameShort � "";
4. lBuildSettingsNameShort � iFunctionName � "Sett" � iModelName;
5. if (lBuildSettingsNameShort.length() > getMaxNameLength()) {
6. displayLongMessage(this, "Too long string",
7. "The build settings name is too long, "
8. � " please change your model name.",
9. JOptionPane.ERROR_MESSAGE);
10. return null;
11. }
12. return lBuildSettingsNameShort;
13. }

13.4 User Interface to Test Model Quality 377

For classification models, the user can interact with the lift object,
as shown in Figure 13-5. The JDM lift object allows the user to select
a segment of the population defined through a lower and upper
quantile and to access the number of positive and negative cases
within that segment, which effectively is the density of the positive
cases.

The source code of the first window used to start the test metrics
task is contained in the file JDMTestConsole.java. When the task
completes, test metrics are displayed in a specific dialog called Test-
MetricsDisplayer. The structure of TestMetricsDisplayer is close to the
one used to display statistical information. The source code of this
dialog is provided in a file called TestMetricsDisplayer.java.

Figure 13-5 Testing a model: the first window is used to select the model and datasets
and the second to display resulting test metrics.

378 Chapter 13 Building Data Mining Tools Using JDM

13.4.1 Getting the List of Saved Models

As explained for the administration console, once the connection is
obtained, the JDMTestConsole calls start, as presented in the following
code:

The core of this method is to fill the combo box with the model
names that can be tested, as shown here:

Obtaining the list of model names is easy. We select all the models
from the MOR using the JDM enumeration NamedObject.model. We
could have checked here whether the models are supervised (that is,
can be tested), but we decided to illustrate the use of the verify
method instead, which should send proper error messages otherwise.

13.4.2 Computing the Test Metrics

When the user clicks on the Test Metrics button, the following code is
executed:

1. protected void start(Connection iConnection) {
2. mDmeConn � iConnection;
3. mModelsCombo.setModel(new DefaultComboBoxModel(getModels()));
4. }

1. private String[] getModels() {
2. Collection lMiningObjectsNames � null;
3. try {
4. lMiningObjectsNames � mDmeConn.getObjectNames(NamedObject.model);
5. } catch (JDMException lException) {
6. throw new UnexpectedJDMException(lException);
7. }
8. return (String[])
9. lMiningObjectsNames.toArray(
10. new String[lMiningObjectsNames.size()]);
11. }

1. private void handlerTestMetrics() {
2. String lModelName � (String) mModelsCombo.getSelectedItem();
3. Model lModel;
4. try {
5. lModel � (Model)
6. mDmeConn.retrieveObject(lModelName, NamedObject.model);

13.4 User Interface to Test Model Quality 379

First, we retrieve the selected name from the appropriate combo
box and retrieve the model as shown in line 6. Since only supervised
models can be used to compute test metrics, we obtain this informa-
tion, as shown in line 11, and prepare the test metrics task only for
classification or regression models. The code below shows the code
for classification.

7. if (lModel �� null)
8. JOptionPane.showMessageDialog(this,
9. "The Model Object for "
10. � lModelName � "is null");
11. MiningFunction lFunction � lModel.getMiningFunction();
12. if (lFunction �� null)
13. JOptionPane.showMessageDialog(this,
14. "The Mining Function for "
15. � lModelName � "is null");
16. if (lFunction �� MiningFunction.association
17. || lFunction �� MiningFunction.attributeImportance
18. || lFunction �� MiningFunction.clustering) {
19. JOptionPane.showMessageDialog(this,
20. "Cannot use Test Metrics on "
21. � lFunction.name());
22. } else if (lFunction �� MiningFunction.classification) {
23. testClassificationModel(lModelName);
24. } else if (lFunction �� MiningFunction.regression) {
25. testRegressionModel(lModelName);
26. }
27. } catch (UnexpectedJDMException lException) {
28. JOptionPane.showMessageDialog(this, "Exception Occured: "
29. � lException.getMessage());
30. } catch (JDMException lException) {
31. JOptionPane.showMessageDialog(this,
32. lException.getMessage(),
33. "JDMException",
34. JOptionPane.WARNING_MESSAGE);
35. }
36. }

1. private void testClassificationModel(String iModelName) {
2. try {
3. PhysicalDataSetFactory lPdsFactory �

4. (PhysicalDataSetFactory) mDmeConn.getFactory(
5. "javax.datamining.data.PhysicalDataSet");
6. PhysicalDataSet lTestData �

7. lPdsFactory.create(mDataSetTextField.getText(), false);
8. mDmeConn.saveObject("myTestData", lTestData, true);
9. ClassificationTestTaskFactory lClassificationTestTaskFactory �

10. (ClassificationTestTaskFactory) mDmeConn.getFactory(
11. "javax.datamining.supervised.classification."

380 Chapter 13 Building Data Mining Tools Using JDM

First, the URI selected by the user in the mDataSetTextField is
retrieved. We use this URI to save a PhysicalDataSet object to the
MOR under the name myTestData. This name will be used later in the
test task. Then we use the ClassificationTestTaskFactory to create a test
task setting the PhysicalDataSet name, model name, and resulting test

12. � "ClassificationTestTask");
13. ClassificationTestTask lClassificationTestTask �

14. lClassificationTestTaskFactory.create("myTestData",
15. iModelName,
16. "myMetrics");
17. // Indicate the test option to compute.
18. lClassificationTestTask.computeMetric(
19. ClassificationTestMetricOption.lift,
20. true);
21. lClassificationTestTask.computeMetric(
22. ClassificationTestMetricOption.
23. confusionMatrix,
24. true);
25. lClassificationTestTask.computeMetric(
26. ClassificationTestMetricOption.
27. receiverOperatingCharacteristics,
28. true);
29. mDmeConn.saveObject("myTestTask",
30. lClassificationTestTask, true);
31. ExecutionHandle lTestTaskHandle
32. � mDmeConn.execute("myTestTask");
33. boolean lTaskSucceed � monitorTaskExecution(lTestTaskHandle);
34. if (lTaskSucceed) {
35. ClassificationTestMetrics lTestMetrics �

36. (ClassificationTestMetrics) mDmeConn.retrieveObject(
37. "myMetrics",
38. NamedObject.testMetrics);
39. JDialog lDialog � new JDialog(this, "Test Metrics Results");
40. lDialog.getContentPane().setLayout(new BorderLayout());
41. lDialog.getContentPane().add(
42. new TestMetricsDisplayer(lTestMetrics),
43. BorderLayout.CENTER);
44. lDialog.pack();
45. lDialog.setVisible(true);
46. } else {
47. JOptionPane.showMessageDialog(this,
48. "Error during test: Last state: "
49. � lTestTaskHandle.getLatestStatus().getState().name()
50. � " �> "
51. � lTestTaskHandle.getLatestStatus().getDescription());
52. }
53. } catch (JDMException lException) {
54. throw new UnexpectedJDMException(lException);
55. }
56. }

13.4 User Interface to Test Model Quality 381

metrics named in lines 14 to 16. We can further specify in the Classifi-
cationTestTask which metrics to compute. Here we specify lift (line
18), confusion matrix (line 21), and ROC (line 25). Then the task is
saved, executed, and monitored for success.

When the task completes, the results are obtained, as shown in
lines 35 to 38.

The same class TestMetricsDisplayer is used for classification and
regression but the graphical dialog layout is different for each. The
creator of the TestMetricsDisplayer used at line 42 will look at the class
of the argument lTestMetrics to select one of two proper layouts: (1) If
the class is ClassificationTestMetrics, a layout based on three panes (or
tabs), each of them leading to a table displayer, will be used; (2) if the
class is RegressionTestMetrics, a very simple layout showing five sca-
lar metrics values will be used.

A TestMetricsDisplayer has several member variables to store test
metrics information:

• JLabel mTestAccuracy used to store the model accuracy to be
displayed

• JLabel mTestNumberQuantile used to store the number of
quantiles used to display the lift and ROC

• Lift mLift used to store the JDM lift structure obtained from
the test metrics

• ReceiverOperatingCharacterics mROC used to store the JDM
ROC structure obtained from the test metrics

• ConfusionMatrix mConfusionMatrix used to store the confu-
sion matrix elements

• Object[] mConfusionMatrixCategories used to store the catego-
ries associated with the confusion matrix

Regression models produce five scalar values that can be
displayed without needing to manage complex structures such as
curves or a confusion matrix.

When a TestMetricsDisplayer is created with a ClassificationTest-
Metrics object, the following code is executed:

1. public TestMetricsDisplayer(ClassificationTestMetrics iTestMetrics) {
2. mLift � iTestMetrics.getLift();
3. mROC � iTestMetrics.getROC();

382 Chapter 13 Building Data Mining Tools Using JDM

We will not fully describe here the panes concerning the ROC or
the confusion matrix since the reader has seen already how to fill
graphical tables with information from JDM objects. However, we
select the lift object, focusing on the createLiftDisplayer, to illustrate
user interaction since that requires more explanation. We divide this
code into several sections to explain this user interaction.

The overall graphical component is the lLiftDisplayer, which is
itself decomposed into two parts. The upper part displays two
sliders to tune the lower and upper quantiles, defining a segment of
the population managed by the lSliderPanel. The lower part displays
the statistics about the selected segment, as shown here:

4. mConfusionMatrix = iTestMetrics.getConfusionMatrix();
5. setLayout(new BorderLayout());
6. JPanel lMetricsGeneralInfos � new JPanel(new GridLayout());
7. lMetricsGeneralInfos.add(new JLabel("Accuracy:", JLabel.RIGHT));
8. lMetricsGeneralInfos.add(
9. new JLabel(iTestMetrics.getAccuracy().toString()));
10. add(lMetricsGeneralInfos, BorderLayout.NORTH);
11. JTabbedPane lTabbedPane � new JTabbedPane();
12. lTabbedPane.add("Lift", createLiftDisplayer());
13. lTabbedPane.add("ROC", createROCDisplayer());
14. lTabbedPane.add("Confusion Matrix",
15. createConfusionMatrixDisplayer());
16. add(lTabbedPane, BorderLayout.CENTER);
17. }

1. private JPanel createLiftDisplayer() {
2. JPanel lLiftDisplayer � new JPanel(new BorderLayout());
3. JPanel lSliderPanel � new JPanel(new FlowLayout());
4. final JSlider lLowerIndexSlider �

5. new JSlider(0, mLift.getNumberOfQuantiles() � 1, 0);
6. final JLabel lLowerLabel � new JLabel("000");
7. lSliderPanel.add(new JLabel("Lower Quantile:", JLabel.RIGHT));
8. lSliderPanel.add(lLowerIndexSlider);
9. lSliderPanel.add(lLowerLabel);
10. final JLabel lUpperLabel � new JLabel("000");
11. final JSlider lUpperIndexSlider �

12. new JSlider(0, mLift.getNumberOfQuantiles() � 1, 0);
13. lSliderPanel.add(new JLabel("Upper Quantile:", JLabel.RIGHT));
14. lSliderPanel.add(lUpperIndexSlider);
15. lSliderPanel.add(lUpperLabel);

16. JPanel lIndicatorsPanel � new JPanel(new GridLayout(5, 4, 5, 5));
17. final JLabel lLiftLabel � new JLabel();

13.4 User Interface to Test Model Quality 383

The preceding code defines the lIndicatorsPanel that contains the
five elements that are updated each time the user selects a segment of
the population. The following lines create the upper part as the
lNorthPanel to contain both sections:

Then, a local listener class is defined to update the values of the
selected segment’s statistics.

18. lIndicatorsPanel.add(new JLabel("Lift:", JLabel.RIGHT));
19. lIndicatorsPanel.add(lLiftLabel);
20. final JLabel lNegativeCasesLabel � new JLabel();
21. lIndicatorsPanel.add(new JLabel("Number Of Negative Cases:",
22. JLabel.RIGHT));
23. lIndicatorsPanel.add(lNegativeCasesLabel);
24. final JLabel lPositiveCasesLabel � new JLabel();
25. lIndicatorsPanel.add(new JLabel("Number Of Positive Cases:",
26. JLabel.RIGHT));
27. lIndicatorsPanel.add(lPositiveCasesLabel);
28. final JLabel lPercentageSizeLabel � new JLabel();
29. lIndicatorsPanel.add(new JLabel("Percentage Size:",
30. JLabel.RIGHT));
31. lIndicatorsPanel.add(lPercentageSizeLabel);
32. final JLabel lTargetDensityLabel � new JLabel();
33. lIndicatorsPanel.add(new JLabel("Target Density:",
34. JLabel.RIGHT));
35. lIndicatorsPanel.add(lTargetDensityLabel);

36. JPanel lNorthPanel � new JPanel(new BorderLayout());
37. lNorthPanel.add(lSliderPanel, BorderLayout.NORTH);
38. lNorthPanel.add(lIndicatorsPanel, BorderLayout.SOUTH);

39. // Local listener
40. ChangeListener lChangeListener � new ChangeListener() {
41. public void stateChanged(ChangeEvent iE) {
42. int lLowerValue � lLowerIndexSlider.getValue();
43. lLowerLabel.setText("" � lLowerValue);
44. int lUpperValue � lUpperIndexSlider.getValue();
45. lUpperLabel.setText("" � lUpperValue);
46. if (iE.getSource() �� lLowerIndexSlider) {
47. if (lLowerValue > lUpperValue) {
48. lUpperIndexSlider.setValue(lLowerValue);
49. }
50. } else {
51. if (lLowerValue > lUpperValue) {
52. lLowerIndexSlider.setValue(lUpperValue);
53. }

384 Chapter 13 Building Data Mining Tools Using JDM

Every time the graphical interface sends a change event on the
values of a slider, this listener will be activated. It first looks for the
values defined by the user through the two sliders, as shown in lines
42 and 44, and checks for the consistency of these two values (the
upper quantile must be higher than the lower quantile). It then uses
the convenient JDM calls on the lift object to retrieve the statistics
between the two quantiles, as shown in lines 57, 59, 62, 65, and 68.
These methods ease the integration work.

The last section of the createLiftDisplayer associates the defined
listener to the two sliders, and finishes the graphical layout.

For regression models, we provide code for when the TestMetrics-
Displayer is created with a RegressionTestMetrics object. In this case,

54. }
55. try {
56. lLiftLabel.setText(
57. mLift.getLift(lLowerValue, lUpperValue).toString());
58. lNegativeCasesLabel.setText(""
59. � mLift.getNumberOfNegativeCases(lLowerValue,
60. lUpperValue));
61. lPositiveCasesLabel.setText(""
62. � mLift.getNumberOfPositiveCases(lLowerValue,
63. lUpperValue));
64. lPercentageSizeLabel.setText(
65. mLift.getPercentageSize(lLowerValue,
66. lUpperValue).toString());
67. lTargetDensityLabel.setText(
68. mLift.getTargetDensity(lLowerValue,
69. lUpperValue).toString());
70. } catch (JDMException e) {
71. e.printStackTrace();
72. }
73. }
74. };

75. lLowerIndexSlider.addChangeListener(lChangeListener);
76. lUpperIndexSlider.addChangeListener(lChangeListener);
77. lLiftDisplayer.add(lNorthPanel, BorderLayout.NORTH);
78. lLiftDisplayer.add(new JScrollPane(new JTable(new LiftModel())),
79. BorderLayout.CENTER);
80. return lLiftDisplayer;
81. }

13.5 Summary 385

the associated dialog can be filled directly with the five scalar values,
as shown here:

This concludes the explanation of the source code of the JDMTest-
Console.

13.5 Summary

This chapter presented the code for some graphical interfaces to
illustrate how data mining tools can be developed using JDM. The
source code can be freely downloaded and modified. The chapter
developed three user interfaces: the first deals with model and task
management, the second with data exploration and model building,
and the third with quantitative model validation. They should be
complemented later with tools to allow easy model apply and
export/import of models to cover the deployment features currently
offered by JDM. These are left as exercises for the reader.

Some extensions could be added to deal with data preparation that
will be supported by JDM 2.0; this will allow a complete set of func-
tions currently available in commercial and free data mining tools.

It is important to note that these data mining tools should work on
any implementation compliant with JDM. Moreover, these tools could
be used as seeds for more sophisticated data mining software, operat-
ing across different JDM implementations. These tools provide a user-
friendly way to compare DME implementation behaviors such as:

• The behavior of DME implementations in the presence of
errors (for example, user-friendly error messages, or type of
exceptions raised)

1. public TestMetricsDisplayer(RegressionTestMetrics iTestMetrics) {
2. setLayout(new GridLayout(5, 2));
3. add(new JLabel("MeanAbsoluteError: "));
4. add(new JLabel(iTestMetrics.getMeanAbsoluteError().toString()));
5. add(new JLabel("MeanActualValue: "));
6. add(new JLabel(iTestMetrics.getMeanActualValue().toString()));
7. add(new JLabel("MeanPredictedValue: "));
8. add(new JLabel(iTestMetrics.getMeanPredictedValue().toString()));
9. add(new JLabel("RMSError: "));
10. add(new JLabel(iTestMetrics.getRMSError().toString()));
11. add(new JLabel("RSquared: "));
12. add(new JLabel(iTestMetrics.getRSquared().toString()));
13. }

386 Chapter 13 Building Data Mining Tools Using JDM

• DME execution performance

• The visualization and exploration of regression and classifi-
cation model quality against new datasets

Recognizing that these first examples of JDM tools are still some-
what crude, they should nevertheless facilitate the spread of JDM
technology. We hope that they will open new avenues of develop-
ment around JDM usage.

387

Chapter

14
Getting Started with JDM

Web Services

The World Wide Web is more and more used for application
to application communication. The programmatic interfaces

made available are referred to as Web services.

—www.w3.org

Programming language independence of web services enables a
legacy application to expose its functionality for other applications to
use. This chapter extends the JDM web services discussion in Chap-
ter 11 by presenting two examples. The first example illustrates how
a non-Java application client can interact with JDM web services in
the development of data mining applications. In this example, we
use PHP [PHP 2005]—a popular web application scripting language—
to develop a simple product recommendation application using JDM
web services. The second example is a generic illustration of how to
integrate calls to Web services (WS) from Java, which is useful for a
Java programmer.

14.1 A Web Service Client in PHP

PHP [PHP 2005] is a widely used general-purpose scripting language
that is especially well suited for Web development and can be

388 Chapter 14 Getting Started with JDM Web Services

embedded into HTML. PHP can be freely used, being related to the
Apache foundation, and is one of the most commonly used languages
for Web site development. We have chosen PHP to illustrate the
examples in this chapter for its simplicity of integration with Web
services. However, any programming language that integrates Web
services layers, such as Visual Basic for Excel, can be used.

Recently, PHP has been extended with a package, specifically
developed in PHP, called NuSOAP. This package enables the direct
use of Web services from PHP scripts. HTML documents can easily
include calls to external Web services in the pages accessed through
Web browsers. The role of NuSOAP is to translate PHP structures
into valid XML documents corresponding to SOAP messages. These
SOAP messages allow developers to create and consume Web
services based on SOAP 1.1, WSDL 1.1, and HTTP 1.0/1.1.

Web servers that answer HTTP requests can run PHP scripts.
Figure 14-1 depicts a typical PHP application architecture and the
process of connecting to Web service providers.

In this scenario, we use PHP to write a Web page accessible by a
call center representative processing incoming calls. This page con-
tains fields the representative will fill through a Web browser inter-
face; each field corresponds to a question to be asked of the caller.
When all questions have been answered (and fields populated), the
system executes JDM Web services using singleRecordApply tasks on
each model found in the mining object repository (MOR) with a
name prefix “Product.” We make two assumptions. First, all models
whose name follows the pattern “Product-<Name>” will be classifica-
tion models that predict the probability that the caller will buy a
given product <Name>. And second, all models with names begin-
ning with Product use the same apply input data. In our examples,
we use three caller attributes: education to represent the education

Web Server

Web

Service

Provider

2- SOAP Requests

3- SOAP Responses

Web

Browser

1- HTTP get

4- HTTP NuSOAP

Easy PhP

Configuration

Figure 14-1 PHP application architecture.

14.1 A Web Service Client in PHP 389

level, marital-status, and capital-gains.1 The system executes the
singleRecordApply task using the selected models and collects the
probability that the caller will buy each of the respective products.

The scenario works as follows:

• The Web page provides fields to be filled by the call center
representative, who selects values from a drop-down list of
discrete attributes, and types in values for continuous
attributes. This portion of the HTML page is written in
javascript code for the field value selection. The list of
fields is defined at design time and will be the same for
all models called from this page.

• When requested by the user of the Web browser
(through the Score submit button shown in the screen
shot), the system connects to a JDM Web services pro-
vider chosen at design time, obtains the names of mod-
els available in the MOR whose name begins with Product,
and, expecting that these models are classification models,
scores each input data record on each model and reports to
the representative the probabilities returned by the models.

Figure 14-2 is a screen shot of the Web page.

1 These three attribute names have been taken from a well-known dataset used in
data mining packages called “census” and do not claim to be truly useful
attributes for product recommendation.

Figure 14-2 Product recommendation PHP page.

390 Chapter 14 Getting Started with JDM Web Services

The implementation is contained in a single PHP file, called
Product.php. Portions of this file are discussed next.

14.1.1 Filling the Input Values Using Javascript

The first section of the source code of Product.php produces a form
that presents the three attributes to be filled by the user. The first two
attributes, education and marital-status, are discrete and a drop-down
list supplies the possible values; the third attribute is a continuous
attribute called capital-gains. The code below produces this form such
that when the user clicks on the Score button, these values are for-
warded and the PHP code is run.

1. <html>
2. <head>
3. <title>Product Recommendation through JDM Web Services</title>
4. </head>
5. <script language�"JavaScript" type�"text/javascript">
6. <body>
7. <form method�"POST" action�"Product.php">
8. <table cellpadding�"5" cellspacing�"0" border�"1" width�"50%">
9. <tr>
10. <td width�"40%">Variable</td>
11. <td>Value</td>
12. </tr>
13. <tr>
14. <td>education</td>
15. <td align�"Left"><select name�"education" >
16. <option value�"5th-6th"> 5th-6th
17. <option value�"7th-8th"> 7th-8th
18. <option value�"9th"> 9th
19. <option value�"10th"> 10th
20. <option value�"11th"> 11th
21. <option value�"12th"> 12th
22. <option value�"Assoc-acdm"> Assoc-acdm
23. <option value�"Assoc-voc"> Assoc-voc
24. <option value�"Bachelors""> Bachelors
25. <option value�"Doctorate"> Doctorate
26. <option value�"HS-grad"> HS-grad
27. <option value�"Masters"> Masters
28. <option value�"Prof-school"> Prof-school
29. <option value�"Some-college"> Some-college
30. </select>
</td>
31. </tr>
32.
33. <tr>
34. <td>marital-status</td>
35. <td align�"Left"><select name�"marital-status" >
36. <option value�"Divorced"> Divorced

14.1 A Web Service Client in PHP 391

The following sections provide details of the PHP code, which
calls JDM Web services. When calling SOAP invocations through
NuSOAP, the programmer has two design choices: either he provides
the “call” method with arguments directly in XML format, or he
creates structures of recursive arrays that NuSOAP translates in the
proper XML structure. These two options and their use will be
discussed in later sections.

In this example, we assume that some models have been created
in the MOR and are accessible through the data mining engine
(DME) implementation.

14.1.2 Saving the ApplySettings Object

The file Product.php contains the HTML form as well as the call to the
JDM Web services through PHP. Here, we describe how to use the
NuSOAP library [NuSOAP 2004] to call the JDM Web services.
The PHP section starts at line 60, as shown here:

37. <option value�"Married-AF-spouse"> Married-AF-spouse
38. <option value�"Married-civ-spouse" selected > Married-civ-spouse
39. <option value�"Married-spouse-absent"> Married-spouse-absent
40. <option value�"Never-married"> Never-married
41. <option value�"Separated"> Separated
42. <option value�"Widowed"> Widowed
43. </select>
</td>
44. </tr>
45.
46. <tr>
47. <td>capital-gain</td>
48. <td align�"Left"><input style�"width:100%"
49. type�"text" name�"capital-gain" value�"0"/>
</td>
50. </tr>
51. </table>
52.

53. <table cellpadding�"5" cellspacing�"0" border�"1" width�"50%">
54. <tr align�"center">
55. <td><input type�"submit" value�"SCORE"></td>
56. </tr>
57. </table>
58. </form>
59.

60. <?php
61. function beginsWith($str, $sub) {
62. $str � strtoupper($str);
63. $sub � strtoupper($sub);

392 Chapter 14 Getting Started with JDM Web Services

Lines 61 to 65 define the function used to filter the models. Line 66
includes the NuSOAP library, which is used at line 68 to connect to a
specific Web services implementation using the call “new soapclient.”
This function takes the uniform resource identifier (URI) of the Web
services implementation as an argument. In our example, it will
look for the machine called MyHost on port 1234, which should be
dedicated on this machine to listening to SOAP requests. In this
example, KxServices is the name of the Web services context on
MyHost.

Note that the JDM Web services definition does not forward the
JDM class of Connection in any application programming interface
(API) argument. Any JDM Web services implementation will use an
internal default connection. From an application using JDM Web
services, for example, there is no possibility to specify a user, pass-
word, or connection. On the other hand, SOAP can be used to specify
credentials when connecting to the Web server. The connection
details will be specified at the installation of the specific Web services
implementation on MyHost.

Before executing a RecordApplyTask on each of the models, we first
save a ClassificationApplySettings object that specifies that we want
the probability the caller will purchase the particular product, that is,
has a target value of “1”. We show how to use JDMWS to save this
object; however, a production implementation may assume that this
ClassificationApplySettings is already saved in the MOR.

Here, we show how to create the XML document representing the
argument of the call to saveObject. Looking at the jdm.wsdl file, we
find that the argument must be of type saveObject, which contains

64. return (substr($str,0,strlen($sub)) ��� $sub);
65. }
66. require_once('nusoap.php');
67. $namespace�"http://www.jsr-73.org/2004/webservices";
68. $kjdmclient � new soapclient('http://myHost:1234/KxServices/services/

IDataMiningPort');
69. $applySettingsName � "PHP-Product-ApplySettings";
70. $ParamAppSett � '<objectName>' . $applySettingsName . '</objectName>'
71. .'<object xsi:type�"ClassificationApplySettings"'
72. .'xmlns�"http://www.jsr-73.org/2004/JDMSchema">'
73. .'<categoryMap category�"1" content�"probability"'
74. .'destPhysAttrName�"Probability"/>'
75. .'</object>';
76. $SaveObjResponse � $kjdmclient->call("saveObject",
77. $ParamAppSett,
78. $namespace);

14.1 A Web Service Client in PHP 393

a name and an object that is a subtype of NamedObject, and two
optional Boolean flags, one indicating to overwrite the object and one
indicating to verify the object.

The two required arguments are thus: objectName to be $apply-
SettingsName, and “object” to follow the syntax of a Classification-
ApplySettings

In the jdm.xsd file, the type ClassificationApplySettings is described
by the following schema:

A valid XML may look like:

We must fill “…” with a section representing a category map. The
type ClassificationCategoryMap is described by the following schema:

 <xsd:complexType name�"ClassificationApplySettings">
 <xsd:complexContent>
 <xsd:extension base�"ApplySettings">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name�"costMatrixName" type�"xsd:string" minOccurs�"0"/>
 <xsd:element name�"costMatrix" type�"CostMatrix" minOccurs�"0"/>
 </xsd:choice>
 <xsd:element name�"rankMap" type�"ClassificationApplyMap"
 maxOccurs�"unbounded"/>
 <xsd:element name�"categoryMap" type�"ClassificationCategoryMap"
 maxOccurs�"unbounded"/>
 <xsd:element name�"predictionMap" type�"PredictionMap""
 maxOccurs�"unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<object xsi:type�"ClassificationApplySettings"
 xmlns�"http://www.jsr-73.org/2004/JDMSchema">
...
</object>

<xsd:complexType name�"ClassificationCategoryMap">
 <xsd:attribute name�"content" type�"ClassificationApplyContent"
 use�"required"/>

394 Chapter 14 Getting Started with JDM Web Services

This schema is used to generate the following XML string:

This explains how we have proceeded to create lines 70 to 75 pre-
paring the argument to be provided to saveObject as an XML string.

14.1.3 Retrieving the List of Models

As noted earlier, for the sake of completeness, we use another mecha-
nism to provide an argument to a Web service using NuSoap. To
retrieve the models whose names begin with Product, we use PHP
arrays to call the service listContents as shown at line 79 below:

NuSOAP uses the WSDL file representing Web services and the
XML documents associated with the service arguments. PHP has a
structure called array that can be used as a hash table, which is simi-
lar to the java.util.Map object in Java, where each field of the array
can be retrieved with its name. NuSOAP creates a PHP array struc-
ture to represent web services request and response messages. The
XML Schemas defined in the Web services are translated by NuSOAP
into recursive arrays representing the XML documents presented in
Chapters 10 and 11.

For example, the Web service listContents takes a single argument
of type ObjectFilter. An ObjectFilter is defined in XML as a complex-
Type with optional attributes name, type, function, algorithm, creator-
Info, createdBefore, createdAfter, objectIdentifier, or even requestedContent.
This allows the user to specify different filtering criteria to retrieve
objects contained in the MOR. This is seen by a PHP programmer as
arrays of arrays. For example, “array(‘type’ �> ‘model’)” creates a
PHP array with the value model associated with the key type, and this,
in turn, is associated with a key called objectFilter into a generic array

 <xsd:attribute name�"destPhysAttrName" type�"xsd:string" use�"required"/>
 <xsd:attribute name�"category" type�"xsd:string" use�"optional"/>
</xsd:complexType>

<categoryMap category�"1" content�"probability" destPhysAttrName�"Probability"/>'

79. $params � array('objectFilter' �> array ('type' �> 'model'));
80. $modelList � $kjdmclient->call("listContents", $params, $namespace);
81. $filter�"Product";

14.1 A Web Service Client in PHP 395

provided as argument. This structure representation allows NuSOAP
to serialize this argument into an XML document such
as: “<objectFilter> <type>model</type> </objectFilter>” or
“<objectFilter type 5 “model”/>” when needing to generate the
SOAP body.

If you use a debugging probe to track the SOAP requests on port
1234 of the machine MyHost, the call at line 71 will be translated into
the following SOAP request:

In the preceding code, we retrieve the SOAP body representing
the call to listContents with the argument objectFilter set to “model.”
For arguments with simple structure, it is much more convenient to
use the formulation used at line 79.

14.1.4 Executing RecordApplyTask on Models

NuSOAP applies the same principle for structures that are returned
from Web service invocations. The call to listContents returns a
sequence of MiningObjectHeader, which is stored in a variable called
“$ModelsList.” MiningObjectHeader is an extension of MiningObject
with no specific attributes. So it contains a description, name, type,
creatorInfo, creationDate, and objectIdentifier. NuSOAP will translate
the returned XML document into an array. In this case, this array
represents a list of models, which can be accessed by position. Each
position contains a MiningObjectHeader representation providing
access to the description, name, type, and so on. Line 81 defines the
prefix used to select the models of interest from the MOR.

As seen in the screenshot in Figure 14-2, all probabilities of models
will be shown in an HTML table that is prepared by lines 82 and 83 in

<?xml version�"1.0" encoding�"ISO-8859-1"?>
<SOAP-ENV:Envelope
 SOAP-ENV:encodingStyle�http://schemas.xmlsoap.org/soap/encoding/
 xmlns:SOAP-ENV�http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsd�http://www.w3.org/2001/XMLSchema
 xmlns:xsi�http://www.w3.org/2001/XMLSchema-instance
 xmlns:SOAP-ENC�"http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <listContents xmlns:�"http://www.jsr-73.org/2004/webservices">
 <objectFilter> <type xsi:type�"xsd:string">model</type> </objectFilter>
 </listContents>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

396 Chapter 14 Getting Started with JDM Web Services

the following code. The model headers are scanned at line 84. The
model name is compared with the filter prefix at line 85. Note that
attributes defined in the XML Schema must be fetched with a “!”
before the attribute name, in line-85 “!name” is specified to fetch the
name attribute of the MiningObjectHeader element.

The goal is to prepare a RecordApplyTask using the HTML form-
entered values. We create again an XML document representing
the task, with its name, the model name, and its type in lines 87 to
90. We also loop over all attributes contained in the javascript form,
as shown at line 91, to fill the values entered by the user. We then
close the task XML document after setting the name of the Classifi-
cationApplySettings.

Because the task was provided as XML and not through its task
name, the execution is synchronous and the response of the invocation
can be checked directly. A RecordApplyTask returns a structure with an
element called recordValue. This record value contains the returned
probability. The probability is coded as a string for display in the HTML
table at line 118 and is associated with its model name at line 117.

82. echo '<table cellpadding�"5" cellspacing�"0" border�"1" width�"50%">';
83. echo '<th colspan�"5">Probabilites</th>';
84. foreach($modelList as $idx){
85. if (beginsWith($idx['!name'],$filter)){

86. $TaskName � "Product_ApplyTask";
87. $executeTaskParams � '<task modelName�"'.$idx['!name'].'" '
88. . 'name�"'.$TaskName.'" '
89. . 'xsi:type�"RecordApplyTask" '
90. . 'xmlns�"http://www.jsr-73.org/2004/JDMSchema">';
91. foreach($_POST as $attrName �> $attrValue) {
92. $executeTaskParams � $executeTaskParams
93. . '<recordValue name�"'.$attrName.'">'
94. . '<value xsi:type�"StringValue">'
95. . '<string>'. $attrValue. '</string>'
96. . '</value>'
97. . '</recordValue>';
98. }
99. $executeTaskParams � $executeTaskParams
100. . '<applySettingsName>'.$applySettingsName
101. . '</applySettingsName> </task>';
102. $executeTaskResponse � $kjdmclient->call("executeTask",
103. $executeTaskParams,
104. $namespace);

14.2 A Web Service Client in Java 397

This closes the product recommendation PHP file.

14.2 A Web Service Client in Java

Since this book focuses on Java technology, we have decided to add a
section on how to write a Java client using JDM Web services. An
easy way to build a Web service client in Java is to use a Web service
framework. Chapter 11 presented JAX-RPC as one solution that gen-
erates the wrapper Java objects for the types defined in JDM WSDL
and XML Schema. JAX-RPC can be used to generate server imple-
mentations or client implementations. Another solution is Axis from
the Apache foundation. As the writer of a client application, you are
shielded from the implementation details of writing XML code and
SOAP-specific calls.

What is the usage of a Java client using Web services? Why not
directly use a Java client on top of JDM? One reason is the security
layers between the client and the server. The communication between
a Java JDM client and the DME uses middleware that is vendor
dependent. Some vendors could use Java RPC mechanisms; others
could embed the DME into a database using JDBC internally; still
others could use CORBA for remote procedure calls. A Java client
written on top of Web services will use SOAP. System administrators
can easily tune the security layer associated with the SOAP ports on

105. $status � $executeTaskResponse['status'];
106. if ($status['!state'] �� "error") {
107. echo '<h3>The execution of the task has failed with the message: '
108. . $executeTaskResponse['description'] . '</h3>';
109. die;
110. } else if ($status['!state'] �� "success") {
111. # echo '<h3>The execution of the task was a SUCCESS!</h3>';
112. } else {
113. echo '<h3>Returned object is not valid.</h3>';
114. }
115. $RecordValues � $executeTaskResponse['recordValue'];
116. $Value � $RecordValues['value'];
117. echo '<tr><td>'.$idx['!name'].'</td>';
118. echo '<td>'.$Value['string'].'</td></tr>';
119. }
120. }
121. echo '</table>';
122. unset($_POST);
123. }
124. ?>
125. </body>
126. </html>

398 Chapter 14 Getting Started with JDM Web Services

the Web server: Some can use the credentials of the SOAP connection;
some can use HTTPS for a secure transport layer. Using JDMWS
allows leveraging security systems already in place.

On the other hand, Chapter 12 showed that a complete JDM appli-
cation needs some data manipulation facilities, and dealing with a
remote connection such as JDMWS will not facilitate the creation of
datasets used to build or apply models. JDM 2.0 will introduce the
data transformations to the standard to cope with this situation.
Meanwhile, there is a lot that can be achieved through JDMWS in
cases where the processes are well defined and the datasets are
already prepared in a repository. For example, in customer relation-
ship management (CRM), it is common for datasets representing a
360-degree view of customers to be prepared in a data warehouse.
These datasets can then be reused to build multiple models and
apply them on preconstructed filtered customer populations. We can
then use JDMWS to automate business scenarios where the user has
only to select datasets from an existing list to build or apply models.

This chapter uses the Apache Axis framework for two reasons:
(1) it demonstrates that the WSDL provided with JDM is compatible
with the current version of this framework, and (2) this framework is
widely used and provided under open source. The following
sections do not correspond to the implementation of an application
but rather constitute a “how-to” guide to start a client implementa-
tion on top of JDMWS. For this, we show how to use Axis to generate
Java classes and then provide source code to:

• Open a connection to the JDMWS live server

• Create and populate a build settings object with logical
attributes

• Create and save a physical dataset

• Create, populate, and save a build task

• Execute the Build Task that places the model in the repository

This code could be used, for example, to create models that will be
used for single record apply tasks presenting the PHP product
recommendation, as shown in the previous section.

14.2.1 How to Generate Java Classes with Axis

The first step when using the Apache Axis framework [AXIS 2001],
when provided with an existing WSDL file, is to use the

14.2 A Web Service Client in Java 399

WSDL2JAVA tool. With just a few parameters, this program gener-
ates Java beans, services classes, and stubs containing the informa-
tion to connect to the services server. In fact, this tool can be used to
create the skeletons needed to write a Web service provider as well as
a Web service client. We focus on the Web service client here.

The command lines that follow show an example that allowed us
to generate the Java skeleton classes that we use to write our client.
The first command line sets the path location where Axis has been
installed on the software production machine. Then, the list of
needed jar files is provided. Finally, the utility generating Java classes
is executed, provided with the jdm.wsdl file. The option – NStoPkg
allows control of the generated package names without using auto-
matically created names.

To use this script, you set the Axis project path (for the Java class
path) and customize the package’s name to tune the generated
classes (e.g., by substituting your company name for MyName). The
execution of this command generates a folder named Java_Source (the
folder name can be changed).

The same process can be followed using Apache “ant” with the
following code:

set AXIS�.\axis\lib\
set AXISJARS�%AXIS%axis.jar;%AXIS%jaxrpc.jar;%AXIS%commons-logging-1.0.4.jar;

%AXIS%commons-discovery-0.2.jar;%AXIS%saaj.jar;%AXIS%activation.jar;
%AXIS%j2ee.jar;%AXIS%wsdl4j-1.5.1.jar;%AXIS%mailapi.jar

java.exe -classpath %AXISJARS% org.apache.axis.wsdl.WSDL2Java --NStoPkg
http://www.jsr-73.org/2004/webservices�com.MyName.webservices.services --NStoPkg
http://www.jsr-73.org/2004/JDMSchema�com.MyName.webservices.beans -o "Java_Source"
"jdm.wsdl"

<target name� "all" description� "Builds the Java classes from wsdl.">
<java classname� "org.apache.axis.wsdl.WSDL2Java"

classpathref� "axis.classpath" fork� "yes ">
<arg value� "--NStoPkg" />
<arg value�"http://www.jsr-73.org/2004/webservices�com.MyName.webservices.
services"/>
<arg value� "--NStoPkg" />
<arg value�"http://www.jsr-73.org/2004/JDMSchema�com.MyName.webservices.
beans"/>
<arg value� "--output" />
<arg value� "${generated.dir}" />
<arg value� "${local.wsdl}" />

</java>
</target>

400 Chapter 14 Getting Started with JDM Web Services

Many classes are generated; these can be grouped as follows:

• 23 classes associated with the possible services to execute.
• 4 classes for locating the data mining server (DataMiningSer-

vice.java and DataMiningServiceLocator.java) and sending the
Web services messages (IDataMining.java and IDataMining-
BindingStub.java).

• 157 beans classes corresponding to all complex types defined
in the XML schema.

Before using the generated classes, you must edit the default specifi-
cation of the address to connect to a live JMDWS implementation in
the file com.MyName.webservices.services.DataMiningServiceLocator.java,
using the member variable IDataMiningPort_address. Here is an exam-
ple corresponding to the same address as the PHP client application
(the argument of the “new SOAP client” in the previous example):

14.2.2 Opening the Connection to a JDMWS Live Server

Once you have generated the service and bean classes, you can start
writing the Java client. Here is a step-by-step procedure to develop
your first Java Web service client to build a model. All methods pro-
vided below belong to a single class representing your simple Java
client application.

The first step is to get a DME connection stub. You will then have
a reference to the data mining services. Thanks to the Axis tool, all
elements needed to connect to the server are already set in the
skeleton classes. The following code is equivalent to connecting to a
Web service provider, which in turn provides you access to a DME.

In this simple method, getting a service stub is simple; there is no
need for advanced knowledge of the JDM XML structure, as was the

// Use to get a proxy class for IDataMiningPort
private java.lang.String IDataMiningPort_address � "http:// MyHost:1234/KxServices/
services/IDataMiningPort";

1. private IDataMining initiateConnection() throws ServiceException {
2. DataMiningService lServiceProvider � new DataMiningServiceLocator();
3. IDataMining lServices � lServiceProvider.getIDataMiningPort();
4. return lServices;
5. }

14.2 A Web Service Client in Java 401

case with PHP. Once the Web service connection object is created, it is
important to remember that the JDM connection is managed by the
Web service provider application and, thus, the application can
readily start.

14.2.3 Creating BuildSettings

The first step is to create and save the BuildSettings object to create a
classification model. Axis has generated Java classes that fully map the
XML structure provided with the XML Schema of JDM Web services.
For example, in the following code the class ClassificationSettings has all
the “setter” and “getter” methods to specify all its elements. Writing
source code under any Java integrated development environment
(IDE) such as Eclipse will provide you with the list of possible meth-
ods that can be used on an instance of such a class, making this a very
easy exercise. In the following example, we assume that the target
attribute is called class and that there is a weight attribute called fnlwgt.
The methods called createBuildAttributes and askToSaveObject will be
explained later in the chapter.

We develop the method called createBuildAttributes as the first
example using logical attributes. Logical attributes can be used in
Settings to specify how the physical attributes should be interpreted
by the algorithm, or outlier treatment, for example. In this simple
example, we propose to associate a fixed set of four logical attributes
to the ClassificationSettings. In the XML Schema, the specification of
logical attributes in a Settings instance is presented as a sequence,
which has been translated by Axis as an array of BuildAttribute
objects. We show the initialization of this array at line 2 in the
following code. Out of the four active attributes, three will be used
as inputs (education, marital-status, and capital-gain as used in the

1. public BuildSettings createBuildSettings(IDataMining iServices)
2. throws RemoteException {
3. ClassificationSettings lSettingsToSave �

 new ClassificationSettings();
4. lSettingsToSave.setCreatorInfo("myClassifCreatorInfo");
5. lSettingsToSave.setDescription("my First Classification Model");
6. lSettingsToSave.setDesiredExecutionTimeInMinutes(new Integer(10));
7. lSettingsToSave.setTargetAttributeName("class");
8. lSettingsToSave.setBuildAttribute(createBuildAttributes());
9. askToSaveObject(lSettingsToSave, "myBuildSettings", iServices);
10. return lSettingsToSave;
11. }

402 Chapter 14 Getting Started with JDM Web Services

product recommendation example), and one will be used as a target
(class). Setting the usage to active is shown at lines 9, 17, 25, and 34.
The second option we use is outlier treatment, which is set at lines 6,
15, 23, and 32. We have chosen, in this example, to let the system
decide the treatment for education and marital-status but to leave the
capital-gain “as is.” Of course, more general code can be written,
especially in conjunction with a user interface, to ask for attribute
names, together with outlier treatment, usage, and others that can
be tuned at the logical attribute level.

1. protected static BuildAttribute[] createBuildAttributes() {
2. BuildAttribute[] lBuildAttributes � new BuildAttribute[4];
3. BuildAttribute lBuildAttribute � new BuildAttribute();
4. lBuildAttribute.setAttributeName("education");
5. OutlierTreatment lOutlierTreatment �

6. new OutlierTreatment(OutlierTreatmentStd.systemDetermined);
7. lBuildAttribute.setOutlierTreatment(lOutlierTreatment);
8. LogicalAttributeUsage lUsage
9. � new LogicalAttributeUsage(LogicalAttributeUsageStd.active);
10. lBuildAttribute.setUsage(lUsage);
11. lBuildAttributes[0] � lBuildAttribute;
12.
13. 1BuildAttribute � new BuildAttribute();
14. lBuildAttribute.setAttributeName("marital-status");
15. lOutlierTreatment �

 new OutlierTreatment(OutlierTreatmentStd.systemDetermined);
16. lBuildAttribute.setOutlierTreatment(lOutlierTreatment);
17. lUsage � new LogicalAttributeUsage(LogicalAttributeUsageStd.active);
18. lBuildAttribute.setUsage(lUsage);
19. lBuildAttributes[1] � lBuildAttribute;
20.
21. lBuildAttribute � new BuildAttribute();
22. lBuildAttribute.setAttributeName("capital-gain");
23. lOutlierTreatment � new OutlierTreatment(OutlierTreatmentStd.asIs);
24. lBuildAttribute.setOutlierTreatment(lOutlierTreatment);
25. lUsage � new LogicalAttributeUsage(LogicalAttributeUsageStd.active);
26. lBuildAttribute.setUsage(lUsage);
27. lBuildAttributes[2] � lBuildAttribute;
28.
30. lBuildAttribute � new BuildAttribute();
31. lBuildAttribute.setAttributeName("class");
32. lOutlierTreatment �

 new OutlierTreatment(OutlierTreatmentStd.systemDetermined);
33. lBuildAttribute.setOutlierTreatment(lOutlierTreatment);
34. lUsage � new LogicalAttributeUsage(LogicalAttributeUsageStd.active);
35. lBuildAttribute.setUsage(lUsage);
36. lBuildAttributes[3] � lBuildAttribute;
37.
38. return lBuildAttributes;
39. }

14.2 A Web Service Client in Java 403

Line 9 of createBuildSettings is using a generic method called
askToSaveObject. The method askToSaveObject has been defined in
our example to save any named object to the MOR, forcing to over-
write existing objects (line 7) and asking for verification (line 8).
Because of this verification, we need to be able to get back the verifi-
cation report returned by the saveObject service invocation at line 10
if the verification was not successful as shown at line 13. Again, we
see that Axis has streamlined the XML Schema into Java classes for
the Java programmer to easily set and get subsections of this
schema; this reduces the time needed to write client applications.

We will use the askToSaveObject again in other parts of this
example.

14.2.4 Creating a PhysicalDataSet

Creating a PhysicalDataSet from its URI is straightforward, provided
that you know the specific URI format used by the implementation
of the JDMWS. This means that it is likely that you will have to
change the code at line 5. Because the JDM WSDL uses the generic
URI type, Axis has translated this into a generic URI Java object. The
last operation of this method is to save the object into the MOR, as
shown at line 8.

1. protected static void askToSaveObject(MiningObject iMiningObject,
2. String iName, IDataMining iServices)
3. throws RemoteException {
4. SaveObject lSaveObject � new SaveObject();
5. lSaveObject.setObject(iMiningObject);
6. lSaveObject.setObjectName(iMiningObject.getName());
7. lSaveObject.setOverwrite(new Boolean(true));
8. lSaveObject.setVerify(new Boolean(true));
9. SaveObjectResponse lSaveObjectResponse
10. � iServices.saveObject(lSaveObject);
11. if (lSaveObjectResponse!� null) {
12. System.out.println("Verification Report: "
13. � lSaveObjectResponse.getReport().getReportText());
14. } else {
15. System.out.println("No object returned");
16. }
17. }

404 Chapter 14 Getting Started with JDM Web Services

14.2.5 Creating a BuildTask

The task to build a classification model will use the PhysicalDataSet
and BuildSettings previously built. This is done within the method
called createBuildTask. The following code shows how to create the
BuildTask from a BuildSettings object. Even if it has been previously
saved to the MOR, the BuildSettings bean is provided as is, and thus
will be expanded in its own XML in the SOAP message. We could
have used the BuildSettings name instead of the object because JDM
Web services allows both cases.

14.2.6 Executing a BuildTask

Finally, we need to create a method to execute the task we have just
created, defined, and saved to the MOR. We use a code structure
already presented in other environments: getting the execution status
through the execution handle—a common usage scenario. There is

1. protected PhysicalDataSet createPhysicalData(IDataMining iServices) throws
2. RemoteException, MalformedURIException {
3. PhysicalDataSet lBuildPhysicalDataSet � new PhysicalDataSet();
4. lBuildPhysicalDataSet.setName("MyODBCCensus ");
5. String lBuildUri � "odbc:///ODBC_Source/CensusTable";
6. org.apache.axis.types.URI lBuildUriAxis �

7. new org.apache.axis.types.URI(lBuildUri);
8. lBuildPhysicalDataSet.setUri(lBuildUriAxis);
9. askToSaveObject(lBuildPhysicalDataSet, "MyODBCCensus", iServices);
10. return lBuildPhysicalDataSet;
11. }

1. protected final Task createBuildTask(IDataMining iServices,
2. BuildSettings iBuildSettings,
3. String iModelName,
4. PhysicalDataSet iBuildPhysicalDataSet)

5. throws RemoteException {

6. BuildTask lBuildTask � new BuildTask();
7. lBuildTask.setBuildSettings(iBuildSettings);
8. lBuildTask.setDescription("My First BuildTask");
9. lBuildTask.setModelName(iModelName);
10 askToSaveObject(lBuildTask, "MyBuildTask_" � iModelName, iServices);
11. return lBuildTask;
12. }

14.2 A Web Service Client in Java 405

an invocation of the executeTask Web service method at line 5. Follow-
ing the specifications presented in Chapter 11, if the argument pro-
vided to the Web service executeTask is the task name (instead of the
task itself), the execution is run asynchronously. We could have
obtained the ExecuteTaskResponse to get the first execution status, but
we preferred to show the use of the getExecutionStatus Web service.
Invocation of this service returns an ExecutionState that can be
accessed through GetExecutionStatusResponse, as shown at lines 9
and 10. As usual, the state can be monitored through a while loop, as
shown by lines 11 to 18. If the task ends with an error, the descrip-
tion of this error is reported at line 21.

At this point, if the five methods described above are executed in
sequence, a valid classification model will be accessible through the
connection. This model, if given a name beginning with Product, can
be used by the product recommendation Web browser front end
shown in the PHP client application.

1. protected void askToExecuteTask(IDataMining iServices, Task iTask)
2. throws RemoteException, InterruptedException {
3. ExecuteTask lExecuteTask � new ExecuteTask();
4. lExecuteTask.setTaskName(iTask.getName());
5. iServices.executeTask(lExecuteTask);
6. GetExecutionStatus lExecutionStatus � new GetExecutionStatus();
7. lExecutionStatus.setTaskName(lExecuteTask.getTaskName());
8. GetExecutionStatusResponse lExecutionStatusResponse
9. � iServices.getExecutionStatus(lExecutionStatus);
10. ExecutionState lState � lExecutionStatusResponse.getStatus().getState();
11. while (lState.equals(ExecutionState.executing)
12. || lState.equals(ExecutionState.terminating)
13. || lState.equals(ExecutionState.submitted)) {
14. Thread.sleep(1000);
15. lExecutionStatusResponse �

16. iServices.getExecutionStatus(lExecutionStatus);

17. lState � lExecutionStatusResponse.getStatus().getState();
18. }
19. if (lState.equals(ExecutionState.error)) {
20. System.out.println("Error executing task: [" �

21. lExecutionStatusResponse.getStatus().getDescription() � "]");
22. return;
23. } else {
24. System.out.println ("Last state of execution: ["
25. � lState.getValue() � "]");
26. }
27. }

406 Chapter 14 Getting Started with JDM Web Services

14.3 Summary

This chapter used code examples to introduce the use of JDMWS. We
first looked at a Web service client in PHP to perform product recom-
mendation. We then looked at a Web service client in Java, using a
framework such as Axis or JAX-RPC. The chapter shows that tools
exist to translate the JDM WSDL into structures integrated in both
client environments (PHP or Java), allowing very fast development
of such clients. The availability of JDMWS should open the path for
integration of data mining into business processes frameworks.

References

[NuSOAP 2004] http://sourceforge.net/projects/nusoap.

[PHP 2005]http://www.php.net.

[AXIS 2001] http://ws.apache.org/axis.

407

Chapter

15
The Impact of JDM

on IT Infrastructure

I think there is a world market for maybe five computers.

 —IBM Chairman Thomas Watson, 1943

Data mining can have a great impact on the infrastructure of
information technology (IT). Mining in the small, that is, using
small local datasets and maintaining a few models for short-term
use, is unlikely to tax the IT environment. However, mining in the
large—with multi-gigabyte and sometimes multi-terabyte datasets,
hundreds or thousands of frequently changing datasets, obtaining
datasets across the enterprise or beyond, and managing hundreds
or thousands of models for deployment throughout the enter-
prise—places new demands for backup and recovery, data access,
data staging, and ensuring proper levels of service. Moreover, data
mining is often part of a larger business process requiring plugging
into existing scheduling or workflow systems. There are also differ-
ences in how IT approaches database and non-database data
mining engines (DMEs).

 This chapter explores the impact that data mining can have on
the IT infrastructure and what data and process administrators need
to consider when mining in the large.

408 Chapter 15 The Impact of JDM on IT Infrastructure

15.1 What Does Data Mining Require from IT?

This section explores some of the information technology components
involved with data mining:

• Computing hardware: Data mining often requires CPU-
intensive activity to build and apply models from large vol-
umes of data. The amount and type of computation is often
governed by the type of algorithm. For example, neural net-
works require many floating point operations, whereas
naïve bayes algorithms rely more on co-occurrence counts.
This computing hardware can range from off-the-shelf PCs
to state-of-the-art high performance multiprocessor servers.
The servers on which DME implementations run are called
modeling servers.

• Data storage hardware: Obviously data mining needs data.
Data is generally already present in the organization, so we
focus here on the additional storage required for data
mining, and how data mining affects the amount of data.

• Database software: Database software can be viewed as
supporting not only the data storage and access
requirements of data, but also the data mining capabilities.
Independent-server mining, where data mining occurs in a
separate process, often relies on databases for data storage.
Increasingly, data mining programmers are leveraging the
analytical capabilities in databases to avoid data
movement. Modern relational database management
systems (RDBMSs) provide data mining integrated with
the database kernel, which we refer to as in-database
mining. Some vendors may provide Java Data Mining
(JDM) implementations on top of these in-database mining
capabilities. Independent-server mining systems can also
expose or use these in-database mining capabilities
through their established user interfaces.

• Data access: In the case of independent-server data mining,
the modeling server must access data contained in data-
bases. This can impact the network between the modeling
server and databases. This impact does not exist in the case
of in-database DMEs where the database software runs on
the same computing hardware as the DME. This may be
less true in the case of hardware clusters where the large
data exchange needed to build models will require careful

15.2 Impacts on Computing Hardware 409

implementation and parallel algorithms together with the
data spread. However, this depends on the quality of the
cluster software implementation.

• Application execution performance: Applications may
utilize data mining results in batch (e.g., predicting which
customers will respond to a campaign at one time and
storing the results) or in real-time (e.g., predicting a
customer’s response to an offer while speaking to a
customer service representative based on new customer
profile information).

• IT administration tools: Most large organizations use tools
to monitor software and hardware usage. The problem
of backup and recovery is also of concern. In-database
mining tools often leverage the existing backup and recov-
ery mechanisms in place for the database. Independent-
server tools either provide support in this area, or IT must
rely on OS and file system-oriented tools.

15.2 Impacts on Computing Hardware
How much computing power will be required to mine data is often
hard to determine. The time it takes to build a single model depends
on many factors: the amount of data including both the number of
cases and number of attributes, the complexity of the data itself, the
choice of algorithm and settings, and the internal scalability of the
algorithms as implemented in the DME (e.g., how these implementa-
tions may use multiple CPUs in parallel).

 By complexity of the data, we mean the number of distinct values
present in each categorical attribute, as well as the richness of pat-
terns found in the data. For example, for an algorithm like k-means
clustering, which accepts numerical data for its computations, each
categorical attribute is exploded into indicator attributes. A binary
attribute, one with two values, will become two attributes, whereas
an attribute containing values for each of the 50 United States would
become 50 attributes. In the case of association rules, two datasets
with the same number of transactions, number of products, and
items per basket can take radically different execution times based on
the co-occurrences found in the data.

There is another dimension to data mining computing power
requirements: the volume of mining activities. This volume includes
the number and type of models built within a given time window, the
number and type of models used to score datasets, and the real-time

410 Chapter 15 The Impact of JDM on IT Infrastructure

scoring requirements. In some circumstances, there are also incre-
mental model building requirements that need to be factored in.

Consider an application that supports cross-sell—the recommen-
dation of products to individual customers. One possible technique
is to build a predictive model for each product to be recommended. If
a business has 100 products, this would require the building of 100
models. If customer preferences change frequently, these models
may need to be rebuilt, or refreshed, weekly or even daily. Let’s say
each model is built based on a dataset with 200 attributes and 500,000
cases. If a single model build takes 15 minutes to complete on a par-
ticular machine, that means that for the 100 models, this process
would take 25 hours to complete if executed serially. If the objective
is to rebuild these each night based on the previous day’s data for use
the following day, multiple such machines can be employed to allow
building in parallel. Let’s say we have a window of 5 hours in which
to build the models; that would require 5 such machines, each
building 20 models.

Model building is often performed on a much smaller number of
cases in comparison to the number of cases used when applying
models to data for making predictions, or scoring. Some businesses
require scoring their entire customer base, where the number of
customers may reach beyond 100 million. Moreover, such busi-
nesses often have a tight time window in which they can score these
customers. The number of models applied to each customer may
also increase the performance demands. Consider that for the 100
models built in the previous example, each model will have to be
applied to each of the 100 million customers. Moreover, this may
need to be completed overnight in an 8-hour time window. If a
DME can score a million customers in 6 seconds on a given model,
then it will take 600 seconds (10 minutes) to score those customers
on all 100 models. With 100 million customers, this will take
1,000 minutes (16.7 hours). To ensure that scoring can be accom-
plished within the 8-hour time window, the data could be divided
among three machines, which will allow the scoring to be
completed in less than 6 hours.

 This scenario assumes that the data mining steps have already
been defined and are coded for repeatability. Another hardware con-
sideration is the impact on the model building process when data
miners are trying to come up with the appropriate data mining steps.
More computing hardware can certainly speed up the data transfor-
mation, analysis, and model building of a data miner, which means
long delays in seeing results will be avoided. However, many times

15.3 Impacts on Data Storage Hardware 411

the creative process of data mining involves time that dwarfs the
individual transformations, analyses, or model building. For mining
large datasets, there is a tradeoff between the data miner seeing
results quickly versus the cost of hardware. This is clearly a business
and resource issue.

 In cases where a data mining tool automates much of the data
mining process through trying various algorithms or settings auto-
matically, more computing hardware can certainly improve through-
put of mining results. Without the use of automatic modeling, it is
not uncommon for the analysis and building of new models to take
several weeks; buying a machine twice as big will not reduce the time
it takes to design, build, and test models, because this time mainly
involves human intervention. Automatic modeling can make use of
the additional hardware such that the time to produce these models
is generally in the ranges of hours.

Another factor to consider regarding hardware to mine larger
datasets is the scalability of the particular algorithm (usually defined
in terms of the number of attributes and number of cases used in the
build data, but may also include attribute cardinality). Commenting
on the scalability of specific algorithms is beyond the scope of this
book; however, users of data mining software can request scalability
figures from DME vendors. For example, if an algorithm scales
as order n2, where n is the number of cases, simply doubling the
number of CPUs or using a CPU with double the speed will not
provide the same performance when the dataset contains twice as
many cases. This is especially true when considering the number of
attributes because the performance of most classical algorithms is
adversely affected by a larger number of attributes.

15.3 Impacts on Data Storage Hardware

Data storage and its associated costs are a normal part of virtually all
businesses, and data volumes are growing. It is common to see For-
tune 500 companies with terabytes of data, some adding terabytes
per month. When considering data mining, data storage costs also
include the storage of data mining models, intermediate datasets,
especially if they are materialized as physical tables (as opposed to
views), settings, test results, and apply results.

When considering the storage of data mining models, each algo-
rithm typically has different model storage requirements. For example,
a decision tree typically has a very compact representation consisting of

412 Chapter 15 The Impact of JDM on IT Infrastructure

a set of rules and tree nodes, perhaps on the order of tens. Each rule
often consists of fewer than 10 predicates. In contrast, consider an asso-
ciation rules model that may contain tens of thousands of rules, each
consisting of typically 2 to 5 items and a support and confidence value.

 The architecture of the DME can also impact the amount of raw
data storage required. Three architectures are described here:

• In-database DME: The DME resides within the execution
engine of the database. It may be in the same process for
optimal performance and data access. This does not include
DMEs that are invoked only through a common SQL
interface while the DME resides in a separate process space;
this requires data to be transferred from the database engine
to that separate DME process.

• Independent-server DME with direct data access: The
DME is not hosted in the database, but can access database
data directly stored in the database, either through
proprietary data access interfaces or standard interfaces
such as JDBC or ODBC. Such environments do not require
data staging.

• Independent-server DME with staging data: The DME is
not hosted in the database and requires temporary storage
of data, possibly in a proprietary format or separate data
marts. Some businesses may require data to be staged
separately from operational data stores or the corporate
data warehouse to avoid performance impacts, uncertain
data storage impacts, or security concerns.

These three architectures are depicted in Figure 15-1.

Database

API

DME Database

API

DME

Database

API

DME

Staging

(a) (b) (c)

Data Access Layer

Figure 15-1 Data mining engine data access architectures:
(a) In-database DME, (b) Independent-server DME with direct
data access, and (c) Independent-server DME with staging data.

15.3 Impacts on Data Storage Hardware 413

We distinguish among these DME architectures because the first
and second cases do not require extra data storage. The third case,
involving staging data, does of course require additional disk space
as data is replicated for the purposes of mining.1 So the question is,
how much?

The correct answer is, “It depends….” Consider an example
involving customer relationship management (CRM). Today, it is not
uncommon to find build datasets with between 50 and 5,000
attributes, the median value being around 200; and the number of
cases is often between 10,000 and 1,000,000, the median value being
around 200,000. Whereas these are only the build datasets, the vol-
umes for apply datasets are much larger. As cited earlier, a large
organization as found in the telecommunications or banking indus-
tries could have a customer database dealing with 100 million cus-
tomers. So we see here that corporate architectures requiring data
staging require large disk capacity to store not only the data to be
scored, but also the apply results.

Another impact could depend on specific DME requirements
for dataset format. For example, a specific association rule algo-
rithm could require the data in a multirecord case representation.
In this situation, a single record representation for a million records
with 100 attributes of 20 bytes each requires 2 gigabytes of space,
but the corresponding multirecord case representation requires
7 gigabytes, assuming the case ID is 20 bytes and the attribute name
is 30 bytes.

Modeling in the large also requires saving the models, the build
settings, and all the objects declared as persistent by the DME imple-
mentation. In most cases, a model should be (much) smaller than its
corresponding build dataset, because a model should extract knowl-
edge from and find relationships in data. This is especially true when
looking at the model details (i.e., the minimum information needed
to apply a model), such as the tree nodes for a decision tree or the
coefficients of a linear regression. Other models, such as support vec-
tor machine (SVM) for example, can take relatively more storage
because they maintain the support vectors; similarly, an association
rules model can contain hundreds of thousands of rules. In another
aspect, some implementations keep not only the minimum model

1 Note that when considering a tool’s performance, the time required to export
data from the database and import results back to the database must be
included in the overall model build and apply time.

414 Chapter 15 The Impact of JDM on IT Infrastructure

details, but also information such as the descriptive statistics of the
input attributes for display purposes. This is the case for some
clustering implementations, which are able to show the profiles for
all input attributes for all clusters. Other models may maintain cross-
statistics with the targets or all the input attributes.

 In trying to optimize business performance, the number of
predictive and descriptive models resulting from data mining
techniques are increasing dramatically. For example, large telecom-
munications operators are now building more than 1,500 models a
year, for their CRM activity alone! And they will expand this meth-
odology later into risk management, which will dramatically
increase the number of models built per year. This impacts the disk
storage needed to persist not only the models, but also their build
settings, apply settings, and various result objects. When building
credit risk scoring models for example, it is not uncommon to have
quality processes in place that require these settings be kept: it may
be mandatory that a specific model’s information can be retrieved,
such as when the model was produced, what dataset was used to
produce the model, and what were the test results. Often, a business
wants or needs to keep track of the different model versions. This is
considered an application level operation currently, because JDM
does not include model versioning. As such, users will likely design
naming conventions for their models, tasks, and datasets, and all the
objects that are saved in the mining object repository (MOR) to exter-
nally manage the versioning of persisted objects. Consult your DME
vendor for specifics concerning storage requirements for different
models.

15.4 Data Access

Data access is needed in three major phases of a model’s life cycle:
(1) the build phase, where the model is created on a build dataset,
(2) the test phase, where metrics are computed to understand model
quality, and (3) the apply phase, where scores or forecasts are writ-
ten back to storage for later use. In these phases, data must be
accessed from the main repositories: data warehouses, operational
systems, and so on. When the DME is an independent server, there
must be data transfer between the data repository and the DME,
which increases network traffic. If IT management does not allow
mining the data in the actual data warehouses or operational data
stores, in-database and independent-server (direct data access) DME

15.4 Data Access 415

may have to address the data staging issue, or introduce alternative
hardware architectures (e.g., clusters or data segregation) to ensure
reasonable non-interference with daily operations.

While the build task uses the data access layer embedded within
the DME itself, there are other ways to perform the apply task and per-
haps the test task; we will look at these tasks separately. Besides the
architectural constraints, there is also the administration environment
to consider.

15.4.1 Data Access for Model Building

As stated earlier, there are three types of DME architecture: in-database
DME and two different layouts of independent-server DME. The
in-database architecture does not require any data transfer since the
algorithms exist where the data reside. The independent-server
architectures requires data transfer, and there are two possibilities
in this case: (1) either the DME implementation requires a copy of
the data in a temporary or proprietary format, which implies a
duplication of data together with additional disk space, or (2) the
DME does not requires temporary or proprietary storage and
accesses the data directly from the repository—this generates more
data traffic but does not require additional disk space, and reduces
data latency issues. However, the second case either requires large
RAM to hold the data or efficient mining techniques to retrieve and
process data in manageable chunks.

In most cases, the build dataset is of smaller size than the datasets
used as input for apply. This can be attributed to one of two reasons.
Either (1) the data is known only for a population concerned with an
experience, which is generally reduced for cost reasons, or (2) robust
models can be safely built on a sample of the entire population,
resulting in smaller build times for similar model quality and robust-
ness. In many practical situations, data access for the build phase is
less demanding than for apply phase.

But the architecture of the DME and the volume of data are not
the only points to take into account. As noted earlier, the policy of IT
management against the use of data in the operational data environ-
ment may impact data access and force the staging of data to isolate
the production environment from the modeling environment.

416 Chapter 15 The Impact of JDM on IT Infrastructure

15.4.2 Data Access for Apply and Test

As noted earlier, a model can be applied to very large datasets,
especially in terms of number of cases. This is why the possibility of
exporting the model from the DME in a language that is supported
by the scoring engine (e.g., a database) can be used. For example,
IBM is proposing PMML interpreters for several databases; Tera-
data also proposes a PMML interpreter; and KXEN is able to export
models either in SQL or in User Defined Functions for all major
databases. In all these situations, the apply phases are done within
the execution environment (e.g., the database) without external
data transfer. This impacts the computing power of the database
servers but it has no impact on network traffic.

In contrast, in-database DMEs, such as Oracle, perform apply and
test at a layer below application-level SQL or User Defined Func-
tions. This type of access eliminates overheads for security, process,
and database data read overheads typically experienced by applica-
tion level code. As a result, in-database scoring can achieve better
performance than externally generated code.

15.5 Backup and Recovery

Backup and recovery plans are critical for any IT organization. IT staff
are already quite familiar with performing database and file system
backups on a regular basis. In-database DMEs or DMEs with database-
hosted MORs make backup and recovery a part of normal database
maintenance. Where models are maintained separately from the data-
base (e.g., as flat files in either PMML or proprietary formats), users
must rely on filesystem backups or ad hoc procedures.

15.6 Scheduling

In an IT environment where hardware is plentiful and software
scales well with the addition of hardware, the consideration of when
to execute data mining tasks can depend more on business require-
ments than on technical ones. However, most IT departments have
budget constraints, both in terms of hardware purchases and person-
nel to manage and maintain their hardware and software. To this
point, scheduling of data mining tasks becomes important to effi-
ciently use existing hardware. This section assumes that the data

15.7 Workflow 417

mining process (e.g., specific data preparation and modeling steps)
has been clearly defined and is largely amenable to automation.
Where human resources are involved in the production of data min-
ing models, standard human resource project scheduling techniques
must be applied.

The business decisions for scheduling and workflows revolve
around when the right data is available and when the information or
knowledge, or mining results, are required. For example, if a busi-
ness goal is to conduct a campaign leading up to the Labor Day holi-
day weekend, there is a hard deadline of when the mining results
need to be available, perhaps several weeks prior so that appropriate
printing activities can occur. If the data used for building the model
or models will not change for the month prior to the needed results,
preparing data and scoring customers for likelihood to respond can
be performed more flexibly. If the data preparation and model build
number-crunching will take 3 hours to execute, and the scoring of the
potential respondees will take 6 hours, barring hardware, software,
or other failures, such a model could be scheduled the day before the
results are needed.

However, if hardware is scarce, or multiple activities are being per-
formed on the same hardware, it may be appropriate to schedule
model building and batch scoring activities during periods of low user
or customer activity, for example, the middle of the night. It is fairly
easy to use the Timer library in Java to implement Job Scheduling and
there are several other libraries to perform job scheduling, such as
Quartz [Quartz 2006]. JDM 2.0 introduces a basic scheduling interface
that unifies scheduling within the JDM Connection execute method
and can be implemented in terms of these specialized libraries.

15.7 Workflow

Some obvious but nonetheless important dependencies exist between
data mining tasks that impact workflow design. As Figure 15-2
depicts, there may be separate workflow steps to support data prepa-
ration; these steps detail which data is brought together and the spe-
cific transformations that must be applied. If this process succeeds, a
particular model or set of models is built according to prespecified
build settings. To ensure that the resulting model(s) are valid, even if
the build terminated successfully, the workflow should test the model
to ensure a minimum level of accuracy or some other clearly defined

418 Chapter 15 The Impact of JDM on IT Infrastructure

metric. If the model tests succeed, the model(s) may be deployed to
their target environment, perhaps another application that is
responsible for scoring, either in batch or real-time. The deployment
may be as simple as providing the name of a data mining model
stored in a database to the remote system, or may involve exporting
the model as XML or a proprietary format and importing it at the tar-
get site. When at the target environment, the model may be applied to
new data (e.g., to produce scores, segment customers, and so on).

Figure 15-2 depicts the success path; however, each workflow
step also requires contingency tasks to handle failures. Depending
on the sophistication of the workflow design, some automated mea-
sures may be taken to correct problems. For example, if test results
do not meet specifications, the workflow could attempt to build
different models with different algorithms and settings and reenter
the test step.

 There are considerations when redeploying a model in a produc-
tion environment. In a real-time environment, perhaps where cross-
sell recommendations are being made to online customers, models
must be refreshed without interrupting scores for existing customers.
In this case, if a model switch can be made atomically,2 allowing
pending requests to complete and new requests to be directed to the
refreshed model, users should see no unusual effects such as miss-
ing recommendations. Once the old model is no longer servicing
requests, it can be retired from service, having been fully replaced by
the new model.

Note that both scheduling and workflow environments are slowly
being addressed by business process environments, with frame-
works such as BPEL [BPEL 2004] and BPML [BPML 2003]. Many of
these environments allow inclusion of external services within busi-
ness processes, and facilitate integrating services through Web ser-
vices. JDM also defines a Web services interfaces so that DME
providers that implement the Web services layer can easily be inte-
grated in such business process environments.

2 That is, similar to the notion of an atomic database commit operation—either
happening completely, or not at all.

 Prepare

data

Build

model

Test

model

Deploy

model

Apply

model

Figure 15-2 Example of a data mining workflow.

15.8 Summary 419

15.8 Summary

This chapter explored the impact that data mining can have on IT
infrastructure. In particular, several key IT areas were examined:
computing hardware, data storage, data access, backup and recovery,
scheduling, and workflows. In this effort, three main DME imple-
mentation architectures—one in-database and two independent-
server—were contrasted; each has its own implications for IT.

References

[BPEL 2004] http://en.wikipedia.org/wiki/BPEL.

[BPML 2003] http://xml.coverpages.org/bpml.html.

[Quartz 2006] http://www.opensymphony.com/quartz/.

421

Chapter

16
Vendor Implementations

In general, an implementation must be conservative in its
sending behavior, and liberal in its receiving behavior.

—Jonathan Bruce Postel

Vendor implementations are key to the success of any standard. This
chapter provides an overview of two vendor implementations con-
forming to Java Data Mining (JDM), characterizing their architecture,
capabilities, and extensions; readers are also directed to sources of
more information on trying out the implementations and learning
more about their feature sets. In addition, considerations for those
pursuing a JDM implementation are discussed.

16.1 Oracle Data Mining

Oracle Corporation began offering an integrated in-database data
mining engine (DME) as an option to the Oracle 9i Database release in
2001. Oracle continued to extend and enhance its mining function
and algorithm offerings, while more deeply embedding data mining
algorithms in the database kernel code. As a result, Oracle Data Min-
ing (ODM) is able to leverage Oracle Database–inherent characteristics
such as performance, scalability, and security. ODM is a key compo-
nent of Oracle’s in-database advanced analytics platform, which

422 Chapter 16 Vendor Implementations

includes online analytical processing (OLAP), and spatial and
statistics functions, also embedded in the database.

Oracle acquired Thinking Machines Corporation and its flagship
data mining tool, Darwin, in 1999, which began Oracle’s investment
in data mining technology. Oracle Database 10g Release 2 (10.2)
includes all of the data mining functions supported under JDM 1.1,
and several of the JDM 1.1 algorithms.

This section explores some details of ODM features, the architecture
of the Oracle Java Data Mining (OJDM) implementation, JDM fea-
tures supported by Oracle, using the JDM application programming
interface (API) in the Oracle platform, Oracle-specific JDM extensions,
OJDM capabilities, and a brief discussion of ODM’s SQL data mining
API, which is interoperable with OJDM-produced mining objects, and
the Oracle Data Miner graphical interface, which uses OJDM.

16.1.1 Oracle Position on JDM

Oracle is a strong supporter of open standards, in particular, the Java
standards developed under Java Community Process (JCP). The
JDM standard (JSR-73) was initiated and led by Oracle under the
JCP. ODM 10.2.0.1 supports JDM 1.0, while ODM 10.2.0.2 supports
JDM 1.1 [JDM11 2005]. Oracle continues its support and interest in
JDM as specification lead for JDM 2.0 (JDM 217).

16.1.2 Oracle JDM Implementation Architecture

OJDM is a thin-Java wrapper that conforms to the JDM standard and
enables Java applications to integrate in-database data mining features
of Oracle Database. OJDM uses the database as the DME and communi-
cates with the database using JDBC. OJDM supports the use of any type
of Oracle JDBC driver supplied with the database [ORAJDBC 2006].
Figure 16-1 shows the architecture of OJDM. Any type of Java applica-
tion that is compatible with J2SE 1.4.2 can use the OJDM API consisting
of the JDM standard API and Oracle-specific JDM API extensions. The
Oracle extensions are discussed further in Section 16.1.5.

OJDM maps the JDM named objects, such as mining model, task,
settings objects, and test metrics, to database objects as shown in
Table 16-1. The JDM mining model is mapped to the ODM mining
model database object. Mining tasks are mapped to database sched-
uler jobs that can be executed either synchronously or asynchro-
nously. Settings, cost matrix, and test metrics objects are mapped to

16.1 Oracle Data Mining 423

database tables. By mapping JDM objects to database objects, OJDM
requires no additional installation steps, such as additional schemas
or server-side libraries. In addition, the database administrator
(DBA) tasks for maintenance, such as backup and recovery, import/
export of models, and the migration of JDM objects during software
upgrade, are greatly simplified.

Java/Web

Applications

JDM

Standard API

Oracle JDM

API Extensions

Oracle Internal JDM

Implementation

JDBC

Oracle Database

Oracle Data Mining

Figure 16-1 Oracle Java Data Mining architecture.

Table 16-1 Oracle Java Data Mining named objects mapping to database object

JDM Named Object Oracle Database Object

Mining Model Mining Model object in the database

Build Settings Table that contains the settings details

Cost Matrix Table that contains the cost details

Task Database job created using the DBMS_SCHEDULER [ORADBADMIN]

Test Metrics Table that contains the test metrics details

Apply Settings Stored as transient object with the Connection

PhysicalDataSet Stored as transient object with the Connection

LogicalData OJDM API does not support this as database views provide JDM logical data
capabilities.

-

424 Chapter 16 Vendor Implementations

16.1.3 Oracle JDM Capabilities

OJDM supports all the JDM 1.1 mining functions: classification,
regression, attribute importance, association, and clustering. As an
Oracle extension, OJDM also supports feature extraction and one-
class classifier, also known as the mining function anomaly detection.
In OJDM, applications can optionally select algorithms and their
settings. Table 16-2 shows the OJDM supported functions, algo-
rithms, and tasks. OJDM also supports export and import tasks for
exporting and importing mining models in the Oracle Database
format. OJDM allows data mining users to specify function level
settings and have the database use a default algorithm.

Oracle-specific functions and algorithms

Table 16-2 Oracle Java Data Mining supported functions, algorithms,
and function-level tasks

Supported function Supported algorithms Supported function level tasks

Classification Naïve Bayes (NB) BuildTask

Support Vector Machine (SVM) ClassificationTestTask

Decision Tree ClassificationTestMetricsTask

Adaptive Bayes Network (ABN)* DataSetApplyTask
RecordApplyTask

Regression Support Vector Machine (SVM) BuildTask
RegressionTestTask
RegressionTestMetricsTask
DataSetApplyTask
RecordApplyTask

Attribute importance Minimum Description Length* BuildTask

Association Apriori* BuildTask

Clustering k-Means BuildTask

Orthogonal Partitioning (a.k.a. O-Cluster)* DataSetApplyTask
RecordApplyTask

Feature extraction Non-Negative Matrix Factorization
(NMF)*

BuildTask
DataSetApplyTask
RecordApplyTask

One-class classifier
(a.k.a. Anomaly
detection)

Support Vector Machine BuildTask
DataSetApplyTask
RecordApplyTask

16.1 Oracle Data Mining 425

To simplify API usage, OJDM infers logical data settings from
the data, and as such does not support the optional logical data
specification. Recall that logical data provides the renaming of the
physical attributes, attribute type specification, and attribute prop-
erties. In OJDM, attribute type is determined by the data type of the
table column: VARCHAR2 and CHAR data type columns are
inferred to be categorical attributes and NUMBER, FLOAT, and
INTEGER data type columns are inferred to be numerical
attributes. To change attribute type or rename attributes, a database
view definition can be used. For a more detailed list of supported
capabilities refer to Oracle Data Mining Application Developer’s Guide
[ORADMAPPDOC 2006].

16.1.4 Oracle JDM Extensions

Oracle Data Mining has introduced several extensions to the JDM
standard API, as illustrated in Table 16-3. Package oracle.dmt.jdm is
the base package for the Oracle extensions to JDM. OJDM follows the
JDM standard framework for extensions. For example, OJDM intro-
duces the feature extraction mining function, where a feature represents
a combination of attributes that captures important characteristics of
the data. (See Chapter 18 for a brief description of feature extraction in
general, and Oracle Data Mining Concepts [ORADMCONCEPTS 2006]
for further details.)

Using MiningFunction.addExtension and MiningAlgorithm.addEx-
tension methods OJDM adds Oracle-specific mining functions and
algorithms, so that applications can view the Oracle-specific func-
tions from the standard interface. Feature extraction and other OJDM
extension classes/interfaces extend the relevant JDM base classes/
interfaces to be consistent with the standard. For more details, refer
to Oracle Data Mining Java API Reference [ORAJDMDOC 2006].

OJDM also provides interfaces for several of the data mining
transformations (e.g., binning, normalization, clipping, and text).
OJDM defines the API under the oracle.dmt.jdm.transform package.
OJDM also introduces new tasks to more fully automate the data
mining process. The high-level predict and explain tasks automate the
data mining process by hiding the complexities of attribute filtering,
data preparation, and the model build, test, and apply.

426 Chapter 16 Vendor Implementations

Table 16-3 Oracle Java Data Mining extensions

OJDM extension class/package Description

oracle.dmt.jdm.resource

OraConnectionFactory

This class provides an easy way to create Oracle-specific
DME ConnectionFactory objects. It is particularly useful
when applications do not have JNDI access.

oracle.dmt.jdm.featureextraction
OraFeatureExtractionSettings
OraFeatureExtractionModel

OraFeature
OraFeatureExtractionApplySettings

oracle.dmt.jdm.algorithm.nmf

OraNMFAlgorithmSettings

These classes and packages are used to define the feature
extraction function and the Non-Negative Matrix
Factorization (NMF) algorithm. OraFeatureExtraction-
Settings is the build settings used to specify the maximum
number of features that should be derived by the model.
OraNMFAlgorithmSettings specifies NMF algorithm
specific settings. OraFeatureExtractionModel and
OraFeature classes represent the model that defines the
extracted features. OraFeatureExtractionApply
Settings is used to define the apply settings for feature
extraction.

oracle.dmt.jdm.algorithm.abn
OraABNSettings

oracle.dmt.jdm.modeldetails.abn
OraABNModelDetail

These classes and packages are used to define Oracle
proprietary Adaptive Bayes Network (ABN) algorithm
settings and associated model details.

oracle.dmt.jdm.algorithm.ocluster
OraOClusterSettings

This package and class are used to define Orthogonal
Partitioning Cluster (O-Cluster) algorithm settings. The
JDM standard defined generic clustering model is sufficient
to represent O-Cluster model.

oracle.dmt.jdm.task

OraPredictTask
OraExplainTask

OJDM offers these non-JDM tasks that automate data
mining processes in the database and produce final
output. OraPredictTask is used to predict the target
attribute of the input table/view. This task automates the
model build, test, and apply operations and produces the
final predictions as an output table. OraExplainTask is
used to explain the specified target attribute of the input
table/view. This task produces an output table that
contains the attribute importance and rank. These two tasks
produce reasonable quality results with minimum effort.

oracle.dmt.jdm.transform
oracle.dmt.jdm.transform.binning

oracle.dmt.jdm.transform.clipping
oracle.dmt.jdm.transform.normalize
oracle.dmt.jdm.transform.text

These packages are used to define the transformation-
related classes. OJDM defines some of the common data
mining data transformations, such as binning/discretiza-
tion, clipping/outlier handling, normalization. Text data
transformations convert text data in the datatypes such as
CLOB to a nested table structure that can be mined using
OJDM.

16.1 Oracle Data Mining 427

16.1.5 DME URI and Data URI

The JDM standard allows users to specify a uniform resource
identifier (URI) string to represent the DME location and input/
output dataset location. Since JDM implementations may differ in
the URI syntax, we describe OJDM-specific URI syntax.

To connect to an Oracle DME, OJDM allows any JDBC-compatible
URI specification to connect to the database. For example, to connect
to the Oracle DME using the JDBC thin driver, the URI can be
jdbc:oracle:thin:@host:port:sid, where host is the machine name, port is
the port at which the database listener is running, and sid is the Oracle
system identifier that is by default ORCL. Different types of DME
URIs allowed in Oracle are listed in Table 16-4. For more details
about these URIs, refer to Oracle Database JDBC Developer’s Guide and
Reference [ORAJDBC 2006].

Table 16-4 Oracle JDBC drivers and associated DME URI syntax

OJDBC driver type DME URI

JDBC thin driver jdbc:oracle:thin:@host:port:sid or service_name

JDBC OCI driver jdbc:oracle:oci:@host:port:sid or service_name, or

jdbc:orcle:oci:@(DESCRIPTION�(ADDRESS�(PROTOCOL�TCP)
(HOST�hostname)(PORT�portnumber))(CONNECT_DATA�
(SERVICE_NAME�service_name)))

Oracle JDBC Internal driver jdbc:oracle:kprb:

Listing 16-1 Connect to OJDM DME

//Create OraConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory �

 oracle.dmt.jdm.resource.OraConnectionFactory();

//Create ConnectionSpec
ConnectionSpec connSpec � connFactory.getConnectionSpec();
connSpec.setURI("jdbc:oracle:thin:@host:port:sid");
connSpec.setName("user");
connSpec.setPassword("password");

//Create DME Connection
javax.datamining.resource.Connection dmeConn �

 connFactory.getConnection(connSpec);

428 Chapter 16 Vendor Implementations

Listing 16-1 illustrates how to connect to the OJDM DME using
the JDBC thin driver. The OJDM connection logs in as a database
schema user who can access the tables and views in their user
schema and other user tables/views to which they have access.

Data URIs in OJDM are represented as [schemaname.]tablename.
Datasets that are in the user’s schema can be referred to simply by
their tablename and other users’ datasets can be referred to by schema-
name.tablename. Listing 16-2 illustrates the code that uses data URI to
create physical dataset objects.

16.1.6 Getting Started with OJDM

OJDM is installed with the data mining option of Oracle Database
Enterprise Edition 10g Release 2. The software can be downloaded from
the Oracle Technology Network (OTN) and installed by following the
instructions in the Oracle Data Mining Administrator’s Guide [ORADM-
ADMIN 2006]. In addition, Oracle provides the OJDM plug-in (exten-
sion) for Oracle JDeveloper, which adds the “Oracle Java Data Mining“
library and copies the demo programs to the Oracle JDeveloper
environment. For more details about this extension refer to [JDE-
VOJDM 2006]. The OJDM sample programs use the sample schema
tables that can be installed with the database. For more details about
the installation of sample schema for data mining, refer to the Oracle
Data Mining Administrator’s Guide [ORADMADMIN 2006].

16.1.7 Other Oracle Data Mining APIs

In addition to the OJDM API, Oracle Data Mining provides an
SQL-based API that can be used to develop database applications.
This section provides a high-level overview of these APIs and refer-
ences for further reading. Table 16-5 lists the PL/SQL packages and
SQL functions supported in the Oracle Database. OJDM-created
models are interoperable with the PL/SQL and SQL APIs. For exam-
ple, a model created by OJDM can be used to make predictions using
the SQL prediction operator. This allows application developers to use

Listing 16-2 Accessing data in OJDM

//Create physical dataset that represents 'customer' table in the users schema
PhysicalDataSet pds � pdsFactory.create("customer", false);

//Create physical dataset that represents 'products' table in the user 'bob'
schema PhysicalDataSet pds � pdsFactory.create("bob.products", false);

16.1 Oracle Data Mining 429

data mining capabilities through OJDM or the SQL-based interfaces.
SQL operators in particular can enable complex data mining deploy-
ment scenarios, such as scoring multiple models in a single query or
immediately combining the results of mining with other database
SQL features involving spatial data and text analysis. For more
details about these APIs, refer to [ORADMAPPDOC 2006].

Table 16-5 Oracle Data Mining PL/SQL packages and SQL functions

PL/SQL package Description

DBMS_DATA_MINING Provides the PL/SQL procedures and functions that can be used to build,
apply, and test mining models.

DBMS_DATA_MINING_TR
ANSFORM

Provides the PL/SQL transformation procedures for binning, clipping,
normalization, and missing value handling.

DBMS_PREDICTIVE_ANA
LYTICS

Provides the predict and explain procedures that automate complex data
mining processes and produces final results.

SQL functions Description

prediction

prediction_probability
prediction_cost
prediction_set

prediction_details

These prediction operators are used to compute prediction-related values
using classification and regression models built using either OJDM or
DBMS_DATA_MINING. The prediction operator returns the top
prediction value of a case. The prediction_probablity operator returns
the probability value for the top prediction. The prediction_cost
operator returns the cost value of the top prediction if the cost matrix is
specified at the model build. The prediction_set operator is used with
classification models to return the collection of prediction, probability
and cost values for all the class values of the target attribute in the model
build data. The prediction_details operator returns the XML
representation of the model details that describes how the prediction has
been made for each case.

cluster_id
cluster_probability
cluster_set

These cluster operators are used to assign clusters for each case using
the clustering models build using OJDM or DBMS_DATA_MINING.
The cluster_id operator returns the case’s top cluster id and
cluster_probability operator returns the probability associated with
the top cluster. The cluster_set operator returns the collection of cluster
ids and their associated probabilities for all clusters in the model.

feature_id
feature_value

feature_set

These feature operators are used to find the feature associated with the
case using the feature extraction model built using OJDM or
DBMS_DATA_MINING. The feature_id operator returns the case’s
feature id that has highest coefficient value. The feature_value operator
returns the coefficient value associated with the top feature for the case.
The feature_set operator returns the collection of feature id and
associated coefficient value for all features in the model.

430 Chapter 16 Vendor Implementations

16.1.8 Data Mining Graphical Interface Using OJDM

Oracle 10.2 Data Miner [ODMr102 2006] is a data mining workbench
developed using OJDM and other in-database functionalities. Data
Miner provides wizard- and activity-based guided data mining to
allow a business analyst who may not be an expert data miner to pro-
duce good results quickly. For data mining experts, Data Miner also
exposes interfaces for data preparation, fine-tuning algorithm set-
tings, and viewing model details.

Figure 16-2 illustrates a few of the graphical interfaces available in
Data Miner. The top left shows the main window with the menu to
launch the guided analytics wizard. The top right shows the receiver
operating characteristics (ROC) chart in the classification model test

Figure 16-2 Oracle Data Miner (ODMr) screen capture.

16.2 KXEN (Knowledge Extraction Engines) 431

metrics viewer. The bottom left shows the decision tree viewer
enabling a structured view of the tree. The bottom right shows the
data summary window depicting the distribution of AGE attribute
values. Oracle Data Miner is an example where the JDM API has
been used to build data mining tools.

16.2 KXEN (Knowledge Extraction Engines)

16.2.1 KXEN Data Mining Activity

KXEN’s mission is to provide the technology to embed advanced
analytics into existing enterprise applications. The KXEN Analytic
Framework™ is a suite of predictive and descriptive modeling
components that create robust analytic models faster and easier than
in classical data mining environments.

KXEN believes that data mining should be a key element of
corporate performance management. Initiatives such as campaign
optimization, cross-sell, fraud detection, or risk assessment require
extracting information from corporate data and turning it into
actionable knowledge that can be used to predict and optimize busi-
ness performance. Over time, the techniques used for this purpose
have been assigned different names: statistics, data mining, machine
learning, and lately, predictive analytics. New scientific discoveries,
such as those of Vladimir Vapnik [Vapnik 1999], contributed to the
evolution and refinement of these techniques, opening new doors
toward efficient automation. Data mining was once the domain of
specialists deploying their artful skills, but today the business of pre-
dictive modeling is gaining ubiquity with the emergence of modeling
factories and time and productivity are now key issues.

Since 1998, KXEN has been a provider of data mining functions in
all formats that are suited for easy integration, such as C++ library,
CORBA server, COM/DCOM libraries and servers, and Java wrap-
pers. KXEN provides its customers with the capability to set up their
own factories for predictive and descriptive modeling. Their
business units use the output of these factories to drive business
performance throughout the company.

16.2.2 KXEN Position on JDM

KXEN joined the JDM standards group because the concepts that
were beginning to emerge in this vendor group in 2002 were close

432 Chapter 16 Vendor Implementations

to the architecture decisions KXEN made in 1998, when designing
the KXEN Analytic Framework™. Besides the participation in devel-
oping the standard definition, one of the main contributions of
KXEN has been the Reference Implementation (RI). The RI was used
within the JSR to test the Technology Compatibility Kit (TCK) and
can be used by integrators as a mock-up to test their developments.

KXEN was particularly attracted by the fact that JDM was one of
the first attempts to rationalize a level of abstraction for data mining
functions instead of providing a laundry list of known algorithms.
That level of abstraction allows programmers to build applications
and solutions based on best practices, without the constraints of spe-
cific algorithms’ limitations. For KXEN, JDM is another way to
provide its technology in a standardized form, which makes it easier
to compare performance of data mining implementations at the same
functional level or cost.

Another goal of KXEN was to apply the same standard to Web
services because it truly opens the door to integrating data mining
techniques within business workflow environments. Creating a set of
Web services is not technically very difficult. The real problem is to
federate a services community, made of both consumers and provid-
ers. KXEN believes that JDM Web services, an open standard, will
open new opportunities for the proliferation of data mining within
business environments across the enterprise. Since late 2005, KXEN
provides KJDM as KXEN’s JDM 1.1 implementation.

16.2.3 KXEN JDM Implementation Architecture

KJDM (KXEN Java Data Mining Implementation) is a commercial
implementation of JDM built on top of KXEN technology. Techni-
cally, it can be seen as a Java “wrapper” on top of KXEN Analytic
Framework. All data access and computations are done in C++ for
efficiency and memory allocation purposes, but the Java wrappers
give all the power of Enterprise wide application development.

KJDM can be switched at runtime between two architectures:

• In-process computing through a Java/JNI/C++ interface,
allowing lightweight data mining embedding, or

• Out-process integration through CORBA.

The switch between the two architectures is done through the URI
specified for the connection.

16.2 KXEN (Knowledge Extraction Engines) 433

Figure 16-3(a) represents both the Java application and the JDM
implementation in the same process. Figure 16-3(b) represents the
Java application and the DME implementation in two different pro-
cesses, which can be on the same machine or on different machines.
For each case, the software architect has the choice of using an MOR
accessible only on the machine, or an MOR residing on another
environment: In this latter case, the data contained in the MOR will
be accessed through open database connectivity (ODBC) by the DME
itself. Figure 16-3(b) highlights a three-tier architecture.

16.2.4 KXEN JDM Capabilities

KXEN JDM (KJDM) supports all the JDM 1.1 mining functions:
classification, regression, attribute importance, association, and clustering.
There are some key features of KXEN JDM implementations:

• KJDM does not implement any specific algorithm: Java pro-
grammers can stay at the mining function level without any

DME

MOR
MOR

DME

JDM API

Java Application

Java Application

JDM API

(a) (b)

Figure 16-3 KJDM choices of architectures.

434 Chapter 16 Vendor Implementations

required knowledge about any algorithm implementation
details.

• KJDM functions work directly on unprepared data, which is
one of the key elements explaining the productivity
improvement obtained by using KXEN. No need exists for
specific processing of missing values, outliers, numeric,
ordinal, or even categorical variables with high cardinality,
such as ZIP code.

• KJDM classification, regression, and clustering functions
work in very high-dimensional space without any need of a
priori attribute selection: it is not uncommon to build classi-
fication models on 2,000 attributes for CRM applications
with very good performance.

• KJDM can export classification, regression, and clustering
models into a wide range of languages for optimized use of
external scoring engines.

More information can be found at [KJDM 2006].

Table 16-6 shows the KJDM-supported functions and tasks. KJDM
also supports export and import tasks for exporting and importing
mining models in the KXEN proprietary format.

In KJDM, all named objects can be persisted in the MOR except
taxonomy. Since persistence can be heavy on the management of the
persisted objects, it can be useful to keep some classes of objects tran-
sient. KJDM enables this, and the process can be fine-tuned through a
configuration file.

The application designer can use specific parameters in the URI
specification to indicate the location of the MOR, as shown in the
next section.

Logical description can be used to shield the physical descrip-
tions from the models in KJDM: all data mining functions can use
logical data and logical attributes, and can be used on discrete,
bounded, ordinal, unprepared, numerical, and categorical
attributes. Even if attributes are declared to be prepared, KXEN will
process them.

In KJDM, there is no option for “outlier treatment” because
KXEN proprietary algorithms are designed to resist perturbations
due to outliers in the build datasets. In KJDM, there also is no
option for “missing value treatment”. Missing values are always

16.2 KXEN (Knowledge Extraction Engines) 435

processed in KXEN as if “missing” was a specific category and then
encoded properly.

16.2.5 DME URI and Data URI Specifications

The only mechanism provided by KJDM to create a connection
toward a DME is through a specification provided as a URI. Java 1.4
includes an implementation of URI representation and parsing in the
package java.net that KXEN uses internally in KJDM. KXEN uses a
hierarchical URI structure of the form:

[scheme:][//authority][path][?query][#fragment].

The KXEN URI for DME connections accepts only two schemes:
kxjni to deal with in-process integration and kxcorba to deal with
out-of-process integration. The KXEN URI uses the query section of

Table 16-6 KXEN Java Data Mining supported functions, and function level tasks

Supported function Supported function level tasks

Classification BuildTask
ClassificationTestTask
ClassificationTestMetricsTask
DataSetApplyTask
RecordApplyTask
ComputeStatisticsTask
ExportTask

Regression BuildTask
RegressionTestTask
RegressionTestMetricsTask
DataSetApplyTask
RecordApplyTask
ComputeStatisticsTask
ExportTask

Attribute Importance BuildTask
ComputeStatisticsTask

Association BuildTask
ComputeStatisticsTask

Clustering BuildTask
DataSetApplyTask
RecordApplyTask
ComputeStatisticsTask
ExportTask

436 Chapter 16 Vendor Implementations

the URI to transfer initial parameter settings to KXEN DME. The
possible query keys are:

• Lang: the language used to forward error messages to the
user (default is en).

• Country: the country used to localize error messages and
reports to the user (default is US).

• MORClass: < Kxen.FileStore | Kxen.ODBCStore >. This is
the KXEN class name of the repository; it can be either
stored into files within directories or tables within an ODBC
source (default is Kxen.FileStore).

• MORName: <Directory path containing MOR files |
ODBC source name containing the MOR tables>: The
default is “/temp”.

• MORLogin: login to be used to open the MOR (default is) “”.

• MORPwd: password to be used to open the MOR (default
is “”).

Table 16-7 provides some examples of URI to provide at connection
creation time for in-process and out-of-process engines.

The first example in the table means to connect on the local
machine to KXEN Analytic Framework through Java Native Inter-
face, with the license file contained on the current directory “.” called
KxJDM.cfg (license files contain keys that activate KXEN compo-
nents). The language and country are then specified: these settings
are used to localize the error messages. Because the MOR is not spec-
ified, the default MOR will be used: temporary files on /tmp.

The second example in Table 16-7 shows how to connect to the
CORBA service referenced as MarketingServer on the name service
accessed through port 12345 on the machine named apollon. This
DME will be using a MOR accessed through the ODBC source called
MyBase using the default login for this ODBC source.

Listing 16-3 shows a typical connection creation sequence of KJDM.

Table 16-7 KXEN DME URI syntax

Architecture DME URI

In-process integration kxjni://localhost/./KxJDM.cfg?lang�en&country�US

Out-process integration kxcorba://apollon:12345/MarketingServer?MORClass�Kxen.
ODBCStore&MORName�MyBase

16.2 KXEN (Knowledge Extraction Engines) 437

In KJDM, the URI syntax to access datasets allows access to either
files or objects contained in databases. KXEN URI for dataset loca-
tions accepts only two schemes: file and odbc. Note that we have
specified ODBC and not JDBC. This is because KXEN engines are
written in C++ and access data sources through ODBC.

When “file” is selected the following structure is used:

• Host: <field ignored>

• Port: <field ignored>

• Path: <complete path to file>

This is an example:

When “odbc” is selected, the following structure is used:

• Host: <field ignored>

• Port: <field ignored>

• Path: <odbc data source/table name or select statement>

These are some examples of valid KJDM URI:

Listing 16-3 Connect to KJDM DME

//Create OraConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory �

 com.kxen.KxJDMImpl.javax.datamining.resource.ConnectionFactoryImpl();
//Create ConnectionSpec
ConnectionSpec connSpec � connFactory.getConnectionSpec();
connSpec.setURI("kxjni://localhost/./KxJDM.cfg?lang�en&country�US");
connSpec.setName("user");
connSpec.setPassword("password");
//Create DME Connection
javax.datamining.resource.Connection dmeConn �

 connFactory.getConnection(connSpec);

file:///r:temp/mydata.csv

odbc://kxen_Oracle/select * from TableName?user�foo&password�foo
odbc://kxen_SqlServer/table1?user�foo&password�foo

438 Chapter 16 Vendor Implementations

In the first KJDM URI example, a “select” statement can be
directly used as a dataset to build or apply models, or compute
statistics. This feature is particularly interesting when, for example,
there is a need to filter lines or join information from different tables.
The second example shows direct access to a table or a view prepared
in advance. The user and password can be passed directly in the URI,
but could also be assigned as default values in the odbc.ini parameter
file to cope with some security issues. The access to all major data-
bases from Windows and UNIX platforms is supported.

A specific extension can be associated with KJDM to read also
proprietary formats of most commercial data mining vendors.

16.2.6 KXEN Extensions

The only extension that KXEN has implemented concerns the
available languages in which classification, regression, and cluster-
ing models can be exported. The model resulting from an ExportTask
execution will work on the data provided in the same format as for
the BuildTask (which means unprepared data).

The possible exported formats are listed here:

• XML

• JAVA

• C

• VB

• PMML2_1

• PMML3_0

• SQL for MySQL

• SQL optimized for SQL Server

• SQL optimized for Teradata

• SQL for IBM DB2 and Oracle

• AWK

• SAS

• UDF for Oracle

• UDF for IBM DB2

• UDF for SQL Server

• UDF for Teradata

16.2 KXEN (Knowledge Extraction Engines) 439

It should be noted that all models created through KJDM can be
exported to UDF (user defined functions), which allows use of a
database as a scoring engine without data transfer. Models exported
in such a way are seen as native database functions and can be used
as such in any SQL statements.

16.2.7 KXEN Web Services Implementation

KJDM provides a Web services implementation that has been
developed with Apache-Axis. It can be safely installed on any J2EE
server framework such as Apache Tomcat. KJDM Web services
implements all Web services interface defined by JDM 1.1. The KJDM
Web services architecture is shown in Figure 16-4.

KJDM Web services implementation is provided as a war file,
KxServices.war, to be deployed under a J2EE server. It implements all
JDM Web services: saveObject, removeObject, renameObject, execute-
Task, terminateTask, getExecutionStatus, getObject, listContents, getSub-
Objects, getCapabilities, and verifyObject.

KJDM Web services can be configured through a configuration file
in which are specified the ConnectionClass, the ConnectionURI, the
DME user name, and password; this implementation could be con-
nected to any valid JDM implementation.

J2EE
ServerWeb Services

Application

SOAP

Listener

JDM API

Figure 16-4 KJDM Web services architecture.

440 Chapter 16 Vendor Implementations

16.3 Guidelines for New Implementers

Guidelines for implementers1 in developing a JDM implementation
are described in Section 6 of the JDM specification. This section
focuses on standards conformance, both in terms of a minimum JDM
implementation and vendor extensions, and using the TCK.

16.3.1 Standards Conformance

Conformance to the JDM standard is easier than for many other
standards due to JDM’s á là carte capabilities mechanism. This mech-
anism allows implementing mainly the features a given product
already supports. The expert group designed JDM with this in mind
to lower the barrier to entry for new implementations. For example, a
data mining vendor with a single decision tree algorithm may decide
to offer only this algorithm as part of the classification mining
function.

Of course, a JDM API implementation is written in Java. How-
ever, the DME itself need not be written in Java. As noted earlier,
OJDM is a Java wrapper on top of data mining functions accessed
through SQL, and KJDM is a Java wrapper on top of a C++ or
CORBA library. The effort required to implement a Java wrapper on
top of existing engines can be minimal: Implementers are encour-
aged to start from their existing product lines and expose them
through JDM to minimize development effort.

The notion of capabilities allows implementers to adopt a phased
approach to JDM implementation, perhaps offering a first version for
a reduced feature set and then expanding the feature set. Implement-
ers can shape their JDM implementation using the capabilities and
the extension mechanism.

All JDM implementations share some core JDM functionality. The
next section describes a “minimal” JDM implementation.

1 The term “implementers” includes both vendors of data mining tools and
technology, and non-vendors. Non-vendors may include university students,
researchers, or companies with internal data mining capabilities.

16.3 Guidelines for New Implementers 441

The Minimum Implementation
Because JDM is structured into packages, the implementer decides
which packages to include. The packages required for all implemen-
tations are listed in the specification document:

• Javax.datamining must implement Collection, Verification-
Report, Exception, and ExecutionHandle classes.

• Javax.datamining.base must implement NamedObject, Mining-
Object, BuildSettings, Models, Tasks, and TestMetrics classes.
AlgorithmSettings and AttributeStatisticSet can be left
optional depending on the capabilities. Persistence can be
supported for a given list of mining objects, so no extra
effort is required from the vendor on required persistence.

• Javax.datamining.resource must implement the Connection-
Factory, ConnectionSpec, and Connection interfaces. This con-
nection contains the needed information about the physical
connection to the DME, as well as the information related to
the working session.

• Javax.datamining.data must implement the PhysicalDataSet,
PhysicalDataRecord, and PhysicalAttribute with their associ-
ated factories, and ModelSignature, SignatureAttribute, and
Taxonomy interfaces. LogicalData and LogicalAttribute can be
left optional depending on the capabilities.

• Javax.datamining.task must implement the tasks that will be
supported. The minimum implementation is to support
only synchronous execution of the supported tasks, which
would require minimum implementation effort in most
situations.

• Javax.datamining.statistics must be implemented if the
implementation supports the build statistics tasks.

JDM also defines a scoring engine conformance option that allows
implementing only those JDM features required for scoring data (i.e.,
invoking model apply behavior). Details are provided in the JDM
specification [JDM II 2006].

Vendor Extensions
Data mining implementers may have variations of the JDM stan-
dard functions/algorithms as well as new functions/algorithms
that are not defined in the current standard. JDM is designed to

442 Chapter 16 Vendor Implementations

enable extending the existing JDM functionality and adding new
functionality. For example, a data mining vendor who provides
non-JDM functionality, such as variations of the decision tree algo-
rithm with additional settings, time series function, or a new genetic
algorithm for regression, can extend the existing JDM interfaces by
adding new interfaces/classes to support that functionality.

As discussed in Chapter 8, JDM packages are organized by mining
function and mining algorithm. Settings interfaces are defined within
each function and algorithm package. JDM implementations can add
new functions and algorithms by defining new packages and includ-
ing interfaces that inherit from the appropriate base interfaces. For
example, a new time series mining function can be defined in a new
package com.xyzMiner.jdm.timeseries with the time series build settings
inheriting from the javax.datamining.base.BuildSettings interface.

When defining a new mining function or other feature, the appro-
priate enumeration must be updated. For example the MiningFunc-
tion enumeration, which lists the functions supported in the JDM
standard, must be updated to include and entry for time series. To
add vendor-specific extension enumerations to the standard exten-
sions, JDM provides a static method called addExtension(String enum)
in all enumerations.

16.3.2 Using the TCK

To validate that a given JDM implementation conforms to the stan-
dard, the implementer executes the Technology Compatibility Kit
(TCK) on the new implementation. The TCK is available at the JDM
Web site (http://www.jcp.org/en/jsr/detail?id�73). (From the latest
Maintenance Release, follow the download instructions for “JSR073
for Implementation.” The download will contain the latest specifica-
tion document and the latest versions of the TCK and RI.)

This TCK includes a configuration file that the implementer mod-
ifies to conform to implementation-specific URI formats for datasets.
It also includes Java package names where the TCK will find the
proper connection factory implementations. The TCK runs a series of
tests depending on the capabilities declared by the DME implemen-
tation and generates an HTML file containing a compatibility report.

Users of the TCK should realize that it is not a full unitary test
suite. For example, the TCK does not validate that individual compu-
tations are correct, such as the standard deviation of a specific
attribute returned by a ComputeStatistics task. It does not test the results

16.3 Guidelines for New Implementers 443

of algorithm implementations, such as the correct number of rules
for a given support and confidence level on a given dataset. Further,
it does not test negative cases, that is, those involving error conditions.
For example, if a vendor claims not to support a given capability, the
DME implementation should return an UnsupportedFeatureException
if a feature associated with this capability is invoked by the caller.

To run the TCK tests, you will need the following jar files:

• jdm.jar: the jar containing interfaces defined in JDM.

• junit.jar: the TCK is based on the JUnit unitary test frame-
work [JUNIT 2006].

• jdmTCK1_1_0.jar: the jar containing the test scenarios to be
run on the implementation.

• jdmTCKFramework1_1_0.jar: a jar containing utilities to
start the test process.

The four jar files must be in the CLASSPATH of your runtime
environment to be able to run the TCK. Then, assuming that the jar
file containing your implementation is called MyJDMImpl.jar, you
will have to perform the following operations:

• Create a test directory.

• Under the test directory, create (1) a libs directory in which
the five jar files will be stored, (2) a config directory in
which all eight configuration files provided with the down-
load will be copied, and (3) a reports directory in which the
TCK will produce the reports.

• Edit the configuration files. Most of them contain specifica-
tions for datasets that are expressed using URIs; thus, they
must be edited because the URI syntax is vendor dependent
and must point to valid datasets in the test environment.
The master configuration file, called tckconfig.pro, points to
six others, and a connection.pro that contains the class path
used by the test framework to point to the JDM implemen-
tation connection factory.

Then, go to the test directory and launch the following command:

java.exe -classpath libs\jdmTCKFramework1_1_0.jar;libs\jdmTCK1_1_0.jar;
libs\jdm.jar;libs\junit.jar;libs\MyJDMImpl.jarjavax.datamining.testSuites.
JDMTCK/config/tckconfig.pro

444 Chapter 16 Vendor Implementations

This will generate reports in the reports directory. The HTML file
called TCKReport.html is the main report. CapabilitySummary.html is a
summary of the capabilities of your implementation, and specific
error messages, if any, will be in the XML files associated with the ten
remaining test suites.

Figure 16-5 shows a screen shot of the beginning of the report gen-
erated when running the TCK on KJDM.

As shown in Figure 16-5, there is one section for each data mining
function and each supported algorithm. When there is a problem, an
error report is generated. This report contains descriptions of each
problem collated in an XML file. Figure 16-6 includes an example of a
problem found by the TCK related to clustering.

In the error report shown in Figure 16-6, the problem is a wrong
assertion. The TCK is based on JUnit and uses one of two problem

Figure 16-5 Screen shot of the beginning of the report
generated by TCK.

16.3 Guidelines for New Implementers 445

report mechanisms: (1) some problems are due to the fact that the
system does not behave according to its declared capabilities and
these errors are reported as wrong assertions, and (2) some errors are
due to processes finishing as exceptions and are reported as errors.

When there is a problem for a specific test suite, the test suite can
be launched with a graphical interface using the following command
(this example involves the regression test suite):

Problems that occur during these tests fall into one of two
categories:

1. You identify the problem in your configuration or imple-
mentation. You may correct the problem and rerun the TCK
for further validation.

2. You think that the problem comes from the TCK itself. For
example, the TCK omits a check for a given capability prior
to making a specific test related to this capability. In this case,
you may want to communicate this to the TCK designers and
implementers. To do this, go to https://datamining.dev.java.net
and join the discussion forums (under the “Project Tools”
section). One forum is dedicated to “TCK questions and
issues.”

 java.exe -classpath libs\jdmTCKFramework1_1_0.jar;libs\jdmTCK1_1_0.jar;
 libs\jdm.jar;libs\junit.jar;libs\MyJDMImpl.jar javax.datamining.testSuites.
 RegressionTestSuite -ga ./config/connection.pro

Figure 16-6 Screenshot of an error report generated by TCK.

446 Chapter 16 Vendor Implementations

Once you are satisfied with the global assessment of the TCK, you
may share this report with the JDM expert group, together with the
capabilities summary.

16.4 Process for New JDM Users

To use JDM, integrators will need a JDM implementation. Although
the RI is provided as part of the JDM final specification, the RI is not
a real JDM implementation because it does not implement any com-
putations based on the data. The RI serves as a mock-up implementa-
tion to test the TCK and highlight API design issues. For example,
when asked for a standard deviation of a numerical variable, the RI
will always answer 3.4; when asked for a decision tree, it will always
return the same tree structure with three nodes. The RI was
purposely designed to test a large number of capabilities declared for
tests that needed to be implemented within the TCK. Users new to
JDM will want to contact JDM vendors to get real evaluation
versions.

16.5 Summary

This chapter presented two commercial implementations of JDM and
their specific features. These implementations correspond to good
examples of implementation of in-database DMEs (Oracle) and out-
of-database DMEs (KXEN). The chapter also provided some guid-
ance for implementers new to JDM and described the JDM TCK
framework.

References

[JDM11 2006] http://www.jcp.org/en/jsr/detail?id�73.

[JDEVOJDM 2006] http://www.oracle.com/technology/products/bi/odm/
odm_jdev_extension.html.

[JUNIT 2006] http://www.junit.org/index.htm.

[KJDM 2006] http://www.kxen.com/products/analytic_framework/ apis.php.

[ORADMAPPDOC 2006] Oracle® Data Mining Application Developers
Guide, 10g Release 2, http://www.oracle.com/pls/db102/portal.portal_db?
selected�6.

16.5 Summary 447

[ORADBADMIN 2006] Oracle® Database Administrator’s Guide, 10g
Release 2, http://www.oracle.com/pls/db102/portal.portal_db?selected�4.

[ORADMADMIN 2006] Oracle® Data Mining Administrator’s Guide, 10g
Release 2, http://www.oracle.com/pls/db102/portal.portal_db?selected�6.

[ORADMCONCEPTS 2006] Oracle® Data Mining Concepts, 10g Release 2,
http://www.oracle.com/pls/db102/portal.portal_db?selected�6.

[ORAJDBC 2006] Oracle® Database JDBC Developer’s Guide and Refer-
ence, 10g Release 2, http://www.oracle.com/pls/db102/portal.portal_db?
selected�5.

[ORAJDMDOC 2006] Oracle Data Mining Java API Reference, 10g
Release 2, http://www.oracle.com/pls/db102/portal.portal_db?selected�6.

[ODMr102 2006] Oracle® Data Miner, 10g Release 2, http://www.oracle.
com/technology/products/bi/odm/odminer.html.

[Vapnik 1999] Vladimir N. Vapnik, The Nature of Statistical Learning Theory,
2nd edition, New York: Springer, 1999.

Part IV

Wrapping Up

451

Chapter

17
Evolution of Data

Mining Standards

The reason why the universe is eternal is that it does not live for itself;
 it gives life to others as it transforms.

—Lao Tzu (600–531 B.C.)

Standards are not an end in themselves, but a means to an end. They
often simplify the lives of individuals and, at the same time, both
simplify and complicate the lives of vendors. A successful standard
needs to grow and be adopted; it is through this process that the
community reaps its benefits.

This chapter briefly explores several data mining standards1: what
they are, who is defining them, their basic process, and any future
directions. We then discuss the Java Community Process, by which
Java Data Mining is derived, and briefly comment on why there are
so many standards. Finally, we discuss future areas for data mining
standardization.

1 We exclude the discussion of CRISP-DM in this chapter since it was covered in
detail in Chapter 3 and it focuses on process, not implementaion.

452 Chapter 17 Evolution of Data Mining Standards

17.1 Data Mining Standards

Java Data Mining (JDM) is not the first standard in the data mining
space. The first standard in the data mining space was the Predictive
Model Markup Language (PMML) developed by the Data Mining
Group (DMG), which released version 1.0 in August 1999; the
version is currently at 3.1. This was followed by the CWM data min-
ing extension, developed through the Object Management Group
(OMG), which started in 1999 and released version 1.0 in 2001 [CWM
2005]. The SQL/MM Part 6 Data Mining [SQL/MM DM 2006], part
of the SQL standard from the Joint Technical Committee (JTC 1) of
the International Standards Organization (ISO) [ISO 2006] and the
International ElectroTechnical Commission (IEC) [IEC 2006], began
in 1999 and made its first release in 2002. JDM began as JSR-73, start-
ing in 2000, with its first release in 2004, and a second release is
underway through JSR-247. These standards are discussed to pro-
vide a broader context for understanding JDM and the ways some of
these standards may be used in combination with JDM.

17.1.1 Predictive Model Markup Language

PMML is an XML markup language for describing both statistical
and data mining models. Its primary goal is to enable interchange of
data mining models between systems as well as between vendor
implementations. PMML supports the description of data mining
model input (e.g., required data fields), the transformations neces-
sary to prepare the data for scoring, as well as the parameters that
define the data mining model [DMG 2005].

PMML emerged in 1997 because the need to exchange data
mining models in a vendor-neutral format was viewed as important
to moving the industry forward. PMML has evolved over the
ensuing years, with successive releases becoming more precise in
the definitions of data mining terminology and their use in specific
types of models. Initially, PMML defined a set of the most common
representations on which participating vendors could agree.

PMML is developed by the DMG—an independent, vendor-led
group that develops data mining standards. The DMG is a voting-
based organization; voting determines both direction and content.
Membership consists of voting members and associate members.
Generally, extensions and modification to the PMML standard come
from one or more members taking the lead to modify a component of

17.1 Data Mining Standards 453

the standard. Multiple data mining vendors have implemented
PMML in their released products, both those that are active in defin-
ing the standard through the DMG and those interested only in using
PMML.

PMML, from its beginning, supported vendor-specific extensions.
These were crucial to the initial success of the standard, since the core
standard was not designed to cater to the full requirements of any
given vendor but to represent a common set of required capabilities.
However, by allowing vendor-specific extensions in XML, interoper-
ability among vendors suffered, that is, it was not possible for ven-
dors to exchange most models. One objective for model exchange is
to be able to produce PMML in one vendor system (export) and con-
sume it in another vendor’s system (import and use). Yet, the seed
was planted, the standard grew, gained acceptance, and continues to
address the problems that limit interoperability. A key factor in
ensuring interoperability will be the development of a conformance
test suite. Then, vendors that claim compliance to the standard can
validate their implementation more fully.

Some vendors produce PMML but do not consume their own or
other vendor’s PMML documents. Producer-only vendors allow
third-party vendors to import that PMML for either scoring or visu-
alization. Most vendors that support PMML, however, do produce
and consume their own PMML models.

One of the limitations of an XML representation for data mining
models is the impact that loading the model can have on real-time
performance. Some models, such as association rules or clustering
models can be quite large, involving megabytes or gigabytes of data.
It can take a significant amount of time to load these models into
memory for inspection or scoring. Such overheads may be acceptable
in some situations; in other situations, where real-time response is
required, the load-time requirement is unacceptable, even for rela-
tively small models. Preloading such models and pinning them in
memory help to overcome this concern. Other standards that provide
support for applying models, such as SQL/MM DM and JDM, pro-
vide operations to load and pin a model in memory to facilitate real-
time scoring, where multiple invocations will be made.

Over multiple releases, PMML has increased its breadth of model
types supported, to the point where, today, quite a range of data
mining models is supported. PMML continues to expand into new
model representations while attempting to address the issue of
transformations uniformly across models. PMML also strives to

454 Chapter 17 Evolution of Data Mining Standards

include functionality that will reduce the need for vendor extensions
by working with the major vendors to standardize their extensions.
While this helps to achieve the goal of having a standard that
enables interoperability, it also adds to the complexity of the specifi-
cation and the ability of vendors to fully implement it.

17.1.2 Common Warehouse Metadata for Data Mining

Common Warehouse Metadata (CWM) for data mining provides a
metamodel for representing data mining metadata in XML. It is
based on the more general CWM specification [CWM 2005].

The Common Warehouse Metamodel (CWM™) is a specification that describes
metadata interchange among data warehousing, business intelligence, knowledge
management and portal technologies. The OMG Meta-Object Facility (MOF™)
bridges the gap between dissimilar meta-models by providing a common basis for
meta-models. If two different meta-models are both MOF-conformant, then models
based on them can reside in the same repository. [CWM 2005]

In particular, CWM uses XML Metadata Interchange (XMI) to
interchange data warehouse metadata, which is based on the more
general CWM metamodel. The CWM metamodel is specified using
the MOF model, allowing XMI to be used to (1) transform the CWM
metamodel into a CWM document type definition (DTD), (2) transfer
instances of warehouse metadata that conform to the CWM meta-
model as XML documents, based on the CWM DTD, and (3) trans-
form the CWM metamodel itself into an XML document, based on
the MOF DTD for interchange between MOF-compliant repositories.

These specifications work together to allow warehouse metadata
and the CWM metamodel to be interchanged using W3C’s Extensi-
ble Markup Language (XML). CWM allows Interface Definition
Language (IDL) to be used for specifying programmatic access to
data warehouse metadata—based on the CWM metamodel. Other
programming language APIs may be generated based on the CWM
IDL and specific IDL programming language mappings (e.g., IDL-
Java and CORBA-COM). The CWM DTD, CWM XML, and CWM
IDL specifications are automatically generated from the CWM meta-
model, as defined by the MOF and XMI specifications. (See Chapter
15 of [OMG 2001] for a detailed description of the data mining
portion of the standard.)

OMG’s charter is to produce and maintain specifications for
interoperable enterprise applications in the computer industry.
OMG membership includes nearly all large computer industry

17.1 Data Mining Standards 455

companies and some smaller ones. OMG maintains a board of
directors. Participation is open to all companies; each member
company receives one vote to ensure all participants have an effec-
tive voice in the standards-setting process. To initiate an OMG stan-
dard-setting activity, members must submit a Request for Proposal.
Standards are approved by member voting.

The OMG’s CWM for data mining formed an expert group
comprised of representatives from IBM, Oracle, and Hyperion. Here,
the goal was to define a complete specification of the syntax and
semantics needed to export and import shared warehouse metadata
and the common warehouse metamodel [CWMI 2000]. CWM/DM
defined a set of objects and states to capture data mining metadata
(e.g., objects for models, settings, and attribute usage, among others).
CWM/DM was not intended to capture the details of individual
models, but to serve as a framework that individual vendors could
extend. Unfortunately, the scope and implementation requirements
of CWM itself limited its adoption among some data mining ven-
dors. Since the CWM 1.1 release, no further extensions to CWM/DM
have been made.

17.1.3 SQL/MM Part 6 Data Mining

SQL/MM Part 6 Data Mining (SQL/MM DM) is geared toward SQL
access to data mining in databases. SQL/MM DM took the standards
effort a step further by recognizing the need for a standard SQL-
based interface for building, testing, and applying models, while
leveraging the model representation format available from PMML.
SQL/MM DM does not specify how to represent models but sug-
gests that standards such as PMML are likely candidates for model
representations stored in database tables. SQL/MM DM began with
the most commonly used data mining techniques: classification,
regression, clustering, and association. It also prescribed the use of sep-
arate settings to control the behavior of the underlying algorithms.

SQL/MM DM used SQL user-defined types for the interface defini-
tion. Although this approach may be convenient from an implemen-
tation or user perspective, being object-based as opposed to defining
syntactic extensions to the SQL language itself, the implementation
of user-defined types by database vendors limits the flexibility of
including data mining statements in complex SQL queries, also
called analytical pipelines. Like PMML, SQL/MM DM continued to
evolve, becoming more precise in its definitions, and expanding
functionality to map to progress with PMML, CWM, and JDM.

456 Chapter 17 Evolution of Data Mining Standards

SQL/MM is produced under JTC 1. The Joint Technical Committee
(JTC-1) of ISO and IEC establishes international Information Technol-
ogy (IT) standards. The scope of JTC 1 includes “… the specification,
design and development of systems and tools dealing with the
capture, representation, processing, security, transfer, interchange,
presentation, management, organization, storage and retrieval of
information” [JTC-1 2006]. The participants are national bodies,
where each participating member country has one vote to affect the
evolving and final standard.

The American National Standards Institute (ANSI), founded in
1918, “coordinates the development and use of voluntary consensus
standards in the United States and represents the needs and views of
U.S. stakeholders in standardization forums around the globe. ANSI
is the official U.S. representative to the International Organization for
Standardization (ISO) and, via the U.S. National Committee, the
International Electrotechnical Commission (IEC). ANSI is also a
member of the International Accreditation Forum (IAF)” [ANSI].
ANSI accredits Standards Development Organizations (SDOs) to
develop standards in specific technology areas.

The International Committee for Information Technology Stan-
dards (INCITS) [INCITS 2006] is accredited by ANSI in the area of IT
standards and represents US interests by serving as the Technical
Advisory Group (TAG) to JTC-1. The INCITS/H2 Technical Com-
mittee on Database is responsible for database language standards
including representing the US as TAG to the SQL/MM Data Mining
effort within ISO/IEC JTC 1.

As this book goes to press, the second edition of SQL/MM DM is
facing a final vote in a national body ballot. This version includes
limited editorial changes. Currently, no further editions of this stan-
dard are expected.

17.2 Java Community Process

The Java Community Process (JCP) [SUN 2005] defines how the
international Java community develops and evolves Java technology.
Changes to Java technology begin with a Java Specification Request
(JSR), which can be initiated by any JCP member. The JCP specifies
several phases of standard development to enable timely and practi-
cal delivery of the Java standard application programming interface
(API). These phases include initiation, early draft, public draft, and
maintenance. In the initiation phase, any community member can

17.3 Why So Many Standards? 457

initiate a JSR. Once the executive committee (EC) approves a JSR, the
JSR specification lead forms an expert group—a team of industry
experts from member corporations and individuals who will contrib-
ute to the requirements, design, and specification of the standard.
The expert group produces an early draft for review by the Java
community and the public. After further revisions, taking into
account any early draft feedback, the expert group produces the
public draft. Once approved, the reference implementation (RI) and
technology compatibility kit (TCK) can be completed and submitted
for final approval by the EC. The TCK is a suite of tests, tools, and
documentation that tests a vendor’s implementation for compliance
with the specification. The RI is an implementation of the specifica-
tion that can pass the TCK and in some instances serve as a basis for
others to see how the specification is intended to be implemented.
The maintenance phase is reserved for completed specifications that
require further clarification, enhancement, or revisions.

Specification leads have significant latitude in how to organize
and run the evolution of the specification and the completeness and
complexity of the RI and TCK. However, there are some basic princi-
ples, such as taking a consensus-driven approach and iteratively
reviewing the specification work products.

The JCP itself evolves using the JCP process, with change proposals
initiated via a JSR, typically led by Sun and the JCP EC members serv-
ing as expert group members. The EC is responsible for approving
specifications at the major phases or checkpoints noted above. EC
members are drawn from a cross section of the Java community,
including major stakeholders in Java technology.

17.3 Why So Many Standards?

Standards usually evolve to serve a particular need, supporting a
particular technology, domain, or user group. Over the past century,
many standards bodies have evolved (e.g., ANSI, JTC 1, IEC, ISO,
OMG, JCP). Each applies different processes, requirements, and rig-
orousness to developing standards. In the domain of data mining,
standards originated to support different communities and needs:
the database community (SQL/MM), the data mining community in
general (vendors and users) for model representation and inter-
change (PMML) and data warehouse metadata exchange (CWM,
JDM XML Schema), the Service-Oriented Architecture community
(JDM Web Services), and the data mining Java community (JDM).

458 Chapter 17 Evolution of Data Mining Standards

When a user community recognizes the need for a standard, it
will often look first to existing standards bodies before deciding to
form its own standards body. Often, it is more convenient to fit into
an existing framework with processes and recognition than to build
one from scratch. However, issues of control, effort, and timing can
lead a community away from existing standards bodies.

Some standards have strict guidelines concerning what can be
specified, how it must be specified, and how changes are allowed in
subsequent revisions. Others may have a rigorous process for sub-
mitting new material and revising existing material. This may
require travel to remote or exotic destinations for days or even weeks
as specifications are reviewed and edited. Time and resources are
required to provide material in the proper format, and to ensure
established procedures are followed.

In addition, the timing of when a standard becomes final can
affect the choice of a standards body. If the release cycle is several
years, a new user community may not be willing or able to wait for a
standard to be published, with the chance that it may not be
approved, requiring more editing and delay.

One of the challenges in having multiple standards in the same
domain is unifying terminology and semantics. A brief survey of
data mining literature will uncover numerous terms for the same
concepts, or slight variations on the same concept. For example, an
attribute in JDM can also be referred to as a predictor, variable, column,
feature, or field. In different contexts, each of these terms can also have
different semantics. For example, field could refer to a physical data-
base table column, or a logical input to model build or apply. Table
17-1 maps some data mining terminology for JDM, PMML, CWM,
and SQL/MM.

Some standards fit into an existing, highly evolved framework.
CWM is one such standard that has a fairly complex and comprehen-
sive data model. CWM/DM was required to fit within the overall
CWM framework.

Sometimes standards overlap in both concepts and terminology,
but have a different emphasis. For example, JDM focuses on execu-
tion of the data mining process including model build, test, and
apply, and mining object import and export. PMML, on the other
hand, focuses on the model representation and exchange using an
XML representation.

17.3 Why So Many Standards? 459

X – {Tree, NeuralNetwork, etc.} Y – {Classification, Regression, Clustering, etc.} N/A Not
applicable N/S Not specified

PMML takes an algorithm-centered approach since each algo-
rithm typically uses different data structures to maintain model state.
Here the algorithm implementation drives the model representation,
transformations, and algorithm-specific settings. Adding a new algo-
rithm often requires creating a new set of XML Schema representa-
tions that fit into the PMML framework.

JDM takes a functionality-centered approach, focusing on higher-
level mining functions such as classification, regression, and so on,
but also provides for algorithm-specific representations for settings
and model details.

Although terminology does not always coincide, the supported data
mining technologies of the various data mining standards have a sig-
nificant degree of commonality. Table 17-2 compares some of the more
prominent features of JDM, PMML, CWM, and SQL/MM in terms of
their support of various data mining and related technologies.

The other data mining standards—PMML, SQL/MM DM, and
CWM/DM—served as the starting point for the JDM effort. With
JDM, we saw the need to attempt to unify the various standards in
concept, terminology, and structure. Due to the evolutionary nature

Table 17-1 Data mining standards terminology comparison

JDM PMML CWM SQL/MM

Attribute MiningField MiningAttribute Column

{Y}Model
{X}ModelDetail

{X}Model MiningModel DM_{Y}Model

ModelSignature MiningSchema ApplicationInputSpecification DM_getFields ()

BuildSettings
{Y}Settings

N/A MiningSettings
{Y}Settings

DM_{Y}Settings

PhysicalDataSet DataDictionary MiningDataSpecification DM_MiningData

TestMetrics N/A MiningModelResult DM_{Y}Result

Target Predicted Target Target

ApplySettings N/A N/S N/S

LogicalData N/A AttributeUsageSpecification

MiningDataSpecification

DM_LogicalDataSpec

460 Chapter 17 Evolution of Data Mining Standards

Table 17-2

Technology
JDM
Java interfaces for…

PMML
XML representations
for…

CWM
Metadata for…

SQL/MM
SQL Object
interfaces for…

Transfor-

mations

DME automated
or external

Provided as
Derived Fields

Transformation
metadata

N/S
Can leverage
SQL

Mining

Functions

Classification

Regression

Attribute
Importance
Association
Clustering

Classification:
algorithm-specific

Regression and
General Regression

Association Rules
Clustering
Sequence Analysis

Classification

Approximation

Attribute
Importance
Association
Clustering

Classification

Regression

Association
Clustering

Mining

Algo-

rithms

Decision Tree
Naïve Bayes

Neural Network
SVM
k-Means

Decision Tree
Naïve Bayes

Neural Network
SVM

Rule Set

Decision Tree
Naïve Bayes

Neural Network

k-Means

Self-Organizing Map
Competitive Learn-
ing
Names definition only

N/S
Implementation
defined

Tasks Model Build
Model Test
Model Apply
Export
Import
Compute Statis-
tics

N/A Model Build
Model Test
Model Lift
Model Apply

Model Build
Model Test
Model Apply

Ensembles N/S Model Composition N/S N/S

Statistics Univariate Univariate N/S N/S

Test

Metrics

Confusion Matrix
Lift
ROC

N/A Confusion Matrix
Lift

Confusion
Matrix
Lift

N/A Not applicable N/S Not specified

Data mining standards technology and capability comparison

17.4 Directions for Data Mining Standards 461

of these standards and the need for backward compatibility, such
unification proved difficult, if not impossible. However, through
open communication and cross-pollination between standards
when individuals participated in multiple standards efforts,
progress was made. JDM leveraged concepts and terminology from
PMML, SQL/MM DM, and CWM/DM while recommending con-
cepts, terminology, and realizations back into these standards.

For the second release of JDM, the JSR-247 expert group plans to
address data mining transformations, more advanced statistics, and
the breadth of mining functions. The expert group also plans to
provide a generic interface enabling the specification of settings as
name-value pairs. Chapter 18 discusses these in more detail.

17.4 Directions for Data Mining Standards

With all this standardization, what remains to be done? What is
needed in the data mining community? Generally speaking, there are
a few key areas that are not adequately addressed:

• Model management

• Benchmarks for both model building and apply, with the
emphasis on apply for batch and real-time.

• Test suites for conformance and interoperability certifica-
tion

• SQL language extensions

• Conceptual and terminological convergence

Model management can take on many guises. One perspective
includes the management and analysis of a large collection of data
mining models [Liu/Tuzhilin 2006]. Model management is quickly
becoming an issue of enormous concern for large-scale users of data
mining. The ability to find models meeting certain characteristics or
criteria is key where many users are building and testing many mod-
els, often hundreds or thousands. These criteria include models with
a certain signature (required attributes), accuracy or model quality
characteristics such as error rates, and performance factors such as
model size. Model management also includes the ability to build
many models efficiently as well as to score datasets using many
models efficiently. This is the area in which APIs are often critical to
success because graphical interfaces are often geared toward the

462 Chapter 17 Evolution of Data Mining Standards

building and use of a single or a few models, not hundreds or thou-
sands. Model management also includes the ability to analyze
deployed models, such as those that are underperforming or are
being dominated by other models. Standards need to address these
model management tasks.

The data mining community lacks standard benchmarks, either
for model building or scoring. These benchmarks are needed across
two dimensions: performance (or speed) and accuracy (or quality). One
issue in this space is that it can be difficult to compare one vendor’s
implementation of a given algorithm against another’s since they
likely have dramatic differences in feature sets. For example, a given
vendor’s decision tree algorithm may differ on its support for missing
value handling (surrogates), statistics, number of splits at a given
node, and so on. However, progress can be made in defining bench-
marks. Model build performance can be measured for several classes
of mining functions, or even algorithms, based on the accuracy in the
case of supervised models that the model is able to achieve in a given
execution time. More readily comparable are scoring performance
numbers. Using a given hardware platform, for example, how fast
can a DME score a large dataset (e.g., 100 million customers), using
1 model or using 100 models? The accuracy of those scores can be
validated relative to known values, essentially producing a JDM test
metrics object.

One of the concerns for standards supporting interoperability is a
lack of test suites for conformance or interoperability. Test suites for
conformance determine whether the implementation meets the
essence of the standard specification. For example, in JDM, conform-
ance involves providing the required packages, classes, and methods
defined by the standard and ensuring that certain minimal behaviors
are met. Test suites for interoperability determine whether two ven-
dors will be able to exchange models. For example, if a vendor has
proprietary extensions, this will inhibit interoperability. However, if
users and vendors can operate without using those proprietary
extensions, interoperability is achievable. Currently, it is often up to
individual vendors (or their customers) to determine what can be
exchanged and what cannot.

Although SQL/MM DM has been defined, data mining vendors
such as Oracle and Microsoft have chosen to extend the SQL lan-
guage syntax to accommodate their database mining capabilities. As
offerings of database mining mature and continue to extend SQL,
having standard SQL language extensions will simplify the mining

17.5 Summary 463

process for users. This includes both data definition language and data
manipulation language for building models and scoring data.

Stepping back from specific features details or capabilities, let’s
consider data mining standards in general. The JDM effort started
with several goals relative to data mining standards. The JDM expert
group sought to provide a unified concept space for data mining that
covered the core data mining objects as well as aspects of the data
mining process, which included tasks such as build, apply, test,
import, and export. This built upon many of the concepts introduced
by SQL/MM DM and CWM/DM. As data mining standards con-
tinue to evolve, each needs to look at the other data mining stan-
dards to ensure as much as possible a congruence of terminology and
capability. Moreover, each should ensure that one can fit seamlessly
with the others where features dovetail. This means that concepts
among standards should map cleanly and consistently, and where
possible, terminology should be consistent and equivalent. Features
introduced in one standard should be available in other standards as
appropriate.

An ideal situation would be for definitions of concepts and
terminology to converge to a single glossary. This is a difficult task,
if for no other reason than backward compatibility. This is also dif-
ficult due to the many different schools of thought and areas of
specialization that do not coordinate terminology. However, the
community will be well-served if across different standards within
the data mining community a unified glossary can evolve, with
mappings between similar (or exact) concepts and terms.

An even more ambitious goal is the cross-pollination of data
analytic standards in general (e.g., advanced data query, online
analytical processing [OLAP], and statistics). It is clear that data
mining is but one component of an overall analytics solution.
Business analysts need the ability to use data mining results for
designing OLAP data cubes, and use OLAP analysis to drive data
mining analysis further. Having convenient points of integration
through common objects can facilitate this for developers and
users. The standards community is still far from attaining this goal.

17.5 Summary

Data mining standards have come a long way in a relatively short
period of time. This chapter explored the various data mining
standards, their history and future, and their relationship to JDM.

464 Chapter 17 Evolution of Data Mining Standards

We introduced the JCP since this is the vehicle by which JDM
became a standard. Some of the areas where data mining standards
need to evolve were explored and areas of focus for future releases
were discussed.

References

[ANSI] http://www.ansi.org.

[CWM 2005] http://www.omg.org/technology/cwm/.

[CWMI 2000] CWMI RFP, Final Submission Presentations, ADTF Den-
ver meeting, March 2000.

[DMG 2005] Data Mining Group, http://www.dmg.org.

[JTC-1 2006] http://www.jtc1.org.

[IEC 2006] http://www.iec.ch.

[INCITS 2006] http://www.incits.org.

[ISO 2006] http://www.iso.org.

[Liu/Tuzhilin 2006] Bing Liu, Alexander Tuzhilin, Managing and Analyzing
Large Collections of Data Mining Models, CACM, 2006.

[OMG 2001] Common Warehouse Metadata (CWM) Specification,
Object Management Group, http://www.omg.org/cgi-bin/apps/
doc?ad/01-02-01.pdf, Version 1.0, 2 February 2001.

[SQL/MM DM 2006] ISO/IEC JTC 1/SC 32 WG4, “Information technol-
ogy—Database languages—SQL Multimedia and application packages—
Part 6: Data Mining,” ISO/IEC 13249-6:2006(E), April 26, 2006.

[SUN 2005] http://www.jcp.org.

465

Chapter

18
Preview of Java Data Mining 2.0

Without expectations, there’s no future, only an endless present.

—François Jacob, winner of the Nobel Prize in medicine

As the first version of the Java Data Mining (JDM) standard (JSR-73)
was being released, a new JSR, JSR-247, was submitted to continue
the work started in JSR-73. Although the features for JDM 2.0 are
still in flux, we have many expectations for its capabilities and use.
At the time of this writing, JDM 2.0 is actively being specified, and
the early draft review [JDM 2.0 2006], as specified through the Java
Community Process (JCP), has been completed.

As with most software projects and specifications, some features
do not make the cut for the first release. JSR-73 was no different. The
JDM expert group identified many features for inclusion in the first
release, but time and resource limitations required paring down the
feature set to a manageable size that still reflected a range of com-
monly used data mining techniques. For readers interested in more
detail of the JDM 2.0 specification, the latest available version can be
downloaded at www.jcp.org.

With JDM 2.0, the goals are, in part, to expand the set of mining
functions and algorithms to enable solving a broader range of data
mining problems. These include time series analysis using ARIMA
modeling, feature extraction using non-negative matrix factorization

466 Chapter 18 Preview of Java Data Mining 2.0

and anomaly detection. Further, the expert group strives to round out
the existing functionality by including capabilities to apply associa-
tion rules to generate cross-sell or up-sell recommendations using the
apply task, to support multi-target models, and to include unstruc-
tured text as predictor attributes. Because the data mining process
also involves data preparation and the ability to associate transforma-
tions with data mining models, the expert group addresses the ability
to specify and perform transformations in a framework that fits with
the overall JDM approach.

This chapter looks at some of the features proposed for JDM 2.0,
including transformations, time series, apply for association, feature
extraction, statistics, multi-target models, and text mining.

18.1 Transformations

A major part of the data preparation phase involves data transforma-
tions. Although not limited to the realm of data mining, transforma-
tions are often an essential part of the data mining process [Pyle
1999]. JDM 2.0 introduces a framework and representative set of
transformations that provide a more seamless relationship between
transformations and data mining models.

Traditionally, transformations would be modeled via a graphical
user interface (GUI), or would be explicitly programmed (e.g., via
SQL where the data is stored in a relational database). It was the
application or user’s responsibility to ensure that, if the model was
exported to another environment, the transformations came along,
since without these transformations the model is effectively useless.
Recall from the discussion in Chapter 3 that the apply data needs to
be prepared in the same way, using the same statistics, as it was for
the build data.

JDM 2.0 integrates transformations at two levels: first at the task
level, and second at the model level. At the task level, transforma-
tions are specified as a sequence of settings, where each settings
object corresponds to a type of transformation. For example, there are
numerical binning transformations, normalization transformations,
and a sample transformation. A transformation task allows users to
execute a transformation sequence to (1) compute transformation
statistics, (2) produce a reusable transformation sequence object,
and/or (3) apply a transformation sequence to data. An example of
transformation statistics involves the shift and scale from a normal-
ization transformation, which can be based on the maximum and

18.1 Transformations 467

minimum value range of the attribute. The transformation settings
may be quite simple, for example, the percentage of cases to include
in a random sample. Other transformation settings may be more
involved, for example, providing a default normalization strategy for
all input attributes while overriding several of these attributes with
different normalization parameters.

At the model level, a model build task can be augmented with a
transformation sequence object so that the transformations specified
are applied to the data and the resulting transformation sequence is
associated with the model. This allows the model to reference the
transformations and when a model is exported, the transformations
are also exported with the model. Similarly, when the model is
applied to new data, the transformations associated with the model
can be automatically applied to the apply data.

Transformations can be divided into several categories:

• case filtering: transformations that affect the number of
cases (or rows) in the dataset, either by eliminating cases, or
by dividing data into separate datasets as in sampling, or
splitting data for building and testing.

• attribute filtering: transformations that affect the set of
attributes remaining in a dataset. This can include indicating
which attributes to exclude or include in the set according to
some criteria.

• attribute altering: transformations that replace the values of
attributes with new values, perhaps of a different data type
(e.g., binning a numerical attribute into string-identified
bins). These transformations may require obtaining statistics
on attributes to perform the transformation.

• attribute creating: transformations that create new
attributes, leaving existing attributes intact. These new
attributes may be derived from multiple or single attributes.

• pure function-oriented: transformations that apply a
function to each value in an attribute (e.g., square root, log,
and so on).

JDM 2.0 provides interfaces for addressing each of these categories as
part of TransformationSettings subclasses: CaseFilteringTransformation-
Settings, AttributeFilteringTransformationSettings, and AttributeTransfor-
mationSettings. The AttributeTransformationSettings include missing
value and outlier treatment, normalization, binning, explosion, recoding,

468 Chapter 18 Preview of Java Data Mining 2.0

and general expressions. A key goal for JDM 2.0 transformations is to
allow the transformation of very wide (in terms of number of
attributes) datasets with minimal specification. For example, if a
genomics dataset containing microarray data on 5,000 genes needs to
have attribute values normalized between 0 and 1, the program
should not have to specify the same normalization on each of the
5,000 attributes. Instead, JDM 2.0 allows users to specify a default
normalization of all applicable attributes in the input dataset.

Consider the example illustrated in Figure 18-1, which shows a
TransformationSettingsSequence instance consisting of three transfor-
mations: first take a 20 percent sample of the data, then remove col-
umns that are determined to be “constants,” (i.e., having the same
value for 95 percent of the entries), and lastly, bin the income attribute
into two bins.

We can now define a task, which consists of a PhysicalDataSet and
TransformationSettingsSequence instance, to perform the transforma-
tions and produce a TransformationSequence object, which is depicted
in Figure 18-2.

Transformation

SettingsSequence-1

Take 20% Sample

of the Data

Remove 95%

“Constant” Attributes

Bin Column ‘Income’

into Two Bins

Transformation

Task-1

Transformation

SettingSequence-1
PhysicalDataset-1

Figure 18-1 Transformations settings sequence example.

18.2 Time Series 469

Generally, case filtering transformations are excluded from the
reusable TransformationSequence. The first Transformation object
defines which attributes to exclude from the dataset. Based on the
specification to remove attributes found to be constants, the data
mining engine (DME) removed product1 and product2. Here, per-
haps all cases show that the product was purchased and hence the
attributes provide no useful information for mining. The second
Transformation instance contains the specific binning of the income
attribute. Here, the DME selected $80K as the split point for the bin-
ning, assigning income values of $0 through $80,000 to bin 1, and
$80,000 through $300,000 to bin 2.

18.2 Time Series

A time series is a sequence of numerical values, ordered in time. Exam-
ples of time series data include the Dow Jones Industrial Average
(DJIA) daily values over the course of a year, a retailer’s sales each
day for the quarter, or the hourly rate of production on an assembly
line dating back to the first production run. Figure 18-3 depicts the
DJIA over the period April 2005–April 2006. This time series data is
called the signal or, in data mining terminology, the target attribute. In
some time series data, additional information can be provided, called
interventions, such as a stock market crash, retail sale promotion, or
failure of a key piece of equipment on the assembly line. Interventions
consist of unusual or irregularly occurring events. They can be speci-
fied as one-time events, or events that occur over several periods in
the time series, with a certain characteristic (e.g., a slow decay rate) or
a constant impact over the period.

Time series analysis [Chatfield 2004] is the data mining technique
that extracts the underlying patterns present in the time series data.

Transformation

Sequence-1

Remove attributes

product1, product2

Bin ‘income’ as

[0..80K) ‘1’

[80K..300K) ‘2’

Figure 18-2 Transformations sequence example.

470 Chapter 18 Preview of Java Data Mining 2.0

These patterns are often characterized as trend, cycle, and irregular
components—referred to as the decomposition of the time series. The
trend reflects the long-term change in the average value of the time
series signal. Here, long term depends on the sampling rate of the
time series signal. The cycle reflects any repeating pattern of the sig-
nal, which can be characterized into seasonality or periodicity. If the
cycle is seasonal, effects occur at specific times (e.g., “every Thanks-
giving,” “every quarter,” or “every Friday”). If the cycle is periodic,
the cycle repeats itself every n time periods. Cycles, in general, are
described in terms of both a period and a resolution.

As with all data mining, the model produced from the data is
imperfect. Not all the variation in the data can be expressed in regu-
lar trends or cycles. This residual difference, what is left over after
removing everything that can be explained from the series, is
referred to as the irregular component. Figure 18-4 illustrates the
decomposition of a time series into its seasonality and trend with
residual or irregular component.

As discussed earlier, time series analysis can help to show the
structure or patterns found in the time series data, but it can also be
used to forecast signal values in the future (e.g., forecasting the stock
market and other economic indicators, retail product demand, and
even weather predictions). Forecasts can be short range, such as the
next period or few periods (which often maps to hours or days), but
can also be long range, projecting results months or years ahead.
Figure 18-5 illustrates a forecast for the time series data example.
Since forecasts, or predictions, are in one sense statistical estimates,

11500

DJ INDU AVERAGE (DOW JONES & CO)
as of 11-Apr-2006

11000

10500

10000
May05 Jul05 Sep05 Nov05 Jan06 Mar06

Figure 18-3 Dow Jones Industrial Average time series data (graph courtesy
Yahoo! Finance).

18.3 Apply for Association 471

the predicted signal value is often accompanied with a confidence
band—a range of values that provides, for example, a 95 percent
confidence of containing the correct outcome. Such confidence
bands are also common in regression mining functions.

18.3 Apply for Association

Recall that the association mining function allows market basket anal-
ysis, producing rules of the form A B, where A is one or more ante-
cedent items, and B is a consequent item (e.g., “Portable DVD Player,

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Mar-1999 Mar-2000 Mar-2001 Mar-2002

Raw Curve

Seasonality

Trend+Residual

Figure 18-4 Time series decomposition.

–0.1

–0.2

–0.3

–0.4

–0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Mar-1999 Aug-2000 Dec-2001 Apr-2003

Historic

Forecast

Figure 18-5 Time series forecasting.

472 Chapter 18 Preview of Java Data Mining 2.0

DVD Noise Canceling Headset”) with support and confidence.
Since JDM 1.0, users can filter the rules according to various criteria,
as discussed in Chapter 7. However, an interface to enable applying
the model was lacking.

JDM 2.0 apply for association uses a rule filter to constrain the set
of rules considered, if desired. The apply dataset consists of cases,
each of which contains items for matching with the antecedent of fil-
tered rules. Antecedent matching can be based on exact match, where
the case items must match the rule antecedent exactly; subset, where
the case items can be a subset of the items in the rule antecedent; or
superset, where the case items can be a superset of the items in the
rule antecedent.

The result from association apply is one or more consequent
items, depending on the selection criteria specified. This criteria can
include the top item with the highest support, confidence, or lift, or
the top n items.

18.4 Feature Extraction

JDM 2.0 introduces the mining function feature extraction as an
attribute reduction technique. In contrast to attribute importance,
which ranks each individual attribute so that some top n can be
selected, or some bottom n can be eliminated, feature extraction actu-
ally creates new features, or attributes, as linear combinations of exist-
ing attributes. This smaller set of attributes can result in deeper
understanding of the original attributes, but can also improve model
quality by presenting algorithms with fewer attributes that have
richer content. In a sense, feature extraction can project a dataset with
high dimensionality (many attributes) onto a smaller number of
dimensions (e.g., two or three dimensions can enable effective visual-
ization of complex data).

Feature extraction is particularly useful in domains in which there
are many attributes, perhaps hundreds or thousands, and each
attribute on its own has weak, even ambiguous, predictability. But
when taken in combination, these weak predictor attributes produce
meaningful patterns, topics, or themes. This occurs in text mining as
well as life science data such as genomics. Other areas of application
include data compression, data decomposition, and projection and
pattern recognition.

Consider an example from text mining. To classify documents into
categories, we first parse the text to extract important terms or words

18.5 Statistics 473

using a separate text analysis tool. Once the terms, or words, are
extracted, each word considered individually is often ambiguous or
indeterminate in explaining what the document is about. For exam-
ple, if we look at the word “hike,” this word can be applied to the
outdoors or interest rates. If we see “hike” in combination with
“mountain,” we may categorize the document with “outdoor
sports.” However, if we see “hike” in combination with “interest,”
we may categorize the document with “interest rates.” These phrases
could be provided directly to a classification mining algorithm. The
feature extraction mining function produces a new attribute, or fea-
ture, as a linear combination of the original attributes, such as

feature-A � 0.8* ‘hike’ � 0.7* ‘interest’ � 0.01* ‘mountain’
� 0.2* ‘word-x’ � . . .

An interesting visualization of feature extraction results involves
displaying the coefficients in what is called a heat map. A feature heat
map is a matrix, typically with the attributes represented along rows
and the features as columns. An entry in the matrix is colored relative
to the magnitude of the coefficient (e.g., values closer to 1 are colored
red, values closer to 0 are colored blue, with color gradations in
between). Figure 18-6 illustrates a heat map with three features for
five attributes, where values below 0.3 are shaded black, values
between 0.3 and 0.6 are shaded medium gray, and values above 0.6
are shaded light gray. This provides a quick visual assessment of
feature-attribute relationships. Columns may be sorted by value to
group a feature’s related attributes more effectively.

18.5 Statistics

Even before data mining techniques were available, a first step
toward data analysis was gathering statistics from the data. Data
analysis could compute the average, standard deviation, or variance,

Features

A B C
Age

Income

HHSize

OwnHome

Employed

0.8 0.4

0.8 0.5 0.7

0.9 0.8

0.9 0.5 0.9

0.5 0.2

0.1

0.2

0.3

Figure 18-6 Heat map example.

474 Chapter 18 Preview of Java Data Mining 2.0

and even more obscure “moments” of the attribute, such as the skew
and kurtosis on continuous numerical data like age or income. Other
statistics, such as the most frequently occurring value, or mode, apply
to discrete or string data, such as marital status or satisfaction level.
Since these are computed on individual attributes, they are termed
univariate statistics, that is, they operate on a single attribute. The first
release of JDM put in place a framework for addressing this type of
statistics, as discussed in Chapter 7.

In JDM 2.0, the expert group is expanding the framework to
include statistical calculations involving pairs of attributes, termed
bivariate or more generally multivariate statistics. As with transforma-
tions, users should be able to specify many combinations of tests
succinctly, across many attributes. For example, users can specify a
set of predictor (independent) attributes and one or more target
(dependent) attributes, and the system computes the requested sta-
tistical functions on the cross-product of independent and dependent
attributes.

As with other types of objects in JDM, the statistics framework is
intended to be extensible to include statistical functions not speci-
fied in the standard. Some of the multivariate statistical functions
under consideration include F and T statistics, Kolmogorov-
Smirnov, Mann-Whitney, and one-way ANOVA. These types of sta-
tistical functions can help users understand relationships in data
prior to model building or when evaluating model quality.

In JDM, univariate and multivariate statistics can also be pro-
duced as a by-product of the model building process. By expanding
the JDM AttributeStatisticsSet interface, vendors can immediately
associate multivariate statistics with models as is currently possible
for univariate statistics.

18.6 Multi-target Models

If a data miner wants to predict the probability with which
customers will purchase each of 1,200 products, there are a few
approaches. The data miner could define a classification problem
with a target attribute containing the product purchased. However,
building such models may require a very large number of customers.
If insufficient data exists, model quality could be poor. Moreover, this
type of model likely will not reflect when a given customer pur-
chases multiple products.

18.7 Text Mining 475

Alternatively, the business analyst could build 1,200 individual
classification models and use these models to score records and
choose the top predictions. Challenges here include building the
models separately (using separate tasks and largely redundant Build-
Settings objects), managing the lifecycle of these 1,200 models, invok-
ing the individual models for scoring (either in real-time or batch),
and, finally, selecting the top predictions among 1,200 results. From
the performance point of view, if all the models are using the same
algorithm and same predictors, it is possible that much of the compu-
tation between the 1,200 model builds is redundant, but cannot be
leveraged across the distinct model builds.

A better alternative is the use of multi-target models; with these,
a single model build task can be executed by specifying multiple
targets in that build. During the build process, the algorithm can
optimize the computations and avoid recomputing the same inter-
mediate results. Similar optimizations may be possible during
model apply. One outcome is overall improved performance.
Another benefit of multi-target models is the convenience of each
target including the other n � 1 potential targets as predictors
without having to specify those various combinations explicitly.
Multi-target models also have the opportunity to include subtle
interactions among the target attributes that impact predictions. If
models are built separately on the different targets, they cannot
take this interaction into account.

JDM 2.0 provides multi-target specification as a generalized
supervised mining function that allows the specification of targets
for classification, regression, or both in the same model. All the func-
tionality present for classification and regression (e.g., involving test
metrics or apply settings) is available for multi-target models.

18.7 Text Mining

“Text mining” is defined as follows:

Text mining, also known as intelligent text analysis, text data mining, unstruc-
tured data management, or knowledge-discovery in text (KDT), refers generally
to the process of extracting interesting and non-trivial information and knowledge
(usually converted to metadata elements) from unstructured text (i.e. free text). Text
mining is a young interdisciplinary field that draws on information retrieval, data
mining, machine learning, statistics and computational linguistics. As most infor-
mation (over 80%) is stored as text, text mining is believed to have a high commer-
cial potential value. [Wikipedia 2006]

476 Chapter 18 Preview of Java Data Mining 2.0

As noted, text data is far more prevalent than structured data (e.g.,
data stored in relational tables or XML). Typical use cases for text
mining involve large repositories of text documents such as reports,
technical papers, magazine articles, or e-mails that need to be
automatically classified or grouped into appropriate hierarchical
clusters. However, the ability to combine unstructured text data
with structured data as found in relational tables can supplement
the knowledge that data mining can extract. For example, customer
service representatives in call centers type in notes from their inter-
actions with customers. Physicians and nurses often provide tex-
tual notes on their patients and their progress. This valuable
information is often excluded from the mining process due to a lack
of convenient means to use it.

Although text mining is a field unto itself, with techniques ranging
from statistical analysis of terms in documents to natural language
processing, there are aspects that can be included in an application
programming interface (API) to provide benefit to JDM users. A first-
level objective for text mining in JDM is to provide a simple, minimal
interface for mining text data. Specifically, JDM allows users to
define an attribute as text or a text reference. A text attribute contains
the text value in place, whereas a text reference attribute contains a
uniform resource identifier (URI) indicating where the actual text
resides.

At this stage, JDM leaves the details of preprocessing text
attributes to the vendor. The vendor can make some assumptions
about the nature of the text and, for example, perform term extrac-
tion and feed the results into a suitable algorithm. Alternatively, the
vendor can extend the interfaces to enable the specification of sup-
plementary settings such as stop word lists, thesauri, concept hierar-
chies, index specifications, and so on. Vendors may also choose to
expose text mining–specific transformations.

18.8 Summary

This chapter introduced a few of the new features being considered
for Java Data Mining 2.0. Because the expert group is still evolving
this standard before its final release, concepts and details of the spe-
cific features, and even the features themselves, may change.

18.8 Summary 477

References

[Chatfield 2004] Chris Chatfield, The Analysis of Time Series: An Introduction,
Boca Raton, FL: CRC Press, 2004.

[JDM 2.0 2006] “JavaTM Specification Request 247: JavaTM Data Mining
(JDM) 2.0,” Early Review Draft, http://www.jcp.org/en/jsr/
detail?id=247, November 30, 2006.

[Pyle 1999] Dorian Pyle, Data Preparation, San Francisco: Morgan Kauf-
mann, 1999.

[Wikipedia 2006] http://en.wikipedia.org/wiki/Text_mining.

479

Chapter

19
Summary

Every end is a new beginning.

—Proverb

Data mining is a journey, one where the arrival at insights and
discoveries is the launching point for further inquiry—a new begin-
ning. Having read this, and possibly other, books on data mining,
you too are ready for a new beginning in applying data mining to
your business or domain.

This book began by exploring data mining in the context of an
overall strategy. Data mining was framed as a key strategic compo-
nent for solving important business problems and the role of stan-
dards that support such a strategy was explored. As a technology,
data mining is fascinating for what it can accomplish, the knowledge
it can extract, and the speed at which it can extract it. However, tech-
nology for technology’s sake is not sufficient—it must be put to use
to solve practical and real business and scientific problems.

Part I highlighted general business (or cross-industry) problems,
as well as problems specific to several industries to which data min-
ing can be applied. The data mining process was examined in the
context of another standard, CRISP-DM. Such a process helps to
define data mining–related business problems with clear goals; as a
result, higher quality results can be achieved. The various mining

480 Chapter 19 Summary

functions and algorithms supported by JDM were then introduced to
give the reader a high-level sense of the domain. These mining func-
tions are capable of addressing a wide range of problems. Since Part I
focused on strategy, the specific strategic and tactical elements
behind JDM were elaborated. Lastly, an example was given that
leveraged both the CRISP-DM process and the JDM standard inter-
faces. This provided greater insight into the data mining process and
use of JDM within that process.

Part II focused on the JDM standard itself, describing concepts
from data mining generally, as well as JDM specifically. This was
introduced through a series of examples organized by mining func-
tion. Becoming comfortable with data mining concepts is the first
step toward being able to work with the technology. JDM concepts
help the reader understand how JDM supports automation of, as
well as detailed control over, the mining process. To assist JDM
implementers and users to understand some of the JDM design prin-
ciples, we discussed topics ranging from package design and object
factories to exceptions and discovering data mining engine (DME)
capabilities. Although JDM is focused on Java—targeting the Java
API—we also explored the XML Schema for representing JDM
objects and data mining Web services.

Part III brought data mining into practical focus, explaining how
JDM benefits the application developer and how to use JDM to
build applications. Through a series of full code examples, the use
of the JDM API involving several data mining functions was illus-
trated in the context of specific business problems. An example of a
data mining tool graphical interface was highlighted, illustrating
the use of JDM’s capability discovery mechanism to achieve code
portability. To encourage the use of web services, two examples
using JDM web services were introduced—one using PHP, and
another based on JAX-RPC. Because data mining has an impact on
the information technology (IT) departments of both large and
small businesses, areas such as computing hardware, data storage
and access, backup and recovery, scheduling, and workflow were
examined. As with any standard, availability of implementations is
key. Part III finished with an overview of architectures and JDM
implementations from Oracle and KXEN. Some guidelines and
insights into JDM implementation issues were discussed.

Part IV opened with the evolution of data mining standards,
looking at PMML, CWM DM, and SQL/MM DM, and their relation-
ship to JDM. The Java Community Process (JCP)—the means by
which JDM came into being—was discussed, highlighting the

 Summary 481

phases of the process and the various participant roles. Some of the
features of these standards were compared and directions for data
mining standards were explored. A preview of some features pro-
posed for JDM 2.0 was then provided, with a focus on capabilities
that will further strengthen the standard and broaden its use.

We trust you found this book informative and useful, and that
you will be able to enhance your applications and business with
data mining technology to bring about greater insight and knowl-
edge from your treasure trove of data.

483

Further Reading

M. Berry and G. Linoff, Data Mining Techniques for Marketing, Sales, and
Customer Relationship Management, John Wiley & Sons, Inc., New
York, 2004.

J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufmann, San Francisco, 2001.

Tom Mitchell, Machine Learning, McGraw-Hill, Boston, 1997.

Dorian Pyle, Data Preparation, Morgan Kaufmann, San Francisco, 1999.

Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed., Morgan Kaufmann, San Francisco,
2005.

485

Glossary

The following glossary terms are provided from the Java Data
Mining specification [JSR-73 2005, JSR-247 2006].

accuracy In the context of a supervised model, accuracy refers to
how well the model can make predictions.

algorithm A specific technique or procedure for producing a data
mining model. An algorithm uses a specific model representation and
may support one or more functional areas. Examples include decision
trees, backpropagation neural networks, naïve bayes algorithms for
supervised mining functions, and apriori for the association mining
function.

algorithm settings A collection of settings, or parameters, to affect
algorithm-specific behavior during model building.

anomaly detection A mining function that produces models for
detecting deviations from the norm in a dataset. The data provided
for model building consists of normal cases from which an anomaly
detection algorithm learns patterns that are captured in the resulting
model. Applying the model flags cases that deviate or are unusual
from the normal cases in some way.

antecedent In an association rule, the left-hand side is called the
antecedent. For example, in the rule “If A, then B,” “A” is the ante-
cedent. See also consequent.

API Application Program Interface.

486 Glossary

apply The data mining operation that scores data using a data
mining model (i.e., it applies a model to apply data to produce results
according to apply settings). In JDM, apply is performed using an
apply task.

apply data The data used as input when applying a model.

apply settings A user specification detailing the output desired from
applying a model to data. This output may include predicted values,
associated probabilities, key values, and other supplementary data.

apply task A task that when executed applies the specified model
to the apply data. The results are produced according to the apply
settings.

association A data mining technique that identifies relationships
among items, producing association rules. One of the JDM mining
functions.

association rules Association rules capture co-occurrence of items
among transactions. A typical rule is an implication of the form A B,
which means that the presence of itemset A implies the presence of
itemset B with certain support and confidence. The support of the
rule is the ratio of the number of transactions where the itemsets A
and B are present to the total number of transactions. The confidence
of the rule is the ratio of the number of transactions where the
itemsets A and B are present to the number of transactions where
itemset A is present. See also antecedent and consequent.

attribute A generic column of data, minimally with a name and
datatype. There are several specializations of attribute; see logical
attribute, physical attribute, and signature attribute.

Attributes are used in statistics, data mining, and other disciplines to
describe observations, objects, data records, and other entities.
Attributes are also referred to as variables, fields, columns, dimensions,
features, and properties. Attributes are often categorized with regard to
their mathematical properties, that is, in terms of the intrinsic organiza-
tion or structure of the associated values (or value range or scale).

attribute assignment The mapping of one attribute to another used
to associate input data with a model’s attributes, or a model’s output
with an output table.

attribute importance A data mining technique that ranks the
attributes in order of influence to predicting a target, or importance
to model quality. One of the JDM mining functions. Also, a measure
of the importance of an attribute within a model as recorded in the
model signature.

Glossary 487

attribute type Specifies how a logical attribute is to be interpreted
during model building. Commonly, four types of attributes are
distinguished: nominal or categorical attributes, ordinal or rank
attributes, interval attributes, and real or real-valued attributes (also
called true measures). JDM restricts itself to three types: categorical,
numerical, and ordinal.

attribute usage Specifies how a logical attribute is to be used when
building a model: active, supplementary, or inactive.

binning A data mining transformation which maps a set of input
values to a smaller set of bins. The input values may be discrete or
continuous.

build The data mining operation that produces a model.

build data The data used as input to building a model. Sometimes
referred to as the training data.

build settings A collection of settings, or parameters, specifying the
type of data mining model to build, including mining function and
algorithm settings. Build settings exist for each of the mining func-
tions, including: classification, regression, association, sequences,
attribute importance, and clustering.

build task A task that when executed builds a model as specified
by the build settings.

case A collection of related attribute values used as input to model
building, testing, or scoring. In a simple table, a case corresponds to
an individual record. In transactional format data, a case may be
represented by multiple records, where columns play the roles of
identifier, attribute name, and attribute value. See also single record
case and multi-record case.

case identifier The unique identifier associated with a case. Also
referred to as “case id.”

categorical attribute An attribute where the values correspond to
discrete categories. For example, state is a categorical attribute with
discrete values (CA, NY, MA, etc.). Categorical attributes are either
nonordered (nominal) like state, gender, and so on, or ordered (ordi-
nal) such as high, medium, or low temperatures.

Categorical attributes tell us which of several categories a thing
belongs to. For example, we can say that a beverage is BEER,
LIQUOR, SOFTDRINK, or WINE. Categorical attributes exhibit the
lowest degree of organization, since the set of categories such an
attribute may assume posses no systematic intrinsic organization or
order. The only relation between the categories of such attributes is

488 Glossary

the identity relation, that is, if two categories are equal. The lack of an
order relation makes it impossible to tell if one attribute category is
greater than another, or that one category is closer to another.

category A distinct value of a categorical attribute. Also referred to
as a class.

category set A named collection of related categories.

centroid A cluster centroid is a vector that encodes, for each logical
attribute, either the mean (numerical attributes) or the mode (cate-
gorical attributes) of the cases in the build data assigned to a cluster.

classification A supervised data mining technique that produces a
model capable of classifying cases into categories or assigning cases
to categories. A classification model requires a categorical target
attribute in the build dataset. One of the JDM mining functions.

cluster A collection of cases that are similar to one another as deter-
mined by a clustering mining function. A cluster can be defined by
its centroid, or by an area determined by an attribute vector space—a
set of attribute value ranges (numerical) and attribute values (cate-
gorical). Predicate rules involving the cluster attributes are often
used to define clusters in a human-understandable way.

clustering An unsupervised data mining technique that given a set
of cases, each having a set of attributes, and a similarity measure
among them, groups the cases into different clusters such that cases
in the same cluster are more similar to one another while cases in
different clusters are less similar to one another. One of the JM
mining functions.

confusion matrix A table that counts of the actual versus predicted
class values. It indicates where the model correctly predicted
outcomes, and where it became confused or made mistakes.

consequent In an association rule, the right-hand side is called the
consequent. For example, in the rule “If A, then B,” “B” is the conse-
quent. See also antecedent.

cost matrix A two-dimensional, N � N table that defines the cost
associated with incorrect predictions. A cost matrix is typically used
in classification models, where N is the number of distinct categories
in the target, and the columns (reflecting predicted categories) and
rows (reflecting actual categories) are labeled with target categories.

cross validation A method of evaluating the accuracy of a classifica-
tion or regression model, typically used when there are relatively few
cases to divide between build and test datasets. In cross validation,

Glossary 489

the build data is divided into several parts, with each part in turn
being used to evaluate a model built using the remaining parts.

cycle In time series, cycle describes the cyclic behavior of the target
attribute, or signal. A cycle can be periodic, or regular, that is, having
the same number of values within the cycle period. Alternatively, a
cycle can be seasonal, or irregular, that is, having an irregular num-
ber of values within the cycle period. For example, monthly cycles
have an irregular number of days per month, whereas a day has a
constant number of hours. Time series can generate useful informa-
tion about the periodicity or seasonality of a time series sequence.

data mining The process of discovering hidden, previously
unknown and usable information from a large amount of data. This
information is represented in a compact form, referred to as a model.

data mining engine (DME) The component in the JDM architec-
ture that implements the algorithms to support data mining. The
data mining engine may also support the persistent MOR.

data mining server (DMS) The component in the JDM architecture
that implements the data mining engine and persistent MOR. This is
distinguished from the data mining engine since a server implies a
separate component as in a client-server architecture.

data preparation status An indication of whether a logical attribute
provided as input to a build operation has been prepared by the user,
or if the user expects the DME to perform automatic data preparation
on the input data. A user may specify a logical attribute as prepared or
unprepared.

DBMS Database Management System.

descriptive data mining Data mining that results in a transparent
model that can be inspected to understand the process or behavior of
a model. Effectively provides a characterization of a dataset in a con-
cise and summary manner determined by the mining function and
algorithm used. See also predictive data mining.

DME See data mining engine.

DMS See data mining server.

EIS See enterprise information system.

ensemble model A collection of primitive supervised data mining
models (e.g., as produced from the classification mining function)
that can be used together to improve model accuracy.

enterprise information system (EIS) Generically, the application
or enterprise system that supports a set of business processes and

490 Glossary

information technology infrastructure. The business processes are
provided as a set of services. In support of data mining, an instance
of an enterprise information system can be a set of backend compo-
nent(s) that provide data mining functionality to the enterprise.

explode A transformation that translates a discrete (categorical or
ordinal) attribute into n attributes using the indicator or thermometer
approach, where n corresponds to the cardinality of the attribute
(number of distinct values). The indicator approach assigns the value
1 to the attribute that maps to the discrete value of the original
attribute. The thermometer approach assigns the value 1 to the
attribute that maps to the discrete value of the original attribute and
all attributes that precede that value in the ordered sequence.

export The operation that supports taking mining objects from
within the DME and representing them in a transportable format for
storage in an external system such as a file or database table cell, or
for exchange with other systems or applications. In JDM, export is
performed using an export task. See also import.

extension A feature that is not covered by any of the relevant JDM
specifications, or a nonstandard implementation of a feature that is
covered.

feature extraction An unsupervised mining technique that produces
new attributes as combinations of input attributes, producing a
reduced set of attributes containing more highly summarized informa-
tion about those attributes.

feature selection The process of selecting the features (attributes)
that are deemed important to producing a quality data mining
model. Feature selection is done based on the importance computed
using attribute importance algorithms. See also attribute importance.

irregular component In time series, the random or chaotic noisy
residuals of data after the time-dependent components have been
removed, namely, the trend, periodic, and seasonal components. It
results from short-term fluctuations in the series that are neither sys-
tematic nor predictable. In a highly irregular series, these fluctua-
tions can dominate movements, which will mask the trend and
seasonality.

generic interface An approach used in JDM 2.0 to enable vendors
to specify name-value pairs of settings for build settings, algorithm
settings, apply settings, and statistics settings. This provides a way
for vendors to extend the standard settings while using a standard
interface definition.

Glossary 491

import The operation that supports taking mining objects from an
external system such as a file or database table cell and importing
them to the DME and MOR. In JDM, import is performed using an
import task. See also export.

incremental learning An aspect of model building that refines or
enhances an existing model by taking into account new data, thereby
avoiding the need to rebuild the model on the complete dataset.

item An element that can be compared against another to deter-
mine if they are different. Typically used in the context of association
models. For market basket analysis, an item may correspond to a
retail product.

itemset A set of items, typically used as an antecedent or conse-
quent in a rule, as produced from an association model. No item in
an itemset can appear more than once. Itemsets can be compared to
determine if they are different.

Java Data Mining A Java Community Process based standard
supporting data mining, Java Specification Request 73 for JDM 1.x
and Java Specification Request 247 for JDM 2.0.

Java Specification Request (JSR) The actual description of a
proposed and final specification for the Java platform following
Sun’s Java Community Process. See http://www.jcp.org.

JDM See Java Data Mining.

JDM implementation A JDM technology-enabled client API data
mining engine, and mining object repository.

JMI Java Metadata Interface (JSR-40)

JMS Java Messaging Service (JSR-914)

JSR See Java Specification Request.

lift A measure of how well a classification model improves identify-
ing or prediction cases with the positive target value over a random
selection given actual results. Lift may also be used as a measure to
compare different data mining models. Since lift is computed using a
dataset with actual outcomes, lift compares how well a model per-
forms with respect to this dataset on predicted outcomes. Lift allows a
user to infer how a model will perform on new data.

logical attribute A description of a domain of data used as input to
mining operations. Logical attributes specify attribute type, data
preparation status, among others.

logical data A set of logical attributes used as input to building a
data mining model.

492 Glossary

mining function A major subdomain of data mining that shares
common high-level characteristics. For JDM 1.1, functions include:
classification, regression, attribute importance, association, and
clustering.

mining object repository (MOR) The logical or physical architec-
tural component that stores JDM mining objects, such as tasks,
models, settings, and their components.

mining result The end product(s) of a mining operation. For exam-
ple, a build task produces a mining model, a test task produces a test
metrics object.

missing value A data value for an attribute of a case that is missing
because it was not measured, not answered, was unknown or was
lost. Data mining methods vary in the way they treat missing values.
Typically, they may ignore the missing values, omit any records
containing missing values, replace missing values with the mode or
mean, or infer missing values from existing values.

missing values treatment A transformation that specifies how to
replace missing values, for example, with the attribute mean or
mode, a specific value, and so on.

model A compact representation of patterns found using historical
data. A model is the result of executing a build task. Model represen-
tation is specific to the algorithm used. A model can be descriptive or
predictive. A descriptive model helps in understanding underlying
processes or behavior. A predictive model is an equation or set of
rules that makes it possible to predict an unseen or unmeasured
value (the dependent attribute or target) from other, known values
(independent attributes or predictors).

model comparison A phase in the data mining process that
involves comparing multiple models to select the model of highest
quality or that best matches the needs of the business problem. Com-
parison can be based on various criteria, for example, maximum
accuracy, minimum Type I error, and so on.

model detail The specific representation of a model that is algo-
rithm dependent. For example, a decision tree has specific model
detail of the tree nodes and their relationships.

model signature A collection of signature attributes, derived from
the logical data used to build a model. The input data to a model for
scoring must be compatible with the model signature.

MOF Meta Object Facility.

MOR See mining object repository.

Glossary 493

multi-record case A representation of physical data that uses
multiple records to store a single case. The data typically has three
columns with roles of sequence id, attribute name, and value.

multi-target model A type of supervised model that can predict
multiple targets, both categorical (classification) and numerical
(regression). A multi-target model may be more efficient at repres-
enting the knowledge extracted during model building, and more
efficient to compute.

normalization A transformation that maps numerical values to a
particular numerical range, typically 0 … 1. There are several types
of normalization (e.g., z-score, min-max, and shift-scale).

numerical attribute An attribute whose values are numbers. The
numeric value can be either an integer or a real number. See also
categorical attribute and ordinal attribute.

OLAP Online Analytical Processing.

ordinal attribute An ordinal attribute is similar to a categorical
attribute except that there is an order defined on the discrete categor-
ical values, for example, temperature where the discrete values are
high, medium, and low. There is an order defined on the values:
high > medium > low.

Ordinal attributes define a total order relation on the categories.
For example, if x, y, and z are ranked, 5, 6, and 7, we can tell x < y < z,
but not if (z � y) < (y � x).

Consider the ordinal attribute speed that takes the following
ranked categories: STATIONARY, SLOW, FAST, VERY FAST, where
rank (STATIONARY) � 1, rank (SLOW) � 2, rank (FAST) � 3, and
rank (VERY FAST) � 4. We can tell that SLOW represents a smaller
speed value than FAST. However, it is not possible to tell if, for exam-
ple, the difference between two adjacent values is the same or not: is
the difference between SLOW and FAST equal to, smaller or greater
than the difference between FAST and VERY FAST.

outlier A data value that does not (or is not thought to have) come
from the typical population of data. Outliers are values that fall
outside the boundaries that enclose most other values in the data.
This can apply to values of an attribute, or of entire cases.

outlier treatment The approach to replacing outliers in numerical
data attributes. There are several techniques including specifying
explicit boundaries, percentages in the tails of the distribution, and
number of standard deviations, such that values outside the valid
range are replaced either by null values or edge values.

494 Glossary

percentage A value between 0 and 100 that represents a part of a
whole. For example, 75 percent indicates three quarters of a whole.

physical attribute An object that corresponds to a field in a format-
ted file, or column in a database table.

physical dataset Identifies data as a set of cases to be used as input
to data mining. Using tasks, physical attributes can be mapped to
logical attributes of a model’s signature or logical data of a build
settings object. The data referenced by a physical dataset object can be
used in model building, scoring (apply), lift computation, statistical
analysis, etc.

physical data record A collection of named attribute values used as
input and output for single or multi-record scoring.

predictor A logical attribute used as input to a supervised model or
algorithm to build a model. Also referred to as an independent vari-
able.

predictive data mining Data mining that results in a model by
performing inference on build data, and attempting to predict out-
comes for cases in apply datasets. See also descriptive data mining.

prior probabilities The set of prior probabilities, or priors, specifies
the distribution of categories, or classes, in the original population.
Through skewed sampling, such as stratified sampling, prior proba-
bilities will differ from the distribution observed in the build dataset.
Priors allow the algorithm to adjust predictions to reflect original
population distributions.

probability A value between zero and one (0 … 1) that indicates
the likelihood of an event. Zero indicates there is no chance of the
event occurring. One indicates it is probabilistically certain the event
will occur.

quality of fit In clustering, a value between zero and one that is a
measure of how well a given case fits in the predicted cluster.
Values closer to zero indicate a poor fit; values closer to one indicate
a good fit.

receiver operating characteristics (ROC) A measure of comparison
between individual models to determine thresholds that yield a high
proportion of positive hits. ROC curves aid users in adjusting the
cost matrix to minimizing error rates. ROC was originally used in
signal detection theory to gauge the true hit versus false alarm ratio
when sending signals over a noisy channel.

recode A transformation that defines an explicit set of mappings,
where each mapping involves an original value and replacement (or

Glossary 495

recoded) value. Upon performing the transformation on a column,
all matching original values are replaced with the recoded values.

reference implementation A software implementation of a JSR
specification that validates the interface for practical implementa-
tion and usage. It must meet the tests defined in the TCK. See also
technology compatibility kit (TCK).

regression A supervised data mining technique that predicts
continuous targets. One of the JDM mining functions.

residual(s) In regression, the difference between the actual target
value and the predicted value. In time series, residual is what remains
after accounting for trend, cyclic variations, and interventions.

return on investment A measure used to make capital investment
decisions. One possible calculation involves (increased revenue �
costs)/investment.

ROC See Receiver Operating Characteristics.

ROI See Return On Investment.

rule An expression of the general form if X, then Y. An output of
certain models (e.g., association rules models or decision tree mod-
els). The X may be a compound predicate.

sample (n) A representative set of cases taken from a larger data
population. (v) To extract a set of cases from a larger population,
typically at random to minimize bias in the dataset.

seasonality In time series, this is a periodic effect due to the recur-
rence of certain drivers of the time series, for example strong sales
around holidays. See also time series and cycle.

session The duration of an open connection to the DME.

settings The parameters used to control mining operations. See
build settings, apply settings, algorithm settings.

signature attribute A type of attribute used to define one of the
inputs to a model for test and apply. See model signature.

single-record case A representation of physical data that uses a
single record to store each case. Each column contains data to be
mined that can correspond to a logical attribute.

SOA Service Oriented Architecture.

statistics The science and practice of collecting, organizing, and
analyzing data. In JDM, statistics refers to the type of summary data
made available on individual attributes (univariate) and analysis of
multiple attributes (multivariate). Univariate statistics include values

496 Glossary

such as the mean, mode, median, standard deviation. Multivariate
statistics include tests such as F Tests and T Tests.

stratified sampling A sampling technique such that the cases
selected are based on percentages or counts of class values from a
specific attribute. For example, a target attribute with values high,
medium, and low, where the original distribution of cases is 75 percent,
20 percent, and 5 percent, respectively, may be stratified to ensure
that there are equal number of cases in the sampled dataset.

structured data Data that contains primitive data types such as
integers, floats, or category strings. Examples include age, marital
status, temperature.

supervised learning The process of building data mining models
using a known dependent attribute, referred to as the target. All clas-
sification and regression techniques are supervised.

system default For an enumeration class, an implementation-
defined default value that corresponds to one of the allowed values
for the enumeration class. This default value may be different accord-
ing to the context. Vendors must document the system default for
each context.

system determined For an enumeration class, a user may request
the implementation to determine what is the best value for this
enumeration. The implementation-selected value may take into
account, for example other settings or data, to determine an enumer-
ation value. JDM implementers are expected to document the behav-
ior users can expect.

target In supervised learning, the identified logical attribute that is
to be predicted. Also referred to as a dependent variable.

taxonomy A hierarchical grouping of a set of categorical values.
For example, a geography taxonomy groups cities into states, states
into regions, and regions into countries.

task A container within which to specify arguments to data mining
operations to be performed by the DME. Data mining tasks include:
model build, test, apply, import, and export.

TCK See Technology Compatibility Kit.

Technology Compatibility Kit The suite of tests, tools, and
documentation, as defined through the Java Community Process,
that allows implementers of a specification to determine if their
implementation is compliant with that specification.

Glossary 497

test The data mining operation that determines the accuracy of a
model. This is typically performed by using held-aside (test) data
identical in form to the build data, scoring that test data, and com-
paring the actual target value with the predicted target value. Testing
is only applicable for supervised models. In JDM, test is performed
using a test task.

test data The input data used for testing a model.

test task A task that when executed produces test results for super-
vised models.

text mining A data mining technique for extracting patterns and
insights out of unstructured, text data. Text mining goes beyond the
notion of search in that previously unknown information can be
discovered through the use of data mining algorithms.

time series A data mining technique that supports the analysis of
time series data. A series of values X(t) are recorded according to
some function of time and are thus ordered by an index describing
the time (t) at which the values were recorded.

training The step in the model building process that produces a
possibly nonoptimized form of the model. For example, a tree algo-
rithm may produce a full tree during training, but may require an
evaluation phase to effectively select the best subtree. See build.

training data See build data.

transformation A function applied to data resulting in a new form
or representation of the data. Binning and normalization are exam-
ples of data transformations. See also binning, explode, and normaliza-
tion.

trend In time series, this is typically considered to be a long-term
change in the mean level of a series. What constitutes “long-term”
depends on the sampling rate of the time series. See also time series.

UML Unified Modeling Language.

URI Uniform Resource Identifier.

unstructured data Data that represents complex content, often with
an inherent structure. Examples of unstructured data include text,
images, audio, and video. See also structured data.

unsupervised learning The process of building data mining models
without the guidance (supervision) of a known, correct result. In super-
vised learning, this correct result is provided in the target attribute.
Unsupervised learning has no such target attribute. Clustering and
association are examples of unsupervised learning.

498 Glossary

Web service A software application identified by a URI, whose
interfaces and bindings are capable of being defined, described, and
discovered as XML artifacts. A Web service supports direct interac-
tions with other software agents using XML-based messages
exchanged via Internet-based protocols.

weight A numeric value associated with an attribute or case.
Weights associated with attributes instruct the DME to consider the
contribution of attributes with greater weights more important than
those with lesser weights. Weights associated with cases—by identi-
fying an attribute as containing weight values—instruct the DME to
consider the contribution of cases with greater weights more impor-
tant that those with lesser weights.

References

[JSR-73 2005] “Java Specification Request 73: Java Data Mining (JDM),”
Maintenance Release v1.1, June 2005, http://jcp.org/en/jsr/detail?
id�73.

[JSR-247 2006] “Java Specification Request 247: Java Data Mining (JDM),”
Early Review Draft Release v1.9, January 2006, http://jcp.org/en/jsr/
detail?id�247.

499

Index

A

Accuracy, 462
Acquisition, customer, 26–28
Administrative console, 346–356

creating connections,
347–350

deleting saved objects from
MOR, 356

renaming saved objects, 355
retrieving list of classes,

350–352
retrieving list of saved

objects, 352–354
Advanced analytics, data

mining versus other
forms of, 7–10

AI (artificial intelligence), 7
Algorithms

selections, 160–161
settings, 220–222
support vector machine

(SVM), 147–148
Algorithms, decision tree,

142–145
overview, 142–144

settings, 144–145
Algorithms, finding best fit,

141–150, 158
decision tree, 142–145
feed forward neural

networks, 148–150
naïve bayes, 145–147
support vector machine

(SVM), 147–148
Algorithms, mining functions

and, 85–102
association analysis, 93–97
attribute importance, 91–93
classification, 88–89
clustering, 97–100
regression, 89–91

Algorithms, naïve bayes,
145–147

overview, 145–146
settings, 146–147

American National Standards
Institute (ANSI), 456

Analyses
association, 93–97
data, 60–70

deductive, 7
defect, 40–41
survey, 37–38
warranty, 39–40

Analytics, advanced, 7–10
ANSI (American National

Standards Institute),
456

APIs (application programming
interfaces), 3, 55, 76,
104, 117, 173, 199, 259,
273, 392, 429–430, 456,
476

Application programming
interfaces (APIs), 3, 55,
76, 104, 117, 173, 199,
259, 273, 392, 429–430,
456, 476

Apply
batch, 229, 253, 282, 287
model, 71–72, 155, 460
real-time, 270, 356
task, 31

ApplySettings object, saving,
391–394

500 Index

Appraisals, reducing process-
ing time of residential
real estate, 157

Appropriateness of data for
mining, 11

Architectures, 76–79
connection, 188–190
of demonstration

interfaces, 343–345
enterprise software, 75–81
KXEN JDM implementa-

tion, 433–434
Oracle JDM implementa-

tion, 422–424
Architectures of DME, 412

in-database DME, 412
Independent-server DME

with direct data access,
412

independent-server dme
with staging data, 412

Artificial intelligence (AI), 7
Association

analysis, 93–97
apply for, 471–472
interfaces, 243–249
product, 162

Association rules problem,
162–165

CUSTOMERS and their
product purchase data,
163

data specification, 163
discovering product associ-

ations from customer
data, 162

exploring rules from
model, 165

filtering rules based on rule
quality metrics, 163–165

identifying cross-sell prod-
ucts for customers, 162

model content, 165
problem definition, 162

settings, 163–165
solution approach, 162

Attribute altering,
transformations, 467

Attribute creating,
transformations, 467

Attribute filtering,
transformations, 467

Attribute importance, 91–93,
160–162

data specification, 160–161
exploring attribute impor-

tance values, 161–162
finding important customer

attributes, 160
interfaces, 240–243
models, 14
problem definition, 160
ranking attributes accord-

ing to predictive value,
160

selection, 160–161
settings, 160–161
solution approach, 160
using model details,

161–162
values, 161–162

Attribute reduction, 65–66
Attribute selection, 174, 434
Attributes

customer, 160
derived, 64–65
ranking, 160
target, 469

Attrite, customers who are
likely to, 134–135

Attrition, reducing customer,
134

Automated data mining,
advances in, 81–82

Availability of data for mining,
11

Axis, generating Java classes
with, 398–400

B

Backup and recovery, 416
BAM (business activity

monitoring), 77
Batch, applying model to data

in, 229–233
Behavior, understanding

customer, 165–166
Benchmarks, standard, 462
BI (business intelligence),

4, 199
Binding element, defined, 290
Bivariate statistics, 474
Book summary, 479–481
BPEL (Business Process

Execution Language),
271, 276, 277

Build and save models, user
interfaces to, 356–376

Build settings, saving,
370–376

Building, model, 415
BuildSettings

creating, 401–403
object, 401, 404

BuildTask
creating, 404
executing, 404–405

Business activity monitoring
(BAM), 77

Business intelligence (BI),
4, 199

Business operations, incorpo-
rating data mining into,
79–80

Business Process Execution
Language (BPEL), 271,
276, 277

Business understanding,
118–119

Business understanding phase,
53–55

Business workflow, 80–81

Index 501

C

Campaign, starter, 303
Campaign, targeted marketing,

302–321
campaign specifications,

302–305
code examples, 306–320
design of campaign optimi-

zation objects, 305–306
Campaign optimization

defined, 302
object, 305–306

Campaign scenario process,
targeting, 303–305

Campaign specifications,
302–305

CampaignOptimizer class, 306
Capabilities, discovering DME,

196–197
Cases, filtering, 467
Categories, transformations can

be divided into several,
467

attribute altering, 467
attribute creating, 467
attribute filtering, 467
case filtering, 467
pure function-oriented, 467

Chief marketing officer (CMO),
325

Classes
CampaignOptimizer, 306
generating Java, 398–400
retrieving list of, 350–352
that can be saved, 350–352

Classification, 88–89
Classification interfaces,

218–235
applying model to data in

batch, 229–233
applying model to single

record, 234–235
model contents, 222–226

real-time scoring, 234–235
settings, 218–222
test metrics for model

evaluation, 227–229
Classification models, 13
Classification problems, 134–157

applying model, 155–157
computing classification

test metrics, 150–155
CUSTOMERS dataset,

135–138
customers who are likely to

attrite, 134–135
data specification, 135–138
evaluating model quality,

150–155
finding best fit, 141–150
fine-tune solution to

problem, 139–141
obtaining prediction

results, 155–157
problem definition, 134
reducing customer

attrition, 134
selecting, 141–150

Classification settings, 218–220
Classification test metrics,

computing, 150–155
Client, web service (WS),

387–405
creating BuildSettings,

401–403
creating BuildTask, 404
creating PhysicalDataSet,

403–404
executing BuildTask,

404–405
executing RecordApply-

Task on models,
395–397

filling input values using
Javascript, 390–391

generating Java classes
with Axis, 398–400

opening connection to
JDMWS live server,
400–401

retrieving list of models,
394–395

saving ApplySettings
object, 391–394

Cluster models, applying, 169
Clustering, 97–100
Clustering interfaces, 249–256
Clustering problems, 165–169

applying cluster model, 169
assigning new cases to

clusters, 169
data specification and

settings, 166–168
exploring clusters, 168–169
finding clusters of similar

customers, 166
problem definition, 165–166
settings, 166–168
solution approach, 166
understanding customer

behavior and needs,
165–166

using model details,
168–169

Clusters
assigning new cases to, 169
exploring, 168–169
of similar customers, 166

CMO (chief marketing officer),
325

Code examples
algorithm settings, 222
applying classification

model to compute
predictions, 231–232

build Association model to
discover product
associations, 247–249

building settings and tasks,
370–376

classification settings, 220

502 Index

Code examples (cont.)
classification test metrics

computation, 228–229
clustering, 254–256
computing statistics,

361–364
computing test metrics,

378–385
ConnectionFactory

interface, 201, 203
creating BuildSettings,

401–403
creating connections,

347–349, 350
data preparation, 121, 123
deleting saved object from

MOR, 356
deployment, 128
design of CustomerSeg-

menter object, 328–338
executing BuildTask, 405
executing mining opera-

tions, 210
executing RecordApplying-

Task on models,
395–397

exploring mining capabili-
ties, 212

exploring model contents,
225–226

filling input values using
JavaScript, 390–391

generating Java classes
with Axis, 399–400

getting list of saved models,
378

getting metadata, 359–361
important attributes for

building
attrition_Model,
242–243

modeling, 124–125, 126–127
opening connection to

JDMWS live server,
400–401

PhysicalDataSet and
LogicalData for input
dataset, 217

practical problem solving,
306–320

production directive,
350–352

regression example code,
238–240

renaming saved objects, 355
retrieving list of models,

394–395
retrieving list of saved

objects, 352–354
retrieving statistics

information, 364–370
saving ApplySettings

object, 391–394
saving physical dataset,

370–376
single record apply

operation, 234–235
test, 126
understanding key factors,

321–324
user interface to build and

save model, 358–359
using connection interface,

207–209
Coding. See Recoding
Common Warehouse Metadata

(CWM) for data
mining, 454–455

Communications, 45–46
Components

cycle, 470
irregular, 470
trend, 470

Computing hardware, 409–411
Computing statistics, 361–364
Computing test metrics,

378–385
Concepts, Java Data Mining

(JDM), 133–171

association rules problem,
162–165

attribute importance,
160–162

classification problem,
134–157

clustering problem,
165–169

regression problem,
157–160

Conformance, standards,
441–443

minimum implementation,
442

vendor extensions, 442–443
Connection architecture,

188–190
Connection interfaces, 200,

203–209
executing mining

operations, 209–211
exploring mining

capabilities, 211–212
finding DME and JDM

version information,
212–213

model and data load
methods, 213

object list methods, 213
using connection interface,

203–209
using ConnectionFactory

interface, 201–203
Connection to JDMWS live

server, opening, 400–401
ConnectionFactory interface,

201–203
Connections, creating, 347–350
Console, administrative,

346–356
creating connections,

347–350
deleting saved objects from

MOR, 355
renaming saved objects, 355

Index 503

retrieving list of classes,
350–352

retrieving list of saved
objects, 352–354

Constants and identifiers, 61–62
Contents, model, 222–226
Costs, reducing, 21–23
Credit scoring, 38–39
Cross Industry Standard Pro-

cess for Data Mining
(CRISP-DM), 52

Cross-industry data mining
solutions, 26–41

credit scoring, 38–39
cross-selling, 35–36
customer acquisition,

26–28
customer retention, 28–30
defect analysis, 40–41
fraud detection, 32–35
new product line develop-

ment, 36–37
response modeling, 30–32
survey analysis, 37–38
warranty analysis, 39–40

Cross-sell products for custom-
ers, identifying, 162

Cross-selling, 35–36
Customer acquisition, 26–28
Customer attributes, finding

important, 160
Customer attrition, reducing,

134
Customer behavior and needs,

understanding, 165–166
Customer data, discovering

product associations
from, 162

Customer relationship manage-
ment (CRM), 302, 398,
413

Customer retention, 28–30
Customer segmentation,

325–338

Customer segmentation specifi-
cations, 325–327,
328–338

designing CustomerSeg-
menter object, 327–328

Customer service representa-
tive (CSR), 60

CUSTOMER table, 119, 120
Customers

dataset, 135–138
finding clusters of similar,

166
identifying cross-sell

products for, 162
and their product purchase

data, 163
who are likely to attrite,

134–135
CustomerSegmenter class, 328
CustomerSegmenter object,

designing, 327–328
Cycle components, 470
Cycles

period, 470
resolution, 470

D

Data
appropriateness of, 11
availability of, 11
customer, 162
dirty, 11
independent server dme

with staging, 412
integrating, 70
model of, 11
product purchase, 163
transforming, 66–67

Data, what to look for in, 61–70
attribute reduction, 65–66
constants and identifiers,

61–62
derived attributes, 64–65

errors and outliers, 62–64
integrating data, 70
missing values, 62
recoding, 69
sampling, 67–69
transforming data, 66–67

Data access, 414–416
for apply and test, 416
data access for apply and

test, 416
data access for model

building, 415
independent-server DME

with direct, 412
for model building, 415

Data analysis and preparation,
detailed view of, 60–70

Data definition language, 463
Data exchange and security in

JDMWS, 292
Data in batch, applying model

to, 229–233
Data load methods, model and,

213
Data manipulation language,

463
Data mining

automated advances in,
81–82

Common Warehouse
Metadata (CWM) for,
454–455

databases and data
warehouses in, 74–75

incorporating into business
operations, 79–80

increasing profits, 21–23
model defined, 12–13
versus other forms of

advanced analytics,
7–10

by other names, 6–7
reducing costs, 21–23
relevancy of, 4–6

504 Index

Data mining (cont.)
reliability of, 20–21
requirements from IT,

408–409
Data mining activity, KXEN,

431–432
Data mining concepts, object

modeling of, 174–187
data specification objects,

175–177
models, 183–184
settings objects, 178–183
tasks, 185–187
test metrics, 184–185

Data mining defined, 15
Data mining engines (DMEs),

61, 76, 173, 200, 259,
282, 310, 341, 391, 407,
421, 469, 480

capabilities, 196–197
in-database, 412
independent-server, 412
and JDM version informa-

tion, 212–213
Data mining graphical

interface using OJDM,
430–431

Data Mining Group (DMG), 452
Data mining in enterprise

software architectures,
75–81

architectures, 76–79
business workflow, 80–81
incorporating data mining

into business opera-
tions, 79–80

Data mining in industries,
41–47

communications, 45–46
financial services, 41–42
healthcare, 42–43
higher education, 43–44
life sciences, 46–47
public sector, 44–45

retail, 46
Data mining, introducing, 6–20

data mining by other
names, 6–7

data mining model defined,
12–13

data mining versus other
forms of advanced
analytics, 7–10

jargon, 13–15
process, 10–12

Data mining lab (DM Lab), 283
Data mining, overview of, 3–24

introducing data mining,
6–20

relevancy of data mining,
 4–6

value of data mining,
20–23

Data mining process, 51–83
advances in automated

data mining, 81–82
analysis, 70–73
data mining in enterprise

software architectures,
75–81

data mining modeling,
70–73

databases and data
warehouses in data
mining, 74–75

detailed view of data
analysis and prepara-
tion, 60–70

scoring processes, 70–73
standardized data mining

process, 52–60
Data mining process, standard-

ized, 52–60
business understanding

phase, 53–55
data preparation phase,

56–57
data understanding phase,

55–56

deployment phase, 59–60
evaluation phase, 58
modeling phase, 57–58

Data mining solutions,
cross-industry, 26–41

credit scoring, 38–39
cross-selling, 35–36
customer acquisition,

26–28
customer retention, 28–30
defect analysis, 40–41
fraud detection, 32–35
new product line develop-

ment, 36–37
response modeling, 30–32
survey analysis, 37–38
warranty analysis, 39–40

Data mining standards, 451–456
Common Warehouse Meta-

data (CWM) for data
mining, 454–455

directions for, 461–463
enabling, 112–114
Predictive Model Markup

Language (PMML),
452–453

SQL/MM Part 6 Data
Mining (SQL/MM
DM), 455–456

Data mining standards,
evolution of, 451–464

data mining standards,
451–456

directions for data mining
standards, 461–463

Java Community Process
(JCP), 456–457

many standards, 457–461
Data mining tools, 342–346

architecture of demonstra-
tion interfaces, 343–345

managing JDM exceptions,
345–346

Index 505

Data mining tools using JDM,
building, 341–386

administrative console,
346–356

data mining tools, 342–346
user interface to test model

quality, 376–385
user interfaces to build and

save models, 356–376
Data mining, value of, 20–23

data mining increasing
profits, 21–23

data mining reducing costs,
21–23

reliability of data mining,
20–21

Data preparation, 121–123
Data preparation phase, 56–57
Data specification

interfaces, 214–217
objects, 175–177
and settings, 166–168

Data storage hardware,
411–414

Data understanding, 119–120
Data understanding phase,

55–56
Data URI specifications, DME

URI and, 436–439
Data warehouses in data

mining, databases and,
74–75

Database administrators
(DBAs), 18, 79, 119

Databases
and data warehouses in

data mining, 74–75
relational, 6

Datasets
CUSTOMERS, 135–138
REAL_ESTATE_APPRAI-

SALS, 157–158
saving physical, 370–376

Uniform Resource Identifi-
ers (URIs) for, 192

Decision tree algorithm,
142–145

overview, 142–144
settings, 144–145

Decomposition of time series,
470

Deductive analysis, 7
Defect analysis, 40–41
Demonstration interfaces, archi-

tecture of, 343–345
Deployment, 127–129
Deployment phase, 59–60
Derived attributes, 64–65
Detection, fraud, 32–35
Development, new product

line, 36–37
Direct data access, Indepen-

dent-server DME with,
412

Directive, production, 350–351
Dirty data, 11
DJIA (Dow Jones Industrial

Average), 469
DME, architectures are, 412

in-database DME, 412
Independent-server DME

with direct data access,
412

independent-server dme
with staging data, 412

DME URI and data URI,
427–428

DME URI and data URI specifi-
cations, 436–439

DMEs (data mining engines),
61, 76, 173, 200, 259,
282, 310, 341, 391, 407,
421, 469, 480

capabilities, 196–197
in-database, 412
Independent-server, 412

and JDM version informa-
tion, 212–213

DMWhizz company, 118
Document type definition

(DTD), 454
Documents, JDM XML schema

and, 270–271
Dow Jones Industrial Average

(DJIA), 469
DTD (document type

definition), 454

E

EbXML (Electronic Business
using Extensible
Markup Language), 270

EC (executive committee), 456
Education, higher, 43–44
EJB (Enterprise Java Beans), 277
Electronic Business using

Extensible Markup
Language (ebXML), 270

Elements
binding, 290
portType, 290
schema, 260–262

Enterprise information systems
(EISs), 202

Enterprise Java Beans (EJB), 277
Enterprise software architec-

tures, data mining in,
75–81

architectures, 76–79
business workflow, 80–81
incorporating data mining

into business opera-
tions, 79–80

Enumerated types, 192–193
Enumerations, JDM, 213–214
Errors and outliers, 62–64
Evaluation, 127

model, 227–229
phase, 58

506 Index

Examples, code
algorithm settings, 222
applying classification

model to compute
predictions, 231–232

build Association model to
discover product
associations, 247–249

building settings and tasks,
370–376

classification settings, 220
classification test metrics

computation, 228–229
clustering, 254–256
computing statistics,

361–364
computing test metrics,

378–385
ConnectionFactory

interface, 201, 203
creating BuildSettings,

401–403
creating connections,

347–349, 350
data preparation, 121, 123
deleting saved object from

MOR, 356
deployment, 128
design of CustomerSeg-

menter object, 328–338
executing BuildTask, 405
executing mining

operations, 210
executing RecordApplying-

Task on models,
395–397

exploring mining capabili-
ties, 212

exploring model contents,
225–226

filling input values using
JavaScript, 390–391

generating Java classes
with Axis, 399–400

getting list of saved models,
378

getting metadata, 359–361
important attributes for

building
attrition_Model,
242–243

modeling, 124–125, 126–127
opening connection to

JDMWS live server,
400–401

PhysicalDataSet and Logi-
calData for input
dataset, 217

practical problem solving,
306–320

production directive,
350–352

regression example code,
238–240

renaming saved objects, 355
retrieving list of models,

394–395
retrieving list of saved

objects, 352–354
retrieving statistics infor-

mation, 365–370
saving ApplySettings

object, 391–394
saving physical dataset,

370–376
single record apply opera-

tion, 234–235
test, 126
understanding key factors,

321–324
user interface to build and

save model, 358–359
using connection interface,

207–209
Exceptions, 194–196

managing JDM, 345–346
Exchange, data, 292
Executive committee

(EC), 456

Experience, learning from, 7
Extensible Markup Language

(XML), 259, 454
Extensions

KXEN, 439–440
Oracle JDM, 425–427
vendor, 442–443

Extraction
feature, 472–473
transformation, and load

(ETL) tools, 57

F

Factories, object, 190–191
Factors, key, 321–324

code example, 321–324
False alarm rate, 314
False negative (FN), 141
False positive (FP), 141
False positive rate, 314
Feature extraction, 472–473
Feature selection, 342,

345, 434
Feed forward neural networks,

148–150
overview, 148–150

Filtering, case, 467
Filtering transformations,

attribute, 467
Financial services, 41–42
Fine-tune settings, 160–161
FN (false negative), 141
Format, transactional, 121
FP (false positive), 141
Fraud detection, 32–35
Functionality, starting small

and growing in, 107
Function-oriented transforma-

tions, pure, 467
Functions, mining, 13, 85–102

association analysis, 93–97

Index 507

attribute importance,
91–93

classification, 88–89
clustering, 97–100
feature extraction,

424, 425
regression, 89–91
time series, 442

G

Generalized linear models
(GLMs), 158

Getting started, 117–129
business understanding,

118–119
data preparation, 121–123
data understanding,

119–120
deployment, 127–129
evaluation, 127
modeling, 123–127

Gizmos, 118
GLMs (generalized linear

models), 158
Graphical interface using

OJDM, data mining,
430–431

GUI (graphical user interface),
76, 341, 342, 466

H

Hardware
computing, 409–411
data storage, 411–414

Healthcare, 42–43
Heat map, defined, 473
HEW (High End

Widgets), 302
High End Widgets

(HEW), 302
Higher education, 43–44
Hit rate, 314

I

IAF (International Accredita-
tion Forum), 456

IDE (integrated development
environment), 401

Identifiers, constants and, 61–62
IDL (Interface Definition

Language), 454
IEC (International ElectroTech-

nical Commission), 452,
456

Implementation
KXEN Web services, 440
minimum, 442

Implementation architecture
KXEN JDM, 433–434
at Oracle JDM, 422–424

Implementations, vendor,
421–448

guidelines for new imple-
menters, 441–447

KXEN (knowledge
extraction engines),
431–440

Oracle Data Mining
(ODM), 421–431

process for new JDM users,
447

Implementers, guidelines for
new, 441–447

standards conformance,
441–443

using TCK, 443–447
Import task, 424, 434
Imputation, value, 62
INCITS (International Commit-

tee for Information
Technology
Standards), 456

In-database DME, 412
Independent-server DME

with direct data access, 412
with staging data, 412

Industries, data mining in,
41–47

communications, 45–46
financial services, 41–42
healthcare, 42–43
higher education, 43–44
life sciences, 46–47
public sector, 44–45
retail, 46

Industry, solving problems in,
25–49

cross-industry data mining
solutions, 26–41

data mining in industries,
41–47

Information technology (IT),
283, 303, 407, 455, 480

Infrastructure, JDM impacts on
IT, 407–419

backup and recovery, 416
data access, 414–416
data mining requirements

from IT, 408–409
impacts on computing

hardware, 409–411
impacts on data storage

hardware, 411–414
scheduling, 416–417
workflow, 417–418

Integrated development envi-
ronment (IDE), 401

Interface Definition Language
(IDL), 454

Interfaces
association, 243–249
attribute importance,

240–243
connection, 203–209
ConnectionFactory, 201–203
data specification, 214–217
demonstration, 343–345
PortType, 295–296
regression, 235–240

508 Index

Interfaces, classification,
218–235

applying model to data in
batch, 229–233

applying model to single
record, 234–235

classification settings,
218–220

model contents, 222–226
real-time scoring, 234–235
settings, 220–222
test metrics for model

evaluation, 227–229
Interfaces, clustering, 249–256
Interfaces, connection, 200–213

executing mining
operations, 209–211

exploring mining
capabilities, 211–212

finding DME and JDM
version information,
212–213

model and data load
methods, 213

object list methods, 213
using connection interface,

203–209
using ConnectionFactory

interface, 201–203
International Accreditation

Forum (IAF), 456
International Committee for

Information
Technology Standards
(INCITS), 456

International ElectroTechnical
Commission (IEC), 452,
456

International Standards Organi-
zation (ISO), 452, 456

Interventions, defined, 469
Irregular components, 470
ISO (International Standards

Organization), 452, 456

IT (information technology),
283, 303, 407, 455, 480

IT, data mining requirements
from, 408–409

IT infrastructure, JDM impact
on, 407–419

backup and recovery, 416
data access, 414–416
data mining requirements

from IT, 408–409
impacts on computing

hardware, 409–411
impacts on data storage

hardware, 411–414
scheduling, 416–417
workflow, 417–418

J

J2EE Connector Architecture
(JCA), 189, 202

Jargon, 13–15
Java, web service client in,

397–405
creating BuildSettings,

401–403
creating BuildTask, 404
creating PhysicalDataSet,

403–404
executing BuildTask,

404–405
generating Java classes

with Axis, 398–400
opening connection to

JDMWS live server,
400–401

Java classes with Axis,
generating, 398–400

Java Community Process (JCP),
105, 422, 456–457, 465,
480

Java Data Mining 2.0, preview
of, 465–477

apply for association,
471–472

feature extraction, 472–473
multi-target models,

 474–475
statistics, 473–474
text mining, 475–476
time series, 469–471
transformations, 466–469

Java Data Mining (JDM), 3, 26,
52, 85, 103, 117, 133, 173,
259, 273, 301, 421, 451,
465

KXEN position on, 432–433
Oracle position on, 422

Java Data Mining (JDM), build-
ing data mining tools
using, 341–386

administrative console,
346–356

data mining tools, 342–346
user interface to test model

quality, 376–385
user interfaces to build and

save models, 356–376
Java Data Mining (JDM) con-

cepts, 133–171
association rules, 162–165
attribute importance,

160–162
classification, 134–157
clustering, 165–169
regression, 157–160

Java Data Mining (JDM), strate-
gic objectives for,
105–110

addressing large developer
community, 105

allowing control for
experts, 107–108

being extensible, 106–107
being standard interface,

105
broad acceptance among

vendors and consum-
ers, 106

Index 509

broadening standard’s
appeal to vendors and
architects, 109

conformance limitations for
vendor implementa-
tions, 108

development domains, 109
leveraging other data

mining standards,
109–110

simplifying data mining for
novices, 107–108

starting small and growing
in functionality, 107

supporting requirements of
real, industrial applica-
tions, 109

Java objects, converting JDM
WSDL and JDM
schema to, 295

Java Specification Request
(JSR), 60, 456

Javascript, filling input values
using, 390–391

JAX-RPC, building JDMWS
using, 294–296

converting JDM WSDL and
JDM schema to Java
objects, 295

deploying service, 296
implementing PortType

interface, 295–296
JAX-RPC, enabling JDM web

services using, 293–296
building JDMWS using

JAX-RPC, 294–296
overview of JAX-RPC,

293–294
JAX-RPC, overview of, 293–294
JCA (J2EE Connector Architec-

ture), 189, 202
JCP (Java Community Process),

105, 422, 456–457, 465,
480

JDBC (Java Database Connec-
tivity), 305

JDM and implementation
architecture, Oracle,
422–424

JDM API, designing of, 173–197
connection architecture,

188–190
discovering DME capabili-

ties, 196–197
enumerated types, 192–193
exceptions, 194–196
modular packages,

187–188
object factories, 190–191
object modeling of data

mining concepts,
174–187

Uniform Resource Identifi-
ers (URIs) for datasets,
192

JDM API, using, 199–257
connection interfaces,

200–213
using association interfaces,

243–249
using attribute importance

interfaces, 240–243
using classification inter-

faces, 218–235
using clustering interfaces,

249–256
using data specification

interfaces, 214–217
using JDM enumerations,

213–214
using regression interfaces,

235–240
JDM capabilities, Oracle,

424–425
JDM enumerations, using,

213–214
JDM exceptions, managing,

345–346

JDM extensions, Oracle,
425–427

JDM impact on IT infrastruc-
ture, 407–419

backup and recovery, 416
data access, 414–416
data mining requirements

from IT, 408–409
impacts on computing

hardware, 409–411
impacts on data storage

hardware, 411–414
scheduling, 416–417
workflow, 417–418

JDM schema to Java objects,
converting JDM WSDL
and, 295

JDM schema, using PMML
with, 267–270

JDM strategy, 103–116
defined, 104–110
role of standards, 110–114

JDM users, process for new, 447
JDM version information,

finding DME and,
212–213

JDM Web Service (JDMWS),
278–292

data exchange and security
in, 292

data exchange and security
in JDMWS, 292

JDM WSDL, 288–292
JDMWS use case, 282–288
operations, 279–282
overview of JDMWS opera-

tions, 279–282
use case, 282–288

JDM Web Service (JDMWS),
enabling using JAX-
RPC, 293–296

building JDMWS using
JAX-RPC, 294–296

510 Index

JDM Web Service (cont.)
overview of JAX-RPC,

293–294
JDM Web Service (JDMWS),

getting started with,
387–406

web service client in Java,
397–405

web service (WS) client in
PHP, 387–406

JDM Web services (JDMWS),
273

JDM WSDL, 288–292
JDM WSDL and JDM schema,

converting to Java
objects, 295

JDM XML schema and docu-
ments, use cases for,
270–271

JDMWS, building using
JAX-RPC, 294–296

converting JDM WSDL and
JDM schema to Java
objects, 295

deploying service, 296
implementing PortType

interface, 295–296
JDMWS live server, opening

connection to, 400–401
Joint Technical Committee

(JTC-1), 455

K

Key factors, understanding,
321–324

code example, 321–324
KJDM (KXEN Java Data Mining

Implementation), 433
KXEN (knowledge extraction

engines), 431–440
data mining activity,

431–432
DME URI and data URI

specifications, 436–439

extensions, 439–440
KXEN extensions, 439–440
KXEN JDM capabilities,

434–436
KXEN JDM implementa-

tion architecture,
433–434

KXEN position on JDM,
432–433

KXEN Web services
implementation, 440

position on JDM, 432–433
Web services implementa-

tion, 440
KXEN JDM (KJDM), 434

capabilities, 434–436
implementation architec-

ture, 433–434

L

Language
data definition, 463
data manipulation, 463

Learning from experience, 7
Life sciences, 46–47
Life-stage segmentation, 325
Live server, JDMWS, 400–401
Logical attribute characteris-

tics, 136

M

Map, heat, 473
Marketing campaign, targeted,

302–321
campaign specifications,

302–305
code examples, 306–320
design of campaign optimi-

zation object, 305–306
Metadata, getting, 359–361
Metaphor, mining, 15–20
Methods

model and data load, 213
object list, 213

Metrics
classification test, 150–155
computing test, 378–385
rule quality, 163–165
test, 159, 184–185, 227–229

Minimum implementation, 442
Mining capabilities, exploring,

211–212
Mining functions, 13
Mining functions and algo-

rithms, 85–102
association analysis,

93–97
attribute importance, 91–93
classification, 88–89
clustering, 97–100
regression, 89–91

Mining metaphor, 15–20
Mining object repository

(MOR), 76, 174, 341,
388, 414

deleting saved objects from,
356

Mining operations, executing,
209–211

Missing values, 62
Model

applying, 155–157, 159–160
applying to data in batch,

229–233
applying to single record,

234–235
of data, 11
and data load methods, 213
data mining, 12–13
exploring rules from, 165

Model building, data access for,
415

Model contents
association rules problem,

165

Index 511

classification interfaces,
222–226

Model details, using, 161–162,
168–169

Model evaluation, test metrics
for, 227–229

Model quality, evaluating,
150–155, 159

Model quality, user interface to
test, 376–385

computing test metrics,
378–385

getting list of saved models,
378

Model transparency, 14
Modeling, 123–127

data mining, 70–73
object, 174–187
phase, 57–58
response, 30–32

Models
attribute importance, 14
classification, 13
cluster, 169
executing RecordApply-

Task on, 395–397
list of saved, 378
multi-target, 474–475
object modeling of data

mining concepts,
183–184

opaque, 14
regression, 13
retrieving list of, 394–395

Models, user interfaces to build
and save, 356–376

computing statistics,
361–364

general introduction,
357–359

getting metadata,
359–361

retrieving statistics infor-
mation, 364–370

saving build settings,
370–376

saving physical datasets,
370–376

saving tasks, 370–376
Modular packages, 187–188
MOR (mining object repository),

76, 174, 341, 388, 414
deleting saved objects from,

356
Multi-target models, 474–475
Multivariate statistics, 474

N

Naïve bayes (NB), 141
Naïve bayes (NB) algorithm,

145–147
overview, 145–146
settings, 146–147

Names, data mining by other,
6–7

Networks, feed forward neural,
148–150

overview, 148–150
Neural networks, feed forward,

148–150
New cases, assigning to

clusters, 169
New implementers, guidelines

for, 441–447
standards conformance,

441–443
using TCK, 443–447

New JDM users, process
for, 447

New product line development,
36–37

NuSOAP, 395
NuSOAP defined, 388

O

Object factories, 190–191
Object list methods, 213

Object Management Group
(OMG), 452

Object modeling of data mining
concepts, 174–187

data specification objects,
175–177

models, 183–184
settings objects, 178–183
tasks, 185–187
test metrics, 184–185

Objects
ApplySettings, 391–394
BuildSettings, 401, 404
campaign optimization,

305–306
CustomerSegmenter,

327–328
data specification, 175–177
deleting saved, 356
list of saved, 352–354
renaming saved, 355

ODM (Oracle Data Mining),
421–431

APIs, 429–430
data mining graphical

interface using OJDM,
430–431

DME URI and data URI,
427–428

getting started with OJDM,
428

miscellaneous Oracle Data
Mining (ODM) APIs,
429–430

Oracle JDM capabilities,
424–425

Oracle JDM extensions,
425–427

Oracle JDM implementa-
tion architecture,
422–424

Oracle position on JDM,
422

ODSs (operational data stores),
77

512 Index

OJDM (Oracle Java Data
Mining), 422

capabilities, 424–425
data mining graphical

interface using, 430–431
extensions, 425–427
getting started with, 428
implementation architec-

ture, 422–424
OLAP (online analytical

processing), 6, 8, 56,
327, 422, 463

OMDB (operational marketing
database), 304

OMG (Object Management
Group), 452

Online analytical processing
(OLAP), 6, 8, 56, 327,
422, 463

Opaque models, 14
Operational data stores (ODSs),

77
Operational marketing data-

base (OMDB), 304
Operations

business, 79–80
mining, 209–211

Optimization, campaign, 302
Optimization object, campaign,

305–306
Oracle Data Mining (ODM),

421–431
APIs, 429–430
data mining graphical

interface using OJDM,
430–431

DME URI and data URI,
427–428

getting started with OJDM,
428

miscellaneous Oracle Data
Mining (ODM) APIs,
429–430

Oracle JDM capabilities,
424–425

Oracle JDM extensions,
425–427

Oracle JDM implementa-
tion architecture,
 422–424

Oracle position on JDM,
422

Oracle Java Data Mining
(OJDM), 422

capabilities, 424–425
data mining graphical

interface using, 430–431
extensions, 425–427
getting started with, 428
implementation architec-

ture, 422–424
Oracle position on JDM, 422
Oracle Technology Network

(OTN), 428
OTN (Oracle Technology

Network), 428
Outliers, errors and, 62–64

P

P2P (peer-to-peer), 276
Packages, modular, 187–188
Peer-to-peer (P2P), 276
Performance, 462
Period cycles, 470
Phases

business understanding,
53–55

data preparation, 56–57
data understanding,

55–56
deployment, 59–60
evaluation, 58
modeling, 57–58

PHP, web service (WS) client in,
387–397

executing RecordApply-
Task on models,
395–397

filling input values using
Javascript, 390–391

retrieving list of models,
394–395

saving ApplySettings
object, 391–394

Physical datasets, saving,
370–376

PhysicalDataSet, creating,
403–404

PMML (Predictive Model
Markup Language),
112, 267, 451–453

using with JDM schema,
267–270

PortType element,
defined, 290

PortType interface, 295–296
Prediction results, obtaining,

155–157, 159–160
Predictive Model Markup

Language (PMML), 112,
267, 451–453

using with JDM schema,
267–270

Predictive value, ranking
attributes according
to, 160

Preparation
data, 121–123
detailed view of data

analysis and, 60–70
Problem solving, practical,

301–339
customer segmentation,

325–338
targeted marketing

campaign, 302–321
understanding key factors,

321–324
Problems, association rules,

162–165
CUSTOMERS and their

product purchase data,
163

Index 513

data specification, 163
discovering product associ-

ations from customer
data, 162

exploring rules from
model, 165

filtering rules based on rule
quality metrics,
163–165

fine-tune settings, 163–165
identifying cross-sell

products for custom-
ers, 162

problem definition, 162
solution approach, 162
using model content, 165

Problems, classification, 134–157
applying model, 155–157
computing classification

test metrics, 150–155
CUSTOMERS dataset,

135–138
customers who are likely to

attrite, 134–135
data specification, 135–138
evaluating model quality,

150–155
finding best fit, 141–150
fine-tune solution to

problem, 139–141
obtaining prediction

results, 155–157
problem definition, 134
reducing customer

attrition, 134
selecting, 141–150

Problems, clustering, 165–169
applying cluster model, 169
assigning new cases to

clusters, 169
data specification and

settings, 166–168
exploring clusters, 168–169

finding clusters of similar
customers, 166

problem definition,
165–166

solution approach, 166
understanding customer

behavior and needs,
165–166

using model details,
168–169

Problems, regression,
157–160

applying model, 159–160
computing regression test

metrics, 159
data specification, 157–158
evaluating model quality,

159
finding best fit, 158
obtaining prediction

results, 159–160
problem definition, 157
property value prediction

using regression, 157
REAL_ESTATE_APPRAI-

SALS dataset,
157–158

reducing processing time of
residential real estate
appraisals, 157

selecting, 158
solution approach, 157

Problems, solving in industry,
25–49

cross-industry data mining
solutions, 26–41

data mining in industries,
41–47

Problems caused by impurities
in water, fine-tune
solution to, 139–141

Processes, 10–12
scoring, 70–73

Processes, data mining, 51,
52–60

advances in automated
data mining, 81–82

analysis, 70–73
business understanding

phase, 53–55
data mining in enterprise

software architectures,
75–81

data mining modeling,
70–73

data preparation phase,
56–57

data understanding phase,
55–56

databases and data ware-
houses in data mining,
74–75

deployment phase,
59–60

detailed view of data analy-
sis and preparation,
60–70

evaluation phase, 58
modeling phase, 57–58
scoring processes, 70–73
standardized data mining

process, 52–60
Processing time of residential

real estate appraisals,
reducing, 157

Product associations from
customer data,
discovering, 162

Product line development, new,
36–37

Product purchase data, CUS-
TOMERS and their, 163

PRODUCT table, 120
Production directive, 350–352
Products, cross-sell, 162
Profiling defined, 333
Profits, increasing, 21–23

514 Index

Property value prediction using
regression, 157

Public sector, 44–45
Purchase data, product, 163
PURCHASE table, 120
Pure function-oriented, trans-

formations, 467

Q

Quality, 462
model, 150–155, 159

Quality, user interface to test
model, 376–385

computing test metrics,
378–385

getting list of saved models,
378

R

Rates
false alarm, 314
false positive, 314
hit, 314

Real estate appraisals,
residential, 157

REAL_ESTATE_APPRAISALS
dataset, 157–158

Real-time scoring, 234–235
Receiver operating characteris-

tics (ROC), 58, 151, 227,
313, 430

Recoding, 69
Record, applying model to

single, 234–235
RecordApplyTask on models,

executing, 395–397
Recovery, backup and, 416
Reduction, attribute, 65–66
Reference implementation (RI),

432, 457
Regression

interfaces, 235–240
models, 13

property value prediction
using, 157

Regression problem,
157–160

applying model, 159–160
computing regression test

metrics, 159
data specification, 157–158
evaluating model quality,

159
finding best fit, 158
obtaining prediction

results, 159–160
problem definition, 157
property value prediction

using regression, 157
REAL_ESTATE_APPRAI-

SALS dataset,
157–158

reducing processing time of
residential real estate
appraisals, 157

selecting, 158
solution approach, 157

Regression test metrics,
computing, 159

Relational databases, 6
Reliability of data mining,

20–21
Remote Procedure Call (RPC),

293
Residential real estate apprais-

als, reducing processing
time of, 157

Resolution cycles, 470
Response modeling, 30–32
Response_model, 126
Retail, 46
Retention, customer, 28–30
Return on investment (ROI),

16, 54
RI (reference implementation),

432, 457
RMS (root mean squared), 159

ROC (receiver operating char-
acteristics), 58, 151, 227,
313, 430

ROI (return on investment),
16, 54

Root mean squared (RMS), 159
RPC (Remote Procedure Call),

293
Rule quality metrics, filtering

rules based on, 163–165
Rules

exploring from model, 165
filtering, 163–165

Rules problem, association,
162–165

S

SAML (Security Assertion
Markup Language), 277

Sampling, 67–69
Saved models

list out, 378
user interface to build and,

356–376
Saved objects

deleting, 356
renaming, 355
retrieving list of, 352–355

Scheduling, 416–417
Schema, JDM, 267–270, 295
Schema, XML, 259–271

overview, 260
schema elements, 260–262
schema types, 262–267
use cases for JDM XML

schema and docu-
ments, 270–271

using PMML with JDM
schema, 267–270

Schema and documents, JDM
XML, 270–271

Schema elements, 260–262
Schema types, 262–267

Index 515

Sciences, life, 46–47
Scores, 11
Scoring. See also Apply

credit, 38–39
defined, 71
real-time, 234–235

SDOs (Standards Development
Organizations), 456

Security Assertion Markup
Language (SAML), 277

Security in JDMWS, data
exchange and, 292

Segmentation
customer, 325–338
life-stage, 325

Selection. See also Attribute
selection; Feature
selection

Selection, algorithm, 160–161
attribute selection/feature

selection, 434
Series, time, 469–471
Server, JDMWS live, 400–401
Service-oriented architecture

(SOA), 273, 277–278
Services

enabling JDM web, 293–296
financial, 41–42
JDM Web, 387–406

Services, Web, 273–297
enabling JDM web services

using JAX-RPC, 293–296
JDM Web Service

(JDMWS), 278–292
service-oriented architec-

ture (SOA), 277–278
Web service defined,

274–277
Settings

algorithm, 220–222
association, 246
attribute importance, 321
classification, 218–220

clustering, 253
data specification and,

166–168
fine-tune, 160–161
saving build, 370–376

Signals, defined, 469
Simple Object Access Protocol

(SOAP), 273, 275
Single record, applying model

to, 234–235
SOA (service-oriented architec-

ture), 273, 277–278
SOAP (Simple Object Access

Protocol), 273, 275
Software architectures, enter-

prise, 75–81
Solution to problem, fine-tune,

139–141
Solutions, cross-industry data

mining, 26–41
credit scoring, 38–39
cross-selling, 35–36
customer acquisition, 26–28
customer retention, 28–30
defect analysis, 40–41
fraud detection, 32–35
new product line develop-

ment, 36–37
response modeling, 30–32
survey analysis, 37–38
warranty analysis, 39–40

Solving, practical problem,
301–339

customer segmentation,
325–338

targeted marketing
campaign, 302–321

understanding key factors,
321–324

SQL (Structured Query
Language), 6

SQL/MM Part 6 Data Mining
(SQL/MM DM),
455–456

Staging data, Independent-
server DME with, 412

Standard benchmarks, 462
Standards, creating, 110–111
Standards, data mining, 451–464

Common Warehouse Meta-
data (CWM) for data
mining, 454–455

data mining standards,
451–456

directions for data mining
standards, 461–463

Java Community Process
(JCP), 456–457

many standards, 457–461
Predictive Model Markup

Language (PMML),
452–453

SQL/MM Part 6 Data Min-
ing (SQL/MM DM),
455–456

Standards, role of, 110–114
creating standards, 110–111
enabling data mining

standards, 112–114
Standards conformance,

441–443
minimum implementation,

442
vendor extensions, 442–443

Standards Development
Organizations (SDOs),
456

Starter campaigns, defined, 303
Statistics

bivariate, 474
computing, 361–364
Java Data Mining 2.0,

473–474
multivariate, 474
univariate, 474

Statistics information,
retrieving, 364–370

Storage hardware, data, 411–414

516 Index

Strategic objectives for JDM,
105–110

addressing large developer
community, 105

allowing control for
experts, 107–108

being extensible, 106–107
being standard interface,

105
broad acceptance among

vendors and consum-
ers, 106

broadening standard's
appeal to vendors and
architects, 109

conformance limitations for
vendor implementa-
tions, 108

development domains,
109

leveraging other data
mining standards,
109–110

simplifying data mining for
novices, 107–108

starting small and
growing in functional-
ity, 107

supporting requirements of
real, industrial applica-
tions, 109

Strategy, JDM, 103–116
defined, 104–110
role of standards,

110–114
Structured Query Languages

(SQLs), 6
Summary, book, 479–481
Support vector machine (SVM),

141, 147–148, 235, 282,
413

Survey analysis, 37–38
SVM (support vector machine),

141, 147–148, 235, 282,
413

T

Tables
CUSTOMER, 119, 120
PRODUCT, 120
PURCHASE, 120

TAG (Technical Advisory
Group), 456

Target attribute, defined, 469
Targeted marketing campaign,

302–321
campaign specifications,

302–305
code examples, 306–320
design of campaign

optimization object,
305–306

Targeting campaign scenario
process, 303–305

Targeting defined, 302
Tasks, 185–187

apply, 6
build, 332
export, 455
import, 287
saving, 370–376
test, 376

TCA (their actor is contact
agency), 303

TCK (Technology Compatibility
Kit), 432, 443–447, 457

Technical Advisory Group
(TAG), 456

Technology Compatibility Kit
(TCK), 432, 443–447,
457

Test metrics, 184–185
classification, 150–155
compute regression, 159
computing, 378–385
for model evaluation,

227–229
Test model quality, user inter-

face to, 376–385

Tests, data access for apply
and, 416

Text mining, 475–476
Text reference, 476
The Service Bureau (TSB), 325
Time series, 469–471
Tools

building data mining,
341–386

extraction, transformation,
and load (ETL), 57

Tools, data mining, 342–346
architecture of demonstra-

tion interfaces, 343–345
managing JDM exceptions,

345–346
Transactional format, 121
Transformations

can be divided into several
categories, 467

data, 66–67, 466–469
Transparency, model, 14
Trend components, 470
TSB (The Service Bureau), 325
Types

enumerated, 192–193
schema, 262–267

U

UDDI (Universal Description,
Discovery, and Integra-
tion), 276

Uniform Resource Identifiers
(URIs), 310, 345, 392,
427, 476

for datasets, 192
Univariate statistics, 474
Universal Description, Discov-

ery, and Integration
(UDDI), 276

URIs (Uniform Resource Identi-
fiers), 310, 345, 392, 427,
476

for datasets, 192

Index 517

User interface to test model
quality, 376–385

User interfaces to build and
save models, 356–376

computing statistics,
361–364

general introduction,
357–359

getting metadata, 359–361
retrieving statistics infor-

mation, 364–370
saving build settings,

370–376
saving physical datasets,

370–376
saving tasks, 370–376

V

Value imputation, defined, 62
Values

exploring attribute impor-
tance, 161–162

missing, 62
Vendor extensions, 442–443
Vendor implementations,

421–448
guidelines for new

implementers, 441–447
KXEN (knowledge

extraction engines),
431–440

Oracle Data Mining
(ODM), 421–431

process for new JDM users,
447

W

Warehouses, data, 74–75
Warranty analysis, 39–40
Web service client in Java,

397–405
creating BuildSettings,

401–403
creating BuildTask, 404
creating PhysicalDataSet,

403–404
executing BuildTask,

404–405
generating Java classes

with Axis, 398–400
opening connection to

JDMWS live server,
400–401

Web Service Description
Language (WSDL),
273

Web service (WS), 273–297, 387
defined, 274–277
enabling JDM web service

using JAX-RPC,
293–296

JDM, 387–406
JDM Web Service

(JDMWS), 278–292
service-oriented

architecture (SOA),
277–278

Web service defined,
274–277

Web service (WS) client in PHP,
387–397

executing RecordApply-
Task on models,
395–397

filling input values using
Javascript, 390–391

retrieving list of models,
394–395

saving ApplySettings
object, 391–394

Web services implementation,
KXEN, 440

Workflow, 417–418
Workflow, business, 80–81
WSDL (Web Service

Description Language),
273

X

XMI (XML Metadata
Interchange), 454

XML (Extensible Markup
Language), 259, 454

XML Metadata Interchange
(XMI), 454

XML schema, 259–271
overview, 260
schema elements, 260–262
schema types, 262–267
use cases for JDM XML

schema and docu-
ments, 270–271

using PMML with JDM
schema, 267–270

519

About the Authors

Mark Hornick—Sr. Manager, Data Mining Technologies, Oracle Corporation

Mark Hornick has led the Java Data Mining (JSR-73) expert group
since its inception in July of 2000, and now leads the JSR-247 expert
group working toward JDM 2.0. Mr. Hornick brings nearly 20 years’
experience in distributed systems, in-database data mining, distributed
object management, and Java APIs. Mr. Hornick is a senior manager in
Oracle’s Data Mining Technologies group.

Mr. Hornick joined Oracle through Oracle’s acquisition of Thinking
Machines Corporation in 1999. Prior to Thinking Machines, where he
served as architect for TMC’s next generation data mining software, he
was a principal investigator at GTE Laboratories, involved in advanced
telecommunications network management software, distributed trans-
action management research, and distributed object management
research.

Mr. Hornick has contributed to several other data mining standards,
including the Data Mining Group’s PMML, JTC1 SQL/MM for Data
Mining, and the Object Management Group’s CWM for Data Mining.
He has given talks at the International Conference on Knowledge
Discovery and Databases, JavaOne, JavaPro Live!, and The ServerSide
Symposium on data mining standards and JDM. He has also published
various papers and articles over his career.

Mr. Hornick holds a bachelor’s degree in computer science from
Rutgers University, and a master’s degree, also in computer science
from Brown University, where he specialized in distributed object
databases.

Erik Marcadé—Founder and Chief Technical Officer, KXEN

With more than 20 years of experience in the neural network
industry, Erik Marcadé, founder and chief technical officer for KXEN,
is responsible for software development and information technologies.
He was a member of the expert group for the Java Data Mining
standard developed under JSR-73 where he lead the development of
the Reference Implementation (RI) and now he continues to actively

520 About the Authors

participate as a member of JSR-247 expert group. He also supervised
KXEN representation in the Data Mining Group’s PMML effort.

Prior to founding KXEN, Mr. Marcadé developed real-time
software expertise at Cadence Design Systems, accountable for advanc-
ing real-time software systems as well as managing “system-on-a-
chip” projects. Before joining Cadence, he spearheaded a project to
restructure the marketing database of the largest French automobile
manufacturer for Atos, a leading European information technology
services company.

In 1990, Mr. Marcadé co-founded Mimetics, a French company
that processes and sells development environment, optical character
recognition (OCR) products, and services using neural network
technology.

Prior to Mimetics, Mr. Marcadé joined Thomson-CSF Weapon
System Division as a software engineer and project manager working
on the application of artificial intelligence for projects in weapons allo-
cation, target detection and tracking, geo-strategic assessment, and
software quality control. He contributed to the creation of Thomson
Research Laboratories in Palo Alto, CA (Pacific Rim Operation—PRO)
as senior software engineer. There he collaborated with Stanford Uni-
versity on the automatic landing and flare system for Boeing, and
Kestrel Institute, a nonprofit computer science research organization.
He returned to France to head Esprit projects based on neural networks
technology.

Mr. Marcadé holds an engineering degree from Ecole de
l’Aeronautique et de l’Espace, specializing in process control, signal
processing, computer science, and artificial intelligence.

Sunil Venkayala—Principal Member of Technical Staff, Oracle

Sunil Venkayala is J2EE and XML group leader and Principal
Member of Technical Staff at Oracle Data Mining Technologies. He was
a member of the expert group for the Java Data Mining (JDM) standard
developed under JSR-73 and now he continues to actively participate
as a member of JSR-247 expert group.

Mr. Venkayala has more than five years’ experience in developing
applications using predictive technologies available in the Oracle
Database and more than eight years’ experience in working with
Java and Internet technologies. He authored an article about JDM in
Java Developer Journal.

Mr. Venkayala holds a bachelor’s degree in engineering and a
master’s degree in industrial management from the Indian Institute
of Technology, Kanpur.

