
www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Enterprise
Search Server
Third Edition

Enhance your searches with faceted navigation, result
highlighting, relevancy-ranked sorting, and much more
with this comprehensive guide to Apache Solr 4

David Smiley
Eric Pugh
Kranti Parisa
Matt Mitchell

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Enterprise Search Server
Third Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009
Second edition: November 2011
Third edition: May 2015

Production reference: 1200515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-136-3

www.packtpub.com

Cover image by Sylvia Smiley (sylvie.zajac@gmail.com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
David Smiley

Eric Pugh

Kranti Parisa

Matt Mitchell

Reviewers
Edd Grant

Aamir Hussain

Dmitry Kan

Acquisition Editors
Nikhil Karkal

Rebecca Youé

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Pankaj Kadam

Copy Editors
Puja Lalwani

Laxmi Subramanian

Project Coordinator
Harshal Ved

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Born to code, David Smiley is a software engineer who's passionate about search,
Lucene, spatial, and open source. He has a great deal of expertise with Lucene and
Solr, which started in 2008 at MITRE. In 2009, as the lead author, along with the
coauthor Eric Pugh, he wrote Solr 1.4 Enterprise Search Server, the first book on Solr,
published by Packt Publishing. It was updated in 2011, Apache Solr 3 Enterprise Search
Server, Packt Publishing, and again for this third edition.

After the first book, he developed 1- and 2-day Solr training courses, delivered half a
dozen times within MITRE, and he has also delivered training on LucidWorks once.
Most of his excitement and energy relating to Lucene is centered on Lucene's spatial
module to include Spatial4j, which he is largely responsible for. He has presented
his progress on this at Lucene Revolution and other conferences several times. He
currently holds the status of committer & Project Management Committee (PMC)
member with the Lucene/Solr open source project. Over the years, David has staked
his career on search, working exclusively on such projects, formerly for MITRE
and now as an independent consultant for various clients. You can reach him at
dsmiley@apache.org and view his LinkedIn profile here: http://www.linkedin.
com/in/davidwsmiley.

Writing a book is the biggest project I've ever worked on, where
I've put time outside of employed working hours; it requires an
inordinate amount of time. I have a great deal of respect for the
other authors who undertake such projects.

I'm deeply appreciative of my wife, Sylvie, for enduring this time
commitment and for taking care of our young daughters, Camille
and Adeline. I also thank my coauthors, Eric, Kranti, and Matt, for
their share of this herculean effort—it is too much for anyone of us.
And finally, I am most appreciative of the compliments I've received
from readers about the previous editions. It helps make the effort
worthwhile.

www.it-ebooks.info

http://www.linkedin.com/in/davidwsmiley
http://www.linkedin.com/in/davidwsmiley
http://www.it-ebooks.info/

Fascinated by the "craft" of software development, Eric Pugh has been involved
in the open source world as a developer, committer, and user for the past decade.
He is an emeritus member of the Apache Software Foundation.

In biotech, financial services, and defense IT, he has helped European and American
companies develop coherent strategies to embrace open source software. As a speaker,
he has advocated the advantages of Agile practices in search, discovery, and analytics
projects.

Eric became involved in Solr when he submitted the patch SOLR-284 to parse rich
document types, such as PDF and MS Office formats, that became the single-most
popular patch, as measured by votes! The patch was subsequently cleaned up
and enhanced by three other individuals, demonstrating the power of the free /
open source models to build great code collaboratively. SOLR-284 was eventually
refactored into Solr Cell.

He blogs at http://www.opensourceconnections.com/blog/.

Someone once told me the best business card you can have is a book,
and I've discovered over the past three editions of this book that
this is a very true thing. Of course, I've also learned that printing
out 500 business cards is a much easier job than updating a book.
Additionally, we wanted some fresh voices in this edition of the
book. I'd like to thank Matt and Kranti for jumping feet first into this
project. I'd like to thank David for putting so much passion into this
book and being our fearless leader through all the twists and turns.
I also want to thank Erik Hatcher once again for his continuing
support and mentorship over the past 10 years. Without his
encouragement, I wouldn't have spoken at Euro Lucene or
become involved in the Solr community.
I also want to thank all of my colleagues at OpenSource Connections.
We've come a long way as a company, and I'm excited about
SlopBucket, our very own conference this fall! Matt Overstreet, your
creativity that you contributed to the content on SolrCloud was critical
to my finishing Chapter 10.
My darling wife, Kate, who says, "It can't be that hard to finish, just
do it!", I know life continues to be busy, but I couldn't be happier
sharing my life with you, Morgan, and Asher. I love you.

Lastly, I want to thank all the adopters of Solr and Lucene! Without
you, I wouldn't have this wonderful open source project to be so
incredibly proud of! I look forward to meeting more of you at the
next conference.

www.it-ebooks.info

http://www.opensourceconnections.com/blog/
http://www.it-ebooks.info/

Kranti Parisa has more than a decade of software development expertise and a
deep understanding of open source, enterprise software, and the execution required
to build successful products.

He has fallen in love with enterprise search technologies, especially Lucene and
Solr, after his initial implementations and customizations carried out in early 2008
to build a legal search engine for bankruptcy court documents, docket entries, and
cases. He is an active contributor to the Apache Solr community. One of his recent
contributions, along with Joel Bernstein, SOLR-4787, includes scalable and nested
join implementations.

Kranti is currently working at Apple. Prior to that, he worked as a lead engineer
and search architect at Comcast Labs, building and supporting a highly scalable
search and discovery engine for the X1/X2 platform—the world's first entertainment
operating system.

An entrepreneur by DNA, he is the cofounder and technical advisor of multiple
start-ups focusing on cloud computing, SaaS, big data, and enterprise search
based products and services. He holds a master's degree in computer integrated
manufacturing from the National Institute of Technology, Warangal, India.

You can reach him on LinkedIn: http://www.linkedin.com/in/krantiparisa.

First and foremost, many thanks to Albert Einstein for his
extraordinary innovations and one of his many inspirational quotes:
I have no special talent. I am only passionately curious. I'd like to thank
and acknowledge all the contributors to the Apache Lucene and Solr
projects. You're totally awesome! Completing this work would have
been all the more difficult were it not for the support and friendship
provided by my coauthors—David, Eric, and Matt. I am indebted to
them for their help.

Thanks to my family and friends for believing in me; I couldn't have
done this without you. A very special thanks to my darling mother,
Nagarani, and my beautiful wife, Pallavi, for their unconditional
love, support, and patience as I spent countless weekends working
on this book.

And, of course, I want to thank the team at Packt Publishing for their
tremendous support in all ways, large and small. There are many
more people I would like to thank, but time, space, and modesty
compel me to stop here.

www.it-ebooks.info

http://www.linkedin.com/in/krantiparisa
http://www.it-ebooks.info/

Matt Mitchell studied music synthesis and performance at Boston's Berklee College
of Music, but his experiences with computers and programming in his younger years
inspired him to pursue a career in software engineering. A passionate technologist, he
has worked in many areas of software development, is active in several open source
communities, and now has over 15 years of professional experience. He had his first
experiences with Lucene and Solr in 2008 at the University of Virginia Library, where
he became a core contributor to an open source search platform called Backlight. Matt
is the author of many open source projects, including a Solr client library called RSolr,
which has had over 1 million downloads from rubygems.org. He has been responsible
for the design and implementation of search systems at several tech companies, and
he is currently a senior member of the engineering team at LucidWorks, where he's
working on a next generation search, discovery, and analytics platform.

You can contact Matt on LinkedIn at https://www.linkedin.com/in/
mattmitchell4.

I'd like to thank my amazing wife, Jenny, and our kids, Henry and
Dorothy, for their unbelievable patience and support during this
journey. My parents, thank you for making my fantastic life possible.
Eric, Kranti, and David, for all the blood, sweat, and tears you've put
into this book, along with all the time you've spent helping me. My
good friend, Anthony Fox, who never seems to stop encouraging and
inspiring me. Erik Hatcher and Bess Sadler, for getting me started
with all of this search stuff in the first place. The Lucene and Solr
communities and committers, for all of their amazing work. Packt
Publishing, for their endless patience and exceptional guidance. And,
of course, the readers and reviewers of this book—thank you all!

www.it-ebooks.info

www.rubygems.org
https://www.linkedin.com/in/mattmitchell4
https://www.linkedin.com/in/mattmitchell4
http://www.it-ebooks.info/

About the Reviewers

Edd Grant is a freelance software engineer who has been building software
professionally since 2003. He is passionate about designing first-class, maintainable
systems by leveraging agile and TDD principles and has helped his clients adopt
and excel at these practices.

Edd is an experienced implementor of cloud-scale web applications and services,
continuous delivery, and infrastructure automation. As an open source advocate,
he has helped many clients take advantage of a diverse range of such products.

Edd has a website, which he updates when he gets the time (http://www.eddgrant.
com), and has a passion for mountain biking and tea.

Aamir Hussain is an experienced customer- and business-focused technology
leader with rich hands-on engineering, business and management experience. He has
over 6 years of experience in software engineering and complex systems design with
focus on the Cloud software architecture and design, Software as a Service (SaaS),
Platform as a Service (PaaS), monitoring and tools infrastructure, network design,
and data center operations.

Starting the journey of his career from the world's most disturbed and heavily
militarized zone, Aamir had also been honored and awarded multiple times in the
application development programs conducted by Health2con and WHO in USA.
He is currently working with one of India's largest e-commerce logistics company
(Delhivery) as a senior architect.

Aamir had also managed to get his name on multiple books of Apache Solr and
Python published by Packt Publishing.

www.it-ebooks.info

http://www.eddgrant.com
http://www.eddgrant.com
http://www.it-ebooks.info/

Dmitry Kan leads the search technology development at AlphaSense, the
one-stop financial search engine company. In parallel, he is the founder and
CEO of the language intelligence company SemanticAnalyzer. Dmitry enjoys
building and blogging about software, in particular, search (Solr/Lucene), machine
learning (sentiment detection and machine translation), and tools that make a
programmer's life easier. You can find his blogs at dmitrykan.blogspot.com and
semanticanalyzer.info/blog. He developed his fully blown search engine back
in 2003 as a university project. The main achievements were beating MySQL full-
text search engine in speed by over 5 million records. This is when he introduced
himself to the world of skip lists and balanced hash tables. In 2010, Dmitry learned
about Lucene and Solr, and since then, he has been an active community member,
occasionally taking part (and winning!) in the famous Stump the Chump sessions.
Dmitry holds a PhD in CS from the Saint Petersburg State University (Russia) and
a master's degree in CS from the University of Kuopio (Finland). In his free time,
Dmitry enjoys answering questions on Stack Overflow, building models on kaggle,
and cycling.

He is the maintainer and developer of Lucene Luke, which can be found at
https://github.com/dmitrykey/luke. You can reach him on Twitter at
twitter.com/dmitrykan.

I am immensely grateful to my parents for giving me the support and
hunger for knowledge. My wife, Tatiana, is my first kind listener to
all the ideas I get around IT, apart from being a loving and supporting
wife. She knows how hard it is to be around a programming geek like
me. Big thanks to all Luke fans, you help me learn new things around
Apache Lucene and search in general.

www.it-ebooks.info

www.dmitrykan.blogspot.com
www.semanticanalyzer.info/blog
https://github.com/dmitrykey/luke
twitter.com/dmitrykan
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

[i]

Table of Contents
Preface xi
Chapter 1: Quick Starting Solr 1

An introduction to Solr 1
Lucene – the underlying engine 2
Solr – a Lucene-based search server 3
Comparison to database technology 4

A few differences between Solr 4 and Solr 5 6
Getting started 6

Solr's installation directory structure 7
Running Solr 10

A quick tour of Solr 10
Loading sample data 14
A simple query 15
Some statistics 18
The sample browse interface 19

Configuration files 20
What's next? 22

Schema design and indexing 22
Text analysis 23
Searching 24
Integration 25

Resources outside this book 25
Summary 26

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Schema Design 27
Is Solr schemaless? 28
MusicBrainz.org 29
One combined index or separate indices 30

One combined index 31
Problems with using a single combined index 32

Separate indices 33
Schema design 33

Step 1 – determine which searches are going to be powered by Solr 34
Step 2 – determine the entities returned from each search 35
Step 3 – denormalize related data 35

Denormalizing – one-to-one associated data 36
Denormalizing – one-to-many associated data 36

Step 4 – omit the inclusion of fields only used in search
results (optional) 38

The schema.xml file 39
Field definitions 40

Dynamic field definitions 41
Advanced field options for indexed fields 41
The unique key 43
The default search field and query operator 43
Copying fields 44
Our MusicBrainz field definitions 44
Defining field types 47
Built-in field type classes 48

Numbers and dates 48
Some other field types 49

Summary 50
Chapter 3: Text Analysis 51

Configuring field types 52
Experimenting with text analysis 55

Character filters 57
Tokenization 58
Filtering 60

Stemming 62
Correcting and augmenting stemming 63

Processing synonyms 64
Synonym expansion at index time versus query time 65

Working with stop words 66
Phonetic analysis 67
Substring indexing and wildcards 69

ReversedWildcardFilter 70

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

N-gram analysis 70
N-gram costs 71

Sorting text 72
Miscellaneous token filters 73

The multilingual search 75
The multifield approach 75
The multicore approach 76
The single field approach 76

Summary 77
Chapter 4: Indexing Data 79

Communicating with Solr 80
Using direct HTTP or a convenient client API 80
Pushing data to Solr or have Solr pull it 81
Data formats 81
Solr's HTTP POST options 82
Remote streaming 84

Solr's Update-XML format 85
Deleting documents 86

Commit, optimize, and rollback the transaction log 86
Don't overlap commits 88
Index optimization 88
Rolling back an uncommitted change 89
The transaction log 89

Atomic updates and optimistic concurrency 90
Sending CSV-formatted data to Solr 91

Configuration options 93
The DataImportHandler framework 94

Configuring the DataImportHandler framework 95
The development console 96
Writing a DIH configuration file 97

Data sources 97
Entity processors 98
Fields and transformers 99

Example DIH configurations 101
Importing from databases 101
Importing XML from a file with XSLT 103
Importing multiple rich document files – crawling 104

Importing commands 105
Delta imports 106

Indexing documents with Solr Cell 107
Extracting text and metadata from files 107
Configuring Solr 108

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Solr Cell parameters 109
Update request processors 111
Summary 115

Chapter 5: Searching 117
Your first search – a walk-through 118

A note on response format types 120
Solr's generic XML structured data representation 121
Solr's XML response format 121

Parsing the URL 122
Understanding request handlers 123
Query parameters 125

Search criteria related parameters 126
Result pagination related parameters 126
Output-related parameters 127

More about the fl parameter 127
Diagnostic parameters 129

Query parsers and local-params 130
Query syntax (the lucene query parser) 131

Matching all the documents 132
Mandatory, prohibited, and optional clauses 132

Boolean operators 133
Subqueries 134

Limitations of prohibited clauses in subqueries 135
Querying specific fields 136
Phrase queries and term proximity 136
Wildcard queries 137

Fuzzy queries 138
Regular expression queries 139

Range queries 139
Date math 140

Score boosting 141
Existence and nonexistence queries 141
Escaping special characters 142

The DisMax query parser – part 1 143
Searching multiple fields 144
Limited query syntax 145
Min-should-match 146

Basic rules 146
Multiple rules 147
What to choose 147

A default query 148
The uf parameter 148

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Filtering 149
Sorting 150
Joining 151

The join query parser 151
Block-join query parsers 153

The block-join-children parser 154
The block-join-parent parser 154

Spatial search 155
Spatial in Solr 3 – LatLonType and friends 156

Configuration 157
Spatial in Solr 4 – SpatialRecursivePrefixTreeFieldType 157

Configuration – basic 159
Indexing points 160
Filtering by distance or rectangle 161
Sorting by distance 162

Returning the distance 163
Boosting by distance 163
Memory and performance of distance sorting and boosting 163

Advanced spatial 164
Summary 165

Chapter 6: Search Relevancy 167
Scoring 167

Alternative scoring models 169
Query-time and index-time boosting 170
Troubleshooting queries and scoring 170

Tools – Splainer and Quepid 172
The DisMax query parser – part 2 173

Lucene's DisjunctionMaxQuery 173
Boosting – automatic phrase boosting 174

Configuring automatic phrase boosting 174
Phrase slop configuration 175
Partial phrase boosting 175

Boosting – boost queries 176
Boosting – boost functions 177

Add or multiply boosts 178
Functions and function queries 179

Field references 180
Function references 181

Mathematical primitives 182
Other math 182
Boolean functions 183
Relevancy statistics functions 183
Ord and rord 184

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Miscellaneous functions 184
External field values 185
Function query boosting 186

Formula – logarithm 186
Formula – inverse reciprocal 188
Formula – reciprocal 189
Formula – linear 190

How to boost based on an increasing numeric field 190
Step by step… 191

How to boost based on recent dates 192
Step by step… 193

Summary 194
Chapter 7: Faceting 195

A quick example – faceting release types 196
Field requirements 197
Types of faceting 198
Faceting field values 198

Alphabetic range bucketing 200
Faceting numeric and date ranges 202

Range facet parameters 204
Facet queries 206
Building a filter query from a facet 207

Field value filter queries 208
Facet range filter queries 208

Pivot faceting 209
Hierarchical faceting 211

Excluding filters – multiselect faceting 212
Summary 215

Chapter 8: Search Components 217
About components 218
The highlight component 220

A highlighting example 220
Choose the Standard, FastVector, or Postings highlighter 222

The Standard (default) highlighter 222
The FastVector highlighter 223
The Postings highlighter 223

Highlighting configuration 224
The SpellCheck component 225

The schema configuration 227
Configuration in solrconfig.xml 228

Configuring spellcheckers – dictionaries 229
Processing the q parameter 233

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Processing the spellcheck.q parameter 234
Building index- and file-based spellcheckers 234
Issuing spellcheck requests 235
Example usage for a misspelled query 238

Query complete/suggest 240
Instant-search via edge n-grams 242
Query term completion via facet.prefix 243
Query term completion via the Suggester 245
Query term completion via the Terms component 248
Field-value completion via the Suggester 248

The QueryElevation component 250
Configuration 251

The MoreLikeThis component 252
Configuration parameters 253

Parameters specific to the MLT search component 254
Parameters specific to the MLT request handler 254
Common MLT parameters 255

The MLT results example 257
The Stats component 259

Configuring the stats component 260
Statistics on track durations 260

The Clustering component 261
Collapsing and expanding 262

The Collapse query parser 262
The Expand component 263
An example 263
Compared to Result grouping 265

The TermVector component 267
Summary 267

Chapter 9: Integrating Solr 269
Working with the included examples 270

Inventory of examples 270
Solritas – the integrated search UI 271

The pros and cons of Solritas 273
SolrJ – Solr's Java client API 274

The sample code – BrainzSolrClient 275
Dependencies and Maven 275

Declaring logging dependencies 276
The SolrServer class 277

Using javabin instead of XML for efficiency 278
Searching with SolrJ 278

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Indexing with SolrJ 279
Deleting documents 280

Annotating your JavaBean – an alternative 280
Embedding Solr 281

When should you use embedded Solr? Tests! 282
Using JavaScript/AJAX with Solr 283

Wait, what about security? 285
Building a Solr-powered artists autocomplete widget with jQuery
and JSONP 285
AJAX Solr 289

Using XSLT to transform XML search results 291
Accessing Solr from PHP applications 292

solr-php-client 293
Drupal options 295

The Apache Solr Search integration module 295
Hosted Solr by Acquia 296

Ruby on Rails integrations 297
Solr's Ruby response writer 297
The sunspot_rails gem 298

Setting up the myFaves project 298
Populating the myFaves relational database from Solr 299
Building Solr indexes from a relational database 301
Completing the myFaves website 303

Which Rails/Ruby library should I use? 305
Nutch for crawling web pages 306
Solr and Hadoop 308

HDFS 308
Indexing via MapReduce 309

Morphlines 310
Running a Solr build using Hadoop 310

Looking at the storage 310
The data ingestion process 313

ManifoldCF – a connector framework 315
Connectors 316
Putting ManifoldCF to use 316

Document-level security 318
Summary 319

Chapter 10: Scaling Solr 321
Tuning complex systems is hard 322
Use SolrMeter to test Solr performance 323
Optimizing a single Solr server – scale up 325

Configuring JVM settings to improve memory usage 326
Using MMapDirectoryFactory to leverage additional virtual memory 327

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Enabling downstream HTTP caching to reduce load 327
Solr caching 329

Tuning caches 331
Indexing performance 332

Designing the schema 332
Sending data to Solr in bulk 333
Disabling unique key checking 333
Index optimization and mergeFactor settings 334

Enhancing faceting performance 335
Using term vectors 335
Improving phrase search performance 336

Configuring Solr for near real-time search 338
Use SolrCloud to go big – scale wide 339

SolrCloud glossary 341
Launching Solr in SolrCloud mode 342
Managing collections and configurations 343

Stand up SolrCloud for our MusicBrainz artists index 344
Choosing the replication factor and number of shards 346
Creating and deleting collections 348
Replicas and leaders 349
Document routing 349
Shard splitting 350
Dealing with long running collection tasks 351
Adding nodes 352

Summary 352
Chapter 11: Deployment 353

Deployment methodology for Solr 353
Questions to ask 354

Installing Solr into a Servlet container 355
Differences between Servlet containers 355

Defining the solr.home property 356
Configuring logging 357

HTTP server request access logs 358
Solr application logging 359

Configuring logging output 360
Jetty startup integration 361
Managing log levels at runtime 361

A RequestHandler per search interface 362
Leveraging Solr cores 363

Configuring solr.xml 364
Property substitution 366
Include fragments of XML with XInclude 366

Managing cores 367
Some uses of multiple cores 368

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[x]

Setting up ZooKeeper for SolrCloud 369
Installing ZooKeeper 370
Administering Data in ZooKeeper 371

Monitoring Solr performance 372
Stats Admin interface 372
Monitoring Solr via JMX 374

Starting Solr with JMX 375
Securing Solr from prying eyes 376

Limiting server access 376
Put Solr behind a Proxy 379
Securing public searches 379
Controlling JMX access 380

Securing index data 380
Controlling document access 380
Other things to look at 381

Summary 382
Appendix: Quick Reference 383

Core search 383
Diagnostic 384
The Lucene query parser 384
The DisMax query parser 384
The Lucene query syntax 385
Faceting 385
Highlighting 386
Spell checking 386
Miscellaneous nonsearch 386

Index 387

www.it-ebooks.info

http://www.it-ebooks.info/

[xi]

Preface
If you are a developer building an application today, then you know how important
a good search experience is. Apache Solr, built on Apache Lucene, is a wildly popular
open source enterprise search server that easily delivers the powerful search and
faceted navigation features that are elusive with databases. Solr supports complex
search criteria, faceting, result highlighting, query-completion, query spellcheck,
relevancy tuning, and more.

Apache Solr Enterprise Search Server, Third Edition is a comprehensive resource to almost
everything Solr has to offer. It serves the reader right from initiation to development to
deployment. It also comes with complete running examples to demonstrate its use and
show how to integrate Solr with other languages and frameworks—even Hadoop.

By using a large set of metadata, including artists, releases, and tracks, courtesy of
the MusicBrainz.org project, you will have a testing ground for Solr and will learn
how to import this data in various ways. You will then learn how to search this data
in different ways, including Solr's rich query syntax and boosting match scores based
on record data. Finally, we'll cover various deployment considerations to include
indexing strategies and performance-oriented configuration that will enable you to
scale Solr to meet the needs of a high-volume site.

Solr 4 or Solr 5?
See the What you need for this book section further below.

What this book covers
Chapter 1, Quick Starting Solr, introduces Solr to you so that you understand its unique
role in your application stack. You'll get started quickly by indexing example data and
searching it with Solr's sample / browse UI. This chapter is oriented to Solr 5, but the
majority of content applies to Solr 4 too.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xii]

Chapter 2, Schema Design, guides you through an approach to modeling your
data within Solr into one or more Solr indices and schemas. It covers the schema
thoroughly and explores some of Solr's field types.

Chapter 3, Text Analysis, covers how to customize text tokenization, stemming,
synonyms, and related matters to have fine control over keyword search matching.
It also covers multilingual strategies.

Chapter 4, Indexing Data, explores all of the options Solr offers for importing data, such
as XML, CSV, databases (SQL), and text extraction from common documents. This
includes important information on commits, atomic updates, and real-time search.

Chapter 5, Searching, covers the query syntax, from the basics to Boolean options to
more advanced wildcard and fuzzy searches, join queries, and geospatial search.

Chapter 6, Search Relevancy, explains how Solr scores documents for relevancy ranking.
We'll review different options to influence the score, called boosting, and apply it to
common examples such as boosting recent documents and boosting by a user vote.

Chapter 7, Faceting, shows you how to use Solr's killer feature—faceting. You'll
learn about the different types of facets and how to build filter queries for a faceted
navigation interface.

Chapter 8, Search Components, explores how to use a variety of valuable search
features implemented as Solr search components. This includes result highlighting,
query spellcheck, query suggest / complete, result grouping / collapsing, and more.

Chapter 9, Integrating Solr, explores some external integration options to interface
with Solr. This includes some language-specific frameworks for Java, JavaScript,
Ruby, and PHP, as well as a web crawler, Hadoop, a quick prototyping option,
and more.

Chapter 10, Scaling Solr, covers how to tune Solr to get the most out of it. Then we'll
introduce how to scale beyond one instance with SolrCloud.

Chapter 11, Deployment, guides you through deployment considerations to include
deploying Solr to Apache Tomcat, to logging, and to security, and setting up Apache
ZooKeeper.

Appendix, Quick Reference, serves as a small parameter quick-reference guide you can
print to have within reach when you need it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xiii]

What you need for this book
The Getting started section in Chapter 1, Quick Starting Solr, explains what you need in
detail. In summary, you should obtain:

• Java 8, a JDK release. Java 7 is fine too. Support for Java 6 was last available
in Solr 4.7. More information on this is in Chapter 1, Quick Starting Solr.

• Apache Solr 4.8.1 is officially the version of Solr this book was written for.
Nonetheless, some of the features are discussed or referenced in the later
versions of Solr as far as 5.0. In fact, Chapter 1, Quick Starting Solr, orients
you to Solr 5, which has a different first-impression experience than its
predecessor. Once you get Solr running, you should be able to follow along
easily with Solr 5. In Chapter 10, Scaling Solr, there are some SolrCloud startup
commands that are a little different, and we've pointed out how they change.
The only substantial topic not covered in this book that evolved through the
Solr 4 point releases is data-driven schemaless mode, and HTTP API calls to
make schema changes.

• The code supplement to the book. It's not essential, but you'll want it to try
some of the examples or to experiment with a sizable amount of real data.
See the Downloading the example code section.

Who this book is for
This book is primarily for developers who want to learn how to use Apache Solr in
their applications. Only basic programming skills are assumed, although the vast
majority of content should be useful to those with a solid technical foundation that
have not yet programmed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Typing java –version at a command line will tell you exactly which version of
Java you are using, if any."

A block of code is set as follows:

"responseHeader": {
 "status": 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xiv]

 "QTime": 1,
 "params": {
 "q": "lcd",
 "indent": "true",
 "wt": "json"
 }
 }
…

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{
 "id": "9885A004",
 "name": "Canon PowerShot SD500",
 "manu": "Canon Inc.",
 "manu_id_s": "canon",
 "cat": [
 "electronics",
 "camera"
],
 "features": [
 "3x zoop, 7.1 megapixel Digital ELPH",
 "movie clips up to 640x480 @30 fps",
 "2.0\" TFT LCD, 118,000 pixels",
 "built in flash, red-eye reduction"
],
 "includes": "32MB SD card, USB cable, AV cable, battery",
 "weight": 6.4,
 "price": 329.95,
 "price_c": "329.95,USD",
 "popularity": 7,
 "inStock": true,
 "manufacturedate_dt": "2006-02-13T15:26:37Z",
 "store": "45.19614,-93.90341",
 "_version_": 1500358264225792000
 },
...

Any command-line input or output is written as follows:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url
http://localhost:8983/solr/techproducts/update using
content-type application/xml...
POSTing file gb18030-example.xml

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xv]

POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on the Core Selector drop-down menu and select the techproducts link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xvi]

A copy of the code bundle and possibly other information will also be available at
http://www.solrenterprisesearchserver.com.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.solrenterprisesearchserver.com
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

[1]

Quick Starting Solr
Welcome to Solr! You've made an excellent choice to power your search needs.
In this chapter, we're going to cover the following topics:

• An overview of what Solr and Lucene are all about
• What makes Solr different from databases?
• How to get Solr, what's included, and what is where?
• Running Solr and importing sample data
• A quick tour of the admin interface and key configuration files
• A brief guide on how to get started quickly

An introduction to Solr
Solr is an open source enterprise search server. It is a mature product powering
search for public sites such as CNET, Yelp, Zappos, and Netflix, as well as countless
other government and corporate intranet sites. It is written in Java, and that language
is used to further extend and modify Solr through various extension points.
However, being a server that communicates using standards such as HTTP, XML,
and JSON, knowledge of Java is useful but not a requirement. In addition to the
standard ability to return a list of search results based on a full text search, Solr has
numerous other features such as result highlighting, faceted navigation (as seen on
most e-commerce sites), query spellcheck, query completion, and a "more-like-this"
feature for finding similar documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[2]

You will see many references in this book to the term faceting, also
known as faceted navigation. It's a killer feature of Solr that most
people have experienced at major e-commerce sites without realizing it.
Faceting enhances search results with aggregated information over all
of the documents found in the search. Faceting information is typically
used as dynamic navigational filters, such as a product category, date
and price groupings, and so on. Faceting can also be used to power
analytics. Chapter 7, Faceting, is dedicated to this technology.

Lucene – the underlying engine
Before describing Solr, it is best to start with Apache Lucene, the core technology
underlying it. Lucene is an open source, high-performance text search engine library.
Lucene was developed and open sourced by Doug Cutting in 2000 and has evolved
and matured since then with a strong online community. It is the most widely
deployed search technology today. Being just a code library, Lucene is not a server
and certainly isn't a web crawler either. This is an important fact. There aren't even
any configuration files.

In order to use Lucene, you write your own search code using its API, starting with
indexing documents that you supply to it. A document in Lucene is merely a collection
of fields, which are name-value pairs containing text or numbers. You configure
Lucene with a text analyzer that will tokenize a field's text from a single string into a
series of tokens (words) and further transform them by reducing them to their stems,
called stemming, substitute synonyms, and/or perform other processing. The final
indexed tokens are said to be the terms. The aforementioned process starting with the
analyzer is referred to as text analysis. Lucene indexes each document into its index
stored on a disk. The index is an inverted index, which means it stores a mapping of
a field's terms to associated documents, along with the ordinal word position from the
original text. Finally, you search for documents with a user-provided query string that
Lucene parses according to its syntax. Lucene assigns a numeric relevancy score to
each matching document and only the top scoring documents are returned.

This brief description of Lucene internals is what makes Solr work at
its core. You will see these important vocabulary words throughout
this book—they will be explained further at appropriate times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Lucene's major features are:

• An inverted index for efficient retrieval of documents by indexed terms.
The same technology supports numeric data with range- and time-based
queries too.

• A rich set of chainable text analysis components, such as tokenizers and
language-specific stemmers that transform a text string into a series of
terms (words).

• A query syntax with a parser and a variety of query types, from a simple
term lookup to exotic fuzzy matching.

• A good scoring algorithm based on sound Information Retrieval (IR)
principles to produce the best matches first, with flexible means to affect
the scoring.

• Search enhancing features. There are many, but here are some notable ones:

 ° A highlighter feature to show matching query terms found in context.
 ° A query spellchecker based on indexed content or a

supplied dictionary.
 ° Multiple suggesters for completing query strings.
 ° Analysis components for various languages, faceting, spatial-search,

and grouping and joining queries too.

To learn more about Lucene, read Lucene In Action,
Second Edition, Michael McCandless, Erik Hatcher, and
Otis Gospodneti, Manning Publications.

Solr – a Lucene-based search server
Apache Solr is an enterprise search server that is based on Lucene. Lucene is such
a big part of what defines Solr that you'll see many references to Lucene directly
throughout this book. Developing a high-performance, feature-rich application
that uses Lucene directly is difficult and it's limited to Java applications. Solr solves
this by exposing the wealth of power in Lucene via configuration files and HTTP
parameters, while adding some features of its own. Some of Solr's most notable
features beyond Lucene are as follows:

• A server that communicates over HTTP via multiple formats, including XML
and JSON

• Configuration files, most notably for the index's schema, which defines the
fields and configuration of their text analysis

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[4]

• Several types of caches for faster search responses
• A web-based administrative interface, including the following:

 ° Runtime search and cache performance statistics
 ° A schema browser with index statistics on each field
 ° A diagnostic tool for debugging text analysis
 ° Support for dynamic core (indices) administration

• Faceting of search results (note: distinct from Lucene's faceting)
• A query parser called eDisMax that is more usable for parsing end user

queries than Lucene's native query parser
• Distributed search support, index replication, and fail-over for scaling Solr
• Cluster configuration and coordination using ZooKeeper
• Solritas—a sample generic web search UI for prototyping and demonstrating

many of Solr's search features

Also, there are two contrib modules that ship with Solr that really stand out, which
are as follows:

• DataImportHandler (DIH): A database, e-mail, and file crawling data import
capability. It includes a debugger tool.

• Solr Cell: An adapter to the Apache Tika open source project, which can
extract text from numerous file types.

As of the 3.1 release, there is a tight relationship between the Solr and Lucene projects.
The source code repository, committers, and developer mailing list are the same, and
they are released together using the same version number. Since Solr is always based
on the latest version of Lucene, most improvements in Lucene are available in Solr
immediately.

Comparison to database technology
There's a good chance that you are unfamiliar with Lucene or Solr and you might
be wondering what the fundamental differences are between it and a database.
You might also wonder if you use Solr, do you need a database.

The most important comparison to make is with respect to the data model—the
organizational structure of the data. The most popular category of databases is
relational databases—RDBMS. A defining characteristic of relational databases is
a data model, based on multiple tables with lookup keys between them and a join
capability for querying across them. That approach has proven to be versatile,
being able to satisfy nearly any information-retrieval task in one query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

However, it is hard and expensive to scale them to meet the requirements of a typical
search application consisting of many millions of documents and low-latency response.
Instead, Lucene has a much more limiting document-oriented data model, which is
analogous to a single table. Document-oriented databases such as MongoDB are similar
in this respect, but their documents can be nested, similar to XML or JSON. Lucene's
document structure is flat like a table, but it does support multivalued fields—a field
with an array of values. It can also be very sparse such that the actual fields used from
one document to the next vary; there is no space or penalty for a document to not use
a field.

Lucene and Solr have limited support for join queries, but they are
used sparingly as it significantly reduces the scalability characteristics
of Lucene and Solr.

Taking a look at the Solr feature list naturally reveals plenty of search-oriented
technology that databases generally either don't have, or don't do well. The notable
features are relevancy score ordering, result highlighting, query spellcheck, and
query-completion. These features are what drew you to Solr, no doubt. And let's not
forget faceting. This is possible with a database, but it's hard to figure out how, and it's
difficult to scale. Solr, on the other hand, makes it incredibly easy, and it does scale.

Can Solr be a substitute for your database? You can add data to it and get it back out
efficiently with indexes; so on the surface, it seems plausible. The answer is that you
are almost always better off using Solr in addition to a database. Databases, particularly
RDBMSes, generally excel at ACID transactions, insert/update efficiency, in-place
schema changes, multiuser access control, bulk data retrieval, and they have second-
to-none integration with application software stacks and reporting tools. And let's
not forget that they have a versatile data model. Solr falls short in these areas.

For more on this subject, see our article, Text Search, your Database or Solr,
at http://bit.ly/uwF1ps, which although it's slightly outdated now,
is a clear and useful explanation of the issues. If you want to use Solr as
a document-oriented or key-value NoSQL database, Chapter 4, Indexing
Data, will tell you how and when it's appropriate.

www.it-ebooks.info

http://bit.ly/uwF1ps
http://www.it-ebooks.info/

Quick Starting Solr

[6]

A few differences between Solr 4 and
Solr 5
The biggest change that users will see in Solr 5 from Solr 4 is that Solr is now
deployed as its own server process. It is no longer a WAR file that is deployed
into an existing Servlet container such as Tomcat or Jetty. The argument for this
boiled down to "you don't deploy your MySQL database in a Servlet container;
neither should you deploy your Search engine". By owning the network stack
and deployment model, Solr can evolve faster; for example, there are patches
for adding HTTP/2 support and pluggable authentication mechanisms being
worked on. While internally Solr is still using Jetty, that should be considered
an implementation detail. That said, if you really want a WAR file version, and
you're familiar with Java and previous Solr releases, you can probably figure out
how to build one.

As part of Solr 5 being it's own server process, it includes a set of scripts for starting,
stopping, and managing Solr collections, as well as running as a service on Linux.

The next most obvious difference is that the distribution directory structure is
different, particularly related to the old example and new server directory.

The rest of this chapter refers to Solr 5, however the remainder
of the book was updated for Solr 4, and applies to Solr 5.

Getting started
We will get started by downloading Solr, examining its directory structure, and then
finally run it.

This will set you up for the next section, which tours a running Solr 5 server.

1. Get Solr: You can download Solr from its website http://lucene.apache.
org/solr/. This book assumes that you downloaded one of the binary
releases (not the src (source) based distribution). In general, we recommend
using the latest release since Solr and Lucene's code are extensively tested.
For downloadable example source code, and book errata describing how
future Solr releases affect the book content, visit our website http://www.
solrenterprisesearchserver.com/.

www.it-ebooks.info

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://www.solrenterprisesearchserver.com/
http://www.solrenterprisesearchserver.com/
http://www.it-ebooks.info/

Chapter 1

[7]

2. Get Java: The only prerequisite software needed to run Solr is Java 7
(that is, Java Version 1.7). But the latest version is Java 8, and you should
use that. Typing java –version at a command line will tell you exactly
which version of Java you are using, if any.
Java is available on all major platforms, including Windows, Solaris, Linux,
and Mac OS X. Visit http://www.java.com to download the distribution for
your platform. Java always comes with the Java Runtime Environment (JRE)
and that's all Solr requires. The Java Development Kit (JDK) includes the
JRE plus the Java compiler and various diagnostic utility programs. One such
useful program is JConsole, which we'll discuss in Chapter 11, Deployment,
and Chapter 10, Scaling Solr and so the JDK distribution is recommended.

Solr is a Java-based web application, but you don't need to
be particularly familiar with Java in order to use it. This book
assumes no such knowledge on your part.

3. Get the book supplement: This book includes a code supplement available at
our website http://www.solrenterprisesearchserver.com/; you can also
find it on Packt Publishing's website at http://www.packtpub.com/books/
content/support. The software includes a Solr installation configured for
data from MusicBrainz.org, a script to download, and indexes that data into
Solr—about 8 million documents in total, and of course various sample code
and material organized by chapter. This supplement is not required to follow
any of the material in the book. It will be useful if you want to experiment with
searches using the same data used for the book's searches or if you want to
see the code referenced in a chapter. The majority of the code is for Chapter 9,
Integrating Solr.

Solr's installation directory structure
When you unzip Solr after downloading it, you should find a relatively
straightforward directory structure (differences between Solr 4 and 5 are
briefly explained here):

• contrib: The Solr contrib modules are extensions to Solr:
 ° analysis-extras: This directory includes a few text analysis

components that have large dependencies. There are some
International Components for Unicode (ICU) unicode classes for
multilingual support—a Chinese stemmer and a Polish stemmer.
You'll learn more about text analysis in the next chapter.

www.it-ebooks.info

http://www.java.com
http://www.solrenterprisesearchserver.com
http://www.packtpub.com/books/content/support
http://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Quick Starting Solr

[8]

 ° clustering: This directory will have an engine for clustering search
results. There is a one-page overview in Chapter 8, Search Components.

 ° dataimporthandler: The DataImportHandler (DIH) is a very
popular contrib module that imports data into Solr from a
database and some other sources. See Chapter 4, Indexing Data.

 ° extraction: Integration with Apache Tika—a framework for
extracting text from common file formats. This module is also called
SolrCell and Tika is also used by the DIH's TikaEntityProcessor—
both are discussed in Chapter 4, Indexing Data.

 ° langid: This directory contains a contrib module that provides
the ability to detect the language of a document before it's indexed.
More information can be found on the Solr's Language Detection wiki
page at http://wiki.apache.org/solr/LanguageDetection.

 ° map-reduce: This directory has utilities for working with Solr from
Hadoop Map-Reduce. This is discussed in Chapter 9, Integrating Solr.

 ° morphlines-core: This directory contains Kite Morphlines,
a document ingestion framework that has support for Solr.
The morphlines-cell directory has components related to text
extraction. Morphlines is mentioned in Chapter 9, Integrating Solr.

 ° uima: This directory contains library for Integration with Apache
UIMA—a framework for extracting metadata out of text. There are
modules that identify proper names in text and identify the language,
for example. To learn more, see Solr's UIMA integration wiki at
http://wiki.apache.org/solr/SolrUIMA.

 ° velocity: This directory will have a simple search UI framework
based on the Velocity templating language. See Chapter 9, Integrating
Solr.

• dist: In this directory, you will see Solr's core and contrib JAR files. In
previous Solr versions, the WAR file was found here as well. The core JAR
file is what you would use if you're embedding Solr within an application.
The Solr test framework JAR and /test-framework directory contain the
libraries needed in testing Solr extensions. The SolrJ JAR and /solrj-lib
are what you need to build Java based clients for Solr.

• docs: This directory contains documentation and "Javadocs" for the related
assets for the public Solr website, a quick tutorial, and of course Solr's API.

www.it-ebooks.info

http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/SolrUIMA
http://www.it-ebooks.info/

Chapter 1

[9]

If you are looking for documentation outside of this book,
you are best served by the Solr Reference Guide. The docs
directory isn't very useful.

• example: Pre Solr 5, this was the complete Solr server, meant to be
an example layout for deployment. It included the Jetty servlet engine
(a Java web server), Solr, some sample data and sample Solr configurations.
With the introduction of Solr 5, only the example-DIH and exampledocs are
kept, the rest was moved to a new server directory.

 ° example/example-DIH: These are DataImportHandler configuration
files for the example Solr setup. If you plan on importing with DIH,
some of these files may serve as good starting points.

 ° example/exampledocs: These are sample documents to be indexed
into the default Solr configuration, along with the post.jar program
for sending the documents to Solr.

• server: The files required to run Solr as a server process are located here.
The interesting child directories are as follows:

 ° server/contexts: This is Jetty's WebApp configuration for the
Solr setup.

 ° server/etc: This is Jetty's configuration. Among other things, here
you can change the web port used from the presupplied 8983 to 80
(HTTP default).

 ° server/logs: Logs are by default output here. Introduced in Solr 5
was collecting JVM metrics, which are output to solr_gc.log.
When you are trying to size your Solr setup they are a good source
of information.

 ° server/resources: The configuration file for Log4j lives here. Edit
it to change the behavior of the Solr logging, (though you can also
changes levels of debugging at runtime through the Admin console).

 ° server/solr: The configuration files for running Solr are stored
here. The solr.xml file, which provides overall configuration of
Solr lives here, as well as zoo.cfg which is required by SolrCloud.
The subdirectory /configsets stores example configurations that
ship with Solr.

 ° example/webapps: This is where Jetty expects to deploy Solr from.
A copy of Solr's WAR file is here, which contains Solr's compiled
code and all the dependent JAR files needed to run it.

 ° example/solr-webapp: This is where Jetty deploys the unpacked
WAR file.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[10]

Running Solr
Solr ships with a number of example collection configurations. We're going to
run one called techproducts. This example will create a collection and insert some
sample data.

The addition of scripts for running Solr is one of the best
enhancements in Solr 5. Previously, to start Solr, you directly
invoked Java via java –jar start.jar. Deploying to
production meant figuring out how to migrate into an existing
Servlet environment, and was the source of much frustration.

First, go to the bin directory, and then run the main Solr command. On Windows,
it will be solr.cmd, on *nix systems it will be just solr. Jetty's start.jar file by
typing the following command:

>>cd bin
>>./solr start –e techproducts

The >> notation is the command prompt and is not part of the command. You'll see a
few lines of output as Solr is started, and then the techproducts collection is created
via an API call. Then the sample data is loaded into Solr. When it's done, you'll be
directed to the Solr admin at http://localhost:8983/solr.

To stop Solr, use the same Solr command script:

>>./solr stop

A quick tour of Solr
Point your browser to Solr's administrative interface at http://localhost:8983/.
The admin site is a single-page application that provides access to some of the more
important aspects of a running Solr instance.

The administrative interface is currently being completely
revamped, and the below interface may be deprecated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

This tour will help you get your bearings in navigating around Solr.

In the preceding screenshot, the navigation is on the left while the main content is on
the right. The left navigation is present on every page of the admin site and is divided
into two sections. The primary section contains choices related to higher-level Solr and
Java features, while the secondary section lists all of the running Solr cores.

The default page for the admin site is Dashboard. This gives you a snapshot
of some basic configuration settings and stats, for Solr, the JVM, and the server.
The Dashboard page is divided into the following subareas:

• Instance: This area displays when Solr started.
• Versions: This area displays various Lucene and Solr version numbers.
• JVM: This area displays the Java implementation, version, and processor

count. The various Java system properties are also listed here.
• System: This area displays the overview of memory settings and usage;

this is essential information for debugging and optimizing memory settings.
• JVM-Memory: This meter shows the allocation of JVM memory, and is

key to understanding if garbage collection is happening properly. If the
dark gray band occupies the entire meter, you will see all sorts of memory
related exceptions!

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[12]

The rest of the primary navigation choices include the following:

• Logging: This page is a real-time view of logging, showing the time, level,
logger, and message. This section also allows you to adjust the logging levels
for different parts of Solr at runtime. For Jetty, as we're running it, this output
goes to the console and nowhere else. See Chapter 11, Deployment, for more
information on configuring logging.

• Core Admin: This section is for information and controls for managing
Solr cores. Here, you can unload, reload, rename, swap, and optimize the
selected core. There is also an option for adding a new core.

• Java Properties: This lists Java system properties, which are basically
Java-oriented global environment variables. Including the command
used to start the Solr Java process.

• Thread Dump: This displays a Java thread dump, useful for experienced
Java developers in diagnosing problems.

Below the primary navigation is a list of running Solr cores. Click on the Core Selector
drop-down menu and select the techproducts link. You should see something very
similar to the following screenshot:

The default page labeled Overview for each core shows core statistics, information
about replication, an Admin Extra area. Some other options such as details about
Healthcheck are grayed out and made visible if the feature is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

You probably noticed the subchoice menu that appeared below techproducts. Here
is an overview of what those subchoices provide:

• Analysis: This is used for diagnosing query and indexing problems related
to text analysis. This is an advanced screen and will be discussed later.

• Data Import: Provides information about the DataImport handler (the DIH).
Like replication, it is only useful when DIH is enabled. The DataImport
handler will be discussed in more detail in Chapter 4, Indexing Data.

• Documents: Provides a simple interface for creating a document to index
into Solr via the browser. This includes a Document Builder that walks you
through adding individual fields of data.

• Files: Exposes all the files that make up the core's configuration. Everything
from core files such as schema.xml and solrconfig.xml to stopwords.txt.

• Ping: Clicking on this sends a ping request to Solr, displaying the latency.
The primary purpose of the ping response is to provide a health status to
other services, such as a load balancer. The ping response is a formatted
status document and it is designed to fail if Solr can't perform a search
query that you provide.

• Plugins / Stats: Here you will find statistics such as timing and cache
hit ratios. In Chapter 10, Scaling Solr, we will visit this screen to evaluate
Solr's performance.

• Query: This brings you to a search form with many options. With or without
this search form, you will soon end up directly manipulating the URL using
this book as a reference. There's no data in Solr yet, so there's no point in
using the form right now.

• Replication: This contains index replication status information, and
the controls for disabling. It is only useful when replication is enabled.
More information on this is available in Chapter 10, Scaling Solr.

• Schema Browser: This is an analytical view of the schema that reflects various
statistics of the actual data in the index. We'll come back to this later.

• Segments Info: Segments are the underlying files that make up the Lucene
data structure. As you index information, they expand and compress.
This allows you to monitor them, and was newly added to Solr 5.

You can partially customize the admin view by editing a few
templates that are provided. The template filenames are prefixed
with admin-extra, and are located in the conf directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[14]

Loading sample data
Solr comes with some sample data found at example/exampledocs. We saw
this data loaded as part of creating the techproducts Solr core when we started Solr.
We're going to use that for the remainder of this chapter so that we can explore
Solr more, without getting into schema design and deeper data loading options.
For the rest of the book, we'll base the examples on the digital supplement to the
book—more on that later.

We're going to re-index the example data by using the post.jar Java program,
officially called SimplePostTool. Most JAR files aren't executable, but this one
is. This simple program takes a Java system variable to specify the collection:
-Dc=techproducts, iterates over a list of Solr-formatted XML input files, and
HTTP posts it to Solr running on the current machine —http://localhost:8983/
solr/techproducts/update. Finally, it will send a commit command, which
will cause documents that were posted prior to the commit to be saved and made
visible. Obviously, Solr must be running for this to work. Here is the command
and its output:

>> cd example/exampledocs
>> java –Dc=techproducts -jar post.jar *.xml
SimplePostTool version 5.0.0
Posting files to [base] url http://localhost:8983/solr/techproducts/
update using
content-type application/xml...
POSTing file gb18030-example.xml
POSTing file hd.xml
etc.
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/techproducts/
update...

If you are using a Unix-like environment, you have an alternate option of using the
/bin/post shell script, which wraps the SimplePostTool.

The post.sh and post.jar programs could be used
in a production scenario, but they are intended just as a
demonstration of the technology with the example data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Let's take a look at one of these XML files we just posted to Solr, monitor.xml:

<add>
 <doc>
 <field name="id">3007WFP</field>
 <field name="name">Dell Widescreen UltraSharp 3007WFP</field>
 <field name="manu">Dell, Inc.</field>
 <!-- Join -->
 <field name="manu_id_s">dell</field>
 <field name="cat">electronics</field>
 <field name="cat">monitor</field>
 <field name="features">30" TFT active matrix LCD, 2560 x 1600,
 .25mm dot pitch, 700:1 contrast</field>
 <field name="includes">USB cable</field>
 <field name="weight">401.6</field>
 <field name="price">2199</field>
 <field name="popularity">6</field>
 <field name="inStock">true</field>
 <!-- Buffalo store -->
 <field name="store">43.17614,-90.57341</field>
 </doc>
</add>

The XML schema for files that can be posted to Solr is very simple. This file doesn't
demonstrate all of the elements and attributes, but it shows the essentials. Multiple
documents, represented by the <doc> tag, can be present in series within the <add>
tag, which is recommended for bulk data loading scenarios. This subset may very
well be all that you use. More about these options and other data loading choices
will be discussed in Chapter 4, Indexing Data.

A simple query
Point your browser to http://localhost:8983/solr/#/techproducts/query—
this is the query form described in the previous section. The search box is labeled q.
This form is a standard HTML form, albeit enhanced by JavaScript. When the form is
submitted, the form inputs become URL parameters to an HTTP GET request to Solr.
That URL and Solr's search response is displayed to the right. It is convenient to use
the form as a starting point for developing a search, but then subsequently refine the
URL directly in the browser instead of returning to the form.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[16]

Run a query by replacing the *:* in the q field with the word lcd, then clicking on
the Execute Query button. At the top of the main content area, you will see a URL
like this http://localhost:8983/solr/techproducts/select?q=monitor&wt=j
son&indent=true. The URL specifies that you want to query for the word lcd, and
that the output should be in indented JSON format.

Below this URL, you will see the search result; this result is the response of that URL.

By default, Solr responds in XML, however the query interface specifies JSON by
default. Most modern browsers, such as Firefox, provide a good JSON view with
syntax coloring and hierarchical controls. All response formats have the same basic
structure as the JSON you're about to see. More information on these formats can be
found in Chapter 4, Indexing Data.

The JSON response consists of a two main elements: responseHeader and response.
Here is what the header element looks like:

"responseHeader": {
 "status": 0,
 "QTime": 1,
 "params": {
 "q": "lcd",
 "indent": "true",
 "wt": "json"
 }
 }
…

The following are the elements from the preceding code snippet:

• status: This is always zero, unless there was a serious problem.
• QTime: This is the duration of time in milliseconds that Solr took to process

the search. It does not include streaming back the response. Due to multiple
layers of caching, you will find that your searches will often complete in a
millisecond or less if you've run the query before.

• params: This lists the request parameters. By default, it only lists parameters
explicitly in the URL; there are usually more parameters specified in a
<requestHandler/> in solrconfig.xml. You can see all of the applied
parameters in the response by setting the echoParams parameter to true.

More information on these parameters and many more is
available in Chapter 5, Searching.

www.it-ebooks.info

http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true
http://localhost:8983/solr/techproducts/select?q=monitor&wt=json&indent=true
http://www.it-ebooks.info/

Chapter 1

[17]

Next up is the most important part, the results:

"response": {
 "numFound": 5,
 "start": 0,

The numFound value is the number of documents matching the query in the entire
index. The start parameter is the index offset into those matching (ordered)
documents that are returned in the response below.

Often, you'll want to see the score of each matching document. The document score
is a number that represents how relevant the document is to the search query. This
search response doesn't refer to scores because it needs to be explicitly requested in
the fl parameter—a comma-separated field list. A search that requests the score via
fl=*,score will have a maxScore attribute in the "response" element, which is the
maximum score of all documents that matched the search. It's independent of the
sort order or result paging parameters.

The content of the result element is a list of documents that matched the query. The
default sort is by descending score. Later, we'll do some sorting by specified fields.

{
 "id": "9885A004",
 "name": "Canon PowerShot SD500",
 "manu": "Canon Inc.",
 "manu_id_s": "canon",
 "cat": [
 "electronics",
 "camera"
],
 "features": [
 "3x zoop, 7.1 megapixel Digital ELPH",
 "movie clips up to 640x480 @30 fps",
 "2.0\" TFT LCD, 118,000 pixels",
 "built in flash, red-eye reduction"
],
 "includes": "32MB SD card, USB cable, AV cable, battery",
 "weight": 6.4,
 "price": 329.95,
 "price_c": "329.95,USD",
 "popularity": 7,
 "inStock": true,
 "manufacturedate_dt": "2006-02-13T15:26:37Z",
 "store": "45.19614,-93.90341",
 "_version_": 1500358264225792000
 },
...

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[18]

The document list is pretty straightforward. By default, Solr will list all of the stored
fields. Not all of the fields are necessarily stored—that is, you can query on them but
not retrieve their value—an optimization choice. Notice that it uses the basic data
types of strings, integers, floats, and Booleans. Also note that certain fields, such as
features and cat are multivalued, as indicated by the use of [] to denote an array
in JSON.

This was a basic keyword search. As you start using more search features such
as faceting and highlighting, you will see additional information following the
response element.

Some statistics
Let's take a look at the statistics available via the Plugins / Stats page. This page
provides details on all the components of Solr. Browse to CORE and then pick a
Searcher. Before we loaded data into Solr, this page reported that numDocs was 0,
but now it should be 32.

Now take a look at the update handler stats by clicking on the UPDATEHANDLER
and then expand the stats for the update handler by clicking on the updateHandler
toggle link on the right-hand side of the screen. Notice that the /update request
handler has some stats too:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

If you think of Solr as a RESTful server, then the various public end points are
exposed under the QUERYHANDLER menu. Solr isn't exactly REST-based,
but it is very similar. Look at the /update to see the indexing performance,
and /select for query performance.

These statistics are accumulated since when Solr was started or
reloaded, and they are not stored to disk. As such, you cannot use
them for long-term statistics. There are third-party SaaS solutions
referenced in Chapter 11, Deployment, which capture more statistics
and persist it long-term.

The sample browse interface
The final destination of our quick Solr tour is to visit the so-called browse
interface—available at http://localhost:8983/solr/techproducts/browse.
It's for demonstrating various Solr features:

• Standard keyword search: Here, you can experiment with Solr's syntax.
• Query debugging: Here, you can toggle display of the parsed query and

document score "explain" information.
• Query-suggest: Here, you can start typing a word like enco and suddenly

"encoded" will be suggested to you.
• Highlighting: Here, the highlighting of query words in search results is in

bold, which might not be obvious.
• More-like-this: This returns documents with similar words.
• Faceting: This includes field value facets, query facets, numeric range facets,

and date range facets.
• Clustering: This shows how the search results cluster together based on

certain words. You must first start Solr as the instructions describe in the
lower left-hand corner of the screen.

• Query boosting: This influences the scores by product price.
• Geospatial search: Here, you can filter by distance. Click on the spatial link

at the top-left to enable this.

This is also a demonstration of Solritas, which formats Solr requests using templates
that are based on Apache Velocity. The templates are VM files in example/
techproducts/solr/techproducts/conf/velocity. Solritas is primarily for search
UI prototyping. It is not recommended for building anything substantial. See Chapter
9, Integrating Solr, for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[20]

The browse UI as supplied assumes the default example Solr
schema. It will not work out of the box against another schema
without modification.

Here is a screenshot of the browse interface; not all of it is captured in this image:

Configuration files
When you start up Solr using the –e techproducts parameter, it loads the
configuration files from /server/solr/configsets/sample_techproducts_
configs. These configuration files are extremely well documented.

A Solr core's instance directory is laid out like this:

• conf: This directory contains configuration files. The solrconfig.xml and
schema.xml files are most important, but it will also contain some other
.txt and .xml files, which are referenced by these two.

• conf/schema.xml: This is the schema for the index, including field type
definitions with associated analyzer chains.

• conf/solrconfig.xml: This is the primary Solr configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

• conf/lang: This directory contains language translation .txt files that is
used by several components.

• conf/xslt: This directory contains various XSLT files that can be used to
transform Solr's XML query responses into formats such as Atom and RSS.
See Chapter 9, Integrating Solr.

• conf/velocity: This includes the HTML templates and related web assets
for rapid UI prototyping using Solritas, covered in Chapter 9, Integrating Solr.
The previously discussed browse UI is implemented with these templates.

• lib: Where extra Java JAR files can be placed that Solr will load on startup.
This is a good place to put contrib JAR files, and their dependencies. You'll
need to create this directory on your own, though; it doesn't exist by default.

Unlike typical database software, in which the configuration files
don't need to be modified much (if at all) from their defaults, you will
modify Solr's configuration files extensively—especially the schema.
The as-provided state of these files is really just an example to both
demonstrate features and document their configuration and should
not be taken as the only way of configuring Solr. It should also be
noted that in order for Solr to recognize configuration changes, a core
must be reloaded (or simply restart Solr).

Solr's schema for the index is defined in schema.xml. It contains the index's fields
within the <fields> element and then the field type definitions within the <types>
element. You will observe that the names of the fields in the documents we added to
Solr intuitively correspond to the sample schema. Aside from the fundamental parts
of defining the fields, you might also notice the <copyField> elements, which copy an
input field as provided to another field. There are various reasons for doing this, but
they boil down to needing to index data in different ways for specific search purposes.
You'll learn all that you could want to know about the schema in the next chapter.

Each Solr core's solrconfig.xml file contains lots of parameters that can be
tweaked. At the moment, we're just going to take a peek at the request handlers,
which are defined with the <requestHandler> elements. They make up about half
of the file. In our first query, we didn't specify any request handler, so we got the
default one:

<requestHandler name="/select" class="solr.SearchHandler>
 <!-- default values for query parameters can be specified, these
 will be overridden by parameters in the request
 -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[22]

 <str name="df">text</str>
 </lst>
 <!-- … many other comments … -->
</requestHandler>

Each HTTP request to Solr, including posting documents and searches, goes through
a particular request handler. Handlers can be registered against certain URL paths by
naming them with a leading /. When we uploaded the documents earlier, it went to
the handler defined like this, in which /update is a relative URL path:

<requestHandler name="/update" class="solr.UpdateRequestHandler"
/>

Requests to Solr are nearly completely configurable through URL parameters
or POST'ed form parameters. They can also be specified in the request handler
definition within the <lst name="defaults"> element, such as how rows is
set to 10 in the previously shown request handler. The well-documented file also
explains how and when they can be added to appends, or invariants named lst
blocks. This arrangement allows you to set up a request handler for a particular
application that will be searching Solr, without forcing the application to specify
all of its search parameters. More information on request handlers can be found
in Chapter 5, Searching.

What's next?
You now have an excellent, broad overview of Solr! The numerous features of this
tool will no doubt bring the process of implementing a world-class search engine
closer to reality. But creating a real, production-ready search solution is a big task.
So, where do you begin? As you're getting to know Solr, it might help to think about
the main process in three phases: indexing, searching, and application integration.

Schema design and indexing
In what ways do you need your data to be searched? Will you need faceted
navigation, spelling suggestions, or more-like-this capabilities? Knowing your
requirements up front is the key in producing a well-designed search solution.
Understanding how to implement these features is critical. A well-designed
schema lays the foundation for a successful Solr implementation.

However, during the development cycle, having the flexibility to try different
field types without changing the schema and restarting Solr can be very handy.
The dynamic fields feature allows you to assign field types by using field name
conventions during indexing. Solr provides many useful predefined dynamic
fields. Chapter 2, Schema Design, will cover this in-depth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

However, you can also get started right now. Take a look at the stock dynamic fields
in /server/solr/configsets/sample_techproducts_configs/conf/schema.
xml. The dynamicField, XML tags represent what is available. For example, the
dynamicField named *_b allows you to store and index Boolean data types; a field
named admin_b would match this field type.

For the stock dynamic fields, here is a subset of what's available from the
schema.xml file:

• _i: This includes the indexed and stored integers
• _ss: This includes the stored and indexed, multi-valued strings
• _dt: This includes the indexed and stored dates
• _p: This includes the indexed and stored lat/lng types

To make use of these fields, you simply name your fields using those suffixes—
example/exampledocs/ipod_other.xml makes good use of the *_dt type with
its manufacturedate_dt field. Copying an example file, adding your own data,
changing the suffixes, and indexing (via the SimplePost tool) is all as simple as it
sounds. Give it a try!

Text analysis
It's probably a good time to talk a little more about text analysis. When considering
field types, it's important to understand how your data is processed. For each field,
you'll need to know its data type, and whether or not the value should be stored and/
or indexed. For string types, you'll also need to think about how the text is analyzed.

Simply put, text analysis is the process of extracting useful information from a text
field. This process normally includes two steps: tokenization and filtering. Analyzers
encapsulate this entire process, and Solr provides a way to mix and match analyzer
behaviors by configuration.

Tokenizers split up text into smaller chunks called tokens. There are many
different kinds of tokenizers in Solr, the most common of which splits text on
word boundaries, or whitespace. Others split on regular expressions, or even
word prefixes. The tokenizer produces a stream of tokens, which can be fed to
an optional series of filters.

Filters, as you may have guessed, commonly remove noise—things such as
punctuation and duplicate words. Filters can even lower/upper case tokens,
and inject word synonyms.

Once the tokens pass through the analyzer processor chain, they are added to the
Lucene index. Chapter 2, Schema Design, covers this process in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Starting Solr

[24]

Searching
The next step is, naturally, searching. For most applications processing user queries,
you will want to use the [e]dismax query parser, set with defType=edismax. It is
not the default but arguably should be in our opinion; [e]dismax handles end-user
queries very well. There are a few more configuration parameters it needs, described
in Chapter 5, Searching.

Here are a few example queries to get you thinking.

Be sure to start up Solr and index the sample data by
following the instructions in the previous section.

Find all the documents that have the phrase hard drive in their cat field:

http://localhost:8983/solr/techproducts/select?q=cat:"hard+drive"

Find all the documents that are in-stock, and have a popularity greater than 6:

http://localhost:8983/solr/techproducts/select?q=+inStock:true+AND+
popularity:[6+TO+*]

Here's an example using the eDisMax query parser:

http://localhost:8983/solr/techproducts/select?q=ipod&defType=edism
ax&qf=name^3+manu+cat&fl=*,score

This returns documents where the user query in q matches the name, manu, and cat
fields. The ^3 after the manu field tells Solr to boost the relevancy of the document
scores when the manu field matches. The fl param tells Solr what fields to return—
The * means return all fields, and score is a number that represents how well the
document matched the input query.

Faceting and statistics can be seen in this example:

http://localhost:8983/solr/techproducts/select?q=ipod&defType=disma
x&qf=name^3+manu+cat&fl=*,score&rows=0&facet=true&facet.field=manu
_id_s&facet.field=cat&stats=true&stats.field=price&stats.field=wei
ght

This builds on the previous, dismax example, but instead of returning documents
(rows=0), Solr returns multiple facets and stats field values.

For detailed information on searching, see Chapter 5, Searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Integration
If the previous tips on indexing and searching are enough to get you started, then
you must be wondering how you integrate Solr and your application. By far, the
most common approach is to communicate with Solr via HTTP. You can make use
of one of the many HTTP client libraries available. Here's a small example using the
Ruby library, RSolr:

require "rsolr"
client = RSolr.connect
params = {:q => "ipod", :defType => "dismax", :qf => "name^3 manu
cat", :fl => "*,score"}
result = client.select(:params => params)
result["response"]["docs"].each do |doc|
 puts doc.inspect
end

Using one of the previous sample queries, the result of this script would print out
each document, matching the query ipod.

There are many client implementations, and finding the right one for you is
dependent on the programming language your application is written in. Chapter 9,
Integrating Solr, covers this in depth, and will surely set you in the right direction.

Resources outside this book
The following are some Solr resources other than this book:

• Apache Solr 4 Cookbook, Rafał Kuć is another Solr book published by Packt
Publishing. It is a style of book that comprises a series of posed questions
or problems followed by their solution. You can find this at www.packtpub.
com/big-data-and-business-intelligence/apache-solr-4-cookbook.

• Apache Solr Reference Guide is a detailed, online resource contributed
by Lucidworks to the Solr community. You can find the latest version
at https://cwiki.apache.org/confluence/display/solr/
Apache+Solr+Reference+Guide. Consider downloading the PDF
corresponding to the Solr release you are using.

• Solr's Wiki at http://wiki.apache.org/solr/ has a lot of great
documentation and miscellaneous information. For a Wiki, it's fairly
organized too. In particular, if you use a particular app-server in
production, then there is probably a Wiki page there on specific details.

www.it-ebooks.info

www.packtpub.com/big-data-and-business-intelligence/apache-solr-4-cookbook
www.packtpub.com/big-data-and-business-intelligence/apache-solr-4-cookbook
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
http://wiki.apache.org/solr/
http://www.it-ebooks.info/

Quick Starting Solr

[26]

• Within the Solr installation, you will also find that there are README.txt files
in many directories within Solr and that the configuration files are very well
documented. Read them!
The solr-user@lucene.apache.org mailing list contains a wealth of
information. If you have a few discriminating keywords, then you can find
nuggets of information in there with a search engine. The mailing lists of Solr
and other Lucene subprojects are best searched at http://find.searchhub.
org/ or http://search-lucene.com/solr or http://nabble.com.

We highly recommend that you subscribe to the Solr-users
mailing list. You'll learn a lot and potentially help others, too.

• Solr's issue tracker contains information on enhancements and bugs.
It's available at http://issues.apache.org/jira/browse/SOLR and
it uses Atlassian's JIRA software. Some of the comments attached to
these issues can be extensive and enlightening.

Notation convention
Solr's JIRA issues are referenced like this—SOLR-64. You'll see such
references in this book and elsewhere. You can easily look these up
at Solr's JIRA. You might also see issues for Lucene that follow the
same convention, for example, LUCENE-1215.

There are, of course, resources for Lucene, such as Lucene In Action, Second Edition,
Michael McCandless, Erik Hatcher, and Otis Gospodneti, Manning Publications. If you
intend to dive into Solr's internals, then you will find Lucene resources helpful,
but that is not the focus of this book.

Summary
This completes a quick introduction to Solr. In the following chapters, you're really
going to get familiar with what Solr has to offer. We recommend that you proceed
in order from the next chapter through Chapter 8, Search Components, because these
build on each other and expose nearly all of the capabilities in Solr. These chapters
are also useful as a reference to Solr's features. You can, of course, skip over sections
that are not interesting to you. Chapter 9, Integrating Solr, is one you might peruse
at any time, as it may have a section applicable to your Solr usage scenario. Finally,
be sure that you don't miss the appendix for a search quick-reference cheat-sheet.

www.it-ebooks.info

http://find.searchhub.org/
http://find.searchhub.org/
http://search-lucene.com/solr
http://nabble.com
http://issues.apache.org/jira/browse/SOLR
http://www.it-ebooks.info/

[27]

Schema Design
The foundation of Solr is based on Lucene's index—the subject of this chapter.
In this chapter, you will learn about:

• Schema design decisions in which you map your source data to
Lucene's limited structure. In this book, we'll consider the data
from www.MusicBrainz.org.

• The structure of the schema.xml file, where the schema definition
is defined. This file contains both the definition of field types and
the fields of those types that store your data.

The following diagram shows the big picture of how various aspects of working with
Solr are related. In this chapter, we will focus on the foundational layer—the index:

INPUT
XML (Solr)
C SV
Rich Documents
DataImportHandler
Databases
XML

Queries
F aceting
Highlighting
Spellcheck
F ormatting

OUTPUT

Schema
Field T ypes
T ext Analysis

THE INDEX

www.it-ebooks.info

www.MusicBrainz.org
http://www.it-ebooks.info/

Schema Design

[28]

In a hurry?
This is a fairly important foundational chapter. That said, you can
start building your own search engine using the predefined field
types provided with Solr's example schema. Eventually, you will
want to return to make adjustments.

Is Solr schemaless?
Solr supports a rich schema specification that allows for a wide range of flexibility
in dealing with different document fields and has a "free" schema, in that, you
don't have to define all of your fields ahead of time using dynamic fields. There
are discussions in the search and NoSQL communities questioning the value in a
schema. Having the ability to configure the fields in a configuration file, outside the
actual code, gives more flexibility and makes us think about the data and business
needs, which are key for any successful search engine.

Grant Ingersoll, Lucene and Solr committer, cofounder of the Apache Mahout
machine learning project, and a long standing member of the Apache Software
Foundation, has the following insightful commentary on the subject:

As for the notion of "schemaless", it's a bit of a marketing term, no? ("Less" schema
is probably better, but it doesn't roll off the tongue now does it?) What is really
meant by it, as far as I can tell, is that the system uses convention over configuration
and that it is easy to change it to adapt to business needs. ElasticSearch has a schema,
it's just implied by your JSON and its preset configuration. And if you don't like it
you can programmatically go change it, thereby embedding your schema into your
code. In Solr, you can also have convention over configuration via dynamic fields and
by naming your fields accordingly. There is also work under way to be able to use
other conventions programmatically. And I don't know about you, but is opening
up a config file and making a few edits really that hard, especially when it makes you
think about your data?

You can find the source at http://www.ymc.ch/en/why-we-chose-solr-4-0-
instead-of-elasticsearch.

www.it-ebooks.info

http://www.ymc.ch/en/why-we-chose-solr-4-0-instead-of-elasticsearch
http://www.ymc.ch/en/why-we-chose-solr-4-0-instead-of-elasticsearch
http://www.it-ebooks.info/

Chapter 2

[29]

MusicBrainz.org
Instead of continuing to work with the sample data that comes with Solr, we're
going to use a large database of music metadata from the MusicBrainz project at
http://musicbrainz.org. The data is free and is submitted by a large community
of users. One way MusicBrainz offers this data is in the form of a large SQL file for
import into a PostgreSQL database. In order to make it easier for you to play with
this data, the online code supplement to this book includes the data in formats that
can readily be imported into Solr. Alternatively, if you already have your own data,
then we recommend starting with that, using this book as a guide.

The MusicBrainz database is highly relational. Therefore, it will serve as an excellent
instructional dataset to discuss Solr schema choices. The MusicBrainz database
schema is quite complex, and it would be a distraction to go over even half of it.
We are going to use a subset of it and express it in a way that has a straightforward
mapping to the user interface, which can be seen on the MusicBrainz website. Each
of these tables that are depicted in the following diagram can be easily constructed
through SQL subqueries or views from the actual MusicBrainz tables:

Release

(album.

albummeta)

Artist Track

(albumjoin)

(country)

(language)

Release-Event

(release)

To describe the major tables that we mentioned earlier, we'll use some examples
from the band, The Smashing Pumpkins:

• The Smashing Pumpkins is an artist with a type of group (a band). Some artists
(groups in particular) have members who are also other artists of type person.
So this is a self-referential relationship. The Smashing Pumpkins band has
Billy Corgan, Jimmy Chamberlin, and others as members.

www.it-ebooks.info

http://musicbrainz.org
http://www.it-ebooks.info/

Schema Design

[30]

• An artist is attributed as the creator of a release. The most common type
of release is an album but there are also singles, EPs, compilations, and
others. Furthermore, releases have a status property that is either official,
promotional, or bootleg. A popular official album from The Smashing
Pumpkins is titled Siamese Dream.

• A release can be published at various times and places, which MusicBrainz
calls an event (a release-event). Each event contains the date, country, music
label, and format (CD or tape).

• A release is composed of one or more tracks. Siamese Dream has 13 tracks
starting with Cherub Rock and ending with Luna. Note that a track is a part
of just one release and so it is not synonymous with a song. For example, the
song Cherub Rock is not only a track on this release but also on the Greatest
Hits release, as well as quite a few others in the database. A track has a PUID
(PortableUniqueIdentifier), an audio fingerprinting technology quasi-
identifier, based on the actual sound on a track. It's not foolproof as there
are collisions, but these are rare. Another interesting bit of data MusicBrainz
stores is the PUID lookup count, which is how often it has been requested by
their servers—a good measure of popularity.

Note that we'll be using the word entity occasionally here in the data modeling
sense—it's basically a type of thing represented by the data. Artist, release, event,
and track are all entity types with respect to MusicBrainz. In a relational database,
most tables correspond to an entity type and the others serve to relate them or to
provide for multiple values. In Solr, each document will have a primary entity
type and may contain other entities as part of it, too.

One combined index or separate indices
The following discussion concerns how to manage the searching of different types of
data, such as artists and releases from MusicBrainz. In the MusicBrainz configuration
example, each document of each type gets their own index but they all share the
same configuration. Although we wouldn't generally recommend it, this approach
was done for convenience and to reduce the complexity for this book at the expense
of a one-size-fits-all schema and configuration.

A Solr server hosts one or more Solr Cores. A Solr Core is an instance
of Solr to include the configuration and index, sometimes the word
"core" is used synonymously with "index". Even if you have one type
of data to search for in an application, you might still use multiple
cores (with the same configuration) and shard the data for scaling.
Managing Solr Cores is discussed further in Chapter 11, Deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

One combined index
A combined index might also be called an aggregate index. As mentioned in the
first chapter, an index is conceptually like a single-table relational database schema,
thus sharing similarities with some NoSQL (non-relational) databases. In spite of this
limitation, there is nothing to stop you from putting different types of data (say, artists
and releases from MusicBrainz) into a single index. All you have to do is use different
fields for the different document types, and use a field to discriminate between the
types. An identifier field would need to be unique across all documents in this index,
no matter what the type is, you could easily do this by concatenating the field type
and the entity's identifier. This may appear ugly from a relational database design
standpoint, but this isn't a database! More importantly, unlike a database, there is no
overhead whatsoever for some documents to not populate some fields. This is where
the spreadsheet metaphor can break down, because a blank cell in a spreadsheet takes
up space, but not in Solr's index.

Here's a sample schema.xml snippet of the fields for a single combined
index approach:

<field name="id" ... /><!-- example: "artist:534445" -->
<field name="type" ... /><!-- example: "artist", "track",
"release",... -->
<field name="name" ... /><!-- (common to various types) -->

<!-- track fields: -->
<field name="PUID" ... />
<field name="num" ... /><!-- i.e. the track # on the release -->
<!-- etc. -->
<!-- artist fields: -->
<field name="startDate" ... /><!-- date of first release -->
<field name="endDate" ... /><!-- date of last release -->
<field name="homeCountry" ... />
<!-- etc. -->

A combined index has the advantage of being easier to maintain,
since it is just one configuration. It is also easier to do a search
over multiple document types at once, since this will naturally
occur, assuming you search on all the relevant fields. For these
reasons, it is a good approach to start off with. However, consider
the shortcomings to be described shortly.

For the book, we've taken a hybrid approach in which there are separate Solr Cores
(indices) for each MusicBrainz data type, but they all share the same configuration,
including the schema.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[32]

Problems with using a single combined index
Although a combined index is more convenient to set up, there are some problems
that you may face:

• There may be namespace collision problems unless you prefix the field names
by type such as: artist_startDate and track_PUID. In the example that we
just saw, most entity types have a name. Therefore, it's straightforward for
all of them to have this common field. If the type of the fields were different,
then you would be forced to name them differently.

• If you share the same field for different entities such as the name field in the
example that we just saw, then there are some problems that can occur when
using that field in a query and while filtering documents by document type.
These caveats do not apply when searching across all documents.

• You will get scores that are of lesser quality due to suboptimal document
frequency and total document count values, and components of the IDF part
of the score. The document frequency is simply the number of documents in
which a queried term exists for a specific field. If you put different types of
things into the same field, then what could be a rare word for a track name
might not be for an artist name. The total document count ends up being
inflated instead of being limited to a specific document type (although the
problem isn't as bad as the suboptimal document frequency). Scoring is
described further in Chapter 6, Search Relevancy.

• Prefix, wildcard, and fuzzy queries will take longer. If you share a field with
different types of documents, then the total number of terms to be searched is
going to be larger, which takes longer for these query types.

• For a large number of documents, a strategy using multiple indices will
prove to be more scalable. Only testing will indicate what "large" is for your
data and your queries, but less than a million documents are not likely to
benefit from multiple indices. Once you have tens of millions of documents,
you would consider multiple indices. There are so many factors involved,
so take these numbers as rough guidelines.

• Committing changes to a Solr index invalidates the caches used to speed
up querying, and these get rebuilt during the warming phase of a commit.
If this happens often, and the changes are usually due to one type of entity
in the index, then you will get better performance by using separate indices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Separate indices
For separate indices, you simply develop your schemas independently. You can use
a combined schema as previously described, and use it for all of your cores so that
you don't have to manage them separately. It's not an approach for the purist, but it
is convenient and it is also what we've done for the book's example code. The rest of
the discussion here assumes that the schemas are independent.

To share the same schema field type definitions (described in the following
sections) across your schemas without having to keep them in sync, use
the XInclude feature. XInclude is described in Chapter 11, Deployment.

If you do develop separate schemas and need to search across your indices in
one search, then you must perform a distributed search, described in Chapter 10,
Scaling Solr. A distributed search is usually feature employed for a large corpus,
but it applies here too. Be sure to read more about it before using it as there are
some limitations. As in the combined-schema, you will need a unique ID across
all documents and you will want a field type to differentiate documents in your
search results. You don't need commonly named fields to search on, since the
query will be processed at each core using the configuration there to determine,
for example, what the default search field is.

You can't go wrong with multiple indices (Solr Cores); it's just a bit
more to manage. And just because you have multiple indices doesn't
preclude sharing as much of the configuration (including the schema)
as you want to among the cores. Chapter 11, Deployment, will discuss
configuring the cores including sharing them and parameterizing them.

Schema design
A key thing to come to grips with is that the queries you need Solr to support
completely drive your Solr schema design. This is very important to understand.
Conversely, relational databases typically use standard third normal form
decomposition of the data, largely because they have strong SQL relational-join
support. Since queries drive the Solr schema design, all the data needed to match a
document, that is, the criteria, should be in the document matched, not in a related
one. To satisfy that requirement, data that would otherwise exist in one place is
copied into related documents that need it to support a search. For example, an
artist's name in MusicBrainz will not just exist on an artist document but also in a
track document to support searching for tracks by artist. Solr 4's new Join support
allows this design principle to be relaxed; however, it's not as capable as a SQL join
and is often slow, so only consider this as a last resort.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[34]

Even if you're not working with a database as your source data, these
concepts still apply. So pay close attention to this important subject in
any case.

At this point, we're going to outline a series of steps to follow in order to arrive
at one or more Solr schemas to power searches for an application of any sort. For
specifics, we will consider the www.MusicBrainz.org website and how it could
work, hypothetically. It goes as far as listing the fields but not into text analysis or
making changes for particular search features, such as faceting. In truth, schema
design is somewhat creative and is always evolutionary—so consider these steps
as a guide for your first time at it, though not a foolproof process.

Step 1 – determine which searches are going
to be powered by Solr
Any text search capability is going to be Solr powered. At the risk of stating the
obvious, we're referring strictly to those places where a user types in a bit of text and
subsequently gets some search results. On the MusicBrainz website, the main search
function is accessed through the form that is always present on the top. There is also
a more advanced form that adds a few options but is essentially the same capability
present on the search menu page, and we treat it as such from Solr's point of view.
We can see the MusicBrainz search form in the following screenshot:

Once we look through the remaining steps, we may find that Solr should additionally
power some faceted navigation in areas that are not accompanied by text search (that
is, the facets are of the entire dataset, not necessarily limited to the search results of
a text query alongside it). An example of this at MusicBrainz is the Top Voters tally,
which we'll address soon.

www.it-ebooks.info

www.MusicBrainz.org
http://www.it-ebooks.info/

Chapter 2

[35]

Step 2 – determine the entities returned from
each search
For the MusicBrainz search form, this is easy. The entities are: artists, releases, tracks,
labels, and editors. It just so happens that in MusicBrainz, a search will only return
one entity type. However, that needn't be the case. Note that internally, each result
from a search corresponds to a distinct document in the Solr index and so each entity
will have a corresponding document. This entity also probably corresponds to a
particular row in a database table, assuming that's where it's coming from.

The book examples and digital companion data only make use
of MusicBrainz's artists, releases, and tracks.

Step 3 – denormalize related data
For each entity type, find all of the data in the schema that will be needed across all
searches of it. By "all searches of it", we mean that there might actually be multiple
search forms, as identified in Step 1 – determine which searches are going to be powered by
Solr. Such data includes any data queried for (that is, criteria to determine whether
a document matches or not) and any data that is displayed in the search results. The
end result of denormalization is to have each document sufficiently self-contained,
even if the data is duplicated across the index(es).

Solr 4 has a new feature called Joins, which allows a query to match
a document based on data in another document related by some field
in common. It can be used as an alternative to denormalization when
denormalization is impractical due to ballooning index size or for
some complex one-to-many query scenarios described soon. A Join
query is fairly slow, so always prefer denormalization when you can.
See Chapter 5, Searching, for more information on Joins.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[36]

Let's see an example. Consider a search for tracks matching Cherub Rock:

Denormalizing – one-to-one associated data
A MusicBrainz track's name and duration are definitely in the track table, but the
artist and album names are each in their own tables in the MusicBrainz schema. This
is a relatively simple case, because each track has no more than one artist or album.
Both the artist name and album name would get their own field in Solr's flat schema
for a track. They also happen to be elsewhere in our Solr schema, because artists and
albums were identified in Step 2 – determine the entities returned from each search. Since
the artist and album names are not unambiguous references, it is useful to also add
the IDs for these tables into the track schema to support linking in the user interface,
among other things.

Denormalizing – one-to-many associated data
One-to-many associations can be easy to handle in the simple case of a field requiring
multiple values. Unfortunately, databases usually make this harder than it should be
if it's just a simple list. However, Solr's fields directly support the notion of multiple
values. Remember that in the MusicBrainz schema, an artist of type group can have
some number of other artists as members. Although MusicBrainz's current search
capability doesn't leverage this, we'll capture it anyway because it is useful for more
interesting searches. The Solr schema to store this would simply have a member
name field that is multivalued. The member_id field alone would be insufficient,
because denormalization requires that the member's name be copied into the artist.
This example is a good segue to how things can get a little more complicated.

If we only record the member name, it is problematic to do things such as have links
in the UI from a band member to that member's detail page. This is because we don't
have that member's artist ID, but only their name. So we'll add a multivalued field
for the member's ID. Multivalued fields maintain ordering so that the two fields
would have corresponding values at a given index. If one of the values is optional,
remember to supply an empty string placeholder to keep the field values aligned.
The client code would have to know about this placeholder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The following diagram represents an example of one-to-many associations:

What you should not do is try to shove different types of data into
the same field by putting both the artist IDs and names into one
field. It could introduce text analysis problems, as the field would
have to satisfy both types, and it would require the client to parse
out the pieces. The exception to this is when you are merely storing
it for display, not searching for it. Then, you can store whatever you
want in a field.

A problem with denormalizing one-to-many data comes into play when multiple
fields from the other entity are brought in, and you need to search on more than one
of those fields at once. For a hypothetical example, imagine a search for releases that
contain a track with a particular word in the name and with a particular minimum
duration. Both the track name and duration fields on a release would be multivalued,
and a search would have criteria for both. Unfortunately, Solr would erroneously
return releases in which one track name satisfies the criteria and a separate track
duration satisfies the criteria but not necessarily for the same track. One workaround
is to search for the track index instead of the release one, and to use Solr's new feature,
result grouping, also known as field collapsing, to group by release. This solution, of
course, depends on an additional index holding entity relationships going the other
way. If you are faced with this challenge but can't create this additional index because
the index would be prohibitively large for your data, then you will have to use Solr 4's
Join feature. See Chapter 5, Searching, for more information on Joins.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[38]

Step 4 – omit the inclusion of fields only used
in search results (optional)
It's not likely that you will actually do this, but it's important to understand the
concept. If there is any data shown on the search results that is not queryable, not
sorted upon, not faceted on, nor are you using the highlighter feature for, and for
that matter you are not using any Solr feature that uses the field except to simply
return it in search results, then it is not necessary to include it in the schema for this
entity. Let's say, for the sake of argument, that when doing a query for tracks, the
only information queryable, sortable, and so on is a track's name. You can opt not
to inline the artist name, for example, into the track entity. When your application
queries Solr for tracks and needs to render search results with the artist's name, the
onus would be on your application to get this data from somewhere—it won't be
in the search results from Solr. The application might look these up in a database,
in some caching middleware, or perhaps even query our Solr artist index.

This clearly makes generating a search results screen more difficult, because you
now have to get the data from more than one place. Moreover, to do it efficiently,
you would need to take care to query the needed data in bulk, instead of each row
individually. Additionally, it would be wise to consider a caching strategy to reduce
the queries to the other data source. It will, in all likelihood, slow down the total
render time too. However, the benefit is that you needn't get the data and store it
into the index at indexing time. It might be a lot of data, which would grow your
index, or it might be data that changes often, necessitating frequent index updates.

If you are using distributed search, as discussed in Chapter 9, Integrating Solr, there
is some performance gain in not sending too much data around in the requests.
Let's say that you have song lyrics for each track, it is distributed on 20 machines,
and you get 100 results. This could result in 2,000 records being sent around the
network. Just sending the IDs around would be much more network-efficient;
however, this leaves you with the job of collecting the data elsewhere before
display. The only way to know if this works for you is to test both scenarios.
In general, if the data in question is not large, then keep it in Solr.

At the other end of the extreme is storing all data in Solr. Why not? At least in the case
of MusicBrainz, it wouldn't be appropriate. Take the Top Voters tally, for example.
The account names listed are actually editors in MusicBrainz terminology. This piece
of the screen tallies an edit, grouped by the editor who performed the edit. It's the edit
that is the entity in this case. The following screenshot shows the Top Voters (also
known as editors), which are tallied by the number of edits:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

This data simply doesn't belong in an index, because there's no use case for searching
edits, only lookup when we want to see the edits on some other entity like an artist.
If you insisted on having the voter's tally (as previously seen) powered by Solr, then
you'd have to put all this data (of which there is a lot!) into an index, just because you
wanted a simple statistical list of top voters. It's just not worth it!

One objective guide to help you decide on whether to put an entity in Solr or not is to
ask yourself whether users will ever be doing a text search on that entity—a feature
where index technology stands out from databases. If not, then you probably don't
want the entity in your Solr index.

The schema.xml file
Let's finally explore a Solr schema.

Before we continue, find a schema.xml file to follow along. This file belongs in the
conf directory for a Solr Core instance configuration. For simple single-core Solr
setups, this is the same as a Solr home directory. We suggest looking at configsets/
mbtype/conf/schema.xml in the example code distributed with the book, available
online. If you are working off of the Solr distribution, you'll find it in example/solr/
collection1/conf/schema.xml. The example schema.xml is loaded with useful
field types, documentation, and field definitions used for the sample data that comes
with Solr.

We prefer to initialize a Solr configuration by copying the example
Solr home directory and liberally modifying it as needed, ripping out
or commenting what we don't need (which is often a lot). This is half
way between starting with nothing, or starting with the example and
making essential modifications. If you do start with Solr's example
configuration, be sure to revisit your configuration at some point to
clean out what you aren't using. In addition, it's tempting to keep the
existing documentation comments, but you can always refer back to
what comes with Solr as needed and keep your config file clean.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[40]

At the start of the file is the schema opening element:

<schema name="musicbrainz" version="1.5">

We've set the name of this schema to musicbrainz, the name of our application.
If we used different schema files, then we should name them differently so as to
differentiate them.

Field definitions
The definitions of the fields in the schema are located within the <fields/> element.
There are many attributes that can be added to configure them, but here are the most
important ones:

• name (required): This uniquely identifies the field. There aren't any restrictions
on the characters used nor any words to avoid, except for score.

• type (required): This is a reference to one of the field types defined in
the schema.

• indexed: This indicates that this field can be searched, sorted, and used in a
variety of other Solr features. It defaults to true since the only thing you can
do with a nonindexed field is return it in search results, assuming it's marked
as stored.

• stored: This indicates that the field's value will be stored in Solr so that it can
be returned in search results verbatim or highlighted for matching query text.
By default, fields are stored. Sometimes the same data is copied into multiple
fields that are indexed differently (which you'll begin to understand soon),
and so the redundant fields should not be marked as stored. As of Solr 4.1, the
stored data is internally compressed to save space, and perhaps surprisingly,
to improve search performance too.

• multiValued: Enable this if a field can contain more than one value. Order is
maintained from that supplied at index-time. It's sloppy to have this enabled
if the field never has multiple values as some aspects of Solr like faceting are
forced to choose less efficient algorithms unnecessarily.

• default: This is the default value, if an input document doesn't specify it. A
common use of this is to timestamp documents: <field name="indexedAt"
type="tdate" default="NOW/SECOND" />. For information on specifying
dates, see the Date math section in Chapter 5, Searching.

• required: Set this to true if you want Solr to fail to index a document that
does not have a value for this field.

There are other attributes too that are more advanced; we'll get to them in a bit rather
than distract you with them now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Dynamic field definitions
The very notion of a dynamic field definition highlights the flexibility of Lucene's
index, as compared to typical relational database technology. Not only can you
explicitly name fields in the schema, but you can also have some defined on the
fly based on the name supplied for indexing. Solr's example schema contains
some examples of this, as follows:

<dynamicField name="*_dt" type="date" indexed="true"
stored="true"/>

If at index time a document contains a field that isn't matched by an explicit field
definition, but does have a name matching this pattern (that is, ends with _dt, such
as updated_dt), then it gets processed according to that definition. A dynamic field
is declared just like a regular field in the same section. However, the element is
named dynamicField, and it has a name attribute that must either start or end
with an asterisk (the wildcard). It can also be just *, which is the final fallback.

The * fallback is most useful if you decide that all fields attempted to
be stored in the index should succeed, even if you didn't know about
the field when you designed the schema. It's also useful if you decide
that instead of it being an error, such unknown fields should simply
be ignored (that is, not indexed and not stored).

In the end, a field is a field, whether explicitly defined or defined dynamically
according to a name pattern. Dynamic field definitions are just a convenience that
makes defining schemas easier. There are no performance implications of using
dynamic field definitions.

Advanced field options for indexed fields
There are additional attributes that can be added to fields marked as indexed to
further configure them. These options are all set to false by default:

• sortMissingFirst, sortMissingLast: Sorting on a field with one of these
set to true indicates on which side of the search results to put documents
that have no data for the specified field, regardless of the sort direction.
The default behavior for such documents is to appear first for ascending
and last for descending.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[42]

• omitNorms: Basically, if you don't want the length of a field to affect
its scoring (see Chapter 6, Search Relevancy) or it isn't used in the score in
any way (such as for faceting), and you aren't doing index-time document
boosting (see Chapter 4, Indexing Data), then enable this. Aside from its effect
on scores, it saves a little memory too. It defaults to true for primitive field
types, such as int, float, boolean, string, and so on.

• omitPositions: This omits the term position information from the index to
save a little space. Phrase queries won't work anymore.

• omitTermFreqAndPositions: This omits term frequency and term positions
from the index to save a little space. Phrase queries won't work and scores
will be less effective.

• termVectors: This will tell Lucene to store information that is used in a
few cases to improve search performance. If a field is to be used by the
MoreLikeThis feature, or for highlighting of a large text field, then try
enabling this. It can substantially increase the index size and indexing
time, so do a before-and-after measurement. There are two more options,
which add more data to term vectors: termPositions and termOffsets.
The FastVectorHighlighter class requires these.

• positionIncrementGap: For a multiValued field, this is the number of
(virtual) nonexistent words between each value to prevent inadvertent
phrase queries matching across field values. For example, if A and B are
given as two values for a field, positionIncrementGap of more than 1
prevents the phrase query "A B" from matching.

There is a helpful table on Solr's wiki at http://wiki.apache.
org/solr/FieldOptionsByUseCase, which shows most of the
options with some use cases that need them.

Solr 4.2 introduced a new advanced schema option called DocValues with the
docValues option in the field type.

The docValues is a Boolean that, when enabled, causes Lucene to store the values for
this field in an additional way that can be initialized faster than un-inverting indexed
data when the field is used for match-only semantics such as term, wildcard, range
queries, and so on, and also for faceting, sorting, and other use cases.

DocValues help optimize Solr for meeting real-time search requirements. Unless you
have such requirements or you know what you're doing, don't enable DocValues
as it uses more disk and the features that use it tend to work slower than without
it after it's initialized (as of Solr 4.2). For more information on DocValues, read
https://cwiki.apache.org/confluence/display/solr/DocValues.

www.it-ebooks.info

http://wiki.apache.org/solr/FieldOptionsByUseCase
http://wiki.apache.org/solr/FieldOptionsByUseCase
https://cwiki.apache.org/confluence/display/solr/DocValues
http://www.it-ebooks.info/

Chapter 2

[43]

The unique key
After the <fields> declarations in the schema, we can have the <uniqueKey>
declaration specifying which field uniquely identifies each document, if any.
This is what we have in our MusicBrainz schema:

<uniqueKey>id</uniqueKey>

Although it is technically not always required, you should define a unique ID field.
In our MusicBrainz schema, the ID is a string that includes an entity type prefix
type so that it's unique across the whole corpus, spanning multiple Solr Cores,
for example, Artist:11650.

If your source data does not have an ID field that you can propagate, then you may
want to consider using a Universally Unique Identifier (UUID), according to RFC-
4122. Simply have a field with a field type for the class solr.UUIDField and either
provide a UUID to Solr or use UUIDUpdateProcessorFactory, an update processor
that adds a newly generated UUID value to any document being added that does
not already have a value in the specified field. Solr's UUID support is based on
java.util.UUID.

The default search field and query operator
There are a couple of schema configuration elements pertaining to search defaults
when interpreting a query string:

<!-- <defaultSearchField>text</defaultSearchField>
<solrQueryParser defaultOperator="AND"/> -->

The defaultSearchField parameter declares the particular field that will be
searched for queries that don't explicitly reference one. The solrQueryParser
setting has a defaultOperator attribute, which lets you specify the default search
operator (that is AND or OR and it will be OR if unspecified) here in the schema.
These are essentially defaults for searches that are processed by Solr request
handlers defined in solrconfig.xml.

We strongly recommend that you leave these commented out in the
schema, which is how it comes in the example. It's tempting to set
them but it further disperses the configuration relevant to interpreting
a query, which already is the URL plus the request handler definition.
Its effects are global here and may have unintended consequences
on queries you don't want or intend, such as a delete query. Instead,
configure the query parser's defaults in a request handler as desired
in solrconfig.xml—documented in Chapter 5, Searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[44]

Copying fields
Closely related to the field definitions are copyField directives. A copyField
directive copies one or more input field values to another during indexing.
A copyField directive looks like this:

<copyField source="r_name" dest="r_name_sort" maxChars="20" />

This directive is useful when a value needs to be copied to additional field(s) to be
indexed differently. For example, sorting and faceting require a single indexed value.
Another is a common technique in search systems in which many fields are copied to
a common field that is indexed without norms and not stored. This permits searches,
which would otherwise search many fields, to search one instead, thereby drastically
improving performance at the expense of reducing score quality. This technique
is usually complemented by searching some additional fields with higher boosts.
The dismax/edismax query parser, which is described in Chapter 5, Searching,
makes this easy.

At index-time, each supplied field of input data has its name compared against the
source attribute of all copyField directives. The source attribute might include an
* wildcard, so it's possible that the input might match more than one copyField.
If a wildcard is used in the destination, then it must refer to a dynamic field, and
furthermore the source must include a wildcard too—otherwise a wildcard in the
destination is an error. A match against a copyField directive has the effect of the
input value being duplicated, but using the field name of the dest attribute of the
directive. If maxChars is optionally specified, the copy is truncated to these many
characters. The duplicate does not replace any existing values that might be going
to the field, so be sure to mark the destination field as multiValued, if needed.

<copyField> is a fundamental and very powerful concept of Solr,
which is used more often than not to ensure that data is indexed
into several fields based on the type of processing required on them
at search time, without needing to include the data in the update
command multiple times.

Our MusicBrainz field definitions
What follows is a first cut of our MusicBrainz schema definition. There are additional
fields that will be added in other chapters to explore other search features. This is
a combined schema defining all core entity types: artists, releases (also known as
albums), and tracks. This approach was described earlier in the chapter. Notice that
we chose to prefix field names by a character representing the entity type it is on
(a_, r_, t_), to avoid overloading the use of any field across entity types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

We also used this abbreviation when we denormalized relationships such as in
r_a_name (a release's artist's name).

<!-- COMMON TO ALL TYPES: -->
<field name="id" type="string" required="true" />
 <!-- Artist:11650 -->
<field name="type" type="string" required="true" />
 <!-- Artist | Release | Label -->
<field name="indexedAt" type="tdate" default="NOW/SECOND" />

<!-- ARTIST: -->
<field name="a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="a_name_sort" type="string" stored="false" />
 <!-- Smashing Pumpkins, The -->
<field name="a_alias" type="title" stored="false" multiValued="true"
/>
<field name="a_type" type="string" />
 <!-- group | person -->
<field name="a_begin_date" type="tdate" />
<field name="a_end_date" type="tdate" />
<field name="a_member_name" type="title" multiValued="true" />
 <!-- Billy Corgan -->
<field name="a_member_id" type="long" multiValued="true" />
 <!-- 102693 -->

<!-- RELEASE -->
<field name="r_name" type="title" />
 <!-- Siamese Dream -->
<field name="r_name_sort" type="string" stored="false" />
 <!-- Siamese Dream -->
<field name="r_a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="r_a_id" type="long" />
 <!-- 11650 -->
<field name="r_attributes" type="int" indexed="false"
multiValued="true" />
 <!-- ex: 0, 1, 100 -->
<field name="r_type" type="rType" stored="false" multiValued="true" />
 <!-- Album | Single | EP |... etc. -->
<field name="r_official" type="rOfficial" stored="false"multiValued="
true" />
 <!-- Official | Bootleg | Promotional -->
<field name="r_lang" type="string" indexed="false" />
 <!-- eng / latn -->

www.it-ebooks.info

http://www.it-ebooks.info/

Schema Design

[46]

<field name="r_tracks" type="int" indexed="false" />
<field name="r_event_country" type="string" multiValued="true" />
 <!-- us -->
<field name="r_event_date" type="tdate" multiValued="true" />

 <!-- TRACK -->
<field name="t_name" type="title" />
 <!-- Cherub Rock -->
<field name="t_num" type="int" indexed="false" />
 <!-- 1 -->
<field name="t_duration" type="int"/>
 <!-- 298133 -->
<field name="t_a_id" type="long" />
 <!-- 11650 -->
<field name="t_a_name" type="title" />
 <!-- The Smashing Pumpkins -->
<field name="t_r_name" type="title" />
 <!-- Siamese Dream -->
<field name="t_r_tracks" type="int" indexed="false" />
 <!-- 13 -->

Put some sample data in your schema comments
You'll find the sample data helpful and anyone else working
on your project will thank you for it! In the preceding examples,
we sometimes use actual values, and on other occasions, we list
several possible values separated by |, if there is a predefined list.

Also, note that the only fields that we can mark as required are those common to all,
which are ID and type, because we're doing a combined schema approach.

In our schema, we're choosing to index most of the fields, even though MusicBrainz's
search doesn't require more than the name of each entity type. We're doing this so that
we can make the schema more interesting to demonstrate more of Solr's capabilities. As
it turns out, some of the other information in MusicBrainz's query results actually are
queryable if one uses the advanced search form, checks use advanced query syntax,
and your query uses those fields (for example, artist:"Smashing Pumpkins").

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

At the time of this writing, MusicBrainz used Lucene for its text search
and so it uses Lucene's query syntax. http://wiki.musicbrainz.
org/TextSearchSyntax. You'll learn more about the syntax in
Chapter 5, Searching.

Defining field types
The latter half of the schema is the definition of field types. This section is enclosed
in the <types/> element and will consume much of the file's content. The field types
declare the types of fields, such as booleans, numbers, dates, and various text flavors.
They are referenced by the field definitions under the <fields/> element. Here is the
field type for a Boolean:

<fieldType name="boolean" class="solr.BoolField"
sortMissingLast="true" />

A field type has a unique name and is implemented by a Java class specified by the
class attribute.

A fully qualified classname in Java looks like org.apache.solr.
schema.BoolField. The last piece is the simple name of the class,
and the part preceding it is called the package name. In order to
make configuration files in Solr more concise, the package name is
abbreviated to just solr for most of Solr's packages.

Attributes other than the name and class represent configuration options; most
are applicable to all types such as those listed earlier and some are specific to the
implementing class. They can usually be overridden at the field declaration too.
In addition to these attributes, there is also the text analysis configuration that is
only applicable to text fields. This will be covered in the next chapter.

Starting from Solr 4.8, both <fields> and <types> tags
have been deprecated and they might be removed completely
in the future versions. These tags can be safely removed from
the schema file, which allows intermixing of <fieldType>,
<field>, and <copyField> definitions, if desired.

www.it-ebooks.info

http://wiki.musicbrainz.org/TextSearchSyntax
http://wiki.musicbrainz.org/TextSearchSyntax
http://www.it-ebooks.info/

Schema Design

[48]

Built-in field type classes
There are a number of built-in field types and nearly all are present and documented
to some extent in Solr's example schema. We're not going to enumerate all of them
here, but instead we will highlight some of ones that are worthy of more explanation.

Numbers and dates
There are no less than five different field types to use to store an integer, perhaps
six if you want to count string! It's about the same for float, double, long, and
date. And to think that you probably initially thought this technology only did
text! We'll explain when to use which, using Integer as an example. Most have an
analogous name for the other numeric and date types. The field types with names
starting with "Trie" should serve 95 percent of your needs. To clean up your schema,
consider deleting the others. The following is the list of various integer field types
that you can use:

• TrieIntField (with precisionStep = 0) is, commonly named int.
This is a good default field suitable for most uses, such as an ID field.

• TrieIntField (with precisionStep> 0), commonly named tint. If you
expect to do numeric range queries (which include faceted ranges) over
many values, then this field type has unbeatable performance at query time
at the expense of a little more disk and indexing time cost. The default value
configured in Solr's example schema is 8 for numeric and 6 for date; we
recommend keeping these defaults. Smaller numbers (but > 0) will increase
indexing space and time for better query range performance; although the
performance gains rapidly diminish with each step.

• IntField, commonly named pint. A legacy implementation that encodes
integer values as simple strings. The values are evaluated in unicode string
order instead of the numeric order. This field type will be removed in future
versions; use TrieIntField instead.

• SortableIntField is commonly named sint. DateField doesn't follow
this naming convention but it also qualifies here. Both SortableIntField
and DateField will be removed in the future versions, use TrieIntField
and TrieDateField instead.

All of these numeric types sort in their natural numeric order instead
of lexicographically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

Some other field types
Solr's geospatial support spans multiple parts of Solr from field types to query
parsers, to function queries. Instead of having you read relevant parts of three
chapters, we've consolidated it into the last part of Chapter 5, Searching.

CurrencyField (commonly named currency) allows us to let Solr calculate
the query-time currency conversions and exchange rates and we can also plug
in custom implementations of exchange rate providers. The following is the
default configuration for currency fieldType with defaultCurrency="USD"
and currencyConfig="currency.xml" in which we can list the currencies
and their exchange rates.

<fieldType name="currency" class="solr.CurrencyField"
precisionStep="8" defaultCurrency="USD"
currencyConfig="currency.xml" />

We will discuss this field more in detail in Chapter 4, Indexing Data, and the query-time
features supported by currency fields in Chapter 5, Searching. Alternatively, you can
read more on Solr wiki at http://wiki.apache.org/solr/CurrencyField.

ExternalFileField (advanced) reads its float values from a plain text file instead
of the index. It was designed for sorting or influencing scores of documents based
on data that might change quickly (for example, a rating or click-through) without
having to re-index a document. Remember that Lucene fundamentally cannot
update just a single field; entire documents need to be re-indexed. This field type is
a workaround for this limitation for the aforementioned use cases. This is discussed
further in Chapter 6, Search Relevancy.

EnumField allows us to define a field with a closed set of values and the sort order
for these values is predetermined but not lexicographic. Along with the name and
the class parameters, which are common to all field types, we need provide two
additional parameters:

• enumsConfig: This is the configuration (in XML format) filename. The default
location of the file is conf directory for the collection. The file should contain
the <enum/> list of field values. You can always add new values to the end of
the list, but you can't change the order or existing values in the enum without
re-indexing.

• enumName: This is the specific enumeration in the enumsConfig file to use for
the field type.

You can read more about the EnumField at https://cwiki.apache.org/
confluence/display/solr/Working+with+Enum+Fields.

www.it-ebooks.info

http://wiki.apache.org/solr/CurrencyField
https://cwiki.apache.org/confluence/display/solr/Working+with+Enum+Fields
https://cwiki.apache.org/confluence/display/solr/Working+with+Enum+Fields
http://www.it-ebooks.info/

Schema Design

[50]

Starting from Solr 4.3, we can configure the
ManagedIndexSchemaFactory in the solrconfig.xml file, which
enables schema modifications through a REST interface, also known
as the Schema API. You can read more on the wiki page at https://
cwiki.apache.org/confluence/display/solr/Schema+API.

Summary
At this point, you should have a schema that you believe will suit your needs—for
now anyway. However, do expect to revisit the schema design. It is quite normal
to start with something workable, and then subsequently make modifications to
address issues, and implement features that require changes. The only irritant with
changing the schema is that you probably need to re-index all of the data. The only
exception to this would be an analysis step applied only at query time.

In the next chapter, Text Analysis, you'll learn about various text-processing steps such
as tokenization, case normalization, stemming, synonyms, and other miscellaneous
text processing, which are important parts of search engines since the details of the
text have an effect on getting good search results.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Schema+API
https://cwiki.apache.org/confluence/display/solr/Schema+API
http://www.it-ebooks.info/

[51]

Text Analysis
Text analysis is a topic that covers text-processing steps such as tokenization, case
normalization, stemming, query expansion using synonyms, and other miscellaneous
text processing. The analysis is applied to a text field at index time and as part of query
string processing at search time. It's an important part of search engines since most
of the time business-relevant information is in an unstructured form, primarily text.
Also, the details have an effect on getting good search results, especially to recall—a
dimension of search result quality pertaining to whether all relevant documents are
in the search results.

This chapter is almost completely Lucene-centric and so also
applies to any other software built on top of Lucene. For the most
part, Solr merely offers XML configuration for the code in Lucene
that provides this capability. For information beyond what is
covered here, including writing your own analysis components,
read Lucene in Action, Second Edition, Manning Publications.

Text analysis converts text for a particular field into a sequence of terms. A term is the
fundamental unit that Lucene actually indexes and searches. The analysis is used on
the original incoming value at index time; the resulting terms are ultimately recorded
onto disk in Lucene's index structure where it can be searched. The analysis is also
performed on words and phrases parsed from the query string; the resulting terms are
then searched in Lucene's index. An exception to this is the prefix, wildcard and fuzzy
queries, all of which skip text analysis. You'll read about them in Chapter 5, Searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[52]

In a hurry?
As a starting point, you should use the existing field types in Solr's
default schema, which includes a variety of text field types for different
situations. They will suffice for now and you can return to this chapter
later. There will surely come a time when you are trying to figure out
why a simple query isn't matching a document that you think it should,
and it will quite often come down to your text analysis configuration.

We try to cover Solr in a comprehensive fashion and this chapter mainly focuses on
the text analysis for English language.

Non-English text analysis
Text analysis for non-English languages is not straightforward as the
rules vary by language. You can refer to the wiki page https://cwiki.
apache.org/confluence/display/solr/Language+Analysis for
more information. There are 34 language factories available at the time of
writing. You'll notice that there is some variation in how to configure Solr
for each of them, and that some languages have multiple options. Most
language-specific elements are the stemmer and the stop word list, and for
Eastern languages, the tokenizer too. There is also a set of International
Components for Unicode (ICU) related analysis components, some
of which you can use for mapping some non-Latin characters to
Latin equivalents. We will also discuss the approaches for supporting
multilingual search later in this chapter.

Configuring field types
Solr has various field types as we've previously explained, and the most important
one is TextField. This is the field type that has an analyzer configuration. Let's look
at the configuration for the text_en_splitting field type definition that comes with
Solr's example schema. It uses a diverse set of analysis components. We added in a
character filter, albeit commented, to show what it looks like. As you read about text
analysis in this chapter, you may want to flip back to see this configuration.

<fieldType name="text_en_splitting" class="solr.TextField"
 positionIncrementGap="100"
 autoGeneratePhraseQueries="true">
 <analyzer type="index">
<!--<charFilter class="solr.MappingCharFilterFactory"
 mapping="mapping-ISOLatin1Accent.txt"/>-->
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Language+Analysis
https://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://www.it-ebooks.info/

Chapter 3

[53]

 <filter class="solr.StopFilterFactory"
 ignoreCase="true"
 words="stopwords_en.txt"
 enablePositionIncrements="true"
 />
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="1" catenateNumbers="1"
 catenateAll="0" splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <!--<charFilter class="solr.MappingCharFilterFactory"
 mapping="mapping-ISOLatin1Accent.txt"/>-->
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory"
 synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
 <filter class="solr.StopFilterFactory"
 ignoreCase="true"
 words="stopwords_en.txt"
 enablePositionIncrements="true"
 />
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="0" catenateNumbers="0" catenateAll="0"
 splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.PorterStemFilterFactory"/>
 </analyzer>
</fieldType>

The configuration example defines two analyzers, each of which specify an ordered
sequence of processing steps that convert text into a sequence of terms. The type
attribute, which can hold a value of index or query, differentiates whether the
analyzer is applied at index time or query time, respectively. If the same analysis is
to be performed at both index and query times, you can specify just one analyzer
without a type. When both are specified as in the previous example, they usually
only differ a little.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[54]

Analyzers, tokenizers, filters, oh my!
These are the three main classes in the org.apache.lucene.
analysis package from which all analysis processes are derived,
which are about to be defined. They are all conceptually the same—
they take in text and spit out text, sometimes filtering, sometimes
adding new terms, and sometimes modifying terms. The difference is
in the specific flavor of input and output for them—either character
based or token based. Also, term, token, and word are often used
interchangeably.

An analyzer can optionally begin with one or more character filters, which operate
at a streaming character level to perform manipulations on original input text. These
are most commonly used to normalize characters, such as the removal of accents.
Following any optional character filters is the tokenizer—the only mandatory piece
of the chain. This analyzer takes a stream of characters and tokenizes it into a stream
of tokens, perhaps with a simple algorithm, such as splitting on whitespace. The
remaining analysis steps, if any, are all token filters (often abbreviated to just filters),
which perform a great variety of manipulations on tokens. The final tokens at the
end are referred to as terms at this point; they are what Lucene actually indexes and
searches. The order of these components is very important and, in most cases, you
may want it to be the same at index time and query time. Note that some filters such
as WordDelimeterFilterFactory actually perform a tokenization action, but they
do it on a token, whereas a bonafide tokenizer works from a character stream.

All the class names end with Factory. This is a convention followed by
all the names of Lucene's Java classes that accept the configuration and
instantiate Lucene's analysis components that have the same simple name,
minus the Factory suffix. References to these analysis components in this
book and elsewhere sometimes include the Factory suffix and sometimes
not; no distinction is intended.

Finally, we want to point out the autoGeneratePhraseQueries Boolean attribute—
an option only applicable to text fields. If search-time query text analysis yields more
than one token, such as Wi-Fi tokenizing to Wi and Fi, then by default these tokens
are simply different search terms with no relation to their position. If this attribute is
enabled, then the tokens become a phrase query, such as WiFi and consequently these
tokens must be adjacent in the index. This automatic phrase query generation would
always happen prior to Solr 3.1, but it is now configurable and defaults to false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

We recommend disabling autoGeneratePhraseQueries
There is conflicting opinion among experts on a suitable setting;
setting it to false increases recall but decreases precision—two
dimensions of search result quality. We favor that choice, since
you'll learn in Chapter 6, Search Relevancy, how to do automatic
phrase boosting to get the most relevant documents (those that
match the phrase Wi Fi) at the top of the results.

Experimenting with text analysis
Before we dive into the details of particular analysis components, it's important
to become comfortable with Solr's analysis page, which is an experimentation
and a troubleshooting tool that is indispensable. You'll use this to try out different
configurations to verify whether you get the desired effect, and you'll use this when
troubleshooting to find out why certain queries aren't matching certain text that you
think they should. In Solr's admin interface, you'll see a link named Analysis, which
takes you to this screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[56]

As shown in the preceding screenshot, the option on the form Analyse Fieldname /
FieldType is required. You pick whether you want to choose a field type directly by
its name, or if you want to indirectly choose one based on the name of a field. In this
example, we're choosing the text_en_splitting field type that has some interesting
text analysis. This tool is mainly for text-oriented field types, not Boolean, date, and
numeric oriented types. You may get strange results if you try those.

At this point, you can analyze index or query text or both at the same time. If you
are troubleshooting why a particular query isn't matching a particular document's
field value, then you'd put the field value into the Index box and the query text into
the Query box. Technically, that might not be the same thing as the original query
string, because the query string may use various operators to target specified fields,
do fuzzy queries, and so on. You will want to check off Verbose Output to take full
advantage of this tool.

The output after clicking on the Analyse Values button is a bit verbose with Verbose
Output checked and so we've disabled it for this upcoming screenshot. We encourage
you to try it yourself.

Each row shown here represents one step in the chain of processing as configured
in the analyzer, for example, the third analysis component is WordDelimeterFilter
and the results of its processing are shown in the third row. The columns separate
the tokens, and if more than one token shares the same column, then they share the
same term position. The distinction of the term position pertains to how phrase
queries work. One interesting thing to notice about the analysis results is that Quoting
ultimately became quot after stemming and lowercasing. Also, the word and was
omitted by the StopFilter, which is the second row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

Character filters
Character filters, declared with the <charFilter> element, process a stream of text
prior to tokenization. There are only a few. This feature is not commonly used except
for the first one described here, which is configured to strip accents:

• MappingCharFilterFactory: This maps a character (or string) to another—
potentially none. In other words, it's a find-replace capability. There is a
mapping attribute in which you specify a configuration file. Solr's example
configuration includes two such configuration files with useful mappings:

 ° mapping-FoldToASCII.txt: This is a comprehensive mapping
of non-ASCII characters to ASCII equivalents. For further
details on the characters mapped, read the comments at the top
of the file. This char filter has a token filter equivalent named
ASCIIFoldingFilterFactory that should run faster and is
recommended instead.

 ° mapping-ISOLatin1Accent.txt: This is a smaller subset covering
just the ISO Latin1 accent characters (like ñ to n). Given that
FoldToASCII is more comprehensive; it's likely to be a better
default than this one.

This analysis component and quite a few others have an
attribute in which you can specify a configuration file. Usually,
you can specify more than one file, separated by a comma but
some components don't support that. They are always in the
conf directory and UTF-8 encoded.

• HTMLStripCharFilterFactory: This is used for HTML or XML, and it need
not be well formed. Essentially, it removes all markup, leaving just the text
content of elements. The text of script and style elements are removed. Entity
references (for example, &) are resolved.

Instead of stripping markup at the analysis stage, which is very
late, consider if this should be done at an earlier point with
UpdateRequestProcessor, or even before Solr gets it. If you
need to retain the markup in Solr's stored value, then you will
indeed need to perform this step here.

• PatternReplaceCharFilterFactory: This performs a search based on
a regular expression given as the pattern attribute, replacing it with the
replacement attribute. Only use this char filter if the replacement should
affect tokenization, such as by introducing a space.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[58]

The regular expression specification supported by Solr is the
one that Java uses: http://docs.oracle.com/javase/7/
docs/api/java/util/regex/Pattern.html.

Tokenization
A tokenizer is an analysis component declared with the <tokenizer> element that
takes text in the form of a character stream and splits it into so-called tokens, most
of the time skipping insignificant bits like whitespace and joining punctuation.
An analyzer has exactly one tokenizer. Your tokenizer choices are as follows:

• KeywordTokenizerFactory: This tokenizer doesn't actually do
any tokenization! The entire character stream becomes a single token.
The string field type has a similar effect but doesn't allow configuration
of text analysis like lower-casing, for example. Any field used for sorting
or most uses of faceting will require an indexed field with no more than
one term per original value.

• WhitespaceTokenizerFactory: Text is tokenized by whitespace: spaces,
tabs, carriage returns, line feeds.

• StandardTokenizerFactory: This is a general-purpose tokenizer for most
Western languages. It tokenizes on whitespace and other points specified
by the Unicode standard's annex on word boundaries. Whitespace and
punctuation characters at these boundaries get removed. Hyphens are
considered a word boundary, making this tokenizer less desirable for use
with WordDelimiterFilter.

• UAX29URLEmailTokenizer: This behaves like StandardTokenizer with
the additional property of recognizing e-mail addresses and URLs as
single tokens.

• ClassicTokenizerFactory: (This was formerly the StandardTokenizer
before Solr 3.) This is a general-purpose tokenizer for English. In English
text, it does do a few things better than StandardTokenizer. Acronyms
using periods are recognized, leaving the final period in place, which would
otherwise be removed for example, I.B.M.; hyphens don't split words when
the token contains a number; and e-mail addresses and Internet hostnames
survive as one token.
Additionally, there is a ClassicFilter token filter that is usually
configured to follow this tokenizer. It will strip the periods out of
acronyms and remove any trailing apostrophes (English possessive).
It will only work with ClassicTokenizer.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://www.it-ebooks.info/

Chapter 3

[59]

• LetterTokenizerFactory: This tokenizer considers each contiguous
sequence of letters (as defined by Unicode) as a token and disregards
other characters.

• LowerCaseTokenizerFactory: This tokenizer is functionally equivalent
to LetterTokenizer followed by LowerCaseFilter, but faster.

• PatternTokenizerFactory: This regular expression-based tokenizer can
behave in one of the following two ways:

 ° To split the text on a separator specified by a pattern, you can use it
like this: <tokenizer class="solr.PatternTokenizerFactory"
pattern=";*" />. This example tokenizes a semi-colon separated list.

 ° To match only particular patterns and possibly use only a subset of
the pattern as the token, for example, <tokenizer class="solr.
PatternTokenizerFactory" pattern="\'([^\']+)\'" group="1"
/>. The group attribute specifies which matching group will be the
token. If you had input text like aaa 'bbb' 'ccc', this would result
in tokens bbb and ccc.

• PathHierarchyTokenizerFactory: This is a configurable tokenizer that
tokenizes strings that follow a simple character delimiter pattern, such as file
paths or domain names. It's useful in implementing hierarchical faceting, as
discussed in Chapter 7, Faceting, or simply filtering documents by some root
prefix of the hierarchy. As an example, the input string /usr/local/apache
would be tokenized to these three tokens: /usr, /usr/local, and /usr/
local/apache. This tokenizer has four configuration options:

 ° delimiter: This is a character delimiter; the default is /
 ° replace: This is a replacement character for delimiter (optional)
 ° reverse: This is a Boolean to indicate whether the root of the

hierarchy is on the right, such as with a hostname; the default is
false

 ° skip: This is a number of leading root tokens to skip; the default is 0

• WikipediaTokenizerFactory: This is an experimental tokenizer for
Mediawiki syntax, such as that used in Wikipedia.

There are some other tokenizers that exist for languages such as Chinese and
Russian, as well as ICUTokenizer, which detects the language (or script) used
and tokenizes accordingly. And furthermore, NGram-based tokenizers will be
discussed later.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[60]

See http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters for more information
on some of these tokenizers, or the API documentation.

Filtering
The token filters are declared in the <filter> element and consume one stream of
tokens, known as TokenStream, and generate another. Hence, they can be chained
one after another indefinitely. A token filter may be used to perform complex analysis
by processing multiple tokens in the stream at once but in most cases it processes each
token sequentially and decides to consider, replace, or ignore the token.

There may only be one official tokenizer in an analyzer; however, the token filter
named WordDelimiterFilter is in-effect a tokenizer too:

<filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" generateNumberParts="1"
catenateWords="1" catenateNumbers="1"
catenateAll="0" splitOnCaseChange="1"/>

(Not all options were just shown) The purpose of this analyzer is to both split and join
compound words with various means of defining compound words. This one is
typically used with WhitespaceTokenizer, not StandardTokenizer, which removes
punctuation-based intra-word delimiters, thereby defeating some of this processing.
The options for this analyzer have the values 1 to enable and 0 to disable.

This analysis component is the most configurable of all and it can be
a little confusing. Use Solr's Analysis screen, which described in the
Experimenting with text analysis section to validate your configuration.

The WordDelimiterFilter will first tokenize the input word, according to the
configured options. Note that the commas on the right-hand side of the following
examples denote separate terms, and options are all true by default:

• Split on intra-word delimiters: Wi-Fi to Wi, Fi
• Split on letter-number transitions: SD500 to SD, 500 (if splitOnNumerics)
• Omit any delimiters: /hello--there, dude to hello, there, dude
• Remove trailing 's: David's to David (if stemEnglishPossessive)
• Split on lower to upper case transitions: WiFi to Wi, Fi

(if splitOnCaseChange)

www.it-ebooks.info

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://www.it-ebooks.info/

Chapter 3

[61]

At this point, the resulting terms are all filtered out unless some of the following
options are enabled. You should always enable at least one of them:

• If generateWordParts or generateNumberParts is enabled, all-alphabetic
terms or all-number terms pass through (meaning, they are not filtered).
Either way, they are still considered for the concatenation options.

• To concatenate a consecutive series of alphabetic terms, enable
catenateWords (for example, wi-fi to wifi). If generateWordParts is
also enabled, this example would generate wi and fi but not otherwise.
This will work even if there is just one term in the series, thereby
generating a term that disabling generateWordParts would have omitted.
catenateNumbers works similarly but for numeric terms. The catenateAll
option will concatenate all of the terms together. The concatenation process
will take care to not emit duplicate terms.

• To preserve the original word, enable preserveOriginal.

Here is an example exercising all the aforementioned options: WiFi-802.11b to
Wi, Fi, WiFi, 802, 11, 80211, b, WiFi80211b, WiFi-802.11b.

Internally, this filter assigns a type to each character (such as letter or number)
before looking for word boundaries. The types are determined by Unicode character
categories. If you want to customize how the filter determines what the type of each
character is, you can provide one or more mapping files with the types option.
An example use case would be indexing Twitter tweets in which you want # and
@ treated as type ALPHA.

For more details on this esoteric feature, see SOLR-205. You can find
sample configuration, about how to customize WordDelimiterFilter's
tokenization rules, at https://issues.apache.org/jira/
browse/SOLR-2059.

Lastly, if there are a certain limited number of known input words that you want
this filter to pass through untouched, then they can be listed in a file referred to
with the protected option. Some other filters share this same feature.

Solr's out-of-the-box configuration for the text_en_splitting field type is
a reasonable way to use the WordDelimiterFilter—generation of word and
number parts at both index- and query-time, but concatenating only at index
time, since doing so at query time too would be redundant.

www.it-ebooks.info

https://issues.apache.org/jira/browse/SOLR-2059
https://issues.apache.org/jira/browse/SOLR-2059
http://www.it-ebooks.info/

Text Analysis

[62]

Stemming
Stemming is the process of reducing inflected or sometimes derived words to their
stem, base, or root form, for example, a stemming algorithm might reduce Riding
and Rides, to just Ride. Stemming is done to improve search result recall, but at the
expense of some precision. If you are processing general text, you will improve your
search results with stemming. However, if you have text that is mostly proper nouns,
such as an artist's name in MusicBrainz, then anything more than light stemming
will hurt the results. If you want to improve the precision of search results but
retain the recall benefits, you should consider indexing the data in two fields,
one stemmed and the other not stemmed. The DisMax query parser, described
in Chapter 5, Searching, and Chapter 6, Search Relevancy, can then be configured to
search the stemmed field and boost by the unstemmed one via its bq or pf options.

Many stemmers will generate stemmed tokens that are not correctly spelled words,
such as Bunnies becoming Bunni instead of Bunny or stemming Quote to Quot;
you'll see this in Solr's Analysis screen. This is harmless since stemming is applied
at both index and search times; however, it does mean that a field that is stemmed
like this cannot also be used for query spellcheck, wildcard searches, or search term
autocomplete—features described in later chapters. These features directly use the
indexed terms.

A stemming algorithm is very language specific compared to other text
analysis components; remember to visit https://cwiki.apache.
org/confluence/display/solr/Language+Analysis as
advised earlier for non-English text. It includes information on a Solr
token filter that performs decompounding, which is useful for certain
languages (not English).

Here are stemmers suitable for the English language:

• SnowballPorterFilterFactory: This one lets you choose among many
stemmers that were generated by the so-called Snowball program, hence the
name. It has a language attribute in which you make the implementation
choice from a list. Specifying English uses the Porter2 algorithm—regarded
as a slight improvement over the original. Specifying Lovins uses the Lovins
algorithm for English—regarded as an improvement on Porter but too slow
in its current form.

• PorterStemFilterFactory: This is the original English Porter algorithm.
It is said to be twice as fast as using Snowball English.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Language+Analysis
https://cwiki.apache.org/confluence/display/solr/Language+Analysis
http://www.it-ebooks.info/

Chapter 3

[63]

• KStemFilterFactory: This English stemmer is less aggressive than Porter's
algorithm. This means it will not stem in as many cases as Porter will in
an effort to reduce false-positives at the expense of missing stemming
opportunities. We recommend this as the default English stemmer.

• EnglishMinimalStemFilterFactory: This is a simple stemmer that only
stems on typical pluralization patterns. Unlike most other stemmers, the
stemmed tokens that are generated are correctly spelled words; they are the
singular form. A benefit of this is that a single Solr field with this stemmer
is usable for both general searches and for query term autocomplete
simultaneously, thereby saving index size and making indexing faster.

Correcting and augmenting stemming
These stemmers are algorithmic instead of being based on a vetted Thesaurus
for the target language. Languages have so many spelling idiosyncrasies that
algorithmic stemmers are imperfect—they sometimes stem incorrectly or don't
stem when they should.

If there are particularly troublesome words that get stemmed, you can prevent
it by preceding the stemmer with a KeywordMarkerFilter with the protected
attribute referring to a file of newline-separated tokens that should not be stemmed.
An ignoreCase Boolean option is available too. Some stemmers have, or used
to have, a protected attribute that worked similarly, but that old approach isn't
advised any more.

If you need to augment the stemming algorithm so that you can tell it how to stem
some specific words, precede the stemmer with StemmerOverrideFilter. It takes a
dictionary attribute referring to a UTF8-encoded file in the conf directory of token
pairs, one pair per line, and a tab is used to separate the input token from the output
token (the desired stemmed form of the input). An ignoreCase Boolean option is
available too. This filter will skip tokens already marked by KeywordMarkerFilter
and it will keyword-mark all the tokens it replaces itself, so that the stemmer will
skip them.

Here is a sample excerpt of an analyzer chain showing three filters in support
of stemming:

<filter class="solr.KeywordMarkerFilterFactory"
 protected="protwords.txt" />
<filter class="solr.StemmerOverrideFilterFactory"
 dictionary="stemdict.txt" />
<filter class="solr.PorterStemFilterFactory" />

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[64]

Processing synonyms
The purpose of synonym processing is straightforward. Someone searches using a
word that wasn't in the original document but is synonymous with a word that is
indexed, so you want that document to match the query. Of course, the synonym
need not be strictly those identified by a Thesaurus, and they can be whatever you
want, including terminology specific to your application's domain.

The most widely known free Thesaurus is WordNet (http://
wordnet.princeton.edu/). From Solr 3.4, we have the ability to
read WordNet's "prolog" formatted file via a format="wordnet"
attribute on the synonym filter. However, don't be surprised if you
lose precision in the search results—it's not a clear win, for example,
"Craftsman" in context might be a proper noun referring to a brand,
but WordNet would make it synonymous with "artisan". Synonym
processing doesn't know about context—it's simple and dumb.

Here is a sample analyzer configuration line for synonym processing:

<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>

The synonym reference is to a file in the conf directory. Set ignoreCase to true for
the case-insensitive lookup of synonyms.

Before describing the expand option, let's consider an example. The synonyms file is
processed line-by-line. Here is a sample line with an explicit mapping that uses the
arrow =>:

i-pod, i pod =>ipod

This means that if either i-pod (one token) or i then pod (two tokens) are found
in the incoming token stream to this filter, then they are replaced with ipod. There
could have been multiple replacement synonyms, each of which might contain
multiple tokens. Also notice that commas are what separate each synonym, which
is then split by whitespace for multiple tokens. To customize the tokenization to
be something more sophisticated than whitespace, there is a tokenizerFactory
attribute, but it's rarely used.

Alternatively, you may have lines that look like this:

ipod, i-pod, i pod

www.it-ebooks.info

http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://www.it-ebooks.info/

Chapter 3

[65]

These lines don't have => and are interpreted differently according to the expand
parameter. If expand is true, the line will be translated to the following explicit
mapping:

ipod, i-pod, i pod =>ipod, i-pod, i pod

If expand is false, the aforementioned line will become this explicit mapping,
in which the first source synonym is the replacement synonym:

ipod, i-pod, i pod =>ipod

It's okay to have multiple lines that reference the same synonyms. If a source
synonym in a new rule is already found to have replacement synonyms from
another rule, then those replacements are merged.

Multiword (also known as Phrase) synonyms
For multiword synonyms to work, the analysis must be applied at
index time and with expansion so that both the original words and
the combined word get indexed. The next section elaborates on
why this is so. Also, be aware that the tokenizer and previous filters
can affect the tokens that the SynonymFilter sees. So, depending
on the configuration and hyphens, other punctuations may or may
not be stripped out.

Synonym expansion at index time versus query time
If you are doing synonym expansion (have any source synonyms that map to
multiple replacement synonyms or tokens), do synonym processing at either index
time or query time, but not both. Doing it in both places will yield correct results but
will perform slower. We recommend doing it at index time because of the following
problems that occur when doing it at query time:

• A source synonym containing multiple words (for example, i pod) isn't
recognized at query time because the query parser tokenizes on whitespace
before the analyzer gets it.

• The IDF component of Lucene's scoring algorithm (discussed in Chapter 6,
Search Relevancy) will be much higher for documents matching a synonym
appearing rarely, compared to its equivalents that are common. This reduces
the scoring effectiveness.

• Prefix, wildcard, and fuzzy queries aren't analyzed, and thus won't
match synonyms.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[66]

However, any analysis at index time is less flexible, because any changes to the
synonyms will require a complete re-index to take effect. Moreover, the index will
get larger if you do index-time expansion—perhaps too large if you have a large set of
synonyms such as with WordNet. It's plausible to imagine the aforementioned issues
being rectified at some point. In spite of this, we usually recommend index time.

Alternatively, you could choose not to do synonym expansion. This means for a given
synonym token, there is just one token that should replace it. This requires processing
at both index time and query time to effectively normalize the synonymous tokens.
However, since there is query-time processing, it suffers from the problems mentioned
earlier (with the exception of poor scores, which isn't applicable). The benefit to this
approach is that the index size would be smaller, because the number of indexed
tokens is reduced.

You might also choose a blended approach to meet different goals, for example,
if you have a huge index that you don't want to re-index often, but you need to
respond rapidly to new synonyms, then you can put new synonyms into both a
query-time synonym file and an index-time one. When a re-index finishes, you
empty the query-time synonym file. You might also be fond of the query-time
benefits, but due to the multiple word token issue, you decide to handle those
particular synonyms at index time.

Working with stop words
There is a simple filter called StopFilterFactory that filters out certain so-called
stop words specified in a file in the conf directory, optionally ignoring case.
The example usage is as follows:

<filter class="solr.StopFilterFactory" words="stopwords.txt"
ignoreCase="true"/>

When used, it is present in both index and query analyzer chains.

For indexes with lots of text, common uninteresting words such as "the", "a", and
so on, make the index large and slow down phrase queries that use them. A simple
solution to this problem is to filter them out of the fields in which they often show up.
Fields likely to contain more than a sentence are ideal candidates. Our MusicBrainz
schema does not have content like this. The trade-off when omitting stop words from
the index is that those words are no longer queryable. This is usually fine, but in some
circumstances like searching for To be or not to be, it is obviously a problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

The ideal solution to the common word problem is not to remove them.
Chapter 10, Scaling Solr, discusses an approach called common-grams
implemented with CommonGramsFilterFactory that can be used to
improve phrase search performance, while keeping these words. It is
highly recommended.

Solr comes with a decent set of stop words for the English language. You may want
to supplement it or use a different list altogether, if you're indexing non-English
text. In order to determine which words appear commonly in your index, access the
Schema Browser menu option in Solr's admin interface. All of your fields will appear
in a drop-down list on the form. In case the list does not appear at once, be patient.
For large indexes, there is a considerable delay before the field list appears because
Solr is analyzing the data in your index. Now, choose a field that you know contains
a lot of text. In the main viewing area, you'll see a variety of statistics about the field,
including the top 10 terms appearing most frequently. If you can't see the term info
by default, click on the Load Term Info button and select the Autoload checkbox.

You can also manage synonyms and stop words via a
REST API using ManagedSynonymFilterFactory and
ManagedStopFilterFactory respectively. You can read more
and find sample configurations at https://cwiki.apache.org/
confluence/display/solr/Managed+Resources.

Phonetic analysis
Another useful text analysis option to enable searches that sound like a queried word
is phonetic translation. A filter is used at both index and query time that phonetically
encodes each word into a phoneme-based word. There are many phonetic encoding
algorithms to choose from: BeiderMorse, Caverphone, Cologne, DoubleMetaphone,
Metaphone, RefinedSoundex, and Soundex. We suggest using DoubleMetaphone
for most text, and definitely BeiderMorse for names. However, you might want to
experiment in order to make your own choice.

Solr has three tools for more aggressive inexact searching: phonetic,
query spellchecking, and fuzzy searching. These are all employed a
bit differently.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Managed+Resources
https://cwiki.apache.org/confluence/display/solr/Managed+Resources
http://www.it-ebooks.info/

Text Analysis

[68]

The following code shows how to configure text analysis for phonetic matching
using the DoubleMetaphone encoding in the schema.xml file:

<!-- for phonetic (sounds-like) indexing -->
<fieldType name="phonetic" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DoubleMetaphoneFilterFactory"
 inject="false" maxCodeLength="8"/>
 </analyzer>
</fieldType>

The previous example uses the DoubleMetaphoneFilterFactory analysis filter,
which has the following two options:

• inject: This is a Boolean defaulting to true that will cause the original
words to pass through the filter. It might interfere with other filter options,
querying, and potentially scoring. Therefore, it is preferred to disable this,
and use a separate field dedicated to phonetic indexing.

• maxCodeLength: This is the maximum phoneme code (that is, phonetic
character or syllable) length. It defaults to 4. Longer codes are truncated.
Only DoubleMetaphone supports this option.

Note that the phonetic encoders internally handle both uppercase and lowercase,
so there's no need to add a lowercase filter.

In the MusicBrainz schema that is supplied with the book, a field named a_phonetic
is declared to use BeiderMorse because that encoding is best for names. The field has
the artist name copied into it through a copyField directive. In Chapter 5, Searching,
you will read about the DisMax query parser that can conveniently search across
multiple fields with different scoring boosts. It can be configured to search not only
the artist name (a_name) field, but also a_phonetic with a low boost so that regular
exact matches will come above those that match phonetically.

Here is how BeiderMorse is configured:

<fieldType name="phonetic" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- ... potentially others ... -->
 <filter class="solr.BeiderMorseFilterFactory"
 ruleType="APPROX"/>
 </analyzer>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.BeiderMorseFilterFactory"
 ruleType="EXACT"/>
 </analyzer>
</fieldType>

Notice the difference in ruleType between the query and index analyzers. In order
to use most of the phonetic encoding algorithms, you must use the following filter:

<filter class="solr.PhoneticFilterFactory"
encoder="RefinedSoundex" inject="false"/>

The encoder attribute must be one of those algorithms listed in the first paragraph of
this section, with the exception of DoubleMetaphone and BeiderMorse, which have
dedicated filter factories.

Try Solr's Analysis admin page to see how variations in text change
(or don't change) the phonemes that are indexed and searched.

Substring indexing and wildcards
Usually, the text indexing technology is employed to search entire words.
Occasionally, however, there arises a need for a query to match an arbitrary substring
of an indexed word or across them. Solr supports wildcards on queries (for example,
mus*ainz), but there is some consideration needed in the way data is indexed.

It's useful to first get a sense of how Lucene handles a wildcard query at the
index level. Lucene internally scans the sorted terms list on disk starting with the
nonwildcard prefix (mus in the previous example). One thing to note about this is
that the query takes exponentially longer for each fewer prefix character. In fact,
Solr configures Lucene to not accept a leading wildcard to ameliorate the problem.
Another thing to note is that stemming, phonetic, and other trivial text analysis will
interfere with these kinds of searches, for example, if running is stemmed to run,
then runni* would not match.

Before employing these approaches, consider whether you really need
better tokenization for special codes, for example, if you have a long
string code that internally has different parts that users might search
in separately, then you can use a PatternReplaceFilterFactory
with some other analyzers to split them up.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[70]

ReversedWildcardFilter
Solr doesn't permit a leading wildcard in a query unless you index the text in a
reverse direction in addition to the forward direction. Doing this will also improve
query performance when the wildcard is very close to the front. The following
example configuration should appear at the end of the index analyzer chain:

<filter class="solr.ReversedWildcardFilterFactory" />

It has several performance-tuning options you can investigate further at its Javadocs,
available at http://lucene.apache.org/solr/api/org/apache/solr/analysis/
ReversedWildcardFilterFactory.html, but the defaults are reasonable.

Solr does not support a query with both a leading and trailing wildcard for
performance reasons. Given our explanation of the internals, we hope you
understand why.

N-gram analysis
N-gram analysis slices text into many smaller substrings ranging between
a minimum and maximum configured size, for example, consider the word
"Tonight". An NGramFilterFactory configured with minGramSize of 2 and
maxGramSize of 5 would yield all of the following indexed terms: (2-grams:)
To, on, ni, ig, gh, ht, (3-grams:) Ton, oni, nig, igh, ght, (4-grams:) Toni, onig,
nigh, ight, (5-grams:) Tonig, onigh, night. Note that "Tonight" fully does not
pass through because it has more characters than the maxGramSize. N-gram
analysis can be used as a token filter, and it can also be used as a tokenizer
with NGramTokenizerFactory, which will emit n-grams spanning across the
words of the entire source text.

The term n-gram can be ambiguous. Outside of Lucene, it is more
commonly defined as word-based substrings, not character based.
Lucene calls this shingling and you'll learn how to use that in
Chapter 10, Scaling Solr.

The following is a suggested analyzer configuration using n-grams to match substrings:

<fieldType name="nGram" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop
 words, NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>

www.it-ebooks.info

 http://lucene.apache.org/solr/api/org/apache/solr/analysis/ReversedWildcardFilterFactory.html
 http://lucene.apache.org/solr/api/org/apache/solr/analysis/ReversedWildcardFilterFactory.html
http://www.it-ebooks.info/

Chapter 3

[71]

 <filter class="solr.NGramFilterFactory" minGramSize="2"
 maxGramSize="15"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop
 words, NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Notice that the n-gramming only happens at index time. The range of gram sizes
goes from the smallest number of characters you wish to enable substring searches
on (2 in this example), to the maximum size permitted for substring searches (15 in
this example).

Apply this analysis to a field created solely for the purpose of matching substrings.
Another field should exist for typical searches, and configure the DisMax query
parser, described in Chapter 5, Searching, for searches to use both fields using a
smaller boost for this field.

Another variation is EdgeNGramTokenizerFactory and EdgeNGramFilterFactory,
which emit n-grams that are adjacent to either the start or end of the input text. For
the filter-factory, this input-text is a token, and for the tokenizer, it is the entire input.
In addition to minGramSize and maxGramSize, these analyzers take a side argument
that is either front or back. If only prefix or suffix matching is needed instead of
both, then an EdgeNGram analyzer is for you.

N-gram costs
There is a high price to be paid for n-gramming. Recall that in the earlier example,
Tonight was split into 15 substring terms, whereas typical analysis would probably
leave only one. This translates to greater index sizes, and thus a longer time to index.
Let's look at the effects of this in the MusicBrainz schema. The a_name field, which
contains the artist name, is indexed in a typical fashion and is a stored field. The
a_ngram field is fed by the artist name and is indexed with n-grams ranging from
2 to 15 characters in length. It is not a stored field because the artist name is already
stored in a_name.

a_name a_name + a_ngram Increase
Indexing Time 46 seconds 479 seconds > 10x
Disk Size 11.7 MB 59.7 MB > 5x
Distinct Terms 203,431 1,288,720 > 6x

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[72]

The preceding table shows a comparison of index statistics of an index with just
a_name versus both a_name and a_ngram. Note the ten-fold increase in indexing
time for the artist name, and a five-fold increase in disk space. Remember that
this is just one field!

Given these costs, n-gramming, if used at all, is generally only done
on a field or two of small size where there is a clear requirement for
fast substring matches.

The costs of n-gramming are lower if minGramSize is raised and to a lesser extent if
maxGramSize is lowered. Edge n-gramming costs less too. This is because it is only
based on one side. It definitely costs more to use the tokenizer-based n-grammers
instead of the term-based filters used in the example before, because terms are
generated that include and span whitespace. However, with such indexing, it is
possible to match a substring spanning words.

Sorting text
Usually, search results are sorted by relevancy via the score pseudo-field, but
it is common to need to support conventional sorting by field values too. And,
in addition to sorting search results, there are ramifications to this discussion in
doing a range query and when showing facet results in a sorted order.

Sorting limitations
A field needs to be indexed, not be multivalued, and for text, it
should not have multiple tokens (either there is no text analysis
or it yields just one token).

It just so happens that MusicBrainz already supplies alternative artist and label
names for sorting. When different from the original name, these sortable versions
move words like "The" from the beginning to the end after a comma. We've marked
the sort names as indexed but not stored since we're going to sort on it but not
display it—deviating from what MusicBrainz does. Remember that indexed and
stored are true by default. Because of the special text analysis restrictions of fields
used for sorting, text fields in your schema that need to be sortable will usually be
copied to another field and analyzed differently. The copyField directive in the
schema facilitates this task. The string type is a type that has no text analysis and
so it's perfect for our MusicBrainz case. As we're getting a sort-specific value from
MusicBrainz, we don't need to derive something ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

However, note that in the MusicBrainz schema there are no sort-specific release names,
so let's add sorting support. One option is to use the string type again. That's fine, but
you may want to lowercase the text, remove punctuation, and collapse multiple spaces
into one (if the data isn't clean). You can even use PatternReplaceFilterFactory to
move words like "The" to the end. It's up to you. For the sake of variety in our example,
we'll be taking the latter route; we're using a type title_sort that does these kinds
of things.

By the way, Lucene sorts text by the internal Unicode code point. You probably
won't notice any problem with the sort order. If you want sorting that is more
accurate to the finer rules of various languages (English included), you should
try CollationKeyFilterFactory. Since it isn't commonly used and it's already
well documented, we'll refer you to the wiki page https://cwiki.apache.
org/confluence/display/solr/Language+Analysis#LanguageAnalysis-
UnicodeCollation.

Miscellaneous token filters
Solr includes many more token filters:

• ClassicFilterFactory: (It was formerly named StandardFilter prior
to Solr 3.1.) This filter works in conjunction with ClassicTokenizer.
It will remove periods in between acronyms and 's at the end of terms:
"I.B.M. cat's" => "IBM", "cat"

• EnglishPossessiveFilterFactory: This removes the trailing 's.
• TrimFilterFactory: This removes leading and trailing whitespace. We

recommend doing this sort of thing before text analysis, same as using
TrimFieldUpdateProcessorFactory (see Chapter 4, Indexing Data).

• LowerCaseFilterFactory: This lowercases all text. Don't put this before
WordDelimeterFilterFactory if you want to split on case transitions.

• KeepWordFilterFactory: This filter omits all of the words, except those
in the specified file:
<filter class="solr.KeepWordFilterFactory"
words="keepwords.txt" ignoreCase="true"/>

If you want to ensure a certain vocabulary of words in a special field, you
might enforce it with this.

• LengthFilterFactory: This filters out the terms that do not have a length
within an inclusive range. The following is an example:
<filter class="solr.LengthFilterFactory" min="2" max="5" />

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
http://www.it-ebooks.info/

Text Analysis

[74]

• LimitTokenCountFilterFactory: This filter caps the number of tokens
passing through to that specified in the maxTokenCount attribute. Even
without any hard limits, you are effectively limited by the memory allocated
to Java—reach that and Solr will throw an error.

• RemoveDuplicatesTokenFilterFactory: This ensures that no duplicate
terms appear at the same position. This can happen, for example, when
synonyms stem to a common root. It's a good idea to add this to your last
analysis step if you are doing a fair amount of other analysis.

• ASCIIFoldingFilterFactory: See MappingCharFilterFactory in the
earlier Character filters section for more information on this filter.

• CapitalizationFilterFactory: This filter capitalizes each word
according to the rules that you specify. For more information,
see the Javadocs at http://lucene.apache.org/core/4_10_4/
analyzers-common/org/apache/lucene/analysis/miscellaneous/
CapitalizationFilterFactory.html.

• PatternReplaceFilterFactory: This takes a regular expression and replaces
the matches. Take a look at the following example:
<filter class="solr.PatternReplaceFilterFactory"
pattern=".*@(.*)"
 replacement="$1" replace="first" />

This example is for processing an e-mail address field to get only the domain
of the address. This replacement happens to be a reference to a regular
expression group, but it might be any old string. If the replace attribute
is set to first, then only the first match is replaced; if replace is all, the
default, then all matches are replaced.

• Write your own: Writing your own filter is an option if the existing ones
don't suffice. Crack open the source code to Lucene for one of these to get a
handle on what's involved. Before you head down this path though, you'd
be surprised at what a little creativity with PatternReplaceFilterFactory
and some of the others can offer you. For starters, check out the rType field
type in the schema.xml that is supplied online with this book.

There are some other miscellaneous Solr filters we didn't mention for various
reasons. For common-grams or shingling, see Chapter 10, Scaling Solr. See the
all known implementing classes section at the top of http://lucene.apache.
org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/util/
TokenFilterFactory.html for a complete list of token filter factories, including
documentation.

www.it-ebooks.info

http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/miscellaneous/CapitalizationFilterFactory.html
http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/miscellaneous/CapitalizationFilterFactory.html
http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/miscellaneous/CapitalizationFilterFactory.html
http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/util/TokenFilterFactory.html
http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/util/TokenFilterFactory.html
http://lucene.apache.org/core/4_10_4/analyzers-common/org/apache/lucene/analysis/util/TokenFilterFactory.html
http://www.it-ebooks.info/

Chapter 3

[75]

The multilingual search
If you have text in various languages, the main issues you have to think about are the
same issues for working with any one language—how to analyze content, configure
fields, define search defaults, and so on. In this section, we present three approaches
to integrate linguistic analysis into Solr.

The multifield approach
With this approach, you will need to create one field per language for all the
searchable text fields. As part of your indexing process, you can identify the
language and apply the relevant analyzers, tokenizers, and token filters for each
of those fields. The following diagram represents how each of the documents in
your index will have language-specific fields:

The following are the pros:

• As you have separate fields for each language, searching, filtering, and/or
faceting will be easy

• You will have accurate and meaningful relevancy scores (TF/IDF)

The following are the cons:

• The number of fields will increase with the number of languages.
• Query performance will be affected when you search across many languages

and fields. However, this may not be a concern if you are searching for a
specific language.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Analysis

[76]

The multicore approach
As represented in the following diagram, the second approach uses one core
(or shard) per language. Each core will contain documents of the same language.
As part of the indexing process, you will need to identify the language of each
document and index into the appropriate core. Language-specific analyzers,
tokenizers and token filters will still be required.

The following are the pros:

• The field names are the same in all the cores, which simplifies query-time
processing, and it's easy to search, filter, and facet by language.

• As you have separate cores per language, you will have flexibility in adding
or removing specific languages without affecting other cores.

The following are the cons:

• There is overhead in maintaining multiple cores.
• If you make copies of the multilingual documents on every core whose

language matches one of the languages of the documents, there is a high
possibility that a distributed search query will bring back the same original
document from multiple cores, which will show as duplicates to the user.

• Term frequency (TF) counts are per core, so if search results are being pulled
from multiple queries, you have to decide how to merge the relevancy scores
presented by each core. Solr will do a basic merge for you, but it may not be
what you expect.

The single field approach
The following diagram represents the third approach, which is to have a single field
for all languages that you want to support. The simplest way to implement this as
described here is to use ICUTokenizerFactory provided by ICU4J in contrib/
analysis-extras. Alternatively, you can write a custom analyzer that analyzes
differently depending on the language of the text, but that is very complex and has
its own pros/cons.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

The following are the pros:

• A single universal field makes the indexing and search process easy.
• Having a single field for indexing should keep the indexing throughput high;

and likewise for searching.
• Adding languages doesn't require schema changes or additional cores.

The following are the cons:

• You can't use any of the stemmers, as they are language specific.
Not stemming hurts recall in search results. You can't remove stop
words either, as this is also language specific.

• As all of the languages are in the same field, a document's relevancy
(TF/IDF) score (described in Chapter 6, Search Relevancy) may be poor.

Summary
Text analysis provides forward-thinking organizations with a framework to
maximize the value of information within large quantities of text. It also helps
automate the process by extracting relevant information, interpreting, mining,
and structuring information to improve findability, reveal patterns, sentiments
and relationships among documents.

At this point, you've learned about different types of analyzers, tokenizers, token
filters and their configuration settings, which helps us convert unstructured data/
text into terms in a Lucene Index. You've also learned about the approaches for
supporting multilingual search using Solr.

In the next chapter, you'll learn about the various ways to import data into Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[79]

Indexing Data
In this chapter, we're going to explore ways to get data into Solr. The process of
doing this is referred to as indexing, although the term importing is also used.

This chapter is structured as follows:

• Communicating with Solr
• Sending data using Solr's Update-XML, JSON, and CSV formats
• Commit, optimize, and rollback the transaction log
• Atomic updates and optimistic concurrency
• Importing content from a database or XML using Solr's

DataImportHandler (DIH)
• Extracting text from rich documents through Solr's

ExtractingRequestHandler (also known as Solr Cell)
• Post-processing documents with UpdateRequestProcessors

You will also find some related options in Chapter 9, Integrating Solr, that have to
do with language bindings and framework integration, including a web crawler.
Most use Solr's Update-XML format.

In a hurry?
There are many approaches to indexing, and you don't need to be
well versed in all of them. The section on commit and optimize is
important for everyone because it is universal. If you plan to use
a Solr integration framework that handles indexing data, such as
Sunspot for Ruby on Rails, then you can follow the documentation
for that framework and skip this chapter for now. Otherwise, the
DataImportHandler will likely satisfy your needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[80]

Communicating with Solr
There are quite a few options when it comes to importing data into Solr. In this section,
we'll examine a few of those, and then follow up with interaction examples. Details on
specific formats, such as Solr's Update-XML, will come later.

The following diagram represents the high-level workflow of the indexing process
in Solr. In addition to the predefined importing mechanisms, you can also build
custom import handlers. Before generating the index, Solr uses the field definitions
and other configurations from schema.xml and solrconfig.xml to process the
data for each field.

PDF

WORD HTML

TXT CSV

SQL JSON

XML Lucene

Index

Update Request

Handlers

UpdateRequestProcessors

Various File Formats

(Sources)

U
p
d
a
te

C
h
a
in

solrconfig.xml

Field Types & Analysis schema.xml

Solr High-level Indexing Workflow

Using direct HTTP or a convenient client API
Most applications interact with Solr over HTTP. This can either be done using a
typical HTTP client, or indirectly via a Solr integration API such as SolrJ or Sunspot.
Such APIs are discussed in Chapter 9, Integrating Solr.

Another option is to embed Solr into your Java application instead
of running it as a server. The SolrJ API is conveniently used for
both remote and embedded use. More information about SolrJ and
Embedded Solr can be found in Chapter 9, Integrating Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Pushing data to Solr or have Solr pull it
Even though an application will be communicating with Solr over HTTP, it does not
have to include the documents to be indexed in the request. Solr supports what it calls
remote streaming in which it's given a URL to the data. It might be an HTTP URL,
but it's more likely to be a filesystem-based URL, applicable when the data is already
on Solr's machine or a locally accessible filesystem. This option avoids the overhead
of sending documents over HTTP. Another way to ask Solr to pull data is to use the
DataImportHandler (DIH), which can pull data from a database and other sources.
The DIH offers an extensible framework that can be adapted to custom data sources.

Data formats
The following are various data formats for indexing data into Solr:

• Solr's Update-XML: Solr accepts documents that are expressed in XML
conforming to a simple Solr-specific format. This XML option also has
support for commands such as delete, commit, and optimize.
Other XML: Any arbitrary XML can be given to Solr along with an XSLT file
that Solr will use to translate the XML to the Update-XML format for further
processing. There is a short example of this in the Importing XML from a file
with XSLT section, by way of comparison.

• Solr's Update-JSON: This is a JavaScript Object Notation (JSON) variation
of Solr's Update-XML. For more details, see https://cwiki.apache.org/
confluence/display/solr/Indexing+and+Basic+Data+Operations.

• Java-Bin: This is an efficient binary variation of Solr's Update-XML. Officially,
only the SolrJ client API supports this, but there is a third-party Ruby port too.

• CSV: A comma (or other character) separated value format.
• Rich documents: Most user file formats such as PDF, XLS, DOC, and PPT;

text; and metadata are extracted from these formats and put into various
Solr fields. This is enabled via the Solr Cell contrib module.

The DataImportHandler contrib module is a flexible data import
framework. It has out-of-the-box support for dealing with arbitrary
XML and even e-mail. It is commonly used for pulling data from
relational databases. For some enterprises, it might be more
appropriate to integrate Solr with Apache Camel, a versatile
open-source integration framework based on well-known Enterprise
Integration Patterns. It provides a nice Domain Specific Language
(DSL) for wiring together different data sources, performing
transformations, and finally sending data to Solr. For more details,
see http://camel.apache.org/solr.html.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
https://cwiki.apache.org/confluence/display/solr/Indexing+and+Basic+Data+Operations
http://camel.apache.org/solr.html
http://www.it-ebooks.info/

Indexing Data

[82]

We'll demonstrate Solr's capability to import MusicBrainz data in XML, CSV, and
from a database. Other examples will include rich document importing via the DIH
and Solr Cell. Most likely, an application would use just one format.

Before these approaches are described, we'll discuss remote streaming—a
foundational topic.

Solr's HTTP POST options
Solr receives commands and possibly documents through HTTP POST.

Solr lets you use HTTP GET too, such as direct web browser access.
However, this is an inappropriate HTTP verb for anything other
than retrieving data and the size of the request is limited in most of
the web servers, hence too long requests are not processed correctly.
For more information on this concept, read about REST at http://
en.wikipedia.org/wiki/Representational_State_Transfer.

One way to send an HTTP POST is through the Unix command-line program
curl (also available on Windows through Cygwin: http://www.cygwin.com).
An alternative is cross-platform import tool that comes with Solr is post.jar
(also known as SimplePostTool) located in Solr's example/solr directory.
To get some basic guidance on how to use it, run the following command:

>> java –jar example/solr/post.jar -help

You'll see in a bit that you can post name-value pair options as HTML form data.
However, post.jar doesn't support that, so you'll have to specify the URL and
put the options in the query string.

The post.jar tool also has an automode, which guesses the content
type for you, and also sets a default ID and filename when sending
to Solr. Also, a recursive option lets you automatically post a whole
directory (including the subdirectories).

For the next set of examples, we'll use the command-line program curl.

There are several ways to tell Solr to index data, and all of them are through
HTTP POST:

• Send the data as the entire POST payload. The curl program can do this
with --data-binary (among other ways) and an appropriate content-type
header for whatever the format is.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.cygwin.com
http://www.it-ebooks.info/

Chapter 4

[83]

• Send name-value pairs akin to an HTML form submission. With curl,
such pairs are preceded by -F. If you're giving data to Solr to be indexed
as opposed to it looking for data in a database, then there are a few ways
to do that:

 ° Put the data into the stream.body parameter. If it's small, perhaps less
than a megabyte, this approach is fine. The limit is configured with the
multipartUploadLimitInKB setting in solrconfig.xml, defaulting
to 2 GB. If you're tempted to increase this limit, you should reconsider
your approach.

 ° Refer to the data through either a local file on the Solr server using
the stream.file parameter or a URL that Solr will fetch through
the stream.url parameter. These choices are a feature that Solr
calls remote streaming.

Here is an example of the first choice. Let's say we have a Solr Update-XML file
named artists.xml in the current directory. We can post it to Solr using the
following command line:

>> curl http://localhost:8983/solr/mbartists/update -H
'Content-type:text/xml; charset=utf-8' --data-binary
@artists.xml

If it succeeds, you'll have output that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int><int name="QTime">128</int>
</lst>
</response>

To use the stream.body feature for the preceding example, do the following:

curl http://localhost:8983/solr/mbartists/update -F
stream.body=@artists.xml

In both cases, the @ character instructs curl to get the data from the file instead of
being @artists.xml literally. If the XML is short, you can just as easily specify it,
literally, on the command line:

curl http://localhost:8983/solr/mbartists/update -F
stream.body=' <commit />'

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[84]

Notice the leading space in the value. This was intentional. In this example,
curl treats @ and < to mean things we don't want. In this case, it might be more
appropriate to use form-string instead of -F. However, it requires more typing,
and we're feeling lazy.

Remote streaming
In the preceding examples, we've given Solr the data to index in the HTTP message.
Alternatively, the POST request can give Solr a pointer to the data in the form of
either a file path accessible to Solr or an HTTP URL to it.

The file path is relative to the server running Solr, not the client.
Additionally, the files must have the proper filesystem permissions
so that Solr can access them.

Just as in the earlier case, the originating request does not return a response until
Solr has finished processing it. If the file is of a decent size or is already at some
known URL, then you may find remote streaming faster and/or more convenient,
depending on your situation.

Here is an example of Solr accessing a local file:

curl http://localhost:8983/solr/mbartists/update -F
stream.file=/tmp/artists.xml

To use a URL, the parameter would change to stream.url, and we'd specify
a URL. We're passing a name-value parameter (stream.file and the path),
not the actual data.

Security risk
Use of remote streaming (stream.file or stream.url) is enabled
by default in solrconfig.xml with the enableRemoteStreaming
setting. This can be considered a security risk; so only keep it on if Solr
is protected. See Chapter 11, Deployment, for more information.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

Solr's Update-XML format
Using XML, you can send add, commit, optimize, and delete commands
to Solr. Here is an XML sample for sending HTTP POST to Solr; this will add
(or replace) documents:

<add overwrite="true">
 <doc boost="2.0">
 <field name="id">Artist:11650</field>
 <field name="type">Artist</field>
 <field name="a_name" boost="0.5">The Smashing Pumpkins</field>
 <!-- the date/time syntax MUST look just like this -->
 <field name="a_begin_date">2007-12-31T09:40:00Z</field>
 </doc>
 <doc>
 <field name="id">Artist:11651</field>
 <field name="type">Artist</field>
 <field name="a_begin_date">2007-12-31T09:40:00Z</field>
 </doc>
 <!-- more doc elements here as needed -->
</add>

A valid XML document has one root element. If you want to send
multiple XML-based commands to Solr in the same message/file,
you can wrap the commands in an arbitrarily named root element.

If you have a field in your schema defined as unique, and the overwrite attribute is
set to true (the default), an incoming document will replace an existing document
when both documents have the same unique field value.

If you are sure that you will be adding a document that is not a
duplicate, then you can set overwrite to false to get a small
performance improvement, since Solr won't check uniqueness
of the unique key field.

The boost attribute affects the scoring of search results at query time. Providing a
boost value, whether at the document or field level, is optional. The default value is
1.0, which is effectively a nonboost. Technically, documents are boosted at the field
level. The effective boost value for a field is the document boost, multiplied by the
field boost value.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[86]

Specifying boosts here is called index-time boosting, which is rarely
done as compared to the more flexible query-time boosting. Index-time
boosting is less flexible because such boosting decisions must be decided
at index-time and will apply to all of the queries. You'll learn more about
boosting and scoring in Chapter 6, Search Relevancy.

Deleting documents
You can delete a document by its unique field and value. Here, we delete
two documents:

<delete><id>Artist:11604</id><id>Artist:11603</id></delete>

A query can provide a more flexible way to specify which documents are to be deleted:

<delete><query>timestamp:[* TO NOW-12HOUR]</query></delete>

The previous delete query would delete all documents whose timestamps are older
than 12 hours from the current time. More info on querying Solr can be found in
Chapter 5, Searching.

The contents of the delete tag can be any number of id and query tags, so you can
batch many deletions into one message to Solr.

If you want to delete the entire index during development
(or perform major schema changes in production), simply
delete the data directory while Solr is shut down.

Commit, optimize, and rollback the
transaction log
Data sent to Solr is not immediately searchable, nor do deletions take immediate
effect. Like a database, changes must be committed. There are two types of commits:

• Hard commit: This is expensive because it pushes the changes to the
filesystem (making them persistent) and has a significant performance
impact. This is performed by the <autoCommit> option in solrconfig.xml
or by adding commit=true request parameter to a Solr update URL.

• Soft commit: This is less expensive but is not persistent. This is
performed by the <autoSoftCommit> option in solrconfig.xml or
using the softCommit=true option along with the commit parameter
or by using the commitWithin parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

The request to Solr could be the same request that contains data to be indexed then
committed, or an empty request—it doesn't matter. For example, you can visit this
URL to issue a commit on our mbreleases core: http://localhost:8983/solr/
mbreleases/update?commit=true. You can also commit changes using the XML
syntax by simply sending this to Solr:

<commit />

There are three important things to know about commits that are unique to Solr:

• Commits are slow. Depending on the index size and disk hardware, Solr's
auto-warming configuration, and Solr's cache state prior to committing,
a commit can take a considerable amount of time. With a lot of warming
configured, it can take a number of minutes in extreme cases. To learn how
to decrease this time, read about real-time search in Chapter 10, Scaling Solr.

• There is no transaction isolation. This means that if more than one Solr
client were to submit modifications and commit them at overlapping times,
it is possible for part of one client's set of changes to be committed before
that client told Solr to commit. This applies to rollback as well. If this is a
problem for your application, then consider using one client process that
is responsible for updating Solr.

• Simultaneous commits should be avoided, particularly more than two.
The problem actually pertains to simultaneous query warming, which
is the latter and lengthy part of a commit. Solr will use a lot of resources
and it might even yield an error indicating there is too much simultaneous
warming—though the commit will eventually still have its effect.

When you are bulk-loading data, these concerns are not an issue since you're
going to issue a final commit at the end. But if Solr is asynchronously updated by
independent clients in response to changed data, commits could come too quickly
and might overlap. To address this, Solr has two similar features, autoCommit and
commitWithin. The first refers to a snippet of XML configuration that is commented
in solrconfig.xml, in which Solr will automatically commit at a document-count
threshold or time-lapse threshold (time of oldest uncommitted document). In this
case, Solr itself handles committing and so your application needn't send commits.
commitWithin is a similar time-lapse option that is set by the client on either the
<add commitWithin="…"> element or the <commit commitWithin="…"/> element
of an XML formatted update message or a request parameter by the same name.
It will ensure a commit occurs within the specified number of milliseconds. Here's
an example of a 30-second commit window:

<commit commitWithin="30000"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[88]

Since Solr 4.0, the commitWithin performs a soft-commit, which prevents the slaves
from replicating the changes in a master/slave configuration. However, this default
behavior can be overwritten in solrconfig.xml by enabling the forceHardCommit
option to allow commitWithin to perform hard commits.

Don't overlap commits
During indexing, you may find that you are starting to see this error message:

<h2>HTTP ERROR: 503</h2><pre>Error opening new searcher. exceeded
limit of maxWarmingSearchers=2, try again later.</pre>

Every time a commit happens, a new searcher is created, which invokes the searcher
warm up process for populating the cache, and that can take a while. While you can
bump up the maxWarmingSearchers parameter in solrconfig.xml, you shouldn't
since you could still hit the new limit, but worse is that memory requirements can
soar and the system will slow down when multiple searchers are warming. So, you
need to ensure commits aren't happening concurrently—or, if you must, that there
are no more than two. If you see this problem, you should use the autoCommit or
commitWithin parameter when issuing commits. In both cases, you need to choose
a time window that is long enough for a commit to finish.

commitWithin is preferable to autoCommit
The commitWithin feature is preferable to the autoCommit
feature in solrconfig.xml because the latter is global and
can't be disabled.

Index optimization
Lucene's index is internally composed of one or more segments. When a buffer of
indexed documents gets flushed to the disk, it creates a new segment. Deletes get
recorded in another file, but they go to disk too. Sometimes, after a new segment is
written, Lucene will merge some of them together. When Lucene has just one segment,
it is in an optimized state. The more segments there are, the more query performance
will degrade. Of course, optimizing an index comes at a cost; the larger your index
is, the longer it will take to optimize. Finally, an optimize command implies commit
semantics. You may specify an optimize command in all the places you specify a
commit. So, to use it in a URL, try this: http://localhost:8983/solr/mbreleases/
update?optimize=true. For the XML format, simply send this:

<optimize />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

We recommend explicitly optimizing the index at an opportune time, such as after a
bulk load of data and/or a daily interval in off-peak hours, if there are low-volume
sporadic updates to the index. Chapter 10, Scaling Solr has a tip on optimizing to more
than one segment if the optimizes are taking too long.

Both commit and optimize commands take two additional Boolean options that
default to true:

<optimize waitFlush="true" waitSearcher="true"/>

If you were to set these to false, then commit and optimize commands return
immediately, even though the operation hasn't actually finished yet. So, if you write a
script that commits with these at their false values and then executes a query against
Solr, you might find that the search does not reflect the changes yet. By waiting for
the data to flush to the disk (waitFlush) and waiting for a new searcher to be ready
to respond to changes (waitSearcher), this circumstance is avoided. These options
are useful for executing an optimize command from a script that simply wants to
optimize the index and otherwise doesn't care when newly added data is searchable.

No matter how long a commit or optimize command takes,
Solr still executes searches concurrently—there is no read
lock. However, query latency may be impacted.

Rolling back an uncommitted change
There is one final indexing command to discuss—rollback. All uncommitted changes
can be canceled by sending Solr the rollback command either via a URL parameter
such as http://localhost:8983/solr/mbreleases/update?rollback=true or
with the following XML code:

<rollback />

The transaction log
When the transaction log (tlogs) are enabled via the updateLog feature in
solrconfig.xml, Solr writes the raw documents into the tlog files for recovery
purposes. Transaction logs are used for near real-time (NRT) get, durability,
and SolrCloud replication recovery.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[90]

To enable tlogs, simply add the following code to your updateHandler configuration:

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

Here, dir represents the target directory for transaction logs. This defaults to the Solr
data directory.

If you don't need NRT get feature and you are not using SolrCloud,
you can safely comment-out the updateLog section in solrconfig.
xml. For more details about NRT get, see https://cwiki.apache.
org/confluence/display/solr/RealTime+Get.

Atomic updates and optimistic
concurrency
Atomic updates allow you to update an already indexed document by giving a
new field value, adding a value to the existing values on a multivalued field, or by
incrementing a numeric field. Instead of giving an entire document, you supply a
document that only has the fields that are to be modified in some way, and with
a special modifier (described next). If Solr sees these modifiers on any field in an
incoming document, then it knows this is an atomic-update to an existing document
versus a new or replacement document. This is both a convenience feature, and with
optimistic concurrency (described soon), allows Solr to be a credible NoSQL option.

We'll show you how this is used by way of a succinct example, and we'll use JSON this
time. Note that, most fields don't just have a value but are structured to include one of
several mutation modifiers. In the XML syntax, these are specified with attributes.

{"id":"mydoc",
 "price":{"set":99},
 "popularity":{"inc":20},
 "categories":{"add":["toys","games"]},
 "promo_ids":{"remove":"a123x"},
 "tags":{"remove":["free_to_try","on_sale"]}
}

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/RealTime+Get
https://cwiki.apache.org/confluence/display/solr/RealTime+Get
http://www.it-ebooks.info/

Chapter 4

[91]

The following are the key points to remember while using atomic updates:

• The core functionality of atomically updating a document requires that all
fields in your SchemaXml must be configured as stored="true" except
for fields that are <copyField/> destinations, which must be configured
as stored="false". This is because the atomic updates are applied to the
document represented by the existing stored field values.

• An <updateLog/> must be configured in your solrconfig.xml in order
for atomic document updates to be used. This is necessary to ensure that
the update instructions are applied to the most recently indexed version
of the document even if that version has not yet been committed.

Optimistic concurrency can be used by applications that update or replace documents
to ensure that the document they are updating or replacing has not been concurrently
modified by another application. This feature works by requiring a _version_ field on
all documents in the index, and comparing that to a _version_ specified as part of the
update command. By default, Solr's schema.xml includes a _version_ field, and this
field is automatically added to each new document. Along with NRT get and atomic
updates, this feature allows Solr to be used as a NoSQL database.

For examples of using atomic updates and optimistic concurrency,
see https://cwiki.apache.org/confluence/display/
solr/Updating+Parts+of+Documents.

Sending CSV-formatted data to Solr
If you have data in a CSV format or if it is more convenient for you to get CSV
than XML or JSON, then you may prefer the CSV option. Solr's CSV support
is fairly flexible. You won't be able to specify an index-time boost but that's an
uncommon need.

CSV is uniquely the only format that Solr supports for round-tripping
data. As such, you can query for CSV-formatted data that is suitable
to be added right back into Solr (for stored fields only, of course).
The XML and JSON query output formats are structured differently
than their input formats, so they don't count.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents
https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents
http://www.it-ebooks.info/

Indexing Data

[92]

To get CSV data out of a local PostgreSQL database for the MusicBrainz tracks,
we ran this command:

psql -U postgres -d musicbrainz_db -c "COPY (\
select 'Track:' || t.id as id, 'Track' as type, t.name as t_name,
t.length/1000 as t_duration, a.id as t_a_id, a.name as t_a_name,
albumjoin.sequence as t_num, r.id as t_r_id, r.name as t_r_name,
array_to_string(r.attributes,' ') as t_r_attributes, albummeta.tracks
as t_r_tracks \
from (track t inner join albumjoin on t.id = albumjoin.track \
 inner join album r on albumjoin.album = r.id left join albummeta on
albumjoin.album = albummeta.id) inner join artist a on t.artist =
a.id \
) to '/tmp/mb_tracks.csv' CSV HEADER"

And it generated about 7 million lines of output that looks like this (the first
three lines):

id,type,t_name,t_duration,t_a_id,t_a_name,t_num,t_r_id,t_r_name,t_r_a
ttributes,t_r_tracks
Track:183326,Track,In the Arms of Sleep,254,11650,The Smashing
Pumpkins,4,22471,Mellon Collie and the Infinite Sadness (disc 2:
Twilight to Starlight),0 1 100,14
Track:183328,Track,Tales of a Scorched Earth,228,11650,The Smashing
Pumpkins,6,22471,Mellon Collie and the Infinite Sadness (disc 2:
Twilight to Starlight),0 1 100,14
…

This CSV file is provided with the code supplement to the book. To get Solr to import
the CSV file, type this at the command line:

curl http://localhost:8983/solr/update/csv -F
f.t_r_attributes.split=true -F f.t_r_attributes.separator=' ' -F
overwrite=false -F commit=true -F stream.file=/tmp/mb_tracks.csv

The CSV options were specified via form values (-F) here; you can alternatively
encode them into the query portion of the URL—it doesn't matter.

Consider the Unix mkfifo command
When we actually did this, we had PostgreSQL on one machine and
Solr on the other. We've used the Unix mkfifo command to create
an in-memory data pipe mounted at /tmp/mb_tracks.csv. This
way, we didn't have to actually generate a huge CSV file. We could
essentially stream it directly from PostgreSQL into Solr. Details on
this approach and PostgreSQL are beyond the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Configuration options
The following are the names of each configuration option with an explanation.
For the MusicBrainz track CSV file, the defaults were used with the exception
of specifying how to parse the multivalued t_r_attributes field and disabling
unique key processing for performance.

• separator: This is the character that separates each value on a line.
It defaults to a comma.

If you're using curl and need to specify a tab character or some
other character that isn't visible other than a space, then the easiest
way to do this is to specify this parameter on the URL as a query
parameter instead of with -F. Remember to URL encode it, for
example, …/update/csv?separator=%09 –F … and so on.

• header: Set this to true if the first line lists the field names (the default).
• fieldnames: If the first line doesn't have the field names, you'll have to use

this instead to indicate what they are. They are comma separated. If no name
is specified for a column, then its data is skipped.

• skip: This specifies which fields to not import in the CSV file.
• skipLines: This is the number of lines to skip in the input file. It defaults to 0.
• trim: If this is true, it removes the leading and trailing white space as a final

step, even if quoting is used to explicitly specify a space. It defaults to false.
Solr already does an initial pass trim, but quoting may leave spaces.

• encapsulator: This character is used to encapsulate (that is surround,
quote) values in order to preserve the field separator as a field value instead
of mistakenly parsing it as the next field. This character itself is escaped
by doubling it. It defaults to the double quote, unless escape is specified.
Consider the following example:
11604, foo, "The ""second"" word is quoted.", bar

• escape: If this character is found in the input text, then the next character is
taken literally in place of this escape character, and it isn't otherwise treated
specially by the file's syntax; for example, consider the following code:
11604, foo, The second\, word is followed by a comma., bar

• keepEmpty: This specifies whether blank (zero length) fields should be
indexed as such or omitted. It defaults to false.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[94]

• literal: This adds a fixed field name and value to all the documents.
For example, literal.datasource=artists adds the datasource
field with the value artists to every document.

• rowid: This adds a field to every document where the passed in parameter
name is the field name and the current line number is the value. This is very
helpful when there is no unique ID for each row and also for debugging
purposes. It defaults to null and is optional.

• rowidOffset: This works with the rowid parameter; this integer value will
be added to the actual rowid / current line number before adding it to the
specified rowid field in the index.

• overwrite: This indicates whether to enforce the unique key constraint of
the schema by overwriting existing documents with the same ID. It defaults
to true. Disable this to increase performance, if you are sure you are passing
new documents.

• split: This is a field-specific option used to split what would normally be
one value into multiple values. Another set of CSV configuration options
(separator, and so on) can be specified for this field to instruct Solr on how
to do that. See the previous track's MusicBrainz example on how this is used.

• map: This is another field-specific option used to replace input values with
another. It can be used to remove values too. The value should include a
colon, which separates the left side that is replaced with the right side. If we
were to use this feature on the tracks of the MusicBrainz data, then it could
be used to map the numeric code in t_r_attributes to more meaningful
values. Here's an example of such an attempt:
-F keepEmpty=false -F f.t_r_attributes.map=0: -F
f.t_r_attributes.map=1:Album -F
f.t_r_attributes.map=2:Single

This causes 0 to be removed, because it seems to be useless data, as nearly all
tracks have it, and we map 1 to Album and 2 to Single.

The DataImportHandler framework
Solr includes a very popular contrib module for importing data known as the
DataImportHandler. It's a data processing pipeline built specifically for Solr.
Here's a list of the notable capabilities:

• It imports data from databases through JDBC (Java Database Connectivity).
This supports importing only changed records, assuming a last-updated date

• It imports data from a URL (HTTP GET)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

• It imports data from files (that is, it crawls files)
• It imports e-mail from an IMAP server, including attachments
• It supports combining data from different sources
• It extracts text and metadata from rich document formats
• It applies XSLT transformations and XPath extraction on XML data
• It includes a diagnostic/development tool

Furthermore, you could write your own data source or transformation step once you
learn how by seeing how the existing ones are coded.

Consider DIH alternatives
The DIH's capabilities really have little to do with Solr itself, yet the DIH
is tied to Solr (to a Solr core, to be precise). Consider alternative data
pipelines such as those referenced here: http://wiki.apache.org/
solr/SolrEcosystem—this includes building your own. Alternatives
can run on another machine to reduce the load on Solr when there is
significant processing involved. And in being agnostic of where the data
is delivered, your investment in them can be re-used for other purposes
independent of Solr. With that said, the DIH is a strong choice because it
is integrated with Solr and it has a lot of capabilities.

The complete reference documentation for the DIH is available at https://cwiki.
apache.org/confluence/display/solr/Uploading+Structured+Data+Store+
Data+with+the+Data+Import+Handler. It's rather thorough. In this chapter, we'll
demonstrate some of its features, but you'll need to turn to the wiki for further details.

Configuring the DataImportHandler framework
The DIH is not considered a core part of Solr, even though it comes with the Solr
download. Consequently, you must add its Java JAR files to your Solr setup in order
to use it. If this isn't done, you'll eventually see a ClassNotFoundException error.
The DIH's JAR files are located in Solr's dist directory: solr-dataimporthandler-
4.x.x.jar and solr-dataimporthandler-extras-4.x.x.jar. The easiest way to
add JAR files to a Solr configuration is to copy them to the <solr_home>/lib directory;
you may need to create it. Another method is to reference them from solrconfig.
xml via <lib/> tags—see Solr's example configuration for examples of that. You
will probably need some additional JAR files as well. If you'll be communicating with a
database, you'll need to get a JDBC driver for it. If you will be extracting text from
various document formats, you'll need to add the JARs in /contrib/extraction/
lib. Finally, if you'll be indexing an e-mail, you'll need to add the JARs in /contrib/
dataimporthandler/lib.

www.it-ebooks.info

http://wiki.apache.org/solr/SolrEcosystem
http://wiki.apache.org/solr/SolrEcosystem
https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data+with+the+Data+Import+Handler
https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data+with+the+Data+Import+Handler
https://cwiki.apache.org/confluence/display/solr/Uploading+Structured+Data+Store+Data+with+the+Data+Import+Handler
http://www.it-ebooks.info/

Indexing Data

[96]

The DIH needs to be registered with Solr in solrconfig.xml as follows:

<requestHandler name="/dih_artists_jdbc"
class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
</requestHandler>

This reference mb-dih-artists-jdbc.xml is located in <solr-home>/conf, which
specifies the details of a data import process. We'll get to that file in a bit.

The development console
Before describing a DIH configuration file, we're going to take a look at the DIH
development console. Visit the URL http://localhost:8983/solr/#/mbartists/
dataimport/ (modifications may be needed for your host, port, core, and so on).

If there is more than one request handler registered, then you'll see a simple page
listing them with links to get to the development console for that handler. The
development console looks like the following screenshot:

The screen is divided into two panes: on the left is the DIH control form and on the
right is the command output as JSON.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

The editable configuration, via Debug-Mode option, highlighted
in the preceding screenshot, is not saved to the disk! It is purely
for live trial-and-error debugging. Once you are satisfied with
any changes, you'll need to save them back to the file yourself and
then take some action to get Solr to reload the changes, such as by
clicking on the Reload button, and then reload the page to pick up
the changes on the screen.

The last section on the DIH in this chapter goes into more detail on submitting a
command to the DIH.

Writing a DIH configuration file
The key pieces of a DIH configuration file includes a data source, an entity, some
transformers, and a list of fields. Sometimes they can be omitted. At first, we'll list
the various types of these DIH components with a simple description. Each has
further details on usage, for which you'll need to see the Solr Reference Guide.
Then we'll show you a few sample configuration files to give you a sense of how
it all comes together.

Data sources
A <dataSource/> tag specifies, as you might guess, the source of data referenced
by an entity. This is the simplest piece of the configuration. The type attribute
specifies the type, which defaults to JdbcDataSource. Depending on the type,
there are further configuration attributes (not listed here). There could be multiple
data sources but not usually. Furthermore, with the exception of JdbcDataSource,
each type handles either binary or text but not both. The following is a listing of
available data source types. They all have a name ending with DataSource.

• JdbcDataSource: This is a reference to a database via JDBC; usually relational
• FieldStreamDataSource and FieldReaderDataSource: These are for

extracting binary or character data from a column from JdbcDataSource.
• BinFileDataSource and FileDataSource: This is to specify a path to a

binary or text file
• URLDataSource: This is to specify a URL to a text resource
• BinContentStreamDataSource and ContentStreamDataSource:

These receive binary or text data posted to the DIH instead of the
DIH pulling it from somewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[98]

ContentStreamDataSource is very interesting because it lets you
use the DIH to receive asynchronous, on-demand data processing
instead of the typical scheduled batch-process mode. It could be used
for many things, even a Web Hook: http://www.webhooks.org/.

If you were looking for a MailDataSource, then there isn't one.
The MailEntityProcessor was coded to fetch the e-mail itself instead
of decoupling that function to a data source.

Entity processors
Following the data sources is a <document/> element, which contains one or more
<entity/> elements referencing an Entity Processor via the processor attribute; the
default is SqlEntityProcessor. An entity processor produces documents when it
is executed. The data to produce the documents typically comes from a referenced
data source. An entity that is an immediate child of <document> is by default a root
entity, which means its documents are indexed by Solr. If the rootEntity attribute
is explicitly set to false, then the DIH recursively traverses down until it finds one
that doesn't have this marking. There can be sub-entities, which execute once for
each parent document and which usually reference the parent document to narrow
a query. Documents from a sub-entity are merged into its root entity's document,
producing multivalued fields when more than one document with the same field
is produced by the sub-entity.

This explanation is surely quite confusing without having seen
several examples. You might want to read this again once you
get to some examples.

The entity processors have some common configuration attributes and some that are
unique to each one.

Entity processors all have a name ending with EntityProcessor. The following are
a list of them:

• SqlEntityProcessor: This references a JdbcDataSource and executes
a specified SQL query. The columns in the result set, map to fields by the
same name. This processor uniquely supports delta import.

• CachedSqlEntityProcessor: This is like SqlEntityProcessor, but caches
every record in memory for future lookups instead of running the query each
time. This is only an option for sub-entities of a root entity.

www.it-ebooks.info

http://www.webhooks.org/
http://www.it-ebooks.info/

Chapter 4

[99]

• XPathEntityProcessor: This processes XML from a text data source.
It separates the XML into separate documents according to an XPath
expression. The fields reference a part of the XML via an XPath expression.

• PlainTextEntityProcessor: This takes the text from a text data source
putting it into a single field.

• LineEntityProcessor: This takes each line of text from a text data source,
creating a document from each one. A suggested use is for an input file of
URLs that are referenced by a sub-entity such as Tika.

• FileListEntityProcessor: This finds all files meeting the specified criteria,
creating a document from each one with the file path in a field. A sub-entity
such as Tika could then extract text from the file.

• TikaEntityProcessor: This extracts text from a binary data source,
using Apache Tika. Tika supports many file types such as HTML, PDF, and
Microsoft Office documents. Recent Tika versions allow specifying that the
HTML not be stripped out (it is by default). From Solr 4.3, you can specify
this via IdentityHtmlMapper in the DIH configuration. This is an alternative
approach to Solr Cell, which is described later.

• MailEntityProcessor: This fetches e-mail from an IMAP mail server,
including attachments processed with Tika. It doesn't use a data source.
You can specify a starting date, but, unfortunately, it doesn't support DIH's
delta import.

Solr supports a pluggable cache for DIH so that any entity
can be made cacheable by adding the cacheImpl parameter.
For additional information, check SOLR-2382.

Fields and transformers
Within an <entity/> tag are <field/> elements that declare how the columns in
the query map to Solr. A field element must have a column attribute that matches
the corresponding named column in the SQL query. Its name attribute is the Solr
schema field name that the column is going into. If it is not specified, then it defaults
to the column name. When a column in the result can be placed directly into Solr
without further processing, there is no need to specify the field declaration, because
it is implied.

When importing from a database, use the SQL AS keyword to use
the same names as the Solr schema instead of the database schema.
This reduces the number of <field/> elements and shortens the
existing ones.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[100]

An attribute of the entity declaration that we didn't mention yet is the transformer.
This declares a comma-separated list of transformers that create, modify, and delete
fields and even entire documents. The transformers are evaluated in order, which can
be significant. Usually, the transformers use attributes specific to them on a given field
to trigger that it should take some action, whether it be splitting the field into multiple
values or formatting it. The following is a list of transformers:

• TemplateTransformer: This overwrites or modifies a value based on a
string template. The template can contain references to other fields and
DIH variables.

• RegexTransformer: This either performs a string substitution, splits the
field into multiple values, or splits the field into separately named fields.
This transformer is very useful!

• DateFormatTransformer: This parses a date-time format according to a
specified pattern. The output format is Solr's date format.

• NumberFormatTransformer: This parses a number according to a specified
locale and style (that is number, percent, integer, currency). The output
format is a plain number suitable for one of Solr's numeric fields.

• HTMLStripTransformer: This removes the HTML markup according to
HTMLStripCharFilter (documented in the previous chapter). By performing
this step here instead of a text analysis component, the stored value will also
be cleansed, not just the indexed (that is, searchable) data.

• ClobTransformer: This transforms a CLOB value from a database into a
plain string.

• LogTransformer: This logs a string for diagnostic purposes, using a string
template such as TemplateTransformer. Unlike most transformers, this is
configured at the entity since it is evaluated for each entity output document,
not for each field.

• ScriptTransformer: This invokes user-defined code in-line that is defined
in a <script/> element. This transformer is specified differently within
the transformers attribute—use …,script:myFunctionName,… where
myFunctionName is a named function in the provided code. The code is
written in JavaScript by default, but most other languages that run on the
JVM can be used too.

By the way, DIH transformers are similar to Solr UpdateRequestProcessors
described at the end of this chapter. The former operates strictly within the DIH
framework, whereas the latter is applicable to any importing mechanism.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Example DIH configurations
A DIH configuration file tends to look different depending on whether the source is
a database, the content is XML, or if text is being extracted from documents.

It's important to understand that the various data sources, data formats,
and transformers, are mostly independent. The next few examples pick
combinations to demonstrate a variety of possibilities for illustrative
purposes. You should pick the pieces that you need.

Importing from databases
The following is the mb-dih-artists-jdbc.xml file with a rather long SQL query:

<dataConfig>
 <dataSource name="jdbc" driver="org.postgresql.Driver"
 url="jdbc:postgresql://localhost/musicbrainz_db"
 user="musicbrainz" readOnly="true" autoCommit="false" />
 <document>
 <entity name="artist" dataSource="jdbc" pk="id" query="
 select
 a.id as id,
 a.name as a_name, a.sortname as a_name_sort,
 a.begindate as a_begin_date, a.enddate as a_end_date,
 a.type as a_type,
 array_to_string(
 array(select aa.name from artistalias aa
 where aa.ref = a.id),
 '|') as a_alias,
 array_to_string(
 array(select am.name from v_artist_members am
 where am.band = a.id order by am.id),
 '|') as a_member_name,
 array_to_string(
 array(select am.id from v_artist_members am
 where am.band = a.id order by am.id),
 '|') as a_member_id,
 (select re.releasedate from release re inner join
 album r on re.album = r.id where r.artist = a.id
 order by releasedate desc limit 1)
 as a_release_date_latest
 from artist a
 "transformer="RegexTransformer,DateFormatTransformer,
 TemplateTransformer">

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[102]

 <field column = "id" template="Artist:${artist.id}" />
 <field column = "type" template="Artist" />
 <field column = "a_begin_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_end_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_alias" splitBy="\|" />
 <field column = "a_member_name" splitBy="\|"/>
 <field column = "a_member_id" splitBy="\|" />
 </entity>
 </document>
</dataConfig>

If the type attribute on dataSource is not specified (it isn't here), then it defaults
to JdbcDataSource. Those familiar with JDBC should find the attributes in this
example familiar, and there are also others available. For a reference to all of them,
see the Solr Reference Guide.

Efficient JDBC configuration
Many database drivers in the default configurations (including those
for PostgreSQL and MySQL) fetch all of the query results into memory
instead of on-demand or using a batch/fetch size! This may work
well for typical database usage, in which a relatively small amount
of data needs to be fetched quickly, but is completely unworkable for
ETL (Extract, Transform, and Load) usage such as this. Configuring
the driver to stream the data will sometimes require driver-specific
configuration settings. Settings for some specific databases are at
http://wiki.apache.org/solr/DataImportHandlerFaq.

The main piece of an <entity/> used with a database is the query attribute, which is
the SQL query to be evaluated. You'll notice that this query involves some subqueries,
which are made into arrays and then transformed into strings joined by spaces. The
particular functions used to do these sorts of things are generally database specific.
This is done to shoehorn multivalued data into a single row in the results. It may
create a more complicated query, but it does mean that the database does all of the
heavy lifting so that all of the data Solr needs for an artist is in one row.

www.it-ebooks.info

http://wiki.apache.org/solr/DataImportHandlerFaq
http://www.it-ebooks.info/

Chapter 4

[103]

Sub-entities
There are numerous examples on the DIH wiki depicting entities
within entities (assuming the parent entity is a root entity). This is
an approach to the problem of getting multiple values for the same
Solr field. It's also an approach for spanning different data sources.
We advise caution against that approach because it will generate
a separate query in response to each source record, which is very
inefficient. It can be told to cache just one query to be used for future
lookups, but that is only applicable to data shared across records
that can also fit in memory. If all required data is in your database,
we recommend the approach illustrated earlier instead.

Importing XML from a file with XSLT
In this example, we're going to import an XML file from the disk and use XSLT to do
most of the work instead of DIH transformers.

Solr supports using XSLT to process input XML without requiring use
of the DIH as we show in this simple example. The following command
would have the same effect:
curl
'http://localhost:8983/solr/mbartists/update/xslt?tr=art
ists.xsl&commit=true' -H 'Content-type:text/xml' --data-
binary @downloads/artists_veryshort.xml

<dataConfig>
 <dataSource name="artists" type="FileDataSource" encoding="UTF-8"
 />
 <document name="artists">
 <entity name="artist" dataSource="artists"
 url="downloads/artists_veryshort.xml"
 processor="XPathEntityProcessor"
 xsl="cores/mbtype/conf/xslt/artists.xsl"
 useSolrAddSchema="true">
 </entity>
 </document>
</dataConfig>

This dataSource of type FileDataSource is for text files. The entity URL is relative to
the baseUrl on the data source; since it's not specified then, it defaults to the current
working directory of the server. To see the referenced XSLT file, download the code
supplement for the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[104]

An interesting thing about this example is not just the use of XSLT, but the use of
useSolrAddSchema, which signifies that the resulting XML structure follows Solr's
XML <add><doc><field name=… structure. Our input file is an HTML table and
the XSLT file transforms it. These two options are best used together.

There are some other examples at the DIH wiki illustrating XML
processing. One of them shows how to process a Wikipedia XML
file dump, which is rather interesting.

Importing multiple rich document files – crawling
In this example, we have a configuration that crawls all PDF files in a directory and
then extracts text and metadata from them:

<dataConfig>
 <dataSource type="BinFileDataSource" />
 <document>
 <entity name="f" dataSource="null" rootEntity="false"
 processor="FileListEntityProcessor"
 baseDir="/my/file/path" fileName=".*pdf"
 recursive="true">
 <entity name="tika-test" processor="TikaEntityProcessor"
 url="${f.fileAbsolutePath}" format="text">
 <field column="Author" name="author" meta="true"/>
 <field column="title" name="title" meta="true"/>
 <field column="text" name="text"/>
 </entity>
 </entity>
 </document>
</dataConfig>

The FileListEntityProcessor is the piece that does the file crawling. It doesn't
actually use a data source but it's required. Because this entity is not a root entity,
thanks to rootEntity="false", it's the sub-entity within it that is a root entity,
which corresponds to a Solr document. The entity is named f and the sub-entity
tika-test refers to the path provided by f via f.fileAbsolutePath in its url.
This example uses the variable substitution syntax ${…}.

Speaking of which, there are a variety of variables that the DIH makes
available for substitution, including those defined in solr.xml and
solrconfig.xml. Again, see the DIH wiki for further details.

The TikaEntityProcessor part is relatively straightforward. Tika makes a variety
of metadata available about documents; this example just used two.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Importing commands
The DIH is issued one of several different commands to do different things.
Importing all data is called a full import, in contrast to a delta import that will
be described shortly. Commands are given to the DIH request handler with the
command attribute. We could tell the DIH to do a full import just by going to this
URL: http://localhost:8983/solr/mbartists/dataimport?command=full-
import. On the command line, we will use the following code:

curl http://localhost:8983/mbartists/solr/dataimport -F
command=full-import

It uses HTTP POST, which is more appropriate than GET, as discussed earlier.

Unlike the other importing mechanisms, the DIH returns an HTTP response
immediately while the import continues asynchronously. To get the current status
of the DIH, go to this URL http://localhost:8983/solr/mbartists/dataimport,
and you'll get an output like the following:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 </lst>
 <lst name="initArgs">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
 </lst>
 <str name="status">idle</str>
 <str name="importResponse"/>
 <lst name="statusMessages"/>
 <str name="WARNING">This response format is experimental.
 It is likely to change in the future.</str>
</response>

The command attribute defaults to status, which is what this output shows. When an
import is in progress, it shows statistics on that progress along with a status state of
busy.

Other Boolean parameters named clean, commit, and optimize may accompany the
command. clean is specific to the DIH, and it means that before running the import, it
will delete all the documents first. To customize exactly which documents are deleted,
you can specify a preImportDeleteQuery attribute on a root entity. You can even
specify documents to be deleted after an import by using the postImportDeleteQuery
attribute. The query syntax is documented in Chapter 5, Searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[106]

Beware that these defaults are inconsistent with other Solr importing
mechanisms. No other importing mechanism will delete all documents
first, and none will commit or optimize by default.

Two other useful commands are reload-config and abort. The first will reload
the DIH configuration file, which is useful for picking up changes without having
to restart Solr. The second will cancel any existing imports in progress.

Delta imports
The DIH supports what it calls a delta import, which is a mode of operation in
which only data that has changed since the last import is retrieved. A delta import is
only supported by the SqlEntityProcessor and it assumes that your data is time-
stamped. The official DIH approach to this is prominently documented on the wiki.
It uses a deltaImportQuery and deltaQuery pair of attributes on the entity, and
a delta-import command. That approach is verbose, hard to maintain, and slow
compared to a novel alternative documented at http://wiki.apache.org/solr/
DataImportHandlerDeltaQueryViaFullImport.

Essentially, what you can do is introduce a timestamp check in your SQL's WHERE
clause using variable substitution, along with another check if the clean parameter
was given to the DIH in order to control whether or not a delta or full import should
happen. Here is a concise <entity/> definition on a fictitious schema and dataset
showing the relevant WHERE clause:

<entity name="item" pk="ID"
 query="SELECT * FROM item
 WHERE '${dataimporter.request.clean}' != 'false'
 OR last_modified > '${dataimporter.last_index_time}'">

Notice the ${…} variable substitution syntax. To issue a full import, use the
full-import command with clean enabled: /dataimport?command=full-
import&clean=true. And for a delta import, we still use the full-import command,
but we set clean to false: /dataimport?command=full-import&clean=false&opt
imize=false. We also disabled the index optimization since it's not likely that this is
desired for a delta import.

www.it-ebooks.info

http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport
http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport
http://www.it-ebooks.info/

Chapter 4

[107]

Indexing documents with Solr Cell
While most of this book assumes that the content you want to index in Solr is in a
neatly structured data format of some kind, such as in a database table, a selection of
XML files, or CSV, the reality is that we also store information in the much messier
world of binary formats such as PDF, Microsoft Office, or even images and music files.

One of the coauthors of this book, Eric Pugh, first became involved with the Solr
community when he needed to ingest the thousands of PDF and Microsoft Word
documents that a client had produced over the years. The outgrowth of that early
effort is Solr Cell providing a very powerful and simple framework for indexing
rich document formats.

Solr Cell is technically called the ExtractingRequestHandler.
The current name came about as a derivation of Content Extraction
Library, which appeared more fitting to its author, Grant Ingersoll.
Perhaps a name including Tika would have been most appropriate
considering that this capability is a small adapter to Tika. You
may have noticed that the DIH includes this capability via the
appropriately named TikaEntityProcessor.

The complete reference material for Solr Cell is available at https://cwiki.apache.
org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apach
e+Tika.

Extracting text and metadata from files
Every file format is different and all of them provide different types of metadata,
as well as different methods of extracting content. The heavy lifting of providing
a single API to an ever-expanding list of formats is delegated to Apache Tika.

Apache Tika is a toolkit for detecting and extracting metadata and structured text
content from various documents using existing parser libraries.

Tika supports a wide variety of formats, from the predictable to the unexpected.
Some of the most commonly used formats supported are Adobe PDF, Microsoft
Office, including Word, Excel, PowerPoint, Visio, and Outlook. The other formats
that are supported include extracting metadata from images such as JPG, GIF, and
PNG, as well as from various audio formats such as MP3, MIDI, and Wave audio.
Tika itself does not attempt to parse the individual document formats. Instead, it
delegates the parsing to various third-party libraries, while providing a high-level
stream of XML SAX events as the documents are parsed. A full list of the supported
document formats supported by the 1.5 version that are used by Solr 4.8 is available
at http://tika.apache.org/1.5/formats.html.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apache+Tika
https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apache+Tika
https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Solr+Cell+using+Apache+Tika
http://tika.apache.org/1.5/formats.html
http://www.it-ebooks.info/

Indexing Data

[108]

Solr Cell is a fairly thin adapter to Tika consisting of a SAX ContentHandler that
consumes the SAX events and builds the input document from the fields that are
specified for extraction.

Some not-so-obvious things to keep in mind when indexing binary documents are:

• You can supply any kind of supported document to Tika, and Tika will
attempt to discover the correct MIME type of the document in order to use
the correct parser. If you know the correct MIME type, you can specify it
via the stream.type parameter.

• The default SolrContentHandler that is used by Solr Cell is fairly
simplistic. You may find that you need to perform extra massaging
of the data being indexed beyond what Solr Cell offers to reduce the
junk data being indexed. One approach is to implement a custom Solr
UpdateRequestProcessor, described later in this chapter. Another is
to subclass ExtractingRequestHandler and override createFactory()
to provide a custom SolrContentHandler.

• Remember that during indexing, you are potentially sending large binary
files over the wire that must then be parsed by Solr, which can be very slow.
If you are looking to only index metadata, then it may make sense to write
your own parser using Tika directly, extract the metadata, and post that
across to the server. See the Indexing with SolrJ section in Chapter 9, Integrating
Solr for an example of parsing out metadata from an archive of a website and
posting the data through SolrJ.

You can learn more about the Tika project at http://tika.apache.org/.

Configuring Solr
A sample request handler for parsing binary documents, in solrconfig.xml, looks
like the following code:

<requestHandler name="/update/extract"
class="org.apache.solr.handler.extraction.ExtractingRequestHandler
">
 <lst name="defaults">
 <str name="map.Last-Modified">last_modified</str>
 <str name="uprefix">metadata_</str>
 </lst>
</requestHandler>

www.it-ebooks.info

http://tika.apache.org/
http://www.it-ebooks.info/

Chapter 4

[109]

Here, we can see that the Tika metadata attribute Last-Modified is being mapped
to the Solr field last_modified, assuming we are provided that Tika attribute.
The uprefix parameter specifies the prefix to use when storing any Tika fields
that don't have a corresponding matching Solr field.

Solr Cell is distributed as a contrib module and is made up of the solr-cell-
4.x.x.jar and roughly 25 more JARs that support parsing individual document
formats. In order to use Solr Cell, you will need to place the Solr Cell JAR and
supporting JARs in the lib directory for the core, as it is not included by default
in solr.war. To share these libs across multiple cores, you would add them to
./examples/cores/lib/.

Solr Cell parameters
Before jumping into examples, we'll review Solr Cell's configuration parameters,
all of which are optional. They are organized here and are ordered roughly by
their sequence of use internally.

At first, Solr Cell (or, more specifically, Tika) determines the format of the document.
It generally makes good guesses, but it can be assisted with these parameters:

• resource.name: This is an optional parameter for specifying the name of the
file. This assists Tika in determining the correct MIME type.

• stream.type: This optional parameter allows you to explicitly specify the
MIME type of the document being extracted to Tika, taking precedence over
Tika guessing.

Tika converts all input documents into a basic XHTML document, including
metadata in the head section. The metadata becomes fields and all text within the
body goes into the content field. The following parameters further refine this:

• capture: This is the XHTML element name (for example, "p") to be copied
into its own field; it can be set multiple times.

• captureAttr: This is set to true to capture XHTML attributes into fields
named after the attribute. A common example is for Tika to extract href
attributes from all the <a/> anchor tags for indexing into a separate field.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[110]

• xpath: This allows you to specify an XPath query to filter which element's
text is put into the content field. To return only the metadata, and discard
all the body content of the XHMTL, you would use xpath=/xhtml:html/
xhtml:head/descendant:node(). Notice the use of the xhtml: namespace
prefix for each element. Note that only a limited subset of the XPath
specification is supported. See http://tika.apache.org/0.8/api/org/
apache/tika/sax/xpath/XPathParser.html. The API fails to mention that
it also supports /descendant:node().

• literal.[fieldname]: This allows you to supply the specified value for this
field, for example, for the unique key field.

At this point each resulting field name is potentially renamed in order to map into
the schema. These parameters control this process:

• lowernames: This is set to true to lowercase the field names and convert
nonalphanumeric characters to an underscore. For example, Last-Updated
becomes last_updated.

• fmap.[tikaFieldName]: This maps a source field name to a target field
name. For example, fmap.last_modified=timestamp maps the metadata
field last_modified generated by Tika to be recorded in the timestamp
field defined in the Solr schema.

• uprefix: This prefix is applied to the field name, if the unprefixed name
doesn't match an existing field. It is used in conjunction with a dynamic
field for mapping individual metadata fields separately:
uprefix=meta_
<dynamicField name="meta_*" type="text_general"
indexed="true" stored="true" multiValued="true"/>

• defaultField: This is a field to use if uprefix isn't specified, and no
existing fields match. This can be used to map all the metadata fields
into one multivalued field:
defaultField=meta
<field name="meta" type="text_general" indexed="true"
stored="true" multiValued="true"/>

Ignoring metadata fields
If you don't want to index unknown metadata fields, you can
throw them away by mapping them to the ignored_ dynamic
field by setting uprefix="ignore_" and using the ignored field
type: <dynamicField name="ignored_*" type="ignored"
multiValued="true"/>.

www.it-ebooks.info

http://tika.apache.org/0.8/api/org/apache/tika/sax/xpath/XPathParser.html
http://tika.apache.org/0.8/api/org/apache/tika/sax/xpath/XPathParser.html
http://www.it-ebooks.info/

Chapter 4

[111]

The other miscellaneous parameters:

• boost.[fieldname]: Boost the specified field by this factor, a float value,
to affect scoring. For example, boost="2.5", default value is 1.0.

• extractOnly: Set this to true to return the XHTML structure of the
document as parsed by Tika without indexing the document. This is
typically done in conjunction with wt=json&indent=true to make the
XHTML easier to read. The purpose of this option is to aid in debugging.

• extractFormat: This defaults to xml (when extractOnly=true) to produce
the XHMTL structure. Can be set to text to return the raw text extracted
from the document.

Update request processors
No matter how you choose to import data, there is a final configuration point within
Solr that allows manipulation of the imported data before it gets indexed. The Solr
request handlers that update data put documents on an update request processor
chain. If you search solrconfig.xml for updateRequestProcessorChain, then
you'll see an example.

You can specify which chain to use on the update request with the update.
chain parameter. It could be useful, but you'll probably always use one chain.
If no chain is specified, you get a default chain of LogUpdateProcessorFactory
and RunUpdateProcessorFactory. The following are the possible update request
processors that you can choose from. Their names all end in UpdateProcessorFactory.

• SignatureUpdateProcessorFactory: This generates a hash ID value based
on the field values you specify. If you want to deduplicate your data (that
is, you don't want to add the same data twice accidentally), then this will do
that for you. For further information, see http://wiki.apache.org/solr/
Deduplication.

• UIMAUpdateProcessorFactory: This hands the document off to the
Unstructured Information Management Architecture (UIMA), a Solr
contrib module that enhances the document through natural language
processing (NLP) techniques. For further information, see http://wiki.
apache.org/solr/SolrUIMA.

Although it's nice to see an NLP integration option in Solr, beware
that NLP processing tends to be computationally expensive. Instead of
using UIMA in this way, consider performing this processing external
to Solr and cache the results to avoid re-computation as you adjust
your indexing process.

www.it-ebooks.info

http://wiki.apache.org/solr/Deduplication
http://wiki.apache.org/solr/Deduplication
http://wiki.apache.org/solr/SolrUIMA
http://wiki.apache.org/solr/SolrUIMA
http://www.it-ebooks.info/

Indexing Data

[112]

• LogUpdateProcessorFactory: This is the one responsible for writing the
log messages you see when an update occurs.

• RunUpdateProcessorFactory: This is the one that actually indexes the
document; don't forget it or the document will vanish! To decompose this
last step further, it hands the document to Lucene, which will then process
each field according to the analysis configuration in the schema.

• FieldMutatingUpdateProcessorFactory: This allows you to manipulate
the field values when adding the documents to the index. You can
configure for what fields the processor should act on by name, type,
name regex, or type class. The following are the useful extensions of the
FieldMutatingUpdateProcessorFactory implementation:

 ° TrimFieldUpdateProcessorFactory: This trims leading and trailing
white spaces from any CharSequence values found in fields matching
the specified conditions and returns the resulting string. By default,
this processor matches all fields.

 ° RemoveBlankFieldUpdateProcessorFactory: This removes any
values found, which are CharSequence with a length of 0. (that is,
empty strings). By default, this processor applies itself to all fields.

 ° FieldLengthUpdateProcessorFactory: This replaces any
CharSequence values found in fields matching the specified
conditions with the lengths of those CharSequences (as an integer).
By default, this processor matches no fields.

 ° ConcatFieldUpdateProcessorFactory: This concatenates
multiple values for fields matching the specified conditions using a
configurable delimiter that defaults to ", ". By default, this processor
concatenates the values for any field name, which according to the
schema is multiValued="false" and uses TextField or StrField.

 ° FirstFieldValueUpdateProcessorFactory: This trims leading and
trailing white spaces from any CharSequence values found in fields
matching the specified conditions and returns the resulting String.

 ° LastFieldValueUpdateProcessorFactory: This keeps only the
last value of fields matching the specified conditions. By default,
this processor matches no fields.

 ° MinFieldValueUpdateProcessorFactory: This keeps only the
minimum value from any selected fields where multiple values
are found. By default, this processor matches no fields.

 ° MaxFieldValueUpdateProcessorFactory: This keeps only the
maximum value from any selected fields where multiple values
are found. By default, this processor matches no fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

 ° TruncateFieldUpdateProcessorFactory: This truncates
any CharSequence values found in fields matching the specified
conditions to a maximum character length. By default, this processor
matches no fields.

 ° IgnoreFieldUpdateProcessorFactory: This ignores and removes
fields matching the specified conditions from any document being
added to the index. By default, this processor ignores any field name
that does not exist according to the schema.

 ° CountFieldValuesUpdateProcessorFactory: This replaces
any list of values for a field matching the specified conditions
with the count of the number of values for that field. By
default, this processor doesn't match any fields. The typical
use case for this processor would be in combination with the
CloneFieldUpdateProcessorFactory so that it's possible to
query by the quantity of values in the source field.

 ° HTMLStripFieldUpdateProcessorFactory: This strips all HTML
markup in any CharSequence values found in fields matching the
specified conditions. By default, this processor matches no fields.

 ° RegexReplaceProcessorFactory: This applies a configured regex
to any CharSequence values found in the selected fields, and replaces
any matches with the configured replacement string. By default, this
processor applies itself to no fields.

 ° PreAnalyzedUpdateProcessorFactory: This parses configured
fields of any document being added using PreAnalyzedField with
the configured format parser. Fields are specified using the same
patterns as in FieldMutatingUpdateProcessorFactory. They
are then checked to see whether they follow a pre-analyzed format
defined by the parser. The valid fields are then parsed. The original
SchemaField is used for initial creation of IndexableField, which
is then modified to add the results from parsing (token stream
value and/or string value) and then it will be directly added to the
final Lucene Document to be indexed. Fields that are declared in
the patterns list but are not present in the current schema will be
removed from the input document.

• CloneFieldUpdateProcessorFactory: This is used to clone the values
found in any matching source field into the configured dest field. If the
dest field already exists in the document, the values from the source fields
will be added to it. The boost value associated with the dest will not be
changed, and any boost specified on the source fields will be ignored.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Data

[114]

• StatelessScriptUpdateProcessorFactory: This enables custom update
processing code to be written in several scripting languages (such as
JavaScript, Ruby, Groovy, or Python). In the script, you have access to several
Solr objects, allowing you, for instance, to modify a document before it's
indexed by Solr, or to add custom info to the Solr log. It can be a very useful
feature to centralize logic when using multiple clients, or to modify requests
when you have no control over all clients.

The ScriptUpdateProcessor is powerful!
You should certainly use the other update processors as
appropriate, but there is nearly nothing you can't do with this
one. A sample script file (update-script.js) can be found
in the conf directory. For more details, see http://wiki.
apache.org/solr/ScriptUpdateProcessor.

• DocExpirationUpdateProcessorFactory: Introduced in Solr 4.8, this is
used to automatically delete documents from the index. This is executed via
a background thread. There are two options available related to the expiration
of documents, periodically delete documents from the index based on an
expiration field and computing expiration field values for documents from
a time to live (TTL). The expirationFieldName value is the name of the
expiration field, and autoDeletePeriodSeconds specifies how often the
timer thread should trigger a deleteByQuery to remove the documents.
This factory can also be configured to look for a _ttl_ request parameter,
as well as a _ttl_ field in each document that is indexed. Refer to the Solr
wiki or the API docs for more information.

• DocBasedVersionConstraintsProcessorFactory: Introduced
in Solr 4.6, this is used to enforce the version constraints based
on per-document version numbers using a configured name of a
versionField. It should be configured on the default update processor
before the DistributedUpdateProcessorFactory. Using this, if a
document with the same unique key already exists in the index and its
value of the versionField is not less than the value in the new document,
then the new document will be rejected with a 409 version conflict error.

• RegexpBoostProcessorFactory: This update processor is used to read
the inputField, match its content against the regular expressions found
in boostFilename, and if it matches, return the corresponding boost value
into the boostField as a double value from the file. If more than one
patterns match, then the boost values are multiplied.

www.it-ebooks.info

http://wiki.apache.org/solr/ScriptUpdateProcessor
http://wiki.apache.org/solr/ScriptUpdateProcessor
http://www.it-ebooks.info/

Chapter 4

[115]

• TikaLanguageIdentifierUpdateProcessorFactory and
LangDetectLanguageIdentifierUpdateProcessorFactory:
This identifies the language of a document before indexing and then
makes appropriate decisions about analysis, and so on. For further
info about language detection, see http://wiki.apache.org/solr/
LanguageDetection.

There are many other processors available and you can also
write your own. It's a recognized extensibility point in Solr
that consequently doesn't require modifying Solr itself. For
further information, see http://wiki.apache.org/solr/
UpdateRequestProcessor.

Summary
At this point, you should have a schema that you believe will suit your needs, and
you should know how to get your data into it. From Solr's native XML to JSON to
CSV to databases to rich documents, Solr offers a variety of possibilities to ingest
data into the index. Chapter 9, Integrating Solr, will discuss some additional language
and framework integration choices for importing data. In the end, usually one or
two mechanisms will be used. In addition, you can usually expect the need to write
a little code, perhaps just a simple bash or Ant script to implement the automation
of getting data from your source system into Solr.

Now that we've got data in Solr, we can finally start searching through it.

The next chapter will describe Solr's query syntax in detail, which includes phrase
queries, range queries, wildcards, boosting, as well as the description of Solr's
DateMath syntax. The chapters after that will get to more interesting searching
topics that of course depend on having data to search on!

www.it-ebooks.info

http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/LanguageDetection
http://wiki.apache.org/solr/UpdateRequestProcessor
http://wiki.apache.org/solr/UpdateRequestProcessor
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[117]

Searching
At this point, you have Solr running and some data indexed, and you're finally ready
to put Solr to the test. Searching with Solr is arguably the most fun aspect of working
with it, because it's quick and easy to do. While searching your data, you will learn
more about its nature than before. It is also a source of interesting puzzles to solve
when you troubleshoot why a search didn't find a document, or conversely, why it
did, or even why a document wasn't scored sufficiently high.

In this chapter, you are going to learn about the following topics:

• Request handlers
• Query parameters
• Solr's query syntax
• The DisMax query parser – part 1
• Filtering
• Sorting
• Joins
• Geospatial

The subject of searching will progress into the next chapter for debugging queries,
relevancy (that is, scoring) matters, function queries—an advanced capability used
commonly in relevancy but also used in sorting and filtering—and geospatial search.

In a hurry?
This chapter has a lot of key information on searching. That
said, if you're in a hurry, you can skim/skip query parsers,
local-params, and the query syntax—you'll use DisMax
instead. And you can skip DisMax's "min-should-match" too.
Read about geospatial if it's applicable.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[118]

Your first search – a walk-through
We've got a lot of data indexed, and now it's time to actually use Solr for what it is
intended to do—searching, also known as querying. When your application interacts
with Solr, it will more than likely use HTTP, either directly via common APIs or
indirectly through one of Solr's client APIs. However, as we demonstrate Solr's
capabilities in this chapter, we'll use Solr's web-based admin interface. In Chapter 1,
Quick Starting Solr, we covered the basics of Solr's admin interface. To use the admin
query interface, click on the mbartists core link in the left navigation column, and
then click Query.

You will see a window as shown in the following screenshot, after clicking on the
Query link:

The URL is http://localhost:8983/solr/#/mbartists/query. This form has
a subset of the options you might specify to run a search. Let's do a quick search. In
the q box, we'll leave the default of *:* (an asterisk, colon, and then another asterisk).
Admittedly, that is cryptic if you've never seen it before, but it basically means "match
anything in any field", which is to say, it matches all documents. Much more about the
query syntax will be discussed soon enough.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

Click on the Execute Query button and you'll see XML output appear in the main
content area. Now click on the URL at the top of this area to view the full response.
You should now see something like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="wt">xml</str>
 </lst>
 </lst>
 <result name="response" numFound="399182" start="0">
 <doc>
 <str name="type">Artist</str>
 <str name="id">Artist:272344</str>
 <str name="a_name">F.D. Project</str>
 <date name="a_release_date_latest">2004-11-
 30T00:00:00Z</date>
 <date name="indexedAt">2013-01-24T01:05:29Z</date>
 </doc>
 <doc>
 <str name="type">Artist</str>
 <str name="id">Artist:274969</str>
 <str name="a_name">Tempradura</str>
 <date name="indexedAt">2013-01-24T01:05:29Z</date>
 </doc>
 <doc>
 <str name="type">Artist</str>
 <str name="id">Artist:143163</str>
 <str name="a_name">Future Pilot A.K.A. vs. Two Lone
 Swordsmen</str>
 <date name="indexedAt">2013-01-24T01:05:29Z</date>
 </doc>
 <!--… 7 more documents omitted for brevity -->
 </result>
</response>

Browser note
You can use any browser, but Firefox has worked best for
every Solr release. Solr 4.1 broke Safari and IE support,
which was fixed in Solr 4.2.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[120]

A note on response format types
In Chapter 1, Quick Starting Solr, we mentioned that XML is not the only response
type supported by Solr. The types supported are XML, JSON, Python, Ruby,
PHP, and CSV. The parameter responsible for controlling the response type is
named wt—the response writer. This parameter accepts the previously mentioned
formats as lowercased values. For example, to specify JSON, the wt param would
be wt=json. Solr's admin query interface provides control of this parameter as
a select box. Changing this select box to json and clicking Execute Query again
would result in a JSON response similar to this:

{
 "responseHeader": {
 "status": 0,
 "QTime": 38,
 "params": {
 "indent": "true",
 "q": "*:*",
 "wt": "json"
 }
 },
 "response": {
 "numFound": 399182,
 "start": 0,
 "docs": [
 {"type": "Artist",
 "id": "Artist:272344",
 "a_name": "F.D. Project",
 "a_release_date_latest": "2004-11-30T00:00:00Z",
 "indexedAt": "2013-01-24T01:05:29Z"},
….

As you have probably noticed, the response structure is the same as the XML format.
The keys and values are also the same. The main difference between the JSON
and XML is that the data type information is not present in the JSON response.
This is a limitation present in all of the non-XML formats supported by Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Solr's generic XML structured data
representation
Solr has its own generic XML representation of typed and named data structures. This
XML is used for most of the response XML, and it is also used in parts of solconfig.
xml. The XML elements involved in this partial XML schema are as follows:

• <lst>: This is a named list. Each of its child nodes should have a name
attribute. The <doc> element is in effect equivalent to lst but is used
only for result documents.

• <arr>: This is an array of values. Each of its child nodes is a member of
this array.

The following elements represent simple values with the text of the element storing
the value. The numeric ranges match that of the Java language. They will have a
name attribute if they are underneath lst (or doc), but not otherwise.

• <str>: A string of text
• <int>: An integer in the range -2^31 to 2^31-1
• <long>: An integer in the range -2^63 to 2^63-1
• <float>: A floating point number in the range 1.4e–45 to about 3.4e38
• <double>: A floating point number in the range 4.9e–324 to about 1.8e308
• <bool>: A Boolean value represented as true or false; when supplying

values in a configuration file: on, off, yes, and no are also supported
• <date>: A date in the ISO-8601 format such as: 1965-11-30T05:00:00Z;

times are always in the UTC time zone represented by Z

Solr's XML response format
The <response/> element wraps the entire response. The first child element is
<lst name="responseHeader">, which is intuitively the response header that
captures some basic metadata about the response. Some of the fields you'll find
in the responseHeader include:

• status: This is always 0. If a Solr error occurs, then the HTTP response
status code will reflect it and a plain HTML page will display the error.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[122]

• QTime: This refers to the number of milliseconds Solr takes to process the
entire request on the server. Due to internal caching, you should see this
number drop to a couple of milliseconds or so for subsequent requests of
the same query. If subsequent identical searches are much faster, yet you
see the same QTime, then your web browser (or intermediate HTTP proxy)
has cached the response. Solr's HTTP caching configuration will be discussed
in Chapter 10, Scaling Solr.

• Other data may be present depending on query parameters.

The main body of the response is the search result listing enclosed by <result
name="response" numFound="399182" start="0">, and it contains a <doc> child
node for each returned document. Some of the fields have been explained here:

• numFound: This is the total number of documents matched by the query.
This is not impacted by the rows parameter, and as such may be larger
(but not smaller) than the number of child <doc> elements.

• start: This is the same as the start request parameter (described shortly),
which is the offset of the returned results into the query's result set.

• maxScore: Of all documents matched by the query (numFound), this is
the highest score. If you didn't explicitly ask for the score in the field list
using the fl request parameter (described shortly), then this won't be here.
Scoring will be described in the next chapter.

The contents of the <result> element are a list of doc elements. Each of these
elements represents a document in the index. The child elements of a doc element
represent fields in the index and are named correspondingly. The types of these
elements use Solr's generic data representation, which was described earlier. They
are simple values if they are not multi-valued in the schema. For multi-valued
values, the field would be represented by an ordered array of simple values.

There was no data following the results element in our demonstration query.
However, there can be, depending on the query parameters enabling features such
as faceting and highlighting. When we cover those features, the corresponding XML
will be explained.

Parsing the URL
When the admin Query page form is submitted, the form parameters become the
query string component of the URL. This URL can be seen at the top of the search
results section. Take a good look at the URL; understanding the URL's structure is
very important to grasp how searching Solr works:

http://localhost:8983/solr/mbartists/select?q=*%3A*&wt=xml

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

• The /solr/ is the web application context where Solr is installed on the
Java servlet engine. If you have a dedicated server for Solr, then you might
opt to install it at the root. This would make it just /. How to do this is
beyond the scope of this book, but letting it remain at /solr/ is fine.

• After the web application context is a reference to the Solr core named
mbartists. If you are experimenting with Solr's example setup, you
won't see a core name because it has a default one. We'll see more about
configuring Solr cores in Chapter 11, Deployment.

• The /select is a reference to the Solr request handler. More on this is
covered next in the Understanding request handlers section.

• Following the ? is a set of unordered URL parameters, also known as query
parameters in the context of Solr. The format of this part of the URL is an &
that separates sets of unordered name-value pairs. As the form doesn't have
an option for all query parameters, you will manually modify the URL in
your browser to add query parameters as needed.

Text in the URL must be UTF-8 encoded then URL-escaped so that the URL complies
with its specification. This concept should be familiar to anyone who has done web
development. Depending on the context in which the URL is actually constructed,
there are API calls you should use to ensure that this escaping happens properly.
For example, in JavaScript, you could use encodeURIComponent(). In the previous
URL, Solr interpreted %3A as a colon. The most common escaped character in URLs
is a space, which is escaped as either + or %20. Fortunately, when experimenting with
URLs, browsers are lenient and will permit some characters that should be escaped.
For more information on URL encoding, see http://en.wikipedia.org/wiki/
Percent-encoding.

Understanding request handlers
Most interactions with Solr, including indexing and searching, are processed
by what Solr calls request handlers. Request handlers are configured in the
solrconfig.xml file and are clearly labeled as such. Many of them exist for
special purposes, such as handling a CSV import, for example. Here is how
the default request handler is configured:

<requestHandler name="/select" class="solr.SearchHandler">
 <!-- default values for query parameters can be specified, these
 will be overridden by parameters in the request -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Percent-encoding
http://en.wikipedia.org/wiki/Percent-encoding
http://www.it-ebooks.info/

Searching

[124]

 <str name="df">text</str>
 </lst>
…

The request handlers that perform searches allow configuration of two things:

• Establishing default parameters and making some unchangeable
• Registering Solr search components such as faceting and highlighting

Create a request handler configuration for your application
Instead of using /select for all your application's searches, we
recommend that you create a request handler for each type of search
that your application requires (for example, separate out a standard
search from auto-complete). In doing so, you can more easily change
search options through the request handler configuration and reduce
hard-wired configuration in the application. This approach gives you
better granularity of search statistics on Solr's Plugins / Stats screen
and it makes your web server logs more discernable.

Let's say that in the MusicBrainz search interface, we have a search form that
searches for bands. We have a Solr core just for artists named mbartists, but this
contains not only bands but also individual band members. When the field named
a_type is group, we have a band. To start, copy the default configuration, and give
it a name such as /bands. We can now use this request handler with /bands in the
URL as follows:

/solr/mbartists/bands&q=Smashing&.....

An older alternative that we don't recommend is to name the handler without a
leading / and then use the qt parameter to reference it, but still use the /select
path. This requires a change in solrconfig, where you set <requestDispatcher
handleSelect="true"> earlier in the file. The URL then looks like this:

/solr/mbartists/select?qt=bands&q=Smashing&.....

Let's now configure this request handler to filter searches to find only the bands,
without the search application having to specify this. We'll also set a few other
options as follows:

<requestHandler name="/bands" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">none</str>
 <int name="rows">20</int>
 </lst>
 <lst name="appends">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

 <str name="fq">a_type:group</str>
 </lst>
 <lst name="invariants">
 <str name="facet">false</str>
 </lst>
</requestHandler>

Request handlers have several lists to configure. These use Solr's generic XML data
structure, which was described earlier.

• defaults: These simply establish default values for various request
parameters. Parameters in the request will override them.

• appends: For parameters that can be set multiple times, such as fq,
this section specifies values that will be set in addition to any that
may be specified by the request.

• invariants: This sets defaults that cannot be overridden. It is useful for
security purposes—a topic for Chapter 11, Deployment. It can also be used to
override what the client sends when you don't have control over the client
application; for instance, if the application is deployed and you can't easily
re-deploy a new client.

• first-components, components, last-components: These list the
Solr search components to be registered for possible use with this request
handler. By default, a set of search components is already registered to enable
functionality such as querying and faceting. Setting first-components or
last-components prepends or appends to this list respectively, whereas
setting components overrides the list completely. For more information
about search components, read Chapter 8, Search Components.

Solr 4.2 contains a new query parser named switch that is useful when the defaults
and appends options above are insufficiently flexible. Consult Solr's new reference
guide on it for more information.

Query parameters
There are a great number of request parameters to configure Solr searches, especially
when considering all of the components such as faceting and highlighting. Only
the core search parameters that aren't specific to any query parser are listed here.
Furthermore, in-depth explanations for some lie further in the chapter.

For the Boolean parameters, a true value can be any one of true,
on, or yes. False values can be any of false, off, and no.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[126]

Search criteria related parameters
The parameters affecting the query are as follows:

• q: This refers to the user query or just query for short. This typically
originates directly from user input. The query syntax is determined
by the defType parameter.

• defType: This is a reference to the query parser for the user query in q.
The default is lucene with the syntax to be described shortly. You'll most
likely use dismax or edismax discussed later in the chapter.

Prefer DisMax or eDisMax for user queries
For processing queries from users, you should use dismax or edismax,
which is described later in the chapter. It supports several features that
enhance relevancy, and more limited syntax options that prevent a user
from getting unexpected results or an error if they inadvertently use the
lucene native syntax.

• fq: This is a filter query that limits the scope of the user query, similar to
a WHERE clause in SQL. Unlike the q parameter, it has no effect on scoring.
This parameter can be repeated as desired. Filtering has been described
later in the chapter.

• qt: This is a reference to the request handler described earlier. By default,
it doesn't work anymore with Solr's default configuration.

Result pagination related parameters
A query could match any number of the documents in the index, perhaps even all
of them, such as in our first example of *:*. Solr doesn't generally return all the
documents. Instead, you indicate to Solr with the start and rows parameters to
return a contiguous series of them. The start and rows parameters are explained
as follows:

• start (default: 0): This is the zero-based index of the first document to be
returned from the result set. In other words, this is the number of documents
to skip from the beginning of the search results. If this number exceeds
the result count, then it will simply return no documents; but this is not
considered an error.

• rows (default: 10): This is the number of documents to be returned in the
response XML, starting at index start. Fewer rows will be returned if there
aren't enough matching documents. This number is basically the number of
results displayed at a time on your search user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

In versions 4.6 and earlier, Solr had performance issues when querying
with very high start parameter values (deep paging). At least for the first
thousand documents or so, this shouldn't be noticeable. The good news
is that version 4.7.0 fixes the problem, tracked by SOLR-5463.

Output-related parameters
The output-related parameters are explained as follows:

• fl: This parameter accepts a comma- and/or space-delimited list of values
that determine which fields will be present in the response documents. This
parameter can be specified multiple times. We'll cover the fl parameter
details next.

• sort: This refers to a comma-separated field listing to sort on, with a
directionality specifier of asc or desc after each field; for example: r_name
asc, score desc. The default is score desc. You can also sort by functions,
which is a more advanced subject for the next chapter. There is more to
sorting than meets the eye; read more about it later in this chapter.

• wt: This is the response format, also known as writer type or query
response writer, defined in solrconfig.xml. Since the subject of picking
a response format has to do with how you will integrate with Solr, further
recommendations and details are left to Chapter 9, Integrating Solr. For now,
here is the list of options by name: xml (the default and aliased to standard),
json, python, php, phps, ruby, javabin, csv, xslt, velocity.

• version: This refers to the requested version of Solr's response structure,
if different than the default. Solr's response format hasn't changed in years.
However, if Solr's response structure changes, then it will do so under a
new version. By using this in the request from client code, a best practice,
you reduce the chances of your client code breaking if Solr is updated.

More about the fl parameter
As noted in the preceding section, the fl parameter is used to specify which fields
are included in each of the response documents. The fl parameter accepts a wide
range of value types, all of which can be freely mixed together in any order:

• Field names: These are simply document field names. Fields added to the
fl parameter cause the same fields to be present in the response documents;
for example, fl=a_name.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[128]

• Functions: Any valid Solr function query can be included as a document
field value (see the next chapter for more on these functions); for example,
fl=sum(1,2,sum(3,4)).

• Aliases: Fields can be renamed (aliased) using the fl=new_name:original_
name syntax. The result of a function call can also be aliased with
fl=ten:product(2,5).

• Score: The score for each document can be included in the response by
adding score to the fl parameter.

• Glob: Use * to refer to all fields and/or partially matching field names. For
example, if you want only fields that start with a_, you would use fl=a_*.

• Document transformers: This is an experimental feature that allows documents
to be modified before being returned to the client. The syntax for transformers
uses square brackets around a transformer name with arguments as required:
fl=[explain style=text]. Custom transformers can be created using Java,
and there are several built-in transformers available:

 ° docid: This adds the Lucene internal document ID to each document.
 ° shard: This adds the name of the SolrCloud shard that produced the

result to each document (Chapter 10, Scaling Solr, documents SolrCloud).
 ° explain: This embeds explain information for each document. This

transformer accepts an optional style argument set to one of these
values: nl, text, or html. Solr's explain is covered in the following
section on debugging.

 ° value: This adds static values to each document. This transformer
has one required parameter, v, which sets the value of the field.
An optional type parameter t can be set to one of these values: int,
double, float, and date. An example is [value v=1 t=double].

Each of the types aforementioned can be combined and aliased as needed. Here's an
example URL that makes use of the many valid fl values: http://localhost:8983/
solr/mbartists/select?q=*:*&fl=type,a_*&fl=theScore:score,three:sum(1,
2),luceneID:[docid].

And here is a sample document from that query response:

<doc>
 <str name="type">Artist</str>
 <str name="a_name">F.D. Project</str>
 <date name="a_release_date_latest">2004-11-30T00:00:00Z</date>
 <float name="theScore">1.0</float>
 <float name="three">3.0</float>
 <int name="luceneID">0</int>
</doc>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Diagnostic parameters
These diagnostic parameters are helpful during development with Solr. Obviously,
you'll want to be sure NOT to use these, particularly debugQuery, in a production
setting because of performance concerns.

• indent: This is a Boolean option that will indent the output to make it easier
to read. It works for most of the response formats.

• debugQuery: If true, then following the search results is <lst name="debug">
with diagnostic information. It contains voluminous information about the
parsed query string, how the scores were computed, and timings for all of
the Solr components to perform their part of the processing such as faceting.
You may need to use the View Source function of your browser to preserve
the formatting used in the score computation section. Debugging queries and
enhancing relevancy is documented further in the next chapter.
explainOther: If you want to determine why a particular document wasn't
matched by the query or why it wasn't scored highly enough, then you can
set a query for this parameter, such as id:"Release:12345", and output
of the debugQuery will be sure to include the first document matching this
query in its output.

• debug: This is a parameter to specify individual debugging features—add a
debug parameter pair for each of these values as desired:

 ° query: Returns information about how the query was parsed
 ° results: Returns scoring information for each matching document
 ° timing: Returns component timing information
 ° true: Equivalent to debugQuery=true

• echoHandler: If true, then this emits the Java class name identifying the
Solr request handler.

• echoParams: This controls whether or not query parameters are returned
in the response header, as seen verbatim earlier. This is used to debug URL
encoding issues, or to verify the complete set of parameters in effect—those
present in the request (the URL plus HTTP post data) and those defined
in the request handler. Specifying none disables this, which is appropriate
for production real-world use. The default value is explain, which causes
Solr to include only the parameters present in the request. Finally, you can
use all to include those parameters configured in the request handler in
addition to those in the URL.

• debug.explain.structured: When true, the result of the score explanation
is returned as structured data.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[130]

Finally, there is another parameter that is not easily categorized called timeAllowed.
This parameter accepts a value in milliseconds, which is a threshold used as the
maximum time for a query to complete. If the query does not complete by this
time limit, intermediate results are returned. Long-running queries should be
very rare, but this allows you to cap them so that they don't overburden your
production server.

Query parsers and local-params
A query parser parses a string into an internal Lucene query object, potentially
considering request parameters and so-called local-params. Only a few parsers
actually do real string parsing; some parsers—like those for geospatial—don't even
use the query string. The default query parser is named lucene, and it has a special
leading syntax to switch the parser to another and/or to specify parameters. Here's
an example using the dismax parser along with two local-params and a query string
of billy corgan:

{!dismax qf="a_name^2 a_alias" tie=0.1}billy corgan

It's not common to see this syntax in the user query, q,
since its parser is conveniently set via defType.

There are a few things to know about the local-params syntax:

• The leading query parser name (for example, DisMax) is optional. Without it,
the parser remains as lucene. Furthermore, this syntax is a shortcut to put the
query parser name in the type local-param.

• Usually, a query parser treats local-params as an override to request
parameters in the URL.

• A parameter value can refer to a request parameter via a leading $, for
example, v=$qq. This is useful to decompose a larger query, and to define
parts of the query in different places between the request and the request
handler's configuration.

• The special parameter v can be used to hold the query string as an
alternative to it following }. The query() function query requires
this approach. That will be shown later.

• A parameter value doesn't have to be quoted if there are no spaces.
There wasn't any for the tie parameter in the preceding example.

For an interesting example, see the subquery syntax later in the Subqueries section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Solr includes quite a few different query parsers. In the next section, you'll learn
all about lucene. To process user queries, you should typically use dismax or
edismax (short for extended-DisMax), which are described afterwards. The other
query parsers are for special things, such as geospatial search, also described at the
end of this chapter. This book only explores the most useful parsers; for further
information, see https://cwiki.apache.org/confluence/display/solr/
Query+Syntax+and+Parsing.

Query syntax (the lucene query parser)
The query parser named lucene is Solr's most expressive and capable. With the
benefit of hindsight, it should have been named "solr". It is based on Lucene's classic
syntax with some additions that will be pointed out explicitly. In fact, you've already
seen the first addition, which is local-params.

The lucene query parser does have a couple of query parameters that can be set.
These parameters aren't normally specified though; Lucene's query syntax is easily
made explicit to not need these options.

• q.op: This is the default query operator, either AND or OR to signify if all of
the search terms or just one of the search terms need to match. If this isn't
present, then the default is specified in schema.xml near the bottom in the
defaultOperator attribute. If that isn't specified, then the default is OR.

• df: This is the default field that will be searched by the user query. If this
isn't specified, then the default is specified in schema.xml near the bottom
in the <defaultSearchField> element. If that isn't specified, then a query
that does not explicitly specify a field to search will cause an error.

We recommend not using these parameters, unless they are used with
local-params, such as, {! df=text q.op=AND}my query. Similarly,
we recommend not setting the global defaults in the schema. One reason
is that they affect all queries in the same request that you perhaps didn't
intend, such as a facet query. Another is that it makes a query that
depends on it ambiguous without knowing what these parameters are.

To play along with the examples in the book, go to http://localhost:8983/
solr/#/mbartists/query and set the df parameter to a_name. We advise you not
to use that parameter, but this is for experimentation. The default query operator
remains at OR and doesn't need changing. You may find it easier to scan the results
if you set fl (the field list) to a_name, score.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
https://cwiki.apache.org/confluence/display/solr/Query+Syntax+and+Parsing
http://www.it-ebooks.info/

Searching

[132]

To see a normalized string representation of the parsed query
tree, enable debugQuery or set debug=query (conveniently via
the Raw Query Parameters input). Then look for parsedquery
in the debug output. See how it changes, depending on the query.

Matching all the documents
Lucene doesn't natively have a query syntax to match all documents. Solr enhances
Lucene's query syntax to support this with the following syntax:

:

In Solr 4.2, the syntax is as follows:

*

When using dismax, it's common to set q.alt to this match-everything query so that
a blank query returns all results.

Mandatory, prohibited, and optional clauses
Lucene has a unique way of combining multiple clauses in a query string. It is
tempting to think of this as a mundane detail that is common to Boolean operations
in programming languages, but Lucene doesn't quite work that way.

A query expression is decomposed into a set of unordered clauses of three types:

• A clause can be mandatory: +Smashing
This matches only artists containing the word Smashing.

• A clause can be prohibited: -Smashing
This matches all artists except those with Smashing. You can also use an
exclamation mark as in !Smashing but that's rarely used.

• A clause can be optional: Smashing

Spaces must not come between +, ! or - and the search word
for it to work as described here, otherwise the operator itself is
treated like a separate word and the word to its right will default
to optional. Typically, the operator won't actually be searched for
since text analysis usually removes it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

The term optional deserves further explanation. If the query expression contains
at least one mandatory clause, then any optional clause is just that—optional. This
notion may seem pointless, but it serves a useful function in scoring documents that
match more of them higher. If the query expression does not contain any mandatory
clauses, then at least one of the optional clauses must match. The next two examples
illustrate optional clauses.

Here, Pumpkins is optional, and the well-known band will surely be at the top of the
list, ahead of bands with names like Smashing Atoms:

+Smashing Pumpkins

In this example, there are no mandatory clauses and so documents with Smashing or
Pumpkins are matched, but not Atoms. The Smashing Pumpkins is at the top because
it matched both, followed by other bands containing only one of those words:

Smashing Pumpkins –Atoms

If you would like to specify that a certain number or percentage of optional clauses
should match or should not match, you can instead use the DisMax query parser
with the min-should-match feature, described later in the chapter.

Boolean operators
The Boolean operators AND, OR, and NOT can be used as an alternative syntax to arrive
at the same set of mandatory, optional, and prohibited clauses that were mentioned
previously. Use the debugQuery feature and observe that the parsedquery string
normalizes away this syntax into the previous (clauses being optional by default,
such as OR).

Case matters! At least this means that it is harder to accidentally
specify a Boolean operator.

When the AND or && operator is used between clauses, then both the left and right
sides of the operand become mandatory, if not already marked as prohibited.
Let's consider this search result:

Smashing AND Pumpkins

It is equivalent to:

+Smashing +Pumpkins

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[134]

Similarly, if the OR or || operator is used between clauses, then both the left and
right sides of the operand become optional, unless they are marked mandatory
or prohibited. If the default operator is already OR, then this syntax is redundant.
If the default operator is AND, then this is the only way to mark a clause as optional.

To match artist names that contain Smashing or Pumpkins, try:

Smashing || Pumpkins

The NOT operator is equivalent to the - syntax. So to find artists with Smashing but
not Atoms in the name, you can do this:

Smashing NOT Atoms

We didn't need to specify a + on Smashing. This is because it is the only optional
clause and there are no explicit mandatory clauses. Likewise, using AND or OR would
have no effect in this example.

It may be tempting to try to combine AND with OR such as:

Smashing AND Pumpkins OR Green AND Day

However, this doesn't work as you might expect! Remember that AND is equivalent
to both sides of the operand being mandatory, and thus each of the four clauses
becomes mandatory. Our dataset returned no results for this query. In order to
combine query clauses in some ways, you will need to use subqueries.

Subqueries
You can use parenthesis to compose a query of smaller queries, referred to as
subqueries or nested queries. The following example satisfies the intent of the
previous example:

(Smashing AND Pumpkins) OR (Green AND Day)

Using what we know previously, this could also be written as:

(+Smashing +Pumpkins) (+Green +Day)

But this is not the same as:

+(Smashing Pumpkins) +(Green Day)

The preceding subquery is interpreted as documents that must have a name with
Smashing or Pumpkins and either Green or Day in its name. So if there were a band
named Green Pumpkins, then it would match.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Solr added another syntax for subqueries to Lucene's old syntax, which allows
the subquery to use a different query parser, including local-params. This is an
advanced technique, so don't worry if you don't understand it at first.

As an example, suppose you have a search interface with multiple query boxes,
whereas each box is to search a different field. You could compose the query string
yourself, but you would have some query-escaping issues to deal with. And if you
wanted to take advantage of the dismax parser, then with what you know so far,
that isn't possible. Here's an approach using this new syntax:

+{!dismax qf=a_name v=$q.a_name} +{!dismax qf=a_alias
v=$q.a_alias}

This example assumes that request parameters of q.a_name and q.a_alias are
supplied for the user input for these fields in the schema. Recall from the local-params
definition that the parameter v can hold the query and that the $ refers to another
named request parameter.

With versions of Solr earlier than 4.1, the syntax is slightly different and
more complicated. The syntax uses a magic field named _query_ with its
value being the subquery, which practically speaking, needs to be quoted.
Here's the query from the preceding example, using the old syntax:

+_query_:"{!dismax qf=a_name v=$q.a_name}"
+_query_:"{!dismax qf=a_alias v=$q.a_alias}"

Limitations of prohibited clauses in subqueries
Lucene doesn't actually support a pure negative query; for example:

-Smashing -Pumpkins

Solr enhances Lucene to support this, but only at the top-level query, such as in the
preceding example. Consider the following, admittedly strange, query:

Smashing (-Pumpkins)

This query attempts to ask the question: Which artist names contain either
Smashing or do not contain Pumpkins? However, it doesn't work and only
matches the first clause—(four documents). The second clause should essentially
match most documents resulting in a total for the query that is nearly every
document. The artist named Wild Pumpkins at Midnight is the only one in
the index that does not contain Smashing but does contain Pumpkins, and so
this query should match every document except that one.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[136]

To make this work, you have to take the subexpression containing only negative
clauses, and add the all-documents query clause: *:*, as shown here:

Smashing (-Pumpkins *:*)

Interestingly, this limitation is fixed in the edismax query parser. Hopefully, a future
version of Solr will fix it universally, thereby making this workaround unnecessary.

Querying specific fields
To have a clause explicitly search a particular field, you need to precede the relevant
clause with the field's name, and then add a colon; spaces may be used in between,
but that is generally not done:

a_member_name:Corgan

This matches bands containing a member with the name Corgan. To match Billy
and Corgan, do the following:

+a_member_name:Billy +a_member_name:Corgan

Or use this shortcut to match multiple words:

a_member_name:(+Billy +Corgan)

The content of the parenthesis is a subquery, but with the default field being
overridden to be a_member_name, instead of what the default field would be
otherwise. By the way, we could have used AND instead of +, of course. Moreover,
in these examples, all of the searches were targeting the same field, but you can
certainly match any combination of fields needed.

Phrase queries and term proximity
A clause may be a phrase query: a contiguous series of words to be matched in order.
In the previous examples, we've searched for text containing multiple words such as
Billy and Corgan, but let's say we wanted to match Billy Corgan (that is, the
two words adjacent to each other in that order). This further constrains the query.
Double quotes are used to indicate a phrase query, as shown in the following query:

"Billy Corgan"

Related to phrase queries is the notion of the term proximity, also known as the slop
factor or a near query. In our previous example, if we wanted to permit these words
to be separated by no more than say three words in between, we could do this:

"Billy Corgan"~3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

For the MusicBrainz dataset, this is probably of little use. For larger text fields, this
can be useful in improving search relevance. The dismax query parser, which is
described in the next chapter, can automatically turn a user's query into a phrase
query with a configured slop.

For advanced requirements such as wildcards and Booleans within a phrase
query, ComplexPhraseQueryParser can be used. For more information on
this parser, its options and performance considerations, visit https://cwiki.
apache.org/confluence/display/solr/Other+Parsers#OtherParsers-
ComplexPhraseQueryParser.

Wildcard queries
A plain keyword search will look in the index for an exact match, subsequent to
text analysis processing on both the query and input document text (for example,
tokenization and lowercasing). But sometimes you need to express a query for a
partial match expressed using wildcards.

There is a highly relevant section in Chapter 3, Text Analysis,
on partial/substring indexing. In particular, read about
ReversedWildcardFilterFactory. N-grams is a different
approach that does not work with wildcard queries.

There are a few points to understand about wildcard queries:

• Wildcard queries are a type of multiterm query, which means that the input
is expanded into multiple terms during analysis. By default, multiterm
query analyzer chains are in lowercase. Prefix, regex, and range queries
are also forms of multiterm queries. For more information on multiterm
query analysis, see the wiki page at http://wiki.apache.org/solr/
MultitermQueryAnalysis.

• If the field that you want to use the wildcard query on is stemmed in
the analysis, then smashing* might not find the original text Smashing.
The Porter stemmer will transform this word to smash, whereas
EnglishMinimalStemmer (used in a_name) won't touch this word.
Consequently, don't stem or use a minimal stemmer.

• Wildcard queries are one of the slowest types you can run. Use of
ReversedWildcardFilterFactory helps with this a lot. But if you
have an asterisk wildcard on both ends of the word, then this is the
worst-case scenario.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-ComplexPhraseQueryParser
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-ComplexPhraseQueryParser
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-ComplexPhraseQueryParser
http://wiki.apache.org/solr/MultitermQueryAnalysis
http://wiki.apache.org/solr/MultitermQueryAnalysis
http://www.it-ebooks.info/

Searching

[138]

To find artists containing words starting with Smash, you can use:

smash*

Or perhaps to find those starting with sma and ending with ing, use:

sma*ing

The asterisk matches any number of characters (perhaps none). You can also use ?
to force a match of any character at that position:

sma??*

That would match words that start with sma that have at least two more characters,
but potentially more.

As far as scoring is concerned, each matching term gets the same score regardless
of how close it is to the query pattern. Lucene can support a variable score at the
expense of performance, but you would need to do some hacking to get Solr to
do that.

Fuzzy queries
Fuzzy queries are useful when your search term needn't be an exact match, but
the closer the better. The fewer the number of character insertions, deletions, or
exchanges relative to the search term length, the better the score. The algorithm
used is known as the Levenshtein Distance algorithm, also known as the edit
distance. Fuzzy queries have the same need to avoid stemming, just as wildcard
queries do. For example:

smashing~

Notice the tilde character at the end. Without this notation, simply smashing
matches only four documents because only that many artist names contain that
word. The search term smashing~ matched 26 documents. The default edit
distance is 2, but you can reduce it to 1 like so for less fuzzy matching:

smashing~1

That results in six matched documents—two more than a non-fuzzy search. Prior
to Lucene 4, the edit distance was specified as a fraction of the number of characters
in the word, and Lucene could search based on whatever edit distance this came to,
albeit slowly. Lucene 4 is much faster but is limited to an edit distance no greater
than 2, so you are now best off simply specifying 1 or 2 instead of using the
fractional syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

Regular expression queries
There may be scenarios where you need to match documents using a specific pattern
that can't be expressed using wildcard or fuzzy queries. For these cases, a regular
expression query might be the answer.

The Solr regular expression syntax is simple and straightforward. Here's an example
that matches documents that contain a possible 5-digit zip code, somewhere in the
a_address field:

a_address:/[0-9]{5}/

As you can see, the pattern is enclosed in forward slashes (delimiters). Solr implicitly
applies the pattern matching the full indexed value. There is no need to anchor to the
beginning or end of the input string.

Regular expression queries are constant scoring—the scores of any matching
documents will always be 1.0.

Range queries
Lucene lets you query for numeric, date, and even text ranges. The following query
matches all of the bands formed in the 1990s:

a_type:2 AND a_begin_date:[1990-01-01T00:00:00.000Z TO 1999-12-
31T24:59:99.999Z]

Observe that the date format is the full ISO-8601 date-time in UTC, which Solr
mandates (the same format used by Solr to index dates and that which is emitted in
search results). The .999 milliseconds part is optional. The [and] brackets signify
an inclusive range, and, therefore, it includes the dates on both ends. To specify
an exclusive range, use { and }. In Solr 3, both sides must be inclusive or both
exclusive; Solr 4 allows both. The workaround in Solr 3 is to introduce an extra
clause to include or exclude a side of the range.

Use the right field type
To get the fastest numerical/date range query performance,
particularly when there are many indexed values, use a trie
field (for example, tdate) with precisionStep. This was
discussed in Chapter 2, Schema Design.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[140]

For most numbers in the MusicBrainz schema, we only have identifiers, and so it
made sense to use the plain long field type, but there are some other fields. For
the track duration in the tracks data, we could do a query such as the following
one to find all of the tracks that are longer than 5 minutes (300 seconds, 300,000
milliseconds):

t_duration:[300000 TO *]

In this example, we can see Solr's support for open-ended range queries by using *.

Although uncommon, you can also use range queries with text fields. For this
to have any use, the field should have only one term indexed. You can control
this either by using the string field type, or by using the KeywordTokenizer.
You may want to do some experimentation. The following example finds all
documents where somefield has a term starting with B:

somefield:[B TO C}

Both sides of the range B and C are not processed with text analysis that could exist
in the field type definition. If there is any text analysis such as lowercasing, you will
need to do the same to the query or you will get unexpected results.

Date math
Solr extended Lucene's old query parser to add date literals as well as some simple
math that is especially useful in specifying date ranges. In addition, there is a way
to specify the current date-time using NOW. The syntax offers addition, subtraction,
and rounding at various levels of date granularity, such as years, seconds, and so on
down to milliseconds. The operations can be chained together as needed, in which
case they are executed from left to right. Spaces aren't allowed. For example:

r_event_date:[* TO NOW-2YEAR]

In the preceding example, we searched for documents where an album was released
over two years ago. NOW has millisecond precision. Let's say what we really wanted
was precision to the day. By using /, we can round down (it never rounds up):

r_event_date:[* TO NOW/DAY-2YEAR]

The units to choose from are YEAR, MONTH, DAY, DATE (synonymous with DAY),
HOUR, MINUTE, SECOND, MILLISECOND, and MILLI (synonymous with MILLISECOND).
Furthermore, they can be pluralized by adding an S, as in YEARS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

This so-called DateMath syntax is not just for querying dates; it
is for supplying dates to be indexed by Solr too! An index-time
common usage is to timestamp added data. Using the NOW syntax
as the default attribute of a timestamp field definition makes
this easy. Here's how to do that: <field name="indexedAt"
type="tdate" default="NOW/SECOND" />.

Score boosting
You can easily modify the degree to which a clause in the query string contributes to
the ultimate relevancy score by adding a multiplier. This is called boosting. A value
between 0 and 1 reduces the score, and numbers greater than 1 increase it. You'll
learn more about scoring in the next chapter. In the following example, we search
for artists that either have a member named Billy, or have a name containing the
word Smashing:

a_member_name:Billy^2 OR Smashing

Here, we search for an artist name containing Billy, and optionally Bob or Corgan,
but we're less interested in those that are also named Corgan:

+Billy Bob Corgan^0.7

Existence and nonexistence queries
This is actually not a new syntax case, but an application of range queries.
Suppose you wanted to match all of the documents that have an indexed value
in a field. Here, we find all of the documents that have something in a_name:

a_name:[* TO *]

As a_name is the default field, just [* TO *] will do.

This can be negated to find documents that do not have a value for a_name, as shown
in the following code:

-a_name:[* TO *]

Just a_name:* is usually equivalent, and similarly, -a_name:* for
negation. This was an accidental feature that users discovered. However,
for some non-text fields such as numbers and dates, it is much slower, as
it uses a completely different code path that was designed for wildcard
text matching, not the nature of the actual field type. Consequently, we
recommend avoiding this syntax. See SOLR-1982.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[142]

Like wildcard and fuzzy queries, these are expensive, slowing down as the number
of distinct terms in the field increases.

Performance tip
If you need to perform these frequently, consider adding this to your
schema: <field name="field_name_ss" type="string"
stored="false" multiValued="true" />. Then, at index
time, add the name of fields that have a value to it. There's JavaScript
code for this commented in the update-script.js file invoked by
an UpdateRequestProcessor. The query would then simply be
field_name_ss:a_name, which is as fast as it gets.

Escaping special characters
The following characters are used by the query syntax as described in this chapter:

+ - && || ! () { } [] ^ " ~ * ? : \ /

In order to use any of these without their syntactical meaning, you need to escape
them by a preceding \ such as seen here:

id:Artist\:11650

This also applies to the field name part. In some cases, such as this one, where the
character is part of the text that is indexed, the double-quotes phrase query will also
work, even though there is only one term:

id:"Artist:11650"

If you're using SolrJ to interface with Solr, the ClientUtils.
escapeQueryChars() method will do the escaping for you.

A common situation in which a query needs to be generated, and thus escaped
properly, is when generating a simple filter query in response to choosing a field-value
facet when faceting. This syntax and suggested situation is getting ahead of us, but I'll
show it anyway since it relates to escaping. The query uses the term query parser as
{!term f=a_type}group. What follows } is not escaped at all; even a \ is interpreted
literally, and so with this trick, you needn't worry about escaping rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

The DisMax query parser – part 1
The lucene query parser we've been using so far for searching offers a rich syntax,
but it doesn't do anything more. A notable problem with using this parser is that
the query must be well formed according to the aforementioned syntax rules,
such as having balanced quotes and parentheses. Users might type just about
anything for a query, not knowing anything about this syntax, possibly resulting
in an error or unexpected results. The DisMax query parser, named after Lucene's
DisjunctionMaxQuery, addresses this problem and adds many features to enhance
search relevancy (good scoring). The features of this query parser that have a more
direct relationship to scoring are described in the The DisMax query parser – part 2
section in the next chapter. Use of this parser is so important that we need to
introduce it here.

You'll see references here to eDisMax, whereby the e stands for extended. This is a
forked evolution of DisMax that adds features. It hasn't yet replaced the original
DisMax query parser because it enables more support for Lucene's syntax at the
expense of a user inadvertently using it. So if you don't care about eDisMax's extra
features and don't have users that want the more advanced syntax support, then
stick with the venerable DisMax. In a future Solr version, perhaps as soon as the
next release, we expect dismax to refer to the enhanced version while the older
one will likely exist under another name.

Almost always use defType=edismax or dismax
The dismax (or edismax) query parser should almost always
be chosen for parsing user queries q. Set it in the request handler
definition for your app. Furthermore, we recommend the use
of edismax. The only consideration against this is whether it
will be a problem for users to be able to use Solr's full syntax,
inadvertently or maliciously. This will be explained shortly.

Here is a summary of the features that the dismax query parser has over the lucene
query parser:

• Searches across multiple fields with different score boosts through Lucene's
DisjunctionMaxQuery.

• Limits the query syntax to an essential subset. The edismax query parser
permits Solr's full syntax, assuming it parses correctly.

• Automatic phrase boosting of the entire search query. The edismax query
parser boosts contiguous portions of the query too.

• Convenient query boosting parameters, generally for use with function queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[144]

• Can specify the minimum number of words to match, depending on the
number of words in a query string.

• Can specify a default query to use when no user query is specified.

The edismax query parser was only mentioned a couple of times in this list, but it
improves on the details of how some of these features work.

Use debugQuery=on or debug=query
Enable query debugging to see a normalized string representation of
the parsed query tree, considering all value-add options that dismax
performs. Then, look for parsedquery in the debug output. See how
it changes depending on the query.

These features will subsequently be described in greater detail. But first, let's take a
look at a request handler we've set up to search for artists. Solr configuration that is
not related to the schema is located in solrconfig.xml. The following definition is
a simplified version of the one in this book's code supplement:

<requestHandler name="/mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="defType">edismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <str name="q.alt">*:*</str>
 <str name="mm">100%</str>
 </lst>
</requestHandler>

In Solr's admin Query interface screen, we can refer to this by setting Request-Handler
to /mb_artists. You can observe the effect in the URL when you submit the form.
It wasn't necessary to set up such a request handler, because Solr is fully configurable
from a URL, but it's a good practice and it's convenient for Solr's search form.

Searching multiple fields
You use the qf parameter to tell the dismax query parser which fields you want to
search and their corresponding score boosts. As explained in the section on request
handlers, the query parameters can be specified in the URL or in the request handler
configuration in solrconfig.xml—you'll probably choose the latter for this one. Here
is the relevant configuration line from our dismax based handler configuration earlier:

<str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

This syntax is a space-separated list of field names that can each have optional boosts
applied using the same syntax that is used in the query syntax for boosting. This
request handler is intended to find artists from a user's query. Such a query would
ideally match the artist's name, but we'll also search for aliases as well as bands that
the artist is a member of. Perhaps the user didn't recall the band name but knew the
artist's name. This configuration would give them the band in the search results,
most likely towards the end.

The score boosts do not strictly order the results in a cascading
fashion. An exact match in a_alias that matched only part of
a_name will probably appear on top. If in your application you
are matching identifiers of some sort, then you may want to give
a boost to that field which is very high, such as 1,000, to virtually
assure it will be on top.

One detail involved in searching multiple fields is the effect of stop words (for example,
"the", "a", and so on) in the schema definition. If qf refers to some fields using stop
words and others that don't, then a search involving stop words will usually return
no results. The edismax query parser fixes this by making them all optional in the
query unless the query is entirely stop words. With dismax, you can ensure the query
analyzer chain in queried fields filters out the same set of stop words.

Limited query syntax
The edismax query parser will first try to parse the user query with the full syntax
supported by the lucene query parser, with a couple tweaks. If it fails to parse,
it will fall back to the limited syntax of the original dismax in the next paragraph.
Someday, this should be configurable, but it is not at this time. The aforementioned
"tweaks" to the full syntax are that or and and Boolean operators can be used in a
lowercase form, and pure-negative subqueries are supported.

When using dismax (or edismax, when the user query failed to parse with the lucene
query parser), the parser will restrict the syntax permitted to terms, phrases, and use of
+ and - (but not AND, OR, &&, ||) to make a clause mandatory or prohibited. Anything
else is escaped if needed to ensure that the underlying query is valid. The intention is
to never trigger an error, but unless you're using edismax, you'll have to code for this
possibility due to outstanding bugs (SOLR-422, SOLR-874).

The following query example uses all of the supported features of this limited syntax:

"a phrase query" plus +mandatory without -prohibited

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[146]

Min-should-match
With the lucene query parser, you have a choice of the default operator being OR,
thereby requiring just one query clause to match, or choosing AND to make all clauses
required. This, of course, only applies to clauses not otherwise explicitly marked
required or prohibited in the query using + and -. But these are two extremes, and
sometimes it is preferable to find some middle ground. The dismax parser uses a
method called min-should-match, a feature which describes how many clauses
should match, depending on how many there are in the query—required and
prohibited clauses are not included in the numbers. This allows you to quantify the
number of clauses as either a percentage or a fixed number. The configuration of this
setting is entirely contained within the mm query parameter using a concise syntax
specification, which I'll describe in a moment.

Always set mm. When in doubt what to set it to, use 100 percent. If it is not
set, it uses the same defaulting rules as the lucene query parser, most
likely resulting in an mm value equivalent to 0 percent, which is probably
not what you want.
This feature is more useful if users use many words in their queries—at
least three. This in turn suggests a text field that has some substantial text
in it but that is not the case for our MusicBrainz dataset. Nevertheless, we
will put this feature to good use.

Basic rules
The following are the four basic mm specification formats expressed as examples:

• 3: This specifies that three clauses are required, the rest are optional.
• -2: This specifies that two clauses are optional, the rest are required.
• 66%: This specifies that 66 percent of the clauses (rounded down) are

required, the rest are optional.
• -25%: This specifies that 25 percent of the clauses (rounded down) are

optional, the rest are required.

Notice that - inverses the required/optional definition. It does not make any number
negative from the standpoint of any definitions herein.

Note that 75% and -25% may seem the same but are not due to
rounding. Given five queried clauses, the first requires three, whereas
the second requires four. This shows that if you desire a round-up
calculation, then you can invert the sign and subtract it from 100.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

Two additional points about these rules are as follows:

• If the mm rule is a fixed number n, but there are fewer queried clauses,
then n is reduced to the queried clause count so that the rule will make
sense. For example, if mm is -5 and only two clauses are in the query,
then all are optional. Sort of!

• Remember that in all circumstances across Lucene (and thus, Solr); at least
one clause in a query must match, even if every clause is optional. So, in the
preceding example and for 0 or 0%, one clause must still match, assuming
that there are no required clauses present in the query.

Multiple rules
Now that you understand the basic mm specification format, which is for one simple
rule, I'll describe the final format, which allows for multiple rules. This format is
composed of an ordered space-separated series of number<basicmm. This can be
read as, "If the clause count is greater than number, then apply rule basicmm". Only
the right-most rule that meets the clause count threshold is evaluated. As they are
ordered in an ascending order, the chosen rule is the one that requires the greatest
number of clauses. If none match because there are fewer clauses, then all clauses
are required—a basic specification of 100 percent.

An example of the mm specification is given here:

2<75% 9<-3

This reads as follows:

If there are over nine clauses, then all but three are required (three are optional,
and the rest are required). If there are over two clauses, then 75 percent are required
(rounded down). Otherwise (one or two clauses) all clauses are required, which is
the default rule.

I find it easier to interpret these rules if they are read right to left.

What to choose
A simple configuration for min-should-match is to require all clauses:

100%

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[148]

For MusicBrainz searches, I do not expect users to be using many terms, but I expect
most of them to match. If a user searches for three or more terms, then I'll let one be
optional. Here is the mm spec:

2<-1

You may be inclined to require all of the search terms; and that's a good
common approach. However, if just one word isn't found, then there will
be no search results—an occurrence that most search software tries to
minimize. Even if you make some of the words optional, the matching
documents that have more of the search words will be towards the top
of the search results, assuming score-sorted order (you'll learn why in
the next chapter). There are other ways to approach this problem, for
example, by performing a secondary search if the first returns none or
too few. Solr doesn't do this for you, but it's easy for the client to do. This
approach could even tell the user that this was done, which would yield
a better search experience.

A default query
The dismax query parser supports a default query, which is used in the event the user
query q is not specified. This parameter is q.alt, and it is not subject to the limited
syntax of dismax. Here's an example of it used to match all documents from within
the request handler defaults in solrconfig.xml:

<str name="q.alt">*:*</str>

This parameter is usually set to *:* to match all documents and is often specified in
the request handler configuration in solrconfig.xml. You'll see with faceting in the
next section that there will not necessarily even be a keyword search, and so you'll
want to display facets over all of the data.

The uf parameter
The DisMax and eDisMax query parsers support fielded queries within the q
parameter. This means that a user can explicitly search any valid field using this
syntax: field_name:value. The uf (user fields) parameter makes it possible to
restrict the set of fields the user can search against. The value of this parameter
can be a space-delimited list of field names. A wildcard (*) can be used for field
name globing. Dashes can be used to negate fields. For example, to allow user
queries to search in the id field, all fields starting with a_ except a_id, the uf
parameter value would be id a_* -a_id.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

Filtering
Separate from the q parameter (the user query), you can specify additional so-called
filter queries that will filter the search results. Arguably, the user query is also a
filter, but you instead see the word "search" used for that. Filter queries don't affect
scoring, unlike the user query. To add a filter, simply use the fq parameter. This
parameter can be added multiple times for additional filters. A document must
match all filter queries and the user query for it to be in the results.

As an example, let's say, we wanted to make a search form for MusicBrainz that lets
the user search for bands, not individual artists, and those that released an album
in the last 10 years. Let's also say that the user's query string is Green. In the index,
a_type is either person for an individual or group for a band, or 0 if unknown.
Therefore, a query that would find non-individuals would be this, combined with
the user's query:

+Green -a_type:person +a_release_date_latest:[NOW/YEAR-10YEARS TO *]

However, you should not use this approach. Instead, use multiple fq query parameters:

q=Green&fq=-a_type:person&fq=a_release_date_latest:[NOW/YEAR-
10YEARS+TO+*]

A query that an application submits should appear slightly different due to URL
Encoding special characters, such as the colon.

Filter queries have some tangential benefits:

• They improve performance, because each filter query is cached in Solr's filter
cache and can be applied extremely quickly.

• They clarify the logs, which show what the user searched for without it being
confused with the filters.

In general, raw user input doesn't wind up being part of a filter query. Instead, the
filters are either known by your application in advance or are generated based on
your data, for example, in faceted navigation.

You can disable caching of a filter by setting a cache local-param to false.
This is useful to avoid pollution of the filter cache when you know the
query is not likely to be used again. And if the query is the frange query
parser (discussed in Chapter 6, Search Relevancy) or the geofilt query
parser referencing a LatLonType field (discussed later), there is a potential
performance benefit. Non-cached filter queries can be ordered too. For
further details on this advanced technique, see https://cwiki.apache.
org/confluence/display/solr/Common+Query+Parameters,
under the The cache=false Parameter section.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters
http://www.it-ebooks.info/

Searching

[150]

Sorting
The sorting specification is specified with the sort query parameter. The default is
score desc. Here, score is not a field but a special reference to a relevancy number,
described in detail in the next chapter. Whereas, desc means descending order; use
asc for ascending order. Before Solr 4.2, it needed to be lowercase. In the following
example, suppose we search for artists that are not individuals (a previous example
in the chapter), and then we might want to ensure that those that are surely bands
get top placement ahead of those that are unknown. Secondly, we want the typical
descending score search. This would simply be:

sort=a_type desc,score desc

Pay attention to the field types and text analysis you're using in
your schema for fields that you sort on. Basically, fields need to be
single valued, indexed, and not tokenized. Some, but not all, support
sortMissingFirst and sortMissingLast options. See the section
on sorting in Chapter 2, Schema Design, for further information.

In addition to sorting on field values and the score, Solr supports sorting on a
function query. Function queries are usually mathematical in nature and used
for things like computing a geospatial distance or a time difference between now
and some field value. Function queries have been discussed in detail in the next
chapter, but here's a simple example sorting by the difference between the artist's
begin and end date:

sort=sub(a_end_date,a_begin_date) desc

An interesting usecase that has nothing to do with math is a trick to sort based on
multivalued field data in limited circumstances. For example, what if we wanted
to sort on MusicBrainz releases which are declared to be of type Album (r_type is
a multivalued field, remember)? We would use the following:

sort=query({!v="r_type:Album"}) desc

To understand this admittedly complicated expression, read the earlier section on
query parsers and local-params, and read the definition of the query() function query
in the next chapter. When using the query() function query in a sort expression,
you must specify use local-params v parameter to specify the query string, instead
of simply using the query string itself because of syntax restrictions in the context of
how the sort parameter value is parsed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

Sorting and memory usage
When you ask Solr to sort on a field, every indexed value is put
into an array in memory in Lucene's field cache. Text consumes
a lot more memory than numbers. Also, the first time it's needed,
it takes a noticeable amount of time to bring in all the values from
disk. You should add a query that sorts on the fields your app
might sort on into newSearcher in solrconfig.xml.

Joining
In most real world applications, models share relationships of some kind, either
directly through their attributes or through an association "table". Traditional
database engines make use of foreign keys to describe relationships, and SQL
joins are used to merge the record sets together.

Solr has limited support for joining via its join query parsers (join and block-join).
These query parsers use the local-params syntax to describe relationships between
documents—local-params was described earlier in this chapter.

These parsers are not equal to SQL joins. The main difference
between SQL and Solr in regard to joins is that the Solr joins do
not merge related documents together in the search results. Solr
joins are analogous to an SQL inner query in a WHERE clause.

The join query parser
The join query syntax takes two attributes, to and from, both of which accept field
names as their values. The from field is used to link matching documents (those that
matched the join query) to documents that match the to field. Not surprisingly, the
join parser also requires a query. This query parser also supports joining across cores
through its fromIndex option. As an example, let's say we'd like to fetch a set of
documents from the mbartists core, where the artist has a certain release from the
mbreleases core:

http://localhost:8983/solr/mbartists/select?q={!join from=r_a_id
to=a_id fromIndex=mbreleases}r_id:139850&fl=type,a_id

The following is the syntax:

{!join from=r_a_id to=a_id fromIndex=mbreleases}r_id:139850

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[152]

The resulting documents would be something like:

<result name="response" numFound="1" start="0">
 <doc>
 <str name="type">Artist</str>
 <long name="a_id">11650</long>
 </doc>
</result>

For completeness, here's the same query using SQL:

SELECT type,a_id FROM mbartists a where a.a_id IN (SELECT r.r_a_id
FROM mbreleases r where r.r_id = 139850);

The field type of the from and to fields should be the same.

Here's another example showing a join between more than one core/index within the
same query. This also makes use of the special local-params v attribute (the query):

fq={!join from=childId1 to=primaryCoreId fromIndex=childCore1
v=$childQ1} AND {!join from=childId2 to=primaryCoreId
fromIndex=childCore2 v=$childQ2}&childQ1=(field1:abc AND field2:[0
TO 1234])&childQ2=(field3:xyz)

If there's a fair chance the same join query will occur again,
put it in a filter query (the fq parameter) if you can, so that it
will be cached.

One use of the Solr join is to put your volatile data in one core, and the more static
in another core, using joins to associate records at query time.

Join queries have no influence on relevancy or document scores. If you're up for
customizing Solr though, the Lucene join module contains a scoring join query,
which could be used with little effort.

It should be noted that join queries can be slow; the more matching IDs there are,
the longer the response time will become. In many cases, a carefully designed
schema can satisfy most requirements by making good use of denormalization
instead of joining.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

Block-join query parsers
Block-join is called as such because it requires subdocuments to be indexed together
in one block with the parent, which trickles down to the underlying index. You can
even have a nested hierarchy. But this index requirement is a big limitation—you
can't update any one document without updating an entire tree from a parent, and
you can't use atomic updates. But for this trade-off, you get very fast joins.

Chapter 4, Indexing Data, covers the details on nested documents, but we'll provide a
simple example here. Our sample nested-docs.json file contains the following JSON:

{
 "add": [{
 "id": "1",
 "title_t": "Node A",
 "relType_s": "parent",
 "_childDocuments_": [{
 "id": "2",
 "title_t": "Node A:A"
 }]
 }, {
 "id": "3",
 "title_t": "Node B",
 "relType_s": "parent",
 "_childDocuments_": [{
 "id": "4",
 "title_t": "Node B:B"
 }]
 }]
}

As you can see, the relationships are all self-contained within the special
childDocuments_ array field. To index, we can simply use curl:

curl -H 'content-type: application/json' -X POST
"http://127.0.0.1:8983/solr/collection1/update?commit=true" --
data-binary @nested-docs.json

Now that we have our nested documents indexed, we can query them using
the block-join query parsers. There are actually two: block-join-parent and
block-join-children. These parsers are quite different from the aforementioned
join parser. Instead of returning documents matching a field-based foreign key,
we use a query to identify parent/child documents to which we then apply a
query to fetch the related results.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[154]

The block-join-children parser
The block-join-children parser is to find child documents given a query for parent
documents. The syntax requires one attribute called of, the value being a simple
Solr query that will be used to identify all valid parent documents. The primary
query will be used to find specific parent documents within this set. Matching child
documents will then be returned in the result set. For example, to find the child
documents of Node A, we use the block-join-children parser as follows:

http://localhost:8983/solr/collection1/select?q={!child
of="relType_s:parent"}title_t:"Node A"&wt=json&omitHeader=true

The following is the syntax:

{!child of="relType_s:parent"}title_t:"Node A"

That query yields this response:

{
 "response": {
 "numFound": 1,
 "start": 0,
 "docs": [
 {
 "id": "2",
 "title_t": "Node A:A"
 }
]
 }
}

This returns exactly what you'd expect: one child of Node A, Node A:A.

The block-join-parent parser
To query for parent documents given a query for child documents, use the
block-join-parent parser. This parser syntax requires one attribute called which.
The value of this attribute is a Solr query that will be used to identify all valid
parent documents. The primary query will be used to find specific child documents.
Matching parent documents will then be returned in the result set. Here's an example:

http://localhost:8983/solr/collection1/select?q={!parent
which="relType_s:parent"}title_t:"Node
A:A"&wt=json&omitHeader=true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

The following is the syntax:

{!parent which="relType_s:parent"}title_t:"Node A:A"

The yielded response for this query is as follows:

{
 "response": {
 "numFound": 1,
 "start": 0,
 "docs": [
 {
 "id": "1",
 "title_t": "Node A",
 "relType_s": "parent",
 "_version_": 1492571473528750000
 }
]
 }
}

This is what was expected; one parent document, Node A.

There are other join implementations currently available as
patch files on SOLR-4787: PostFilterJoin, to join records
that match the main query and ValueSourceJoin, to return
values from the second core based on the join query.

Spatial search
This section was written by David Smiley, a committer
on Lucene/Solr specializing in spatial search.

Spatial search is the ability to find geometric information in a multidimensional
space. Most information retrieval systems that support spatial data, including
Solr, are limited to a two-dimensional Cartesian plane, with additional support
for geospatial search in which two dimensions reference the location on the
surface of a sphere.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[156]

That description is a bit abstract, so let's now review some common spatial
requirements of an application. If your Solr documents represent businesses and you
know where the business resides in terms of a latitude and a longitude, then you
probably want to show search results (businesses) filtered to the vicinity of where the
user is looking. The user interface might have a map centered at a region of interest,
and/or you know approximately where the user is from the GPS of their mobile
device, or you might even have a GeoIP database at your disposal to map their IP
address to an approximate location. Beyond filtering, you then might want to sort or
relevancy-boost by the distance between the center of where the user's search area
is and where the business is. Indexing points, filtering them by a rectangle or circle,
getting the distance to sort or boost, and displaying that distance to the user, are the
most common user requirements.

Spatial in Solr is confusing because there are basically two implementations to pick
from: LatLonType (since Solr 3) and SpatialRecursivePrefixTreeFieldType also
known as RPT (since Solr 4), and they are quite different. I'll describe the internal
workings of both, and then how to use them, pointing out differences along the way.

Spatial in Solr 3 – LatLonType and friends
Solr 3 was the first release to have spatial support, and its implementation is still
appropriate for common requirements. It is principally comprised of the LatLonType
and PointType field types, the geofilt and bbox query parsers, and the geodist,
dist, and sqedist functions. There are some other lesser used functions too.

LatLonType is geospatially oriented: latitude and longitude with geodetic math—
notably the Haversine distance formula. PointType holds x and y coordinates on a
classic 2D Cartesian plane with faster and simpler Euclidean geometry calculations,
such as the Pythagorean Theorem for distance. PointType uniquely supports a
variable number of dimensions; it's an obscure feature.

The underlying implementation resides in Solr itself, not Lucene-spatial. The overall
approach is straightforward, notwithstanding some optimization tricks. The latitude
and longitude (or x and y) are internally indexed into separate numeric fields. This
approach doesn't support multivalued data, such as modeling businesses with
multiple locations. If the query is just a rectangular filter, then it's pretty fast since it
just needs to do a couple simple numeric range queries. If, on the other hand, the query
shape is a point-distance (circle) shape, then the distance is calculated to potentially all
points, depending on the circumstances; consequently, it isn't very scalable. Another
thing to be aware of is that the FieldCache is used whenever the distance is required,
which is for a point-distance query shape, and/or to sort by distance. The FieldCache
holds all coordinate values in memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

Some of the key characteristics have been summarized here:

• Single-valued point indexed field
• Point-radius (circle) query shape, or a rectangle
• Good implementation for small datasets; bbox is scalable but geofilt

(circle) is not

Configuration
Configuring LatLonType and PointType is easy. In the following excerpt taken from
Solr's example schema, given the field name store, there will be two automatically
generated fields named store_0_coordinate and store_1_coordinate, which
you'll see in Solr's schema browser:

<field name="store" type="location" indexed="true"
 stored="true"/>
<fieldType name="location" class="solr.LatLonType"
 subFieldSuffix="_coordinate"/>
<dynamicField name="*_coordinate" type="tdouble"
 indexed="true" stored="false"/>

Use floats instead of doubles
Change the *_coordinate dynamic field to use type tfloat to
use half the memory. Using a 32-bit float for latitude and longitude
has precision no worse than 2.37 meters—plenty accurate for most
use cases.

We'll show you how to index and search for LatLonType further in this chapter.

Spatial in Solr 4 –
SpatialRecursivePrefixTreeFieldType
Solr 4 introduced SpatialRecursivePrefixTreeFieldType, referred to as RPT
because it's a mouthful. This one field type can be configured for either geodetic or
Euclidean math. The Solr code is not much more than an adapter to the technology
that mostly lives in the Lucene spatial module, plus a dependency on Spatial4j for
the shape implementations. Additionally, the third-party JTS Topology Suite is
required for some shapes, such as polygons. The implementation scheme is based on
a variable-depth hierarchical grid in which the world is decomposed into grid cells,
which are in turn recursively decomposed into smaller grid cells, until the desired
precision is reached.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[158]

Indexed shapes of basically any kind are represented completely on the grid, and there
are scalable algorithms to find them in relation to a query shape at search time. It's
more powerful and often faster at filtering than the comparatively simple LatLonType.
For distance sorting/boosting, it includes a custom point cache, but this feature should
be avoided as it doesn't scale well.

This picture shows how a polygon of France is decomposed into geohash grid cells
of varying sizes. This was easily generated using a utility in the web demo of Spatial
Solr Sandbox on GitHub that generates a KML file that Google Earth can render.

Its key characteristics can be summarized as follows:

• Indexes basically any shape, not just points:
 ° Shapes are approximated to a grid of configurable precision
 ° Multivalued fields

• Query by basically any shape, and with configurable precision—fast!
• Query by Intersects, Contains, and IsWithin predicates
• Multivalued point cache for distance sorting and relevancy

 ° The implementation is not scalable

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

If you need the distance and you have more than perhaps a million
documents, or if you have real-time search requirements, then you
should use both spatial implementations: RPT for its fast filtering and
LatLonType to get the distance. On the other hand, if RPT's features
aren't useful to you and you have a million or less documents, then
I recommend using LatLonType alone. In a future Solr release, see
LUCENE-4698.

Configuration – basic
The RPT field type has many configuration options; we're going to stick to the ones
needed for basic geospatial search requirements right now and address other options
later. A basic configuration exists in Solr's example schema:

<fieldType name="location_rpt"
 class="solr.SpatialRecursivePrefixTreeFieldType"
 geo="true" distErrPct="0.025" maxDistErr="0.000009"
 units="degrees" />

To use this field type, you need to declare a field that references this field type.

• geo: This is a Boolean that specifies whether this spatial mathematical model
is based on a spherical earth model using latitude and longitude coordinates,
or a flat 2D plane.

• units: Ignore this; it must be set to degrees. In Solr 5, it will be renamed
to distanceUnits and support values like kilometers. In Solr 4, it has
no effect. When you see a reference to a measurement in degrees (such as
maxDistErr below), know that it refers to 1/360th of the circumference of
a sphere when geo=true. Assuming the earth is that sphere, this works out
to 111.2 kilometers per degree (2πR/360, R=6,353km).

The distance (d) parameter used by the geofilt and bbox
parsers and the distances returned by the geodist function
remain kilometers even if it's used with this field. Those parsers
will be described shortly.

• maxDistErr: This refers to the precision of the spatial data in terms of
the maximum distance error, as measured in degrees. For example, if the
greatest precision you care about is a meter (0.001km), set it as measured in
degrees (0.001/111.2 = 0.000009). The actual maximum distance error will be
smaller than this, since it's used to choose a grid level that meets or exceeds
this precision.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[160]

• distErrPct: If this number is non-zero, then non-point shapes will be
approximated as a function of their overall size. This value is a fraction
of a shape's approximate radius to be the allowable error, which in turn
indicates to what grid level the shape will be maximally represented as.
Under no circumstance can you have more precision than what maxDistErr
yields. It applies to both indexed non-point shapes and query non-point
shapes. There is a way to use a different value for a query shape if desired.

If that's confusing, look again at the gridded map of France and look at
the edge. If distErrPct is raised higher, the edge will eventually be
even blockier. There are obviously scalability limitations if you attempt
to index non-point shapes with a distErrPct of 0. Query shapes can
handle it fine.

Indexing points
The simplest and most common spatial data to index is a point.

If you have named locations (for example, Boston, MA) or addresses,
then the data needs to be resolved to latitudes and longitudes using a
geocoder. You can run your own with Gisgraphy—found at http://
www.gisgraphy.com—or use a hosted service from Google, Yahoo,
or others. Most hosted services have caps and/or fees.

When providing data to this field, it is formatted as a string with the latitude then the
longitude, separated by a comma. Here's an example in Solr's Update-XML format:

<field name="store">43.17614,-90.57341</field>

Whether you use SolrJ, the DIH, or any other client/format, it appears as a string
going in and coming out of Solr. If you have multiple points to index, simply supply
them as additional values, as you would for any other multivalued field. LatLonType
can't handle this but RPT will.

If the field type is PointType, then the dimension order is x,y. If the field type is
RPT and geo is false, then you should supply points as x y (a space in between).
If you use a comma in this circumstance, then the dimensions will be flipped.
This is probably a bug, so don't rely on that behavior.

www.it-ebooks.info

http://www.gisgraphy.com
http://www.gisgraphy.com
http://www.it-ebooks.info/

Chapter 5

[161]

Filtering by distance or rectangle
Perhaps the most common geospatial need is to filter search results to those documents
within a distance radius from a center point. If you are building an application in which
the user is presented with a map, perhaps using Google Maps, then the center point is
the center of the map the user is looking at and the distance radius is the distance from
the center to the nearest map edge. Such a query is generally specified using a Solr filter
query (fq parameter) leaving q open for the possibility of a combined keyword search
if desired. Both the geofilt and bbox query parsers perform geospatial filtering. The
geofilt query parser implements a point-distance based filter, a circle shape, whereas
bbox uses the minimum bounding latitude-longitude box surrounding that circle.
You can also specify an arbitrary rectangle using Solr's standard range syntax but
using points.

LatLonType tuning
If you are using LatLonType, bbox and the rectangle range
query syntax are faster than geofilt because they are able to
make simple/scalable latitude and longitude numeric range
searches, whereas geofilt computes the distance to every
point it sees. If you need geofilt and if your spatial queries
aren't very cacheable (tend to not be in your filter cache), then
try adding these local-params: cache=false cost=100.

Here is a quick example based on Solr's example schema and dataset, showing the
URL parameters needed to do the search:

q=*:*&fq={!bbox}&sfield=store&pt=45.15,-93.85&d=5

The parameters that geofilt and bbox require can be specified as either local-params
(between the parser name and closing bracket) or standard request parameters, as
shown above. To be clear, here's the same query using local-params:

q=*:*&fq={!bbox sfield=store pt=45.15,-93.85 d=5}

The advantage of not using local-params is that a combined distance sort can reuse
the same parameters, as you'll see in a bit. Here are geofilt and bbox's parameters:

• sfield: The name of the spatial field
• pt: A latitude-comma-longitude pair for the center point of the query
• d: The query distance from pt in kilometers (see sphere_radius)
• sphere_radius: The radius of the sphere (Earth) in desired units for d.

It defaults to the Earth's mean radius in kilometers.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[162]

To query by an arbitrary latitude-longitude rectangle, use a range query between the
lower-left corner (smallest latitude and longitude) to the upper-right like so:

q=*:*&fq=store:[43.2,-94.1 TO 46.3,-92.0]

If you use this syntax with LatLonType, it won't work if the dateline
is crossed (bug SOLR-2609). RPT does not have that limitation.

Sorting by distance
Solr can sort search results by the distance between a document's point and another
point supplied at query time. That point is typically the center point of a combined
spatial filter. The typical way to spatially sort is to use Solr's ability to sort by a
function query—a spatial function, geodist() in particular. The geodist() function
calculates the geospatial distance (the "great circle distance") as calculated using the
Haversine formula between a pair of points. The points are each taken from the first
available of an argument, the pt parameter, or the sfield parameter. Any of these
might be absent, but at least two must be specified. When a point is specified as an
argument (within the parenthesis), it can either be a geospatial field name or a pair of
arguments that are in latitude then longitude order. The latitude or longitude can be
constants, or they may reference numeric fields' names. Here's an example of this:

&sort=geodist(store,42.4,-71.1) asc

By design, these parameter names align with those for the
geofilt and bbox query parsers, which pair well with
geodist(). Consequently, it is rare to supply arguments
if you are also spatially filtering.

Before the RPT field supported geodist() in Solr 4.5, a different, more awkward
syntax was needed. You used to have to add a score=distance local-param to the
spatial query and then put the spatial query into q to sort by score and filter at the
same time. Or, even more awkwardly, you could sort by the query() function query.
You can find examples of that syntax, if you must, online.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[163]

Returning the distance
It's often desirable to show the distance to users in search results. The most
straightforward way to do this is to use a new Solr 4 feature that allows putting a
function query into the field list: the fl param. Doing this is independent of any
filtering or sorting that may exist, and so it's easy to use.

&fl=*,score,dist:geodist()&sfield=store&pt=45.15,-93.8

That example also gave a label of dist to this number in the search results; another
label could have been chosen. Without a label, it is named by the actual function
query itself in the results.

Boosting by distance
Perhaps you don't want to sort by distance, but you want to influence the relevancy
(so-called boosting) by distance. Relevancy tuning is covered in the next chapter, so
you will need to read that to better understand this section. The base formula to use
for distance-based boosting should be the reciprocal. A Solr function query for the
reciprocal used for boosting in this way should look like recip(x,1,c,c), where x
is the distance and c is 1/10th of what I call the horizon distance. If you have a spatial
filter in place, then use the radius of the query shape (center to edge or corner) as the
horizon. Otherwise, pick an approximate distance at which any greater distance is
unlikely to be relevant to the user. The result of the reciprocal function used in this
way will range from 1.0 at the center of the query point to 0.1 at the horizon distance;
and it approaches 0 further away.

For example, let's say you have a spatial filter of a 100-kilometer radius at 42.15° N,
93.85° W; you have a keyword search in place using the edismax query parser; and
you want to multiply the distance boost to the score:

&defType=edismax&q=…&qf=…&sort=score desc
&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=100
&boost=recip(geodist(),1,10,10)

Memory and performance of distance sorting
and boosting
Sorting or boosting by distance will require all indexed points to be in memory. Use
floats instead of doubles, if possible, to reduce this footprint with LatLonType. The
RPT field type still has a sub-par point cache implementation that has a high memory
overhead on a per-point and per-document basis. If you can, use LatLonType for
sorting instead of RPT, until that is rectified.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching

[164]

Sorting and boosting on a search that matches a great many documents can be slow.
This is because the distance needs to be computed to each matching point, even if
you only return the top 10 of them. Furthermore, the Haversine formula involves a
fair amount of trigonometry that can computationally really add up when computed
between many points. What can be done to help is use a cheaper distance function
that is less accurate in a geospatial sense but is faster to compute. For example, if all
the indexed data is just in one region of the world, then you could project the data
onto a 2D plane with minimal distortion around the edges. The data would go in a
pair of float fields and then you could replace use of geodist() with sqedist()—
squared Euclidean distance. It takes four arguments, the x and y of the indexed
fields, and another pair for the query point. Projecting data is well beyond the scope
of this book. For further information, visit http://trac.osgeo.org/proj4j/.

Advanced spatial
This book sets aside a fair amount of space to cover spatial search in Solr for the
needs of most applications, but there's more that couldn't be included:

• Non-geodetic (for example, Euclidean) spatial such as PointType and
dist(), and the implications of geo="false" on RPT.

• Spatial Well Known Text (WKT) syntax: WKT is a standard for expressing
a variety of shapes, including Polygons. Lucene/Solr can index and search
by them. Related to this is including JTS with Solr.

• Spatial predicates that include Intersects, Contains, IsWithin, and
IsDisjointTo. When indexing non-point shapes, there are more applicable
relations than what can occur with just points.

• The BBoxField field type supports nearly every predicate and has
area-overlap relevancy. It is new in Solr 4.10.

• Indexing and searching on multi-value time durations: If you want to
index time or other numeric durations in Solr, particularly when there's
a variable number of them per document, then the only way to do this is
to express the times as points in spatial. I bet you'll find this fascinating:
http://wiki.apache.org/solr/SpatialForTimeDurations.

For more coverage of these spatial topics, see the Solr Reference Guide at
https://cwiki.apache.org/confluence/display/solr/Spatial+Search.

www.it-ebooks.info

http://trac.osgeo.org/proj4j/
http://wiki.apache.org/solr/SpatialForTimeDurations
https://cwiki.apache.org/confluence/display/solr/Spatial+Search
http://www.it-ebooks.info/

Chapter 5

[165]

Summary
At this point, you've learned the essentials of searching in Solr, from request handlers
to the full query syntax, to DisMax, joins, geospatial, and more. We spent a lot of time
on the query syntax because you'll see the syntax pop up in several places across Solr,
not just in the user's query. Such places include filter queries, delete queries, boost
queries, facet queries, embedded within certain function queries, and query warming
(discussed in later chapters).

The subject of searching continues in the next chapter with a focus on relevancy/
scoring matters. This starts with an explanation of Lucene/Solr's scoring model,
and then various tools Solr gives you to influence the score, such as function queries,
which are also useful in sorting and filtering.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[167]

Search Relevancy
At this point, you've learned the basics of Solr. You've undoubtedly seen your results
sorted by score in descending order, the default, but have no understanding as to
where those scores came from. This chapter is all about search relevancy, which
basically means it's about scoring; but it's also about other non-trivial methods of
sorting to produce relevant results. A core Solr feature enabling these more advanced
techniques, called function queries, will be introduced. The major topics covered in
this chapter are as follows:

• Factors influencing the score
• Troubleshooting queries to include scoring
• DisMax part 2—features that enhance relevancy
• Function queries

In a hurry?
Use the edismax query parser for user queries by setting the defType
parameter. Configure the qf (query fields), as explained in the previous
chapter, set pf (phrase fields) considering the call-out tip in this chapter,
and set tie to 0.1. If at any point you need help troubleshooting a
query (and you will), then return to read the Troubleshooting queries and
scoring section of this chapter.

Scoring
Scoring in Lucene is an advanced subject, but it is important to at least have a basic
understanding of it. We will discuss the factors influencing Lucene's default scoring
model and where to look for diagnostic scoring information. If this overview is
insufficient for your interest, then you can get the full details at http://lucene.
apache.org/core/4_8_1/core/org/apache/lucene/search/package-summary.
html#scoring.

www.it-ebooks.info

http://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/package-summary.html#scoring
http://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/package-summary.html#scoring
http://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/package-summary.html#scoring
http://www.it-ebooks.info/

Search Relevancy

[168]

The important thing to understand about scores is not to attribute much meaning
to a score by itself; it's almost meaningless. The relative value of an individual score
to the max score is much more meaningful. A document scored as 0.25 might be a
great match or not, there's no telling, while in another query a document scoring 0.80
may actually not be a great match. But if you compare a score to another from the
very same search and find it to be twice as large, then it is fair to say that the query
matched this document twice as well. The factors influencing the score are as follows:

• Term frequency (tf): The more times a term is found in a document's field,
the higher the score it gets. This concept is most intuitive. Obviously, it doesn't
matter how many times the term may appear in some other field, it's the
searched field that is relevant (whether explicit in the query or the default).

• Inverse document frequency (idf): The rarer a term is in the entire index,
the higher its score is. The document frequency is the number of documents
in which the term appears for a given field. It is the inverse of the document
frequency that is positively correlated with the score.

• Co-ordination factor (coord): The greater the number of query clauses that
match a document, the greater the score will be. Any mandatory clauses
must match and the prohibited ones must not match, leaving the relevance
of this piece of the score to situations where there are optional clauses.

• Field length (fieldNorm): The shorter the matching field is, measured in
number of indexed terms, the greater the matching document's score will
be. For example, if there was a band named Smashing, and another named
Smashing Pumpkins, then this factor in the scoring would be higher for the
first band upon a search for just Smashing, as it has one word in the field
while the other has two. Norms for a field can be marked as omitted in the
schema with the omitNorms attribute, effectively neutralizing this component
of the score and index-time boosts too.

A score explain will show queryNorm. It's derived from the query
itself and not the indexed data; it serves to help make scores more
comparable for different queries, but not for different documents
matching the same query.

These factors are the intrinsic components contributing to the score of a document in
the results. If your application introduces other components to the score, then that
is referred to as boosting. Usually, boosting is a simple multiplier to a field's score,
either at index or query time, but it's not limited to that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

Alternative scoring models
The scoring factors that have just been described relate to Lucene's default
scoring model. It's known as the Vector Space Model, also referred to as
simply TF-IDF due to its most prominent components. This venerable model
is well known in the information retrieval community, and it has been the only
model Lucene supported since the beginning. Lucene/Solr 4 supports four more
models, including a well-known one called BM25. BM25 has been the subject of
many research papers including those from recognized search experts at Google
and Microsoft. It's often pitted against the Vector Space Model portrayed as an
improvement, provided its parameters are tuned appropriately.

In Lucene, the relevance model is implemented by a Similarity subclass, and
Solr provides SimilarityFactory for each one. Naturally, they have their own
unique tuning parameters. In order to use BM25, simply add the following to
your schema.xml:

 <similarity class="solr.BM25SimilarityFactory">
 <float name="k1">1.2</float>
 <float name="b">0.75</float>
 </similarity>

Don't forget to re-index. The preceding excerpt will have a global effect on relevancy
for the schema. It's also possible to choose a different similarity per field. Beware that
doing so is problematic if you are using TF-IDF at all; you'll see different scores for
TF-IDF depending on whether the similarity is configured at the field level or as the
global default, with regard to the query norm and coordination factor.

For more information on configuring scoring models (similarities) in Solr, see
the wiki at http://wiki.apache.org/solr/SchemaXml#Similarity and Solr's
Javadoc API for the factories. But for real guidance on the specific models, you'll
have to start Googling.

The default Vector Space Model is a good default
Do not choose a relevancy model and its tuning parameters based
solely on a small sampling of anecdotal searches; choose them
after a real evaluation, such as from A/B testing.

www.it-ebooks.info

http://wiki.apache.org/solr/SchemaXml#Similarity
http://www.it-ebooks.info/

Search Relevancy

[170]

Query-time and index-time boosting
At index-time boosting, you have the option to boost a particular document specified
at the document level or at a specific field. Chapter 4, Indexing Data, shows the syntax;
it's very simple to use for the XML and JSON formats. The document-level boost is
the same as boosting each field by that value. This is internally stored as part of the
norms number. Norms must not be omitted in the relevant fields in the schema. It's
uncommon to perform index-time boosting because it is not as flexible as query time.
That said, index-time boosting tends to have a more predictable and controllable
influence on the final score, and it's faster.

At query-time boosting, we described in the previous chapter how to explicitly boost
a particular clause of a query higher or lower, if needed, using the trailing ^ syntax.
We also showed how the DisMax query parser's qf parameter not only lists the fields
to search but allows a boost for them as well. There are a few more ways DisMax can
boost queries that you'll read about shortly.

Troubleshooting queries and scoring
An invaluable tool in diagnosing scoring behavior (or why a document isn't in the
result or is but shouldn't be) is enabling query debugging with the debugQuery
query parameter. There is no better way to describe it than with an example.
Consider the fuzzy query on the artists' index:

a_name:Smashing~

We would intuitively expect that documents with fields containing Smashing would
get the top scores, but that didn't happen. Execute the preceding query mentioned
with debugQuery=on.

Depending on the response format and how you're interacting with
Solr, you might observe that this information isn't indented. If you see
that, switch to another response format. Try Ruby with wt=ruby.

In the following code, the fourth document has Smashing as part of its name but
the top three don't:

 <doc>
 <float name="score">3.999755</float>
 <str name="a_name">Smashin'</str>
 </doc>
 <doc>
 <float name="score">3.333129</float>
 <str name="a_name">Mashina</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

 </doc>
 <doc>
 <float name="score">2.551927</float>
 <str name="a_name">Slashing Funkids</str>
 </doc>
 <doc>
 <float name="score">2.5257545</float>
 <str name="a_name">Smashing Atoms</str>
 </doc>

The first and third documents have words that differ from smashing by only one
character, the second by two. What's going on here? Let's look at the following debug
output, showing just the second and fourth docs for illustrative purposes:

<lst name="explain">
 <str name="Artist:227132">
 3.333129 = (MATCH) sum of:
 3.333129 = (MATCH) weight(a_name:mashina^0.71428573 in
 166352) [DefaultSimilarity], result of:
 3.333129 = score(doc=166352,freq=1.0 = termFreq=1.0),
 product of:
 0.2524328 = queryWeight, product of:
 0.71428573 = boost
 13.204025 = idf(docFreq=1, numDocs=399182)
 0.026765013 = queryNorm
 13.204025 = (MATCH) fieldWeight(a_name:mashina in
 286945),
 product of:
 1.0 = tf(termFreq(a_name:mashina)=1)
 13.204025 = idf(docFreq=1, numDocs=399182)
 1.0 = fieldNorm(field=a_name, doc=286945)
 </str>
<!--... skip ...-->
 <str name="Artist:93855">
 2.5257545 = (MATCH) sum of:
 2.5257545 = (MATCH) weight(a_name:smashing in 9796)
 [DefaultSimilarity], result of:
 2.5257545 = score(doc=9796,freq=1.0 = termFreq=1.0),
 product of:
 0.32888138 = queryWeight, product of:
 12.287735 = idf(docFreq=4, numDocs=399182)
 0.026765013 = queryNorm
 7.6798344 = fieldWeight in 9796, product of:
 1.0 = tf(freq=1.0), with freq of:
 1.0 = termFreq=1.0

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[172]

 12.287735 = idf(docFreq=4, maxDocs=399182)
 0.625 = fieldNorm(doc=9796)
 </str>

What we see here is the mathematical breakdown of the various components of the
score. We see that mashina (the term actually in the index) was given a query-time
boost of 0.75 (under-boosted), whereas smashing wasn't. We expected this because
fuzzy matching gives higher weights to stronger matches, and it did. However, other
factors pulled the final score in the other direction. Notice that the fieldNorm for
Mashina is 1.0, whereas Smashing Atoms has a fieldNorm of 0.625. This is because
the document we wanted to score higher has a field with two indexed terms versus
just the one that Mashina has. Another factor is that the IDF for mashina, 13.2,
is higher than for smashing, 12.3. Upper/lower case plays no role. So, arguably,
Mashina is a closer match than Smashing Atoms to the fuzzy query Smashing~.

How might we fix this? Well, it's not broken, and the number four spot in the search
results isn't bad. So this result is arguably in no need of fixing. This is also a fuzzy
query that is fairly unusual and arguably isn't a circumstance to optimize for. For the
fuzzy query case seen here, you could use DisMax's bq parameter (to be described very
soon) and give it a non-fuzzy version of the user's query. That will have the effect of
boosting an exact match stronger. Another idea is to enable omitNorms on a_name in
the schema; however, that might reduce scoring effectiveness for other queries.

Tools – Splainer and Quepid
If you find the explain output hard to wrap your head around, you might want to use
an open source tool called Splainer that dresses up Solr's raw output in a way that
is easier to understand. Splainer is a browser-side web application, and as such, you
can try it online against your local Solr instance without having to install or configure
anything. Try it at http://splainer.io. Be sure to view the tour, which will show
more of what it has to offer.

If you want to take search relevancy seriously, then you're going to invest significant
time into it. Solr exposes a lot of power and reasonable defaults, but each application
is different and it's all too easy to make a change that has a net negative effect across
the searches users make. You'll need to do things such as keep track of a set of sample
queries and their results, and monitor it over time. You could do this manually with
a hodge-podge of spreadsheets and scripts, but a tool such as Quepid can help a ton.
The most important thing Quepid does is assist you in curating a set of important
queries with their search results that have human-entered quality judgments against
them. As you tweak Solr's relevancy knobs, you can see the effect. Quepid is available
at https://quepid.com.

www.it-ebooks.info

http://splainer.io
https://quepid.com
http://www.it-ebooks.info/

Chapter 6

[173]

The DisMax query parser – part 2
In the previous chapter, you were introduced to the dismax query parser as
the preferred choice for user queries. The parser for user queries is set with the
defType parameter. The syntax, the fields that are queried (with boosts)—qf,
the min-should-match syntax—mm, and the default query—q.alt, were already
described. We're now going to cover the remaining features: the ones that most
closely relate to scoring.

Any mention herein to dismax applies to the edismax query parser
too, unless specified otherwise. As explained in the previous chapter,
edismax is the extended DisMax parser. It is generally superior to
dismax, as you'll see in the upcoming section.

Lucene's DisjunctionMaxQuery
The ability to search across multiple fields with different boosts in this query parser
is a feature powered by Lucene's DisjunctionMaxQuery query class. Let's start with
an example. If the query string is simply rock, then DisMax might be configured to
turn this into a DisjunctionMaxQuery similar to this Boolean query:

fieldA:rock^2 OR fieldB:rock^1.2 OR fieldC:rock^0.5

The difference between that Boolean OR query and DisjunctionMaxQuery (we will
call it just DisMax henceforth) is only in the scoring. Without getting into the details,
if the intention is to search for the same text across multiple fields, then it's better to
use the maximum subclause score rather than the sum. DisMax will take the max,
whereas Boolean uses the sum.

The dismax query parser has a tie parameter, which is between zero (the default)
and one. By raising this value above zero, it serves as a tie-breaker to give an edge
to a document that matched a term in multiple fields versus one. At the highest
value of 1, it scores very similarly to that of a Boolean query.

In practice, setting tie to a small value like 0.1 is effective.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[174]

Boosting – automatic phrase boosting
Suppose a user searches for Billy Joel. This is interpreted as two terms to search for,
and depending on how the request handler is configured, either both must be found
in the document or just one. Perhaps for one of the matching documents, Billy is the
sole name of a band, and it has a member named Joel. Solr will match this document
and perhaps it is of interest to the user since it contained both words the user typed.
However, it's a fairly intuitive observation that a document field containing the
entirety of what the user typed, Billy Joel, represents a closer match to what the
user is looking for. Solr would certainly find such a document too, without question,
but it's hard to predict what the relative scoring might be. To improve the scoring,
you might be tempted to automatically quote the user's query, but that would omit
documents that don't have the adjacent words. What the DisMax handler can do is
add a phrased version of the user's query onto the original query as an optional clause.
So, in a nutshell, it rewrites the following query:

Billy Joel

It then turns it into:

+(Billy Joel) "Billy Joel"

The queries here illustrate phrase boosting in its most basic form.
It doesn't depict the DisjunctionMaxQuery that dismax uses,
because there's no query syntax for it.

The rewritten query depicts that the original query is mandatory by using +, and it
shows that we've added an optional phrase. A document containing the phrase Billy
Joel not only matches that clause of the rewritten query, but it also matches Billy
and Joel—three clauses in total. If in another document the phrase didn't match, but
it had both words, then only two clauses would match. Lucene's scoring algorithm
would give a higher coordination factor to the first document, and would score it
higher, all other factors being equal.

Configuring automatic phrase boosting
Automatic phrase boosting is not enabled by default. In order to use this feature, you
must use the pf parameter, which is an abbreviation of phrase fields. The syntax is
identical to qf. You should start with the same value and then make adjustments.
Common reasons to vary pf from qf are as follows:

• To use different (typically lower) boost factors so that the impact of
phrase boosting isn't overpowering. Experimentation will guide you
to make these adjustments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

• To omit fields that are always one term, such as an identifier, because there's
no point in searching the field for phrases.

• To omit some of the fields that have lots of text since that might slow down
search performance too much.

• To substitute a field for another that has the same data but is analyzed
differently. For example, you might choose to speed up these phrase
searches by shingling (a text analysis technique described in Chapter 10,
Scaling Solr) into a separate field, instead of shingling the original field.
Such a shingling configuration would be a little different than described
in that chapter; you would set outputUnigrams to false.

pf tips
Start with the same value used as qf, but with boosts cut in half.
Remove fields that are always one term, such as an identifier.
Use common-grams or shingling, as described in Chapter 10,
Scaling Solr, to increase performance.

Phrase slop configuration
The previous chapter described phrase slop, also known as term proximity.
The syntax follows a phrase with a tilde and a number, as follows:

"Billy Joel"~1

The dismax query parser adds two parameters to automatically set the slop: qs
for any explicit phrase queries that the user entered and ps for the phrase boosting
mentioned previously. If slop is not specified, then there is no slop, which is equivalent
to a value of zero. For more information about slop, see the corresponding discussion
in the previous chapter. Here is a sample configuration of both slop settings:

qs=1&ps=0

Partial phrase boosting
In addition to boosting the entire query as a phrase, edismax supports boosting
consecutive word pairs if there are more than two queried words, and consecutive
triples if there are more than three queried words. Setting pf2 and pf3, respectively,
in the same manner that the pf parameter is defined, configures these. For example,
consider the following query:

how now brown cow

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[176]

It would now become:

+(how now brown cow) "how now brown cow" "how now" "now brown"
"brown cow" "how now brown" "now brown cow"

This feature is not affected by the ps (phrase slop) parameter, which only applies to
the entire phrase boost; there's ps2 and ps3 to set these slops.

You can expect the relevancy to improve for longer queries, but of
course, these queries are going to be even slower now. To speed
up such queries, use common-grams or shingling, described in
Chapter 10, Scaling Solr. If you are using pf2 or pf3, consider a
maxShingleSize of 3 (but monitor its impact on index size),
and consider omitting larger text fields from pf2 or pf3.

Boosting – boost queries
Continuing with the boosting theme is another way to affect the score of documents:
boost queries. The dismax parser lets you specify multiple additional queries using
bq parameter(s), which, like the automatic phrase boost, get added onto the user's
query in a similar manner. Remember that boosting only serves to affect the scoring
of documents that already matched the user's query in the q parameter. If a matched
document also matches a bq query, then it will be scored higher than if it didn't.

For a realistic example of using a boost query, we're going to look at MusicBrainz
releases data. Releases have an r_type field containing values such as Album, Single,
Compilation, and others, and an r_official field containing values such as
Official, Promotion, Bootleg, and Pseudo-Release. We don't want to sort search
results based on these, since it's most important to consider search relevancy of the
query. However, we might want to influence the score based on these fields. For
example, let's say albums are the most relevant release type, whereas a compilation is
the least relevant. And let's say that an official release is more relevant than bootleg or
promotional or pseudo-releases. We might express this using a boost query like this
(defined in the request handler):

bq=r_type:Album^2 (*:* -r_type:Compilation)^2
r_official:Official^2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

Searching releases for "the aeroplane flies high" (quoted and not a typo) showed
that this boost query did what it should by breaking a score tie in which the release
names were the same but these attributes varied. In reality, the boosting on each
term would not all be 2; they would be tweaked to have the relevancy boost desired
by carefully examining the debugQuery output. One oddity in this query is (*:*
-r_type:Compilation)^2, which boosts all documents except compilations. Using
r_type:Compilation^0.5 would not work since it would still be added to the
score and only when the document is a compilation—exactly what we don't want.
Put another way, you can't under-boost, but you can indirectly do it by boosting
the inverse set of documents. To understand why *:* is needed, read the previous
chapter on the limitations of pure negative queries.

Boosting – boost functions
Boost functions offer a powerful way to either add or multiply the result of a
user-specified formula to a document's score. By formula, I refer to a composition
of Solr function queries, which have been described in detail next in this chapter.
To add to the score, specify the function query with the bf parameter. The edismax
query parser adds support to multiply the result to the score in which you specify
the function query with the boost parameter. You can specify bf and boost each
as many times as you wish.

For a thorough explanation of function queries including
instructional MusicBrainz examples, see the next section.

An example of boosting MusicBrainz tracks by how recently they were released is:

boost=
recip(abs(ms(NOW/DAY,r_event_date_earliest)),1,6.3E10,6.3E10)

There cannot be any spaces within the function. The bf and boost parameters
are actually not parsed in the same way. The bf parameter allows multiple boost
functions within the same parameter, separated by space, as an alternative to
using additional bf parameters. You can also apply a multiplied boost factor to the
function in bf by appending ^100 (or another number) to the end of the function
query. This is equivalent to using the mul() function query, described later.

Ensure newSearcher in solrconfig.xml has a sample query
using the boost functions you're using. In doing so, you ensure
that any referenced fields are loaded into Lucene's field cache
instead of penalizing the first query with this cost. Chapter 10,
Scaling Solr, has more information on performance tuning.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[178]

Add or multiply boosts
In a nutshell, if you can tame the difficulty in additive boosting (the bf param), then
you'll probably be more satisfied with the scoring. Multiplicative boosting (the boost
param) is easier to use, especially if the intended boost query is considered less than
or equal to the user query, which is usually true.

If you describe how you'd like the scoring to work as, "I'd like two-thirds of the
document score to come from the user query and the remainder one-third to be
from my formula," (or whatever ratios) then additive scores are for you. The trick
is that you need to know the top score for an excellent match on the user query in
order to balance out the proportions right. Try an exact match on a title (a highly
boosted field in the query) and see what the top score is. Do this a number of times
for a variety of documents, looking for reasonable consistency. So if, for example,
the top end of the user query ends up being 1.5, and you want the function query
to make up about half as much as the user query does in the final score, then adjust
the function query so its upper bound is 0.75. Simply multiply by that if you already
have the function query in the 0-1 nominal range. Even if these instructions don't
seem too bad, in practice tuning additive scores is tricky since Lucene will react to
every change you make by changing the queryNorm part of the score out from under
you, which you have no control over. As it does this, keep your eye on the overall
ratios that you want between the added boost part and the user query part, not the
final score values. Another bigger problem is that your experiments in gauging the
maximum score of the user query will change as your data changes, which will mean
some ongoing monitoring of whatever values you choose. And another complication
is that DisMax's tie parameter tends to interfere with this way of boosting.

The other way of thinking about your boost function is as a user query score
multiplier (a factor). With multiplication you don't need to concern yourself with
whatever a "good" user query score is—it has no bearing here. The tricky part of
multiplicative boosts is weighting your boost, so it has the relative impact you want.
If you simply supply your nominal range (0-1) function directly as the boost, then
it has the same weight as the user query. As you shift the function's values above 0,
you reduce the influence it has relative to the user query. For example, if you add 1
to your nominal 0-1 range so that it goes from 1-2, then it is weighted roughly half
as much [formula: (2-1)/2 = 0.5].

It's possible to use multiplicative boosts that are weighted as more relevant than the
user query, but I haven't fully worked out the details. A place to start experimenting
with this is boosting the boost function by a power, say 1.7, which appeared to about
double the weight.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

Functions and function queries
Functions, known internally as ValueSources, are typically mathematical in nature;
they take constants and references to single-valued fields and other functions as input
to compute an output number. Functions complement typical queries by enabling you
to boost by a function, to sort by a function, to return a value from a function in search
results, to filter by a range of values from a function, and they can be used in clever
ways wherever Solr accepts a query, such as facet.query. They are very versatile,
though they are usually only used for custom relevancy boosting.

A function is often referred to as a function query although
that is a little confusing, as it makes no distinction with
actual function queries that func and frange produce.

There are quite a few ways in which you can incorporate a function into your
searches in Solr:

• Dismax query parser using the bf or boost parameters: These two
parameters add or multiply the function to the score of the user's query
for boosting. They were previously described in the chapter, but you'll
see in-depth examples coming up.

• Boost query parser: Like DisMax's boost parameter, this query parser lets
you specify a function that is multiplied to another query. The query string
is parsed by the Lucene query parser. Here's an example query:
q={!boost b=log(t_trm_lookups)}t_name:Daydreaming

• Func query parser: Wherever a query is expected, such as the q param,
you can put a function query with this query parser. The func query parser
will parse the function and expose it as a query matching all documents and
return the function's output as the score. Here is an example URL snippet:
q={!func}log(t_trm_lookups)&fl=t_trm_lookups,score

• Frange (function range) query parser: This query parser is similar to the
func query parser, but it also filters documents based on the resulting score
being in a specified range, instead of returning all documents. It takes a l
parameter for the lower bound, a u parameter for the upper bound, and incl
and incu Boolean parameters to specify whether the lower or upper bounds
are inclusive—which they are by default. The parameters are optional, but
you will specify at least one of u or l for meaningful effect. Here's an example
URL snippet from its documentation:
fq={!frange l=0 u=2.2}sum(user_ranking,editor_ranking)

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[180]

Unfortunately, the resulting score from an frange query is always 1.

• Sorting: In addition to sorting on field values, as mentioned in the
previous chapter, you can sort on functions too. Here's an example URL
snippet sorting by geospatial distance. This geodist function can get its
parameters from the URL as other parameters, and we do that here:
sort=geodist() asc&pt=…&sfield=…

Despite the multitude of options, you'll most likely just use function
queries in boosting with the DisMax parser. It's good to know about
other possibilities, though.

The preceding list enumerates the places where you can place a function directly.
From this list, func and frange are query parsers that wrap the function as a query.
Using them, you can in turn use functions wherever Solr accepts a query. There are
many such places in Solr, so this opens up more possibilities.

For example, Solr's default query parser can switch to another query parser, even
just for a subclause. You can then use func or frange as part of the overall query.
Here is an example:

q=t_name:Daydreaming AND {!func v=log(t_trm_lookups)}^0.01

The function query portion of it will match all documents, so we combine it with
other required clauses to actually limit the results. The score is added to the other
parts of the query such as bf. Note that this feature is unique to Solr; Lucene does
not natively do this.

Before Solr 4.1, this was possible but required a rather ugly syntax hack
in which the function is prefixed, as if you were searching for it in a
pseudo-field named _val_, such as _val_:"log(t_trm_lookups)".
Similarly, the _query_ pseudo-field was used to enter a different query
parser than func. Don't use this old syntax any more.

Field references
For fields used in a function query, the constraints are the same as sorting.
Essentially, this means the field must be indexed or have DocValues, not
multi-valued, and if text fields are used, then they must analyze down to no
more than one token. And like sorting, all values get stored in the field cache
(it's internal to Lucene, not found in solrconfig.xml), unless the field has
DocValues. We recommend you set docValues="true" on these fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

The field cache will store all the field values in memory upon first use for sorting
or functions. You should have a suitable query in newSearcher in solrconfig.
xml so that the first search after a commit isn't penalized with the initialization
cost. If you want to use fast-changing data, consider managing the data externally
and using ExternalFileField, described a little later. Finally, if your field name
has problematic characters, such as a space, you can refer to the field as field("my
field").

If you have a multivalued field you hoped to use, you'll
instead have to put a suitable value into another field during
indexing. This might be a simple minimum, maximum, or
average calculation. There are UpdateRequestProcessors
that can do this; see Chapter 4, Indexing Data.

If there is no value in the field for the document, then the result is zero; otherwise,
numeric fields result in the corresponding numeric value. But what about other field
types? For TrieDateField, you get the ms() value, which will be explained shortly.
Note that 0 ambiguously means the date might be 1970 or blank. For older date
fields, you get the ord() value, also explained shortly. For Boolean fields, true is 1
and false is 0. For text fields, you get the ord() value. Some functions can work with
the text value—in such cases, you'll need to explicitly use the literal() function.

Function references
This section contains a reference of the majority of functions in Solr.

An argument to a function can be a literal constant, such as a number, a field
reference, or an embedded function. String constants are quoted. One interesting
thing you can do is pull out any argument into a separate named request parameter
(in the URL) of your choosing and then refer to it with a leading $:

&defType=func&q=max(t_trm_lookups,$min)&min=50

The parameter might be in the request URL or configured into the request handler
configuration. If this parameter dereferencing syntax is familiar to you, then that's
because it works the same way in local-params too, as explained in Chapter 5, Searching.

Not all arguments can be of any type. For the function definitions
below, any argument named x, y, or z can be any expression:
constants, field references, or functions. Other arguments such as a
or min require a literal constant, unless otherwise specified. If you
attempt to do otherwise, then you will get a parsing error, as it fails
to parse the field name as a number.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[182]

Mathematical primitives
These functions cover basic math operations and constants:

• sum(x,y,z,...), aliased to add sums up, that is adds, all of the arguments.
• sub(x,y) subtracts y from x as in the expression x-y.
• product(x,y,z,...), aliased to mul multiplies the arguments together.
• div(x,y) divides x by y as in the expression x/y.
• log(x) and ln(x) refers to the base-10 logarithm and the natural logarithm.
• For the sqrt(x), cbrt(x), ceil(x), floor(x), rint(x), pow(x,y),

exp(x), mod(x,y), and e() operations, see the java.lang.Math API at
http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html.

The following are Geometric/Trigonometric operations:

• rad(x) and deg(x) converts degrees to radians, and radians to degrees.
• For sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), sinh(x), cosh(x),

tanh(x), hypot(x,y), atan2(y,x), and pi(), see the java.lang.Math API.
• Geospatial functions will be covered later.

Other math
These are useful and straightforward mathematical functions:

• map(x,min,max,target,def?): If x is found to be between min and max
inclusive, then target is returned. Otherwise, if def (an optional parameter)
is supplied then that is returned. Else, x is returned. This is useful to deal
with default values or to limit x to ensure that it isn't above or below some
threshold. The map() function is a little similar to if() and def().

• min(x,y,…) and max(x,y,…): This returns the smallest and greatest
parameters, respectively.

• scale(x,minTarget,maxTarget): This returns x scaled to be between
minTarget and maxTarget. For example, if the value of x is found to be
one-third from the smallest and largest values of x across all documents, then
x is returned as one-third of the distance between minTarget and maxTarget.

scale() will traverse the entire document set and evaluate the
function to determine the smallest and largest values for each
query invocation, and it is not cached. This makes it impractical
for most uses, as it is too slow.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html
http://www.it-ebooks.info/

Chapter 6

[183]

• linear(x,m,c): A macro for sum(product(m,x),c), for convenience
and speed.

• recip(x,m,a,c): A macro for div(a,linear(x,m,c)), for convenience
and speed.

Boolean functions
Solr 4.0 includes new Boolean functions. When evaluating an expression as a Boolean,
0 is false and any other value is true. true and false are Boolean literals.

• and(x,y,…), or(x,y,…), xor(x,y,…), not(x): These are primitive Boolean
functions with names that should be self-explanatory.

• if(x,y,z): If x is true then y is returned, else z; a little similar to map().
• exists(x): If x is a field name, then this returns true if the current document

has a value in this field. If x is a query, then this returns true if the document
matches it. Constants and most other value sources are always true.

Relevancy statistics functions
Solr 4.0 includes new functions that expose statistics useful in relevancy. They are
fairly advanced, so don't worry if you are new to Solr and these definitions seem
confusing. In the following list of functions, field is a field name reference, and term
is an indexed term (a word):

• docfreq(field,term), totaltermfreq(field,term)—aliased to
ttf, sumtotaltermfreq(field)—aliased to sttf, idf(field,term),
termfreq(field,term)—aliased to tf, norm(field), maxdoc(), and
numdocs(): These functions have names that should be recognizable
to anyone who might already want to use them. The earlier part of this
chapter defined several of these terms.

• joindf(idField,linkField): This returns the document frequency of
the current document's idField value in linkField. Consider the use case
where Solr is storing crawled web pages with the URL in idField (need not
be the unique key) and linkField is a multivalued field referencing linked
pages. This function would tell you how many other pages reference the
current page.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[184]

Ord and rord

Before ms() was introduced in Solr 1.4, ord() and rord()
were mediocre substitutes. You probably won't use them.
The ms() function will be described soon.

As mentioned earlier, ord(fieldReference) is implied for references to text fields
in the function query. The following is a brief description of ord() and rord():

• ord(field): Given a hypothetical ascending sorted array of all unique
indexed values for field, this returns the array position; in other words,
the ordinal of a document's indexed value. The field parameter is of course
a reference to a field. The order of the values is in an ascending order and
the first position is 1. A non-existent value results in 0.

• rord(field): This refers to the reverse ordinal, as if the term ordering
was reversed.

Miscellaneous functions
Not every function falls into a neat category; this section covers a few.

The def(x,y,…) function returns the first parameter found that exists; otherwise,
the last parameter is returned. def is short for default.

There are multiple ways to use the ms() function to get a date-time value, since its
arguments are all optional. Times are in milliseconds, since the commonly used time
epoch of 1970-01-01T00:00:00Z, which is zero. Times before then are negative. Note
that any field reference to a time will be ambiguous to a blank value, which is zero.

If no arguments are supplied to the ms(date1?,date2?) function, you get the
current time. If one argument is supplied, its value is returned; if two are supplied,
the second is subtracted from the first. The date reference might be the name of a
field or Solr's date math; for example, ms(NOW/DAY,a_end_date/DAY).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

Interestingly, there are a couple of function queries that return the score results of
another query. It's a fairly esoteric feature but they have their uses, described as follows:

• query(q,def?): This returns the document's score, as applied to the query
given in the first argument. If it doesn't match, then the optional second
parameter is returned if supplied, otherwise 0 is returned. Due to the awkward
location of the query during function query parsing, it sometimes can't be
entered plainly. The query can be put in another parameter and referenced as
query($param)¶m=t_trm_attributes:4. Else, it can be specified using
local-params with the query in v, as query({!v="t_trm_attributes:4"}).
We've used this function to sort by another query, one that returns the distance
as its score.

• boost(q,boost): This is similar to query(q), but with the score multiplied
by the boost constant.

Another interesting function query is one that calculates the string distance between
two strings based on a specified algorithm. The values are between 0 and 1.

In strdist(x,y,alg), the first two arguments are strings to compute the string
distance on. Next is one of jw (Jaro Winkler), edit (Levenshtein), or ngram in
quotes. The default ngram size is 2, but you can supply an additional argument
for something else. For the field references, remember the restrictions listed earlier.
In particular, you probably shouldn't reference a tokenized field.

This concludes the Function references section of the chapter. For a potentially
more up-to-date source, check out the wiki at http://wiki.apache.org/solr/
FunctionQuery. The source code is always definitive; see ValueSourceParser.java.

There are some functions related to geospatial search, such as
geodist(). They have been covered in the previous chapter.

External field values
As you may recall from Chapter 4, Indexing Data, if you update a document,
Solr internally re-indexes the whole thing, not just the new content. If you were
to consider doing this just to increase a number every time a user clicked on a
document or clicked some "thumbs-up" button, and so on, then there is quite a bit
of work Solr is doing just to ultimately increase a number. For this specific use case,
Solr has a specialized field type called ExternalFileField, which gets its data from
a simple text file containing the field's values. This field type is very limited—the
values are limited to floating point numbers and the field can only be referenced
within Solr in a function. Changes are only picked up on a commit.

www.it-ebooks.info

http://wiki.apache.org/solr/FunctionQuery
http://wiki.apache.org/solr/FunctionQuery
http://www.it-ebooks.info/

Search Relevancy

[186]

And if you are using Solr 4.1 or later, register ExternalFileFieldReloader in
firstSearcher and newSearcher in solrconfig.xml. An application using this
feature should generate this file on a periodic basis, possibly aligning it with the
commit frequency. For more information on how to use this advanced feature, consult
the API docs at http://lucene.apache.org/solr/api/org/apache/solr/schema/
ExternalFileField.html and search Solr's mailing list.

Function query boosting
The overall process to function query boosting is as follows:

1. Pick a formula that has the desired plotted shape.
2. Plug in values specific to your data.
3. Decide the relative weighting of the boost relative to the user query

(for example, 1/3).
4. Choose additive or multiplicative boosting and then apply the relative

weighting according to the approach you have chosen (see the Add or
multiply boosts section).

The upcoming examples address common scenarios with readymade formulas for you.

If you want to work on formulas instead of taking one provided
here as is, I recommend a tool such as a graphing calculator or other
software to plot the functions. If you are using Mac OS X, as I am,
then your computer already includes Grapher, which generated the
charts in this chapter. I highly recommend it. You might be inclined
to use a spreadsheet, such as Microsoft Excel, but that's really not the
right tool. With luck, you may find some websites that will suffice,
perhaps http://www.wolframapha.com.
If your data changes in ways that cause you to alter the constants
in your function queries, then consider implementing a periodic
automated test of your Solr data to ensure that the data fits within
expected bounds. A Continuous Integration (CI) server might be
configured to do this task. An approach is to run a search simply
sorting by the data field in question to get the highest or lowest value.

Formula – logarithm
The logarithm is a popular formula for inputs that grow without bounds, but the
output is also unbounded. However, the growth of the curve is stunted for larger
numbers. This in practice is usually fine, even when you ideally want the output to be
capped. An example is boosting by a number of likes or a similar popularity measure.

www.it-ebooks.info

http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
http://lucene.apache.org/solr/api/org/apache/solr/schema/ExternalFileField.html
http://www.wolframapha.com
http://www.it-ebooks.info/

Chapter 6

[187]

Here is a graph of our formula, given inputs from a future example:

And here is the formula:

()()log 1 1x c mx− +

In this formula, c is a number greater than 1 and is a value of your choosing that will
alter how the curve bends. I recommend 10 as seen in the preceding graph. Smaller
values make it too linear and greater values put a knee bend in the curve that seems
too early. In this formula, m is the inverse of what I'll call the horizon. At this value,
the result is 1. With the logarithm, further values advance the output steadily but
at a shallow slope that slowly gets shallower. Here is the Solr function query to use,
simplified for when c is 10: log(linear(x,m,1)); where:

• x refers to the input; typically a field reference. It must not be negative.
• m refers to 9/horizon where horizon is as described earlier.

Verify your formula by supplying 0, which should result in 0, and then supply
horizon, which should result in 1. Now that you have your formula, you are ready
to proceed with the other function query boosting steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[188]

Formula – inverse reciprocal
In general, the reciprocal of a linear function is favorable because it gives results
that are bounded as the input grows without bounds.

Here is a sample graph to show the curve. The inputs are from a later how-to.
The arrow in the following graph shows where the "horizon" (1/m) lies:

Here is the formula:

2max max max
max 1m x

− +
+

− + −

Here, max is the value that this function approaches, but never quite reaches.
It should be greater than 1 and less than 2; 1.5 works well. You can experiment
with this to see how it changes the bend in the curve shown next. In the formula,
m is the inverse of what I'll call the horizon. At this value, the result is 1, and larger
inputs only increase it negligibly.

Here is the Solr function query to use: sum(recip(x,m,a,c),max); where:

• x refers to the input; typically a field reference. It must not be negative.
• m refers to 1/horizon, where horizon is as described earlier.
• a refers to max-max*max.
• c refers to max – 1.
• max is 1.5, or otherwise as defined earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[189]

Verify your formula by supplying 0, which should result in 0, to horizon, which
should result in 1. Now that you have your formula, you are ready to proceed
with the other function query boosting steps.

Formula – reciprocal
The reciprocal is an excellent formula to use when you want to maximally boost at
input 0 and boost decreasingly less as the input increases. It is often used to boost
newly added content by looking at how old a document is.

Here is a sample graph to show the curve. The inputs are from a later how-to.
The arrow roughly shows where the horizon input value is.

The formula is simply:

c
x c+

This translates easily to a Solr function query as recip(x,1,c,c); where:

• x refers to the input—a field or another function referencing a field. It should
not be negative.

• c is roughly 1/10th of the horizon input value. As larger values are supplied,
the boost effect is negligible.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[190]

Verify your formula by supplying 0, which should result in 1, and then horizon
(as defined earlier), which should result in a number very close to 0.09. Now that
you have your formula, you are ready to proceed with the other function query
boosting steps.

Formula – linear
If you have a value in your schema (or a computed formula) that you are certain will
stay within a fixed range, then the formula to scale and shift this to the 0-1 nominal
range is easy. We're also assuming that there is a linear relationship between the
desired boost effect and the input.

Simply use the linear(x,m,c) function with appropriate values. Below, a refers to
the end of the range that will have the least significant boost. So if your input ranges
from 5 to 10 and if 5 is least relevant compared to 10, then a is 5; b takes the other side
of the input range:

• x refers to the input, which is typically a field
• m computes 1/(b – a) and plug in
• c computes a/(a - b) and plug in

Verify your formula by supplying a value from each end of the range and verify
the result is 0 or 1 with 1 being the biggest boost. Now that you have your formula,
you are ready to proceed with the other function query boosting steps.

How to boost based on an increasing
numeric field
In this section, I'm going to describe a few ways to boost a document based on one of
its numeric fields. The greater this number is for a document, the greater boost this
document should receive. This number might be a count of likes or thumbs-up votes
by users, or the number of times a user accessed (for example, clicked) the referenced
document, or something else.

In the MusicBrainz database, there are TRM and PUID lookup counts. TRM and
PUID are MusicBrainz's audio fingerprint technologies. These identifiers roughly
correspond to a song, which, in MusicBrainz, appears as multiple tracks due to
various releases that occur as singles, compilations, and so on. By the way, audio
fingerprints aren't perfect, and so a very small percentage of TRM IDs and PUIDs
refer to songs that are completely different. Since we're only using this to influence
scoring, imperfection is acceptable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[191]

MusicBrainz records the number of times one of these IDs are looked up from its
servers, which is a good measure of popularity. A track that contains a higher lookup
count should score higher than one with a smaller value, with all other factors being
equal. This scheme could easily be aggregated to releases and artists, if desired. In
the data loading, I've arranged for the sum of TRM and PUID lookup counts to be
stored into our track data as t_trm_lookups with the following field specification
in the schema:

<field name="t_trm_lookups" type="tint" />

About 25 percent of the tracks have a non-zero value. The maximum value is nearly
300,000 but further inspection shows that only a handful of records exceed a value
of 90,000.

Step by step…
The first step is to pick a formula. Since this is a classic case of an increasing number
without bound in which the greater the number is, the greater the boost should
be, the inverse reciprocal is a very good choice. Next, we plug in our data into the
formula specified earlier and we end up with this function query:

sum(recip(t_trm_lookups,0.0000111,-0.75,0.5),1.5)

We verify the formula by plugging in 0 and 90,000, which maps to 0 and 1.

The next step is to choose between additive boosts versus multiplicative boosts.
Multiplicative boost with edismax is easier, so we'll choose that. And let's say
this function query should weigh one-third of the user query. According to earlier
instructions, adding to our function query will reduce its weight counter-intuitively.
Adding 2 shifts the 0 to 1 range to 2 to 3 and (3 - 2)/3 results in the one-third boost
we're looking for. Since our function query conveniently has sum() as its outer
function, we can simply add another argument of 2. Here is a URL snippet that
shows the relevant parameters:

q=cherub+rock&defType=edismax&qf=t_name
&boost=sum(recip(t_trm_lookups,0.0000111,-0.75,0.5),1.5,2)

This boost absolutely had the desired effect, altering the score order as we wanted.
One unintended outcome is that the top document scores used to be ~8.6 and now
they are ~21.1, but don't worry about it! The actual scores are irrelevant—a point
made in the beginning of the chapter. The goal is to change the relative order of
score-sorted documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[192]

To better illustrate the difference, here is the query before boosting and with CSV
output (with spaces added for clarity): http://localhost:8983/solr/mbtracks/
select?q=cherub+rock&defType=edismax&qf=t_name&fl=id,t_name,
t_trm_lookups,score&wt=csv&rows=5:

id,t_name,t_trm_lookups,score
Track:2528226, Cherub Rock, 0, 8.615694
Track:2499080, Cherub Rock, 0, 8.615694
Track:2499119, Cherub Rock, 0, 8.615694
Track:2492995, Cherub Rock, 1036, 8.615694
Track:2492999, Cherub Rock, 105, 8.615694

And here is the boosted query and the new results: http://
localhost:8983/solr/mbtracks/select?q=cherub+rock&defType=e
dismax&qf=t_name&boost=sum(recip(t_trm_lookups,0.0000111,-
0.75,0.5),1.5,2)&fl=id,t_name,t_trm_lookups,score&wt=csv&rows=5:

id,t_name,t_trm_lookups,score
Track:749561, Cherub Rock, 19464, 21.130745
Track:183137, Cherub Rock, 17821, 20.894897
Track:2268634, Cherub Rock, 9468, 19.47599
Track:2203149, Cherub Rock, 9219, 19.426989
Track:7413518, Cherub Rock, 8502, 19.28334

If you're wondering why there are so many tracks with the same name, it's because
popular songs like this one are published as singles and as part of other collections.

How to boost based on recent dates
Using dates in scores presents some different issues. Suppose when we search for
releases, we want to include a larger boost for more recent releases. At first glance,
this problem may seem just like the previous one, because dates increase as the
scores are expected to, but in practice, it is different. Instead of the data ranging
from zero to some value that changes occasionally, we now have data ranging from
a non-zero value that might change rarely to a value that we always know, but
changes continuously—the current date. Instead, approach this from the other side,
that is, by considering how much time there is between the current date and the
document's date. So at x=0 in the graph (x representing time delta), we want 1 for
the greatest boost, and we want it to slope downward towards 0, but not below it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[193]

Step by step…
The first step is to pick a formula. The reciprocal is perfect for this scenario.
The function query form as detailed earlier is recip(x,1,c,c).

Based on this scenario, x is the age—a time duration from the present.
Our MusicBrainz schema has r_event_date, which is a promising candidate;
however, multivalued fields are not supported by function queries. I made a
simple addition to the schema and index to record the earliest release event date:
r_event_date_earliest. With that done, now we can calculate the age with the
two-argument variant of ms(). As a reminder to show how to run these function
queries while debugging, here's a URL snippet:

q={!func}ms(NOW,r_event_date_earliest)
&fl=id,r_name,r_event_date_earliest,score&sort=score+asc

The book's dataset hasn't markedly changed since the first edition, but when I first
obtained it, I noticed that some of the releases were in the future! What I saw then is
reproducible by substituting NOW-6YEARS to get to 2008 as I write this in 2014, instead
of just NOW in the function. The first documents (score ascending) have negative values,
which means they are from the future. We can't have negative inputs, so instead we'll
wrap this function with the absolute value using abs().

The other aspect of the inputs to the reciprocal function is finding out what the
horizon is. This should be a duration of time such that any longer durations have a
negligible boost impact. Without too much thought, 20 years seems good. Here's
a query to have Solr do the math so we can get our millisecond-count: q={!func}
ms(NOW,NOW-20YEARS), which is about 6.3E11. In the documentation for the
reciprocal formula, we take one-tenth of that for c. Here is our function query:

recip(abs(ms(NOW/DAY,r_event_date_earliest)),1,6.3E10,6.3E10)

An important performance tip when using NOW is to round it
to an acceptable interval. Instead of using NOW, using NOW/DAY
makes this query cacheable within Solr with subsequent requests
for a 24-hour period.

At this point, you can follow the final steps in the previous how-to.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Relevancy

[194]

Summary
In this chapter, we covered the most advanced topics the book has to offer—scoring
and function queries. We began with a fundamental background on Lucene scoring.
Next, we saw a real-world example of using the debugQuery parameter to diagnose
a scoring issue. That exercise might be the most important exercise in the chapter,
since it gives you the tools to diagnose why a document matched or didn't match
a query. Next, we concluded the coverage of the DisMax query parser. Even if you
aren't inclined to use fancy boosting function queries, you can improve your search
relevancy simply by configuring phrase boosting. The DisMax query parsers's boost
function parameters were segue to the second half of the chapter: function queries.
Even if you aren't a math whiz, you should be able to use formulas provided here,
especially if you worked through the how-tos.

You might say this is the last of the foundational chapters. The next two chapters
cover specific search-value adds that are each fairly compartmentalized. The standout
feature that contributes to much of Solr's popularity is faceting, which is covered next
in its own chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

[195]

Faceting
Faceting is Solr's killer feature. It's a must-have feature for most search
implementations, especially those with structured data like in e-commerce.
Yet there are few products that have this capability, especially in open source.
Of course, search fundamentals, including highlighting, are critical too, but they
tend to be taken for granted. Faceting enhances search results with aggregated
information over all documents matching the search query. It can answer
questions about the MusicBrainz data such as:

• How many releases are official, bootleg, or promotional?
• What were the top five most common countries in which the

releases occurred?
• Over the past ten years, how many were released in each year?
• How many releases have names in the ranges A-C, D-F, G-I, and so on?
• How many tracks are < 2 minutes long, 2-3 long minutes, 3-4 minutes long,

or longer?

In a hurry?
Faceting is a key feature. Look through the upcoming example,
which demonstrates the most common type of faceting, and
review the faceting types.

Faceting in the context of the user experience is often referred to as faceted
navigation, but also faceted search, faceted browsing, guided navigation, or
parametric search. The facets are typically displayed with clickable links that
apply Solr filter queries to a subsequent search. Endeca's excellent UX Design
Pattern Library contains many screenshots worth viewing. Visit http://www.
oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/
home.html and click on Faceted Navigation.

www.it-ebooks.info

http://www.oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/home.html
http://www.oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/home.html
http://www.oracle.com/webfolder/ux/applications/uxd/endeca/content/library/en/home.html
http://www.it-ebooks.info/

Faceting

[196]

If we revisit the comparison of search technology to databases, then faceting is
more or less analogous to SQL's GROUP BY feature on a column with count(*).
However, in Solr, facet processing is performed subsequent to an existing search
as part of a single request-response, with both the primary search results and the
faceting results coming back together. In SQL you would need to perform a series
of separate queries to get the same information. Furthermore, faceting works so fast
that its search response time overhead is often negligible. For more information on
why implementing faceting with relational databases is hard and doesn't scale, visit
this old article at http://web.archive.org/web/20090321120327/http://www.
kimbly.com/blog/000239.html.

A quick example – faceting release types
Observe the following search results. The echoParams parameter is set to explicit
(defined in solrconfig.xml) so that the search parameters are seen here. This
example is using the default lucene query parser. The dismax query parser is more
typical, but it has no bearing on these examples. The query parameter q is *:*, which
matches all documents. In this case, the index only has releases, so there is no need
to apply filters. Filter queries are used in conjunction with faceting a fair amount, so
be sure you are familiar with them; see Chapter 5, Searching. To keep this example
brief, we set rows to 2. Sometimes when using faceting, you only want the facet
information and not the main search, so you would set rows to 0.

{"responseHeader":{
 "status":0,
 "QTime":3,
 "params":{
 "facet":"true",
 "f.r_official.facet.method":"enum",
 "f.r_official.facet.missing":"true",
 "facet.field":"r_official",
 "fq":"type:Release",
 "fl":"r_name",
 "q":"*:*",
 "wt":"json",
 "rows":"2"}},
"response":{"numFound":603090,"start":0,"docs":[
 {"r_name":"Texas International Pop Festival 11-30-69"},
 {"r_name":"40 Jahre"}]},
"facet_counts":{
 "facet_queries":{},
 "facet_fields":{

www.it-ebooks.info

http://web.archive.org/web/20090321120327/http://www.kimbly.com/blog/000239.html
http://web.archive.org/web/20090321120327/http://www.kimbly.com/blog/000239.html
http://www.it-ebooks.info/

Chapter 7

[197]

 "r_official":[
 "Official",519168,
 "Bootleg",19559,
 "Promotion",16562,
 "Pseudo-Release",2819,
 null,44982]},
 "facet_dates":{},
 "facet_ranges":{}}}

It's critical to understand that faceting numbers are computed over
the entire search result—603,090 releases, which is all of the releases
in this example—and not just the two rows being returned.

The facet-related search parameters are highlighted at the top. The facet.missing
parameter was set using the field-specific syntax, which will be explained shortly.

Notice that the facet results (highlighted) follow the main search result and are given
the name facet_counts. In this example, we only faceted on one field, r_official,
but you'll learn in a bit that you can facet on as many fields as you desire. Within "r_
official" lie the facet counts for this field—value and count pairs. The first value in
a pair, such as "Official", holds a facet value, which is simply an indexed term, and
the integer following it is the number of documents in the search results containing
that term—the facet count. The last facet has the count but no corresponding name.
It is a special facet to indicate how many documents in the results don't have any
indexed terms.

Field requirements
The principal requirement of a field that will be faceted on is that it must be indexed;
it does not have to be stored. And for text fields, tokenization is usually undesirable.
For example, if the value Non-Album Track was tokenized, faceting on a field with
that value would show tallies for Non-Album and Track separately. On the other
hand, tag-clouds, some approaches to hierarchical faceting, and term-suggest are
faceting use cases that handle tokenization just fine. Keep in mind that with faceting,
the facet values returned in search results are the actual indexed terms, and not the
stored value, which isn't used.

If you have conflicting indexing needs for a field, which is common,
you will find it necessary to have a copy of a field just for faceting.

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[198]

Types of faceting
Solr's faceting is broken down into five types. They are as follows:

• field: This is the most common type of faceting which counts the number
of occurrences of each indexed term in a field. The facet counts are grouped
in the output under the name facet_fields.

• range: Given a numeric or date field, this creates facets for a set of ranges.
The facet counts are grouped in the output under the name facet_ranges.

Solr 3 deprecated date faceting with the introduction of the
generic range faceting. We won't document it further.

• query: This is a very flexible type of faceting which counts the number of
documents matching each specified query. The facet counts are grouped
in the output under facet_queries.

• pivot: Also known as decision tree faceting, this type of faceting allows
recursive faceting across a set of fields. Results are grouped under
facet_pivot.

• interval: A Solr 4.10-only feature, an interval facet is similar to a query
facet with range queries. While the same results can be achieved using query
facets with range queries, interval facets are implemented differently and,
therefore, have different performance characteristics.

In the rest of this chapter, we will describe how to do these different types of facets.
But before that, there is one common parameter to enable faceting:

• facet: It defaults to false. In order to enable faceting, you must set this to
true or on. If this is not done, then the faceting parameters will be ignored.

In all of the examples in this chapter, we always set facet=true.

Faceting field values
Field value faceting is the most common type of faceting. The first example in this
chapter demonstrated it in action. Solr, in essence, iterates over all of the indexed
terms for the field and tallies a count for the number of searched documents that
include the term. Sophisticated algorithms and caching makes this so fast that its
overhead is usually negligible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

The following are the request parameters to use it:

• facet.field: You must set this parameter to a field's name in order to facet
on that field. Repeat this parameter for each field to be faceted on. See the
previous Field requirements section.

The remaining faceting parameters can be set on a per-field
basis, otherwise they apply to all faceted fields that don't have
a field-specific setting. You will usually specify them per field,
especially if you are faceting on more than one field, so that you
don't get your faceting configuration mixed up. For example:
f.r_type.facet.sort=index (r_type is a field name,
facet.sort is a facet parameter).

• facet.limit: This limits the number of facet values returned in the search
result of a field. As these are usually going to be displayed to the user, it
doesn't make sense to have a large number of these in the response. If you
need all of them, then disable the limit with a value of -1. It defaults to 100.

• facet.sort: This is set to either count to sort the facet values by descending
totals, or to index to sort lexicographically, as if you sorted on the field.
If facet.limit is greater than zero (typical), then Solr picks count as
the default, otherwise index is chosen.

• facet.offset: This is the offset into the facet value list from which the
values are returned. It enables paging of facet values when used with
facet.limit and defaults to 0.

• facet.mincount: This tells Solr to exclude facet values whose counts are less
than the number given. It is applied before limit and offset so that paging
works as expected. It is common to set this to 1 since 0 is almost useless.
This defaults to 0.

• facet.missing: When enabled, this causes the response to include the
number of searched documents that have no indexed terms. The first facet
example in the chapter demonstrates this. It defaults to false and is set to
true or on.

• facet.prefix: This filters the facet values to those starting with this value.
This is applied before limit and offset so that paging works as expected.
At the end of this chapter, you'll see how this can be used for hierarchical
faceting. In the next chapter, you'll see how faceting with this prefix can be
used to power query-term suggests.

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[200]

• facet.threads (advanced): When this parameter is set, Solr loads the
fields related to faceting concurrently. The value (an integer) specifies the
number of threads to use. Solr will use the Java Interger.MAX_VALUE if
this parameter is set to a negative number. No threads are spawned if
this parameter is not set.

• facet.method (advanced): This parameter tells Solr which of its three
different field-value faceting algorithms to use in order to influence memory
use, query performance, and commit speed. Solr usually makes good choices
by default. You can specify one of enum, fcs or fc, or neither, and Solr will,
under the right circumstances, choose the third, known as UnInvertedField.
fc refers to the field cache which is only for single-valued fields that are
not tokenized. Trie-based fields that are configured for fast range queries
(for example, tint, not int) are only facetable with UnInvertedField.
If you set facet.method incorrectly, then Solr will ignore it.

When to specify facet.method
Normally, you should not specify facet.method, thereby letting
Solr's internal logic choose an appropriate algorithm. However, if you
are faceting on a multi-valued field that only has a small number of
distinct values (less than 100, but ideally perhaps 10), then we suggest
setting this to enum. Solr will use a filter cache entry for each value, so
keep that in mind when optimizing that cache's size. Solr uses enum
by default for Boolean fields only, as it knows there can only be two
values. Another parameter we'll mention for completeness is facet.
enum.cache.minDf, which is the minimum document frequency for
filter cache entries (0—no minimum by default). If the field contains
rarely used values occurring less than ~30 times, then setting this
threshold to 30 makes sense.

Alphabetic range bucketing
Solr does not directly support alphabetic range bucketing (A-C, D-F, and so on).
However, with a creative application of text analysis and a dedicated field, we can
achieve this with little effort. Let's say we want to have these range buckets on the
release names. We need to extract the first character of r_name, and store this into
a field that will be used for this purpose. We'll call it r_name_facetLetter. Here is
our field definition:

<field name="r_name_facetLetter" type="bucketFirstLetter"
stored="false" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

And here is the copyField:

<copyField source="r_name" dest="r_name_facetLetter" />

The definition of the bucketFirstLetter type is the following:

<fieldType name="bucketFirstLetter" class="solr.TextField"
sortMissingLast="true" omitNorms="true">
 <analyzer type="index">
 <tokenizer class="solr.PatternTokenizerFactory"
 pattern="^([a-zA-Z]).*" group="1" />
 <filter class="solr.SynonymFilterFactory"
 synonyms="mb_letterBuckets.txt"
 ignoreCase="true"
 expand="false"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 </analyzer>
</fieldType>

The PatternTokenizerFactory class, as configured, plucks out the first character,
and the SynonymFilterFactory class maps each letter of the alphabet to a range such
as A-C. The mapping is in conf/mb_letterBuckets.txt. The field types used for
faceting generally have a KeywordTokenizerFactory class for the query analysis to
satisfy a possible filter query on a given facet value returned from a previous faceted
search. After validating these changes with Solr's analysis admin screen, we then re-
index the data. For the facet query, we're going to advise Solr to use the enum method,
because there aren't many facet values in total. Here's the URL to search Solr:
http://localhost:8983/solr/mbreleases/select?indent=on&wt=json&q=*:*&
facet=on&facet.field=r_name_facetLetter&facet.sort=lex&facet.missing=
on&facet.method=enum.

The URL produces results containing the following facet data:

{"facet_counts": {
 "facet_queries": {},
 "facet_fields": {
 "r_name_facetLetter": [
 "a-c", 99005,
 "d-f", 68376,
 "g-i", 60569,
 "j-l", 49871,
 "m-o", 59006,
 "p-r", 47032,
 "s-u", 143376,

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[202]

 "v-z", 33233,
 null, 42622]},
 "facet_dates": {},
 "facet_ranges": {}}}

Faceting numeric and date ranges
Solr has built-in support for faceting numeric and date fields by a range and a
divided interval. You can think of this as a convenience feature that calculates
the ranges for you with succinct input parameters and output, rather than you
calculating and submitting a series of facet queries—facet queries are described
after this section.

Range faceting is particularly useful for dates. We'll demonstrate an example against
MusicBrainz release dates and another against MusicBrainz track durations, and
then describe the parameters and their options.

Date faceting is the date-specific predecessor of range
faceting and is deprecated as of Solr 3. Date faceting
uses similar parameters starting with facet.date
and has similar output under facet_dates.

Here's the URL:

http://localhost:8983/solr/mbreleases/mb_releases?indent=on&wt=jso
n&omitHeader=true&rows=0&facet=true&facet.range.other=all&f.r_even
t_date_earliest.facet.range.start=NOW/YEAR-
10YEARS&facet.range=r_event_date_earliest&facet.range.end=NOW/YEAR
&facet.range.gap=+1YEAR&q=smashing

And here's the response:

{"response":{"numFound":248,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{},
 "facet_dates":{},
 "facet_ranges":{
 "r_event_date_earliest":{
 "counts":[
 "2003-01-01T00:00:00Z",2,
 "2004-01-01T00:00:00Z",1,
 "2005-01-01T00:00:00Z",1,
 "2006-01-01T00:00:00Z",3,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

 "2007-01-01T00:00:00Z",11,
 "2008-01-01T00:00:00Z",0,
 "2009-01-01T00:00:00Z",0,
 "2010-01-01T00:00:00Z",0,
 "2011-01-01T00:00:00Z",0,
 "2012-01-01T00:00:00Z",0],
 "gap":"+1YEAR",
 "start":"2003-01-01T00:00:00Z",
 "end":"2013-01-01T00:00:00Z",
 "before":93,
 "after":0,
 "between":18}}}}

This example demonstrates a few things, not only range faceting:

• /mb_releases is a request handler using dismax to query appropriate
release fields.

• q=smashing indicates that we're faceting on a keyword search instead
of all the documents. We kept the rows at zero, which is unrealistic,
but not pertinent as the rows setting does not affect facets.

• The facet start date was specified using the field specific syntax for
demonstration purposes. You would do this with every parameter if
you need to do a range facet on other fields; otherwise, don't bother.

• The "start" and "end" part below the facet counts indicates the upper
bound of the last facet count. It may or may not be the same as facet.
range.end (see facet.range.hardend explained in the next section).

• The before, after, and between counts are to specify facet.range.other.
We'll see shortly what this means.

The results of our facet range query show that there were three releases in 2006 and
eleven in 2007. There is no data after that, since the data is out of date at this point.

Here is another example, this time using range faceting on a number—MusicBrainz
track durations (in seconds). The URL is http://localhost:8983/solr/mbtracks/
mb_tracks?wt=json&omitHeader=true&rows=0&facet.range.other=after&face
t=true&q=Geek&facet.range.start=0&facet.range=t_duration&facet.range.
end=240&facet.range.gap=60.

This is the response:

{"response":{"numFound":552,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{},

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[204]

 "facet_dates":{},
 "facet_ranges":{
 "t_duration":{
 "counts":[
 "0",128,
 "60",64,
 "120",111,
 "180",132],
 "gap":60,
 "start":0,
 "end":240,
 "after":117}}}}

Taking the first facet, we see that there are 128 tracks that are 0–59 seconds long,
given the keyword search "Geek".

Range facet parameters
All of the range faceting parameters start with facet.range. As with most
other faceting parameters, they can be made field specific in the same way.
The parameters are explained as follows:

• facet.range: You must set this parameter to a field's name to range-facet
on that field. The trie-based numeric and date field types (those starting with
t, as in tlong and tdate) perform best, but others will work. Repeat this
parameter for each field to be faceted on.

The remainder of these range faceting parameters can be specified
on a per-field basis in the same fashion as field-value faceting
parameters can. For example, f.r_event_date_earliest.
facet.range.start.

• facet.range.start: This is mandatory. It is a number or date to specify
the start of the range to facet on. For dates, see the Date math section in
Chapter 5, Searching. Using NOW with some Solr date math is quite effective
as in this example: NOW/YEAR-5YEARS, interpreted as five years ago, starting
at the beginning of the year.

• facet.range.end: This is mandatory. It is a number or date to specify the
end of the range. It has the same syntax as facet.range.start. Note that
the actual end of the range may be different (see facet.range.hardend).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

• facet.range.gap: This is also mandatory. It specifies the interval to
divide the range. For dates, it uses a subset of Solr's Date Math syntax,
as it's a time duration and not a particular time. It should always start
with a +. For example, +1YEAR or +1MINUTE+30SECONDS. Note that
after URL encoding, + becomes %2B.

Note that for dates, the facet.range.gap is not necessarily
a fixed length of time. For example, +1MONTH is different
depending on the month.

• facet.range.hardend: This parameter instructs Solr on what to do when
facet.range.gap does not divide evenly into the facet range (start | end).
If this is true, then the last range will be shortened. Moreover, you will
observe that the end value in the facet results is the same as facet.range.
end. Otherwise, by default, the end is essentially increased sufficiently so
that the ranges are all equal according to the gap value. The default value
is false.

• facet.range.other: This parameter adds more faceting counts depending
on its value. It can be specified multiple times. See the example using this at
the start of this section. It defaults to none.

 ° before: Count of documents before the faceted range
 ° after: Count of documents following the faceted range
 ° between: Count of documents within the faceted range
 ° none (disabled): The default
 ° all: Shortcut for all three (before, between, and after)

• facet.range.include: This specifies which range boundaries are inclusive.
The choices are lower, upper, edge, outer, and all (all being equivalent to
all the others). This parameter can be set multiple times to combine choices
and defaults to lower. Instead of defining each value, we will describe when
a given boundary is inclusive:

 ° The lower boundary of a gap-based range is included if lower
is specified. It is also included if it's the first gap range and edge
is specified.

 ° The upper boundary of a gap-based range is included if upper
is specified. It is also included if it's the last gap range and edge
is specified.

 ° The upper boundary of the before range is included if the boundary
is not already included by the first gap-based range. It's also included
if outer is specified.

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[206]

 ° The lower boundary of the after range is included if the boundary is
not already included by the last gap-based range. It's also included if
outer is specified.

Avoid double counting
The default facet.range.include of lower ensures that
an indexed value occurring at a range boundary is counted in
exactly one of the adjacent ranges. This is usually desirable,
but your requirements may differ. To ensure you don't double
count, don't choose both lower and upper together and don't
choose outer.

Facet queries
This is the final type of faceting, and it offers a lot of flexibility. Instead of choosing
a field to facet its values on or faceting a specified range of values, we specify some
number of Solr queries so that each itself becomes a facet. For each facet query
specified, the number of documents matching the facet query that also match the
main search is counted. Each facet query with its facet count is returned in the results
under the facet_queries section. Facet queries are each cached in the filter cache.

There is only one parameter to configure facet queries:

• facet.query: This is a Solr query to be evaluated over the search results.
The number of matching documents (the facet count) is returned as an entry
in the results next to this query. Specify this multiple times to have Solr
evaluate multiple facet queries.

In general, if field value faceting or range faceting don't do what you want, you can
probably turn to facet queries. For example, if range faceting is too limiting because
facet.range.gap is fixed, then you could specify a facet query for each particular
range you need. Let's use that scenario for our example. Here are search results
showing a few facet queries on MusicBrainz release dates, using the /mb_artists
request handler. I've used echoParams to make the search parameters clear instead
of showing a lengthy URL:

{"responseHeader":{
 "status":0,
 "QTime":80,
 "params":{
 "facet":"on",
 "facet.query":[
 "a_release_date_latest:[NOW/DAY-1YEAR TO *]",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

 "a_release_date_latest:[NOW/DAY-5YEAR TO *]",
 "a_release_date_latest:[NOW/DAY-20YEAR TO *]"
],
 "wt":"json",
 "rows":"0",
 "echoParams":"explicit",
 "indent":"on"}},
 "response":{"numFound":399182,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{
 "a_release_date_latest:[NOW/DAY-1YEAR TO *]":0,
 "a_release_date_latest:[NOW/DAY-5YEAR TO *]":33,
 "a_release_date_latest:[NOW/DAY-20YEAR TO *]":80009},
 "facet_fields":{},
 "facet_dates":{},
 "facet_ranges":{}}}

In this example, the facet.query parameter was specified three times showing
releases released in the past 1 year, 5 years, and 20 years. An interesting thing to
note about the facet query response is that the name of each of these facets is the
query itself.

Query facets with range queries allow arbitrary "bucket" value
sizes. Solr 4.10 supports a new interval facet that also provides this
capability. In some cases, this facet type may perform better than
query/range faceting. Details can be found in the reference guide
at https://cwiki.apache.org/confluence/display/
solr/Faceting#Faceting-IntervalFaceting.

Building a filter query from a facet
When faceting is used, it is usually used in the context of faceted navigation, in
which a facet value becomes a navigation choice for the user to filter on. In Solr,
that becomes an additional filter query in a subsequent search. The total matching
documents of that search should be equal to the facet value count. In this section,
we'll review how to build the filter queries. We won't show an example for facet
query faceting because there's nothing to do—the facet query is a query and can
be supplied directly as an fq parameter.

To keep the filter queries easier to read, we won't show
them URL encoded.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-IntervalFaceting
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-IntervalFaceting
http://www.it-ebooks.info/

Faceting

[208]

Field value filter queries
For the case of field value faceting, consider the first example in the chapter where
r_official has a value Bootleg. Generating a filter query for this couldn't be
simpler: fq=r_official:Bootleg. But what if the value contained a space or some
other problematic character? You'd have to escape it using quotes or backslash
escaping as explained in Chapter 5, Searching. This is a separate issue from URL
encoding, which we're omitting here for clarity; this pertains to the query syntax.
Another potential problem relates to the fact that the value, even if escaped, still
might have to go through text analysis in the field type configuration, which could
modify the value resulting in a failed match. This is a rare circumstance and it's
impossible with the string field type, but nonetheless it's something to watch out
for, particularly for tag-cloud-like use cases. A solution to both problems is to use
the term query parser, in this manner, fq={!term f=r_official}Bootleg. Here,
the value needs no escaping as it sidesteps text analysis.

Consider using the term query parser for all text field value
faceting as it avoids escaping problems.

You might be wondering how to generate a filter query for the facet.missing facet,
as there is no value to filter on. Chapter 5, Searching, covered a little-known trick to
query for a field with no indexed data involving a range query. Here it is for r_
official, without URL encoding:

fq=-r_official:[* TO *].

Facet range filter queries
Range faceting is the most complicated to generate filter queries for. Consider the
first date range example. The first facet returned is as follows:

"2003-01-01T00:00:00Z",2

The gap is +1YEAR. The facet's quoted date value is the start of the range. The end of
the range is the next facet date value. If there are no more, then the final range's end
point depends on facet.range.hardend—if it is false, the default, then you add
facet.range.gap. For numbers, you calculate this math yourself. For dates, you
can conveniently concatenate the string like this, 2006-01-01T00:00:00Z+1YEAR.
On the other hand, if there is a hard end, then the last range end point is simply
facet.range.end.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

At this point, you might think the filter query for the first range is fq=r_event_date_
earliest:[2006-01-01T00:00:00Z TO 2007-01-01T00:00:00Z]. However, that
is incorrect! You must now consider the implications of facet.range.include. If
you set this parameter to both lower and upper, then the aforementioned filter query
would be correct, but by default it's just lower (which is generally a good default that
doesn't double count). If a date falls on precisely New Year's Eve of 2014, then we don't
want to count that date. The solution is to use this range query, fq=r_event_date_
earliest:[2006-01-01T00:00:00Z TO 2007-01-01T00:00:00Z}—note the curly
bracket (exclusivity) at the end of the range query. Varying exclusivity and inclusivity
in a range query like this is a new feature as of Solr 4.

Generating filter queries for the before and after ranges isn't too hard. Here is the
filter query for the before range, which is exclusive of the facet.range.start point:

fq=r_event_date_earliest:{* TO 2006-01-01T00:00:00Z}

Pivot faceting
Pivot facets enable Solr to return facet counts across sets of fields. This means that the
facet results are multi-level, where each level is a different Solr field. Pivot facets are
great for hierarchical or tree faceting.

Pivot facets are not supported in distributed mode until Solr 4.10.

Pivot faceting is simple to use. The feature itself introduces only two new parameters:

• facet.pivot: This field is similar to facet.field, but instead of giving it a
single field, it expects an ordered comma-delimited list of fields. Each field is
recursively faceted from the field listed before it in the list.

• facet.pivot.mincount: This is similar to facet.mincount, but only for
pivot facets. The default value is 1.

It's important to know that the facet.pivot parameter only accepts field names.
It won't handle functions, for example. Additionally, the facet.pivot parameter
can be specified multiple times.

Time for an example! Let's query the mbtracks core to show artist name, release
name and the length of each track using pivot facets.

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[210]

As mentioned in the beginning of this chapter, it's important that
you choose the right field types. The example we're about to show
you mostly works because we've explicitly chosen fields that contain
only single words. You'll see though, that the values are lowercased
as a result of tokenizing/lower-casing—this is for demonstration
purposes only.

The query is http://localhost:8983/solr/mbtracks/mb_tracks?omitHeade
r=true&wt=json&q=t_r_id:116747&rows=0&facet=true&facet.pivot=t_a_
name,t_r_name,t_duration.

And here's the resulting response:

{"response":{"numFound":12,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{},
 "facet_dates":{},
 "facet_ranges":{},
 "facet_pivot":{
 "t_a_name,t_r_name,t_duration":[{
 "field":"t_a_name",
 "value":"nirvana",
 "count":12,
 "pivot":[{
 "field":"t_r_name",
 "value":"nevermind",
 "count":12,
 "pivot":[
 {"field":"t_duration",
 "value":142,
 "count":1},
 {"field":"t_duration",
 "value":156,
 "count":1},
 {"field":"t_duration",
 "value":176,
 "count":1},
 ...]}]}]}}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

The relevant request and response values are highlighted. The facet.pivot
parameter contains the list of fields. Here, we're querying on a release ID of 116747,
which happens to be the album "nevermind" by "nirvana". The pivot facets
contextually show the artist name, the release name, and the length of each track.

Solr 5.0 introduces an extremely useful enhancement to pivot facets—
pivot facet stats. With this new feature, you can attach stats to each
leaf node in the pivot tree. We cover the stats component in Chapter
5, Searching, and more details on the pivot stats feature can be found
at https://cwiki.apache.org/confluence/display/solr/
Faceting#Faceting-Pivot(DecisionTree)Faceting.

Hierarchical faceting
Pivot facets lend themselves quite well to hierarchical faceting. You could easily
imagine a dataset where documents have geographical attributes, such as continent,
country, region, and city. On the indexing side, these fields would need to be
nontokenized, stored, and indexed string types. This would allow the values to be
searched as well as displayed properly. On the output and query side, building a
navigational tree with counts is trivial using pivot facets. You'd simply specify your
list of fields as described previously facet.pivot=continent,country,region,c
ity. The facet_pivot object in the response would contain all the data needed to
build the UI component.

It's worth noting that pivot facets only work when the nodes within a tree have
only one parent. The dataset described above works with pivot facets because
there's a single path from child to parent. Datasets that have more than one parent
(a family tree, and so on) will require a different solution. The Solr Wiki contains
a good amount of information on hierarchical faceting and can be found at
https://wiki.apache.org/solr/HierarchicalFaceting.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Pivot(DecisionTree)Faceting
https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-Pivot(DecisionTree)Faceting
https://wiki.apache.org/solr/HierarchicalFaceting
http://www.it-ebooks.info/

Faceting

[212]

Excluding filters – multiselect faceting
Consider a scenario where you are implementing faceted navigation and you want
to let the user pick several values of a field to filter on instead of just one. Typically,
when an individual facet value is chosen, this becomes a filter. The filter makes
subsequent faceting on that field almost pointless because the filter filters out the
possibility of seeing other facet choices—assuming a single-valued field. In this
scenario, we'd like to exclude this filter for this facet field.

The preceding screenshot is from http://search-lucene.com, in which you
can search across the mailing lists, API documentation, and other places that have
information about Lucene, Solr, and other related projects. This screenshot shows
that it lets users choose more than one type of information to filter results on at the
same time, by letting users pick as many check boxes as they like.

We'll demonstrate the problem that multiselect faceting solves with a MusicBrainz
example and then show how to solve it.

Here is a search for releases containing smashing and faceting on r_type. We'll leave
rows at 0 for brevity, but observe the numFound value nonetheless. At this point,
the user has not chosen a filter (therefore no fq):http://localhost:8983/solr/
mbreleases/mb_releases?indent=on&wt=json&omitHeader=true&rows=0&q=sma
shing&facet=on&facet.field=r_type&facet.mincount=1&facet.sort=index.

The output of the preceding URL is as follows:

{"response":{"numFound":248,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{

www.it-ebooks.info

http://search-lucene.com
http://www.it-ebooks.info/

Chapter 7

[213]

 "r_type":[
 "Album",29,
 "Compilation",41,
 "EP",7,
 "Interview",3,
 "Live",95,
 "Other",19,
 "Remix",1,
 "Single",45,
 "Soundtrack",1]},
 "facet_dates":{},
 "facet_ranges":{}}}

Now the user chooses the Album facet value. This adds a filter query. As a result, now
the URL is as before but has &fq=r_type%3AAlbum at the end and has this output:

{"response":{"numFound":29,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "r_type":[
 "Album",29]},
 "facet_dates":{},
 "facet_ranges":{}}}

Notice that the other r_type facet counts are gone because of the filter, yet in this
scenario, we want these to show the user what their counts would be if the filter
wasn't there. The reduced numFound of 29 is good though, because at this moment,
the user did indeed filter on a value.

Solr can solve this problem with some additional metadata on both the filter query and
the facet field reference using local-params. The local-params syntax was described
in Chapter 5, Searching, where it appears at the beginning of a query to switch the query
parser and to supply parameters to it. As you're about to see, it can also be supplied
at the start of facet.field—a bit of a hack, perhaps, to implement this feature. The
previous example would change as follows:

• fq would now be {!tag=foo}r_type:Album
• facet.field would now be {!ex=foo}r_type

Remember to URL encode this added syntax when used in the
URL. The only problem character is =, which becomes %3D.

www.it-ebooks.info

http://www.it-ebooks.info/

Faceting

[214]

Now, we will explain each parameter of the previous example:

• The tag parameter is a local parameter to give an arbitrary label to this
filter query.

• The tag name foo was an arbitrarily chosen name to illustrate that it doesn't
matter what it's named. If multiple fields and filter queries are to be tagged
correspondingly, then you would probably use the field name as the tag
name to differentiate them consistently.

• The ex parameter is a local parameter on a facet field that refers to tagged
filter queries to be excluded in the facet count. Multiple tags can be referenced
with commas separating them. For example, {!ex=t1,t2,t3}r_type.

• The advanced usage is not shown here, which is an optional facet field
local-param called key that provides an alternative label to the field name
in the response. By providing an alternative name, the field can be faceted
on multiple times with varying names and filter query exclusions.

The new complete URL is http://localhost:8983/solr/mbreleases/mb_release
s?indent=on&wt=json&omitHeader=true&rows=0&q=smashing&facet=on&facet.
field={!ex=foo}r_type&facet.mincount=1&facet.sort=index&fq={!tag=foo}
r_type:Album.

And here is the output. The facet counts are back, but numFound remains at the
filtered 29:

{"response":{"numFound":29,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "r_type":[
 "Album",29,
 "Compilation",41,
 "EP",7,
 "Interview",3,
 "Live",95,
 "Other",19,
 "Remix",1,
 "Single",45,
 "Soundtrack",1]},
 "facet_dates":{},
 "facet_ranges":{}}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

At this point, if the user chooses additional values from this facet, then the filter
query would be modified to allow for more possibilities, such as fq={!tag=foo}
r_type:Album r_type:Other (not URL escaped for clarity). This filters for releases
that are either of type Album or Other, as the default query parser Boolean logic is OR.

Summary
Faceting is possibly the most valuable and popular Solr search component. We've
covered the five types of faceting, how to build filter queries from them, and some
interesting use cases, such as alphabetic range bucketing and hierarchical faceting.
Now you have the essential knowledge to put it to use in faceted navigation-based
user interfaces and other uses like analytics.

In the next chapter, we'll cover Solr Search Components. You've actually been
using them already because performing a query, enabling debug output, and
faceting are each actually implemented as search components. But there's also
search result highlighting, spelling correction, term-suggest, suggesting similar
documents, collapsing/rolling up search results, editorially elevating or evicting
results, and more!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[217]

Search Components
Many of Solr's major capabilities are internally organized into search components.
You've actually been using several of them already: QueryComponent performs the
actual searching, DebugComponent gathers invaluable query debugging information
when setting debugQuery, and FacetComponent performs the faceting we used in
Chapter 7, Faceting. In addition, there are many more that do all sorts of useful things
that can really enhance your search experience:

• Highlighting: This returns highlighted text snippets of matching text in the
original data

• Spell checking: This suggests alternative queries, often called Did you mean?
• Suggester: This suggests complete queries based on partially typed input;

often called query autocomplete
• Query elevation: This manually modifies search results for certain queries.
• More-like-this: This helps to find documents similar to another document

or provided text
• Stats: This is used for mathematical statistics of indexed numbers
• Clustering: This organizes search results into statistically similar clusters
• Collapse and Expand / Grouping: These group search results by a field and

limit the number of results per group
• Terms and TermVector: These retrieve raw indexed data

And there are a few others we won't go into. For example, ResponseLogComponent
adds document IDs and scores to Solr's log output—a feature useful for debugging
and for relevancy analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[218]

In a hurry?
Search features, such as search result highlighting, query
spell-checking, and auto-completing queries are of high
value for most search applications; don't miss them. Take
a peek at the others to see if they are applicable to you.

About components
At this point, you should be familiar with the <requestHandler/> definitions
defined in solrconfig.xml—this was explained in Chapter 5, Searching. Any request
handlers with class="solr.SearchRequestHandler" are intuitively related to
searching. The Java code implementing SearchRequestHandler doesn't actually do
any searching! Instead, it maintains a list of SearchComponents that are invoked in
sequence for a request. The search components used and their order are configurable.

What follows is our request handler for MusicBrainz releases but modified to
explicitly configure the components for the purpose of illustration:

<requestHandler name="mb_releases" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">edismax</str>
 <str name="qf">r_name r_a_name^0.4</str>
 <str name="pf">r_name^0.5 r_a_name^0.2</str>
 <str name="qs">1</str>
 <str name="ps">0</str>
 <str name="tie">0.1</str>
 <str name="q.alt">*:*</str>
 </lst>
 <!-- note: these components are the default ones -->
 <arr name="components">
 <str>query</str>
 <str>facet</str>
 <str>mlt</str>
 <str>highlight</str>
 <str>stats</str>
 <str>debug</str>
 </arr>
 <!-- INSTEAD, "first-components" and/or
 "last-components" may be specified. -->
</requestHandler>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[219]

The named search components are the default ones that are automatically
registered if you do not specify the components section. To specify additional
components, you can either re-specify components with changes, or you can add
it to the first-components or last-components lists, which are prepended and
appended respectively to the standard component list.

Many components depend on other components being executed first,
especially the query component, so you will usually add components
to last-components.

Search components must be registered in solrconfig.xml so that they can then be
referred to in a components list. The components in the default set are pre-registered,
and some like highlighting will be registered explicitly anyway because they have
configuration settings that aren't request parameters. Here's an example of how the
search component named elevator is registered in solrconfig.xml:

<searchComponent name="elevator"
class="solr.QueryElevationComponent">
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

The functionality in QueryComponent, FacetComponent, and DebugComponent have
been described in previous chapters. The rest of this chapter describes other search
components that come with Solr.

Doing a distributed-search?
A Solr distributed-search has Solr search across multiple Solr
cores/servers (shards in distributed-search lingo) as if it were one
logical index. It will be discussed in Chapter 11, Deployment. An
internal sharded request will by default go to the default request
handler, even if your client issued a request to another handler. To
ensure that the relevant search components are still activated on
a sharded request, you can use the shards.qt parameter, just as
you would qt. Solr 5.1 changed the default behavior for the better.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[220]

The highlight component
You are probably most familiar with search highlighting when you use an Internet
search engine such as Google. Most search results come back with a snippet of text
from the site containing the word(s) you search for, highlighted. Solr can do the same
thing. In the following screenshot, we see Google highlighting a search including Solr
and search (in bold):

To conserve screen space, you might even use this feature to simply tell the user that
there was a match in certain fields without showing a highlighted value. This could
make sense if there are many metadata fields. Nevertheless you would still likely
highlight some.

A highlighting example
Admittedly the MusicBrainz dataset does not make an ideal example to show off
highlighting because there's no substantial text, but it can still be useful, nonetheless.

The following is a sample use of highlighting on a search for Corgan in the
MusicBrainz's artist dataset. Recall that the /mb_artists request handler
is configured to search against the artist's name, alias, and members fields:
http://localhost:8983/solr/mbartists/ mb_artists?indent=on&q=
corgan&rows=3&hl=true.

And here is the result of that search:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">89</int>
</lst>
<result name="response" numFound="5" start="0">
 <doc>
 <date name="a_begin_date">1967-03-17T05:00:00Z</date>
 <str name="a_name">Billy Corgan</str>
 <date name="a_release_date_latest">
 2005-06-21T04:00:00Z</date>
 <str name="a_type">1</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[221]

 <str name="id">Artist:102693</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <str name="a_name">Billy Corgan & Mike Garson</str>
 <str name="a_type">2</str>
 <str name="id">Artist:84909</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <arr name="a_member_id"><str>102693</str></arr>
 <arr name="a_member_name"><str>Billy Corgan</str></arr>
 <str name="a_name">Starchildren</str>
 <str name="id">Artist:35656</str>
 <str name="type">Artist</str>
 </doc>
</result>
<lst name="highlighting">
 <lst name="Artist:102693">
 <arr name="a_name">
 <str>Billy Corgan</str>
 </arr>
 </lst>
 <lst name="Artist:84909">
 <arr name="a_name">
 <str>Billy Corgan & Mike
 Garson</str>
 </arr>
 </lst>
 <lst name="Artist:35656">
 <arr name="a_member_name">
 <str>Billy Corgan</str>
 </arr>
 </lst>
</lst>
</response>

What should be noted in this example is the manner in which the highlighting
results appear in the response data. Also note that not all of the result highlighting
was against the same field.

It is possible to enable highlighting and discover that some of the
results are not highlighted. Sometimes this can be due to complex
text analysis; although more likely, it could simply be that there is
a mismatch between the fields searched and those highlighted.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[222]

Choose the Standard, FastVector, or Postings
highlighter
Before jumping into the highlighting parameters and configuration, it's important
to be aware that Lucene has three highlighter implementations, all of which are
exposed through Solr. All of them require that the field you highlight on be marked
as stored in the schema, for obvious reasons. If you've at least done that, then you
can skip choosing among them for early prototyping/experimentation and proceed
to the next section using the venerable standard highlighter. The primary reason
there are multiple implementations is performance—particularly for lengthy text.
The faster ones make trade-offs either in features or additional index size. Many (but
not all) highlighting request parameters apply to all highlighters, but frustratingly,
most of the solrconfig.xml based settings vary between the highlighters.

The Standard (default) highlighter
Lucene's original highlighter was simply called the highlighter, but it's now referred
to as either the default or standard highlighter. This is the one you get if you take
no action to choose the others. This highlighter has the fewest index requirements—
simply make sure that the field is stored. For lengthier text fields, it's the slowest
since it re-analyzes the text, and if you want phrase queries to highlight correctly (hl.
usePhraseHighlighter), then it will index it in-memory on the fly for that feature.
But this highlighter is the most accurate, particularly if you are using SpanQueries.
The ComplexPhrase and Surround query parsers are the only out-of-the-box query
parsers that can produce such queries, but plenty of Solr users write their own that
make use of SpanQueries.

The performance is much faster if you index term vectors, which spares
the need to re-analyze the text and to index on the fly for phrase queries.
Use the same schema options as required for the FastVector highlighter,
which will be described next. If you are using Solr 5 in particular, then
the difference can be dramatic.

Unlike the other two highlighters, this one's snippet fragmenting options do not
include one based on Java's BreakIterator. BreakIterator has better internationalization
support and some overall nice features versus using a regular expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[223]

The FastVector highlighter
The FastVector highlighter (FVH) was the second highlighter to come about and
is fundamentally based on term vector information in the index—something that
isn't there unless you enable it. Term vectors are hefty, usually consuming almost
as much space on-disk as the stored content does, which is the biggest part of the
index. They're fairly accurate with the exception of SpanQueries, as mentioned
previously. Also, this highlighter has the unique feature of being able to highlight
each query term with different markup, such as a distinct color.

The schema field requirements are indexed="true" stored="true"
termVectors="true" termPositions="true" termOffsets="true". To tell Solr
to use the FVH, set hl.useFastVectorHighligher=true in your request parameters.

If a field to highlight doesn't have term vectors enabled, the
standard/default highlighter will be used even if this FVH
request parameter has been set. This is a good thing as it
allows you to use term vectors where they have the most
benefit: on long text fields, not short ones.

The Postings highlighter
This new highlighter was introduced in Solr 4.1 and uses Lucene's newfound ability
to store offset information with the postings data in the index. This extra information
takes up much less space than term vectors do. The Postings highlighter was also
written to be as fast as can be, compromising on matching phrase queries or any
other query that is position-sensitive accurately. In other words, if the query is a
quoted phrase, the highlighter will not honor the adjacency requirement; all words
in the phrase will be highlighted, no matter where they lie. And even though
it's generally the fastest highlighter, it's markedly slower with wildcard, fuzzy,
and other so-called multiterm queries. So, with these points in mind, choose this
highlighter when there is a lot of text to be highlighted and speed/efficiency is the
top requirement over accuracy.

The schema field requirements are indexed="true" stored="true"
storeOffsetsWithPositions="true". If you attempt to use this highlighter in a
field that doesn't meet this requirement, it will appear as an error. Now, unlike the
standard and FastVector highlighters, you must modify solrconfig.xml to register
HighlightComponent configured to use this highlighter, like so:

<searchComponent class="solr.HighlightComponent" name="highlight">
 <highlighting
 class="org.apache.solr.highlight.PostingsSolrHighlighter"/>
</searchComponent>

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[224]

Only one search component can be registered with a specific name: highlight
in this case. If you want to also highlight with the standard and FVH highlighters
for different search requests, then you can register both under separate names and
configure separate request handlers to use each.

A final caveat to this highlighter is that it may work incorrectly when the index
analysis configuration has token filters that emit tokens in the wrong order with
respect to the offsets. The other highlighters have workarounds, but not the postings
highlighter. This used to pose more problems in earlier 4.x releases, but they are
rarer now, so you might just accept this as a low risk.

Highlighting configuration
Highlighting, like most parts of Solr searching, is largely configured through
request parameters. The standard and FastVector highlighters also contain
configuration options in solrconfig.xml, while the postings highlighter was
designed to be completely configured via request parameters. You can specify
these in the URL, but it is more appropriate to specify the majority of these in
your application's request handler in solrconfig.xml because they are unlikely
to change between requests. Furthermore, it can be convenient to tweak/tune
settings on the Solr end versus your application for most of these parameters,
since most wouldn't require a change in processing by the application.

What follows are common parameters observed by the highlighter search
component. Understand that like faceting, nearly all highlighter parameters
can be overridden on a per-field basis. The syntax looks like f.fieldName.
paramName=value; for example, f.allText.snippets=0.

• hl: This is set to true in order to enable search highlighting. Without this,
the other parameters are ignored, and highlighting is effectively disabled.

• hl.fl: This will highlight a comma or space separated list of fields.
It is important for a field to be marked as stored in the schema in order to
highlight it. Sometimes, this parameter can be omitted, but the highlighter
often has difficulty ascertaining which fields are in the query, so you are
advised to just set it. You may use an asterisk wildcard, such as * or r_*,
to conveniently highlight on all of the text fields. If you use a wildcard,
then consider enabling the hl.requireFieldMatch option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[225]

• hl.requireFieldMatch: If set to true, a field will not be highlighted for a
result unless the query also matched against that field. This is set to false
by default, meaning that it's possible to query one field and highlight another
and get highlights back, as long as the terms searched for are found within
the highlighted field. If you use a wildcard in hl.fl, then you will probably
enable this. However, if you query against an all-text catch-all field (probably
using copy-field directives) then leave this as false, so that the search
results can indicate from which field the query text was found. The postings
highlighter doesn't support this; the field must match (true).

• hl.snippets: This is the maximum number of highlighted snippets
(also known as fragments) that will be generated per field. It defaults to
1, which you will probably not change. By setting this to 0 for a particular
field (for example, f.allText.hl.snippets=0), you can effectively disable
highlighting for that field. You might do that if you used a wildcard for
hl.fl and want to make an exception.

• hl.fragsize: This is the maximum number of characters returned in each
snippet (fragment), which is measured in characters. The default is 100.
If 0 is specified, then the field is not fragmented and whole field values
are returned. Obviously, be wary of doing this for large text fields.

• hl.mergeContiguous: If set to true, then overlapping snippets are merged.
The merged fragment size is not limited by hl.fragsize. The default is
false, but you will probably set this to true when hl.snippets is greater
than zero and fragsize is non-zero.

In this edition of the book, we only document some common parameters.
See the Solr Reference Guide for definitive information on all of
the rest (there are a lot more) at https://cwiki.apache.org/
confluence/display/solr/Highlighting.

The SpellCheck component
One of the best ways to enhance the search experience is by offering spelling
corrections. This is sometimes presented at the top of search results with such
text as "Did you mean ...". Solr supports this with the SpellCheckComponent.

A related technique is to use fuzzy queries using the tilde syntax.
However, fuzzy queries don't tell you what alternative spellings
were used; the case is similar for phonetic matching.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Highlighting
https://cwiki.apache.org/confluence/display/solr/Highlighting
http://www.it-ebooks.info/

Search Components

[226]

For spelling corrections to work, Solr must clearly have a corpus of words (a
dictionary) to suggest alternatives to those in the user's query. "Dictionary" is meant
loosely as a collection of words, and not their definitions. Typically, you configure an
appropriately indexed field as the dictionary or instead, you supply a plain text file.
Solr can be configured to use one or more of the following spellcheckers:

• DirectSolrSpellChecker: This uses terms from a field in the index. It computes
suggestions by working directly off the main index. A configurable distance-
measure computes similarities between words. By working off of the main
index, this choice is very convenient, especially when getting started. For more
performance or more options, choose another.

• IndexBasedSpellChecker: This uses terms from a field in the index.
It builds a parallel index and computes suggestions from that.
A configurable distance-measure computes similarities between words.

• FileBasedSpellChecker: This uses a simple text file of words. It's otherwise
essentially the same as IndexBasedSpellChecker.

• WordBreakSolrSpellChecker: This detects when a user has inadvertently
omitted a space between words or added a space within a word. It computes
suggestions directly off the main index. It's often used in conjunction with
one of the other SpellChecker components.

There is also a Suggester SpellChecker that implements auto-suggest / query
completion. That choice is deprecated as of Solr 4.7, which introduced a dedicated
SearchComponent for suggestions. We'll describe that feature later in this chapter.

The notion of a parallel index, also known as a side-car index, is simply an additional
internal working index for a dedicated purpose. These must be 'built', which takes
time, and they can get out of sync with the main index.

Before reading on about configuring spell checking in solrconfig.
xml, you may want to jump ahead and take a quick peek at an example
towards the end of this section, and then come back.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[227]

The schema configuration
Assuming your dictionary is going to be based on indexed content instead
of a file, a field should be set aside exclusively for this purpose. This is so that
it can be analyzed appropriately and so that other fields can be copied into it,
as the spellcheckers use just one field. Most Solr setups would have one field;
our MusicBrainz searches, on the other hand, are segmented by the data type
(artists, releases, and tracks), and so one for each would be best. For the
purposes of demonstrating this feature, we will only do it for artists.

In schema.xml, we need to define the field type for spellchecking. This particular
configuration is one we recommend for most scenarios:

<fieldType name="textSpell" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SynonymFilterFactory"
 synonyms="synonyms.txt" ignoreCase="true"
 expand="true"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
</fieldType>

A field type for spellchecking is not marked as stored because the spellcheck
component only uses the indexed terms. The important thing is to ensure that
the text analysis does not perform stemming, as the corrections presented would
suggest the stems, which would look very odd to the user for most stemmer
algorithms. It's also hard to imagine a use case that doesn't apply lowercasing.

Now, we need to create a field for this data:

<field name="a_spell" type="textSpell" />

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[228]

And we need to get data into it with some copyField directives:

<copyField source="a_name" dest="a_spell" />
<copyField source="a_alias" dest="a_spell" />

Arguably, a_member_name may be an additional choice to copy as well, as the dismax
search we configured (seen in the following code) searches it too, albeit at a reduced
score. This, as well as many decisions with search configuration, is subjective.

Configuration in solrconfig.xml
To use any search component, it needs to be in the components list of a request
handler. The spellcheck component is not in the standard list, so it needs to be added:

<requestHandler name="/mb_artists" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">edismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <!-- etc. -->
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

This component should already be defined in solrconfig.xml. Within the
spellchecker search component, there is one or more XML blocks named
spellchecker, so that different dictionaries and other options can be configured.
These might also be loosely referred to as the dictionaries, because the parameter
that refers to this choice is named that way (more on that later). We have two
spellcheckers configured as follows:

• a_spell: This is an index-based spellchecker that is a typical recommended
configuration using DirectSolrSpellChecker on the a_spell field.

• file: This is a sample configuration where the input dictionary comes from
a file (not included).

A complete MusicBrainz implementation would have a different spellchecker for
each MB data type, with all of them configured similarly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[229]

Following the excerpt given here is an example configuration of the key options
available in the spellchecker component:

<searchComponent name="spellcheck"
 class="solr.SpellCheckComponent">
 <str name="queryAnalyzerFieldType">textSpell</str><!-- 'q'
 only -->

 <lst name="spellchecker">
 <str name="name">a_spell</str>
 <str name="field">a_spell</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="distanceMeasure">internal</str>
 <float name="accuracy">0.5</float>
 <int name="maxEdits">1</int>
 <int name="minPrefix">1</int>
 <int name="maxInspections">5</int>
 <int name="minQueryLength">4</int>
 <float name="maxQueryFrequency">0.01</float>
 <float name="thresholdTokenFrequency">.01</float>
 </lst>
 <!-- just an example -->
 <lst name="spellchecker">
 <str name="name">file</str>
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 </lst>
</searchComponent>

Configuring spellcheckers – dictionaries
The double layer of spellchecker configuration is perhaps a little confusing. The outer
one just names the search component—it's just a container for configuration(s).
The inner ones are distinct configurations to choose at search time.

The following options are common to all spellcheckers, unless otherwise specified:

• name: This refers to the name of the spellcheck configuration. It defaults to
default. Be sure not to have more than one configuration with the same name.

• classname: This refers to the implementation of the spellchecker. It's optional
but you should be explicit. The choices are solr.DirectSolrSpellChecker,
solr.IndexBasedSpellChecker, solr.WordBreakSolrSpellChecker, and
solr.FileBasedSpellChecker. Further information on these is just ahead.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[230]

• accuracy: This sets the minimum spelling correction accuracy to
act as a threshold. It falls between 0 and 1 with a default of 0.5. The
higher this number is, the simpler the corrections are. The accuracy
is computed by the distanceMeasure. This option doesn't apply to
WordBreakSolrSpellChecker.

• distanceMeasure: This Java class computes how similar a possible
misspelling and a candidate correction are. It defaults to org.apache.
lucene.search.spell.LevensteinDistance, which is the same
algorithm used in fuzzy query matching. Alternatively, org.apache.
lucene.search.spell.JaroWinklerDistance works quite well.
This option doesn't apply to WordBreakSolrSpellChecker.

• field: This refers to the name of the field within the index that contains the
dictionary. It's mandatory except when using FileBasedSolrSpellChecker
where it's not applicable, since its data comes from a file, not an index. The
field must be indexed as the data is taken from there and not from the stored
content, which is ignored. Generally, this field exists expressly for spell
correction purposes and other fields are copied into it.

• fieldType: This is a reference to a field type in schema.xml to perform
text-analysis on words to be spellchecked by the spellcheck.q parameter
(not q). If this isn't specified, then it defaults to the field type of the field
parameter, and if not specified, it defaults to a simple whitespace delimiter,
which most likely would be a misconfiguration. When using the file-based
spellchecker with spellcheck.q, be sure to specify this.

Technically, buildOnCommit and buildOnOptimize should be in the preceding
list, but it's only worthwhile for the Index- or file-based spellcheckers, since they
maintain a parallel index.

DirectSolrSpellChecker options
The DirectSolrSpellChecker component works directly off the Solr index without
needing to maintain a parallel index to generate suggestions that might get out of
sync. It's a great choice to start with.

• maxEdits: This is the number of changes to allow for each term; the default
value is 2. Since most spelling mistakes are only one letter off, setting this to
1 will reduce the number of possible suggestions.

• minPrefix: This refers to the minimum number of characters that the terms
should share. If you want the spelling suggestions to start with the same
letter, set this value as 1.

• maxInspections: This defines the maximum number of possible matches to
review before returning the results; the default is 5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[231]

• minQueryLength: This specifies how many characters must be in the input
query before suggestions are returned; the default is 4.

• maxQueryFrequency: This is the maximum threshold for the number of
documents a term must appear in before being considered as a suggestion.
This can be a percentage (such as .01 percent for 1 percent) or an absolute
value (such as 2). A lower threshold is better for small indexes.

• thresholdTokenFrequency: This specifies a document frequency threshold,
which will exclude words that don't occur sufficiently often. This can be
expressed as a fraction in the range 0-1, defaulting to 0, which effectively
disables the threshold, letting all words through. It can also be expressed
as an absolute value.

If there is a lot of data and lots of common words, as opposed to
proper nouns, then this threshold should be effective. If testing
shows spelling candidates including strange fluke words found
in the index, then introduce a threshold that is high enough to
weed out such outliers. The threshold will probably be less than
0.01—one percent of documents.

IndexBasedSpellChecker options
The IndexBasedSpellChecker component gets the dictionary from the indexed
content of a field in a Lucene/Solr index, and it loads it into its own private parallel
index to perform spellcheck searches on. The options are explained as follows:

• buildOnCommit and buildOnOptimize: These Boolean options (defaulting
to false) enable the spellchecker's internal index to be built automatically
when either Solr performs a commit or optimize. This can make keeping the
spellchecker in sync easier than building manually, but beware that commits
or optimizes will subsequently be hit with a long delay.

• spellcheckIndexDir: This is the directory where the spellchecker's internal
dictionary is built, not its source. It is relative to Solr's data directory. This is
actually optional, which results in an in-memory dictionary.

For a high-load Solr server, an in-memory index is appealing.
Until SOLR-780 is addressed, you'll have to take care to tell
Solr to build the dictionary whenever the Solr core gets loaded.
This happens at startup or if you tell Solr to reload a core.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[232]

• sourceLocation: If specified, it refers to a directory containing Lucene
index files, such as a Solr data directory. This is an unusual expert choice,
but shows that the source dictionary does not need to come from Solr's main
index; it could be from another location, perhaps from another Solr core.
If you are doing this, then you'll probably also need to use the spellcheck.
reload command mentioned later.

Warning
This option name is common to both IndexBasedSpellChecker
and FileBasedSpellChecker but is defined differently.

• thresholdTokenFrequency: This has the same definition as in
DirectSolrSpellChecker

FileBasedSpellChecker options
The FileBasedSpellChecker component is very similar to
IndexBasedSpellChecker, except that it gets the dictionary from a plain text
file instead of the index. It maintains its own private parallel index to perform
spellcheck searches on. This can be useful if you are using Solr as a spelling server,
or if you don't need spelling suggestions to be based on actual terms in the index.
The file format is one word per line. You can find an example file (spellings.txt)
in the conf directory.

• buildOnCommit, buildOnOptimize, and, spellcheckIndexDir: For more on
these, see the IndexBasedSpellChecker options section

• sourceLocation: This is mandatory and references a plain text file with each
word on its own line. Note that an option by the same name but different
meaning exists for IndexBasedSpellChecker.

For a freely available English word list, check out Spell Checker
Oriented Word Lists (SCOWL) at http://wordlist.
sourceforge.net. In addition, see the dictionary files for
OpenOffice, which supports many languages at http://wiki.
services.openoffice.org/wiki/Dictionaries.

• characterEncoding: This is optional, but should be set. It is the character
encoding of sourceLocation, defaulting to UTF-8.

www.it-ebooks.info

http://wordlist.sourceforge.net
http://wordlist.sourceforge.net
http://wiki.services.openoffice.org/wiki/Dictionaries
http://wiki.services.openoffice.org/wiki/Dictionaries
http://www.it-ebooks.info/

Chapter 8

[233]

WordBreakSolrSpellChecker options
The WordBreakSolrSpellChecker component offers suggestions by combining
adjacent query terms and/or breaking terms into multiple words from the Solr
index. It can detect spelling errors resulting from misplaced whitespace without
the use of shingle-based dictionaries and provides collation support for word-break
errors, including cases where the user has a mix of single-word spelling errors
and word-break errors in the same query. The following are options specific to
this spellchecker:

• combineWords: This defines whether words should be combined in a
dictionary search; default is true

• breakWords: This defines whether words should be broken during a
dictionary search; default is true

• maxChanges: This defines how many times the spell checker should check
collation possibilities against the index; default is 10 (can be any integer)

For more advanced options, see the Javadocs at http://lucene.
apache.org/solr/4_8_0/solr-core/org/apache/solr/spelling/
WordBreakSolrSpellChecker.html.

If you use this spellchecker, you'll probably want to combine its
suggestions with one of the other spellcheckers. All you need to do
is reference multiple dictionaries at search time (more on that later)
and Solr will merge them. Pretty cool!

You can find an example of this spellchecker configuration in Solr's example
solrconfig.xml.

Processing the q parameter
We've not yet discussed the parameters of a search with the spellchecker component
enabled. But at this point of the configuration discussion, understand that you have
the choice of just letting the user query q get processed or you can use spellcheck.q.

When a user query (q parameter) is processed by the spellcheck component to
look for spelling errors, Solr needs to determine what words are to be examined.
This is a two-step process. The first step is to pull out the queried words from the
query string, ignoring any syntax, such as AND. The next step is to process the words
with an analyzer so that, among other things, lowercasing is performed.

www.it-ebooks.info

http://lucene.apache.org/solr/4_8_0/solr-core/org/apache/solr/spelling/WordBreakSolrSpellChecker.html
http://lucene.apache.org/solr/4_8_0/solr-core/org/apache/solr/spelling/WordBreakSolrSpellChecker.html
http://lucene.apache.org/solr/4_8_0/solr-core/org/apache/solr/spelling/WordBreakSolrSpellChecker.html
http://www.it-ebooks.info/

Search Components

[234]

The analyzer chosen is through a field type specified directly within the search
component configuration with queryAnalyzerFieldType. It really should be
specified, but it's actually optional. If left unspecified, there would be no text
analysis, which would in all likelihood be a misconfiguration.

This algorithm is implemented by a spellcheck query
converter—a Solr extension point. The default query converter,
known as SpellingQueryConverter, is probably fine.

Processing the spellcheck.q parameter
If the spellcheck.q parameter is given (which really isn't a query per se), then the
string is processed with the text analysis referenced by the fieldType option of the
spellchecker being used. If a file-based spellchecker is being used, then you should
set this explicitly. Index-based spellcheckers will sensibly use the field type of the
referenced indexed spelling field.

The dichotomy of the ways in which the analyzer is
configured between both q and spellcheck.q arguably
needs improvement.

Building index- and file-based spellcheckers
If the spellchecker you are using is IndexedBasedSpellChecker or
FileBasedSpellChecker (or, technically, Suggester), then it needs to be
built, which is the process in which the dictionary is read and is built into the
spellcheckIndexDir. If it isn't built, then no corrections will be offered, and you'll
probably be very confused. You'll be even more confused when troubleshooting the
results if it was built once but is far out of date and so needs to be built again.

Generally, building is required if it has never been built before, and it should be
built periodically when the dictionary changes. It need not necessarily be built for
every change, but it obviously won't benefit from any such modifications.

Using buildOnOptimize or buildOnCommit is a low-hassle
way to keep the spellcheck index up to date. However, most
apps never optimize or optimize too infrequently to make use
of this, or they commit too frequently. So instead (or in addition
to buildOnOptimize), issue build commands manually on
a suitable time period and/or at the end of your data loading
scripts. Furthermore, setting spellcheckIndexDir will ensure
the built spellcheck index is persisted between Solr restarts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[235]

In order to perform the build of a spellchecker, simply enable the component with
spellcheck=true, add a special parameter called spellcheck.build, and set it to
true: http://localhost:8983/solr/mbartists/select?&qt=mb_artists&rows=
0&spellcheck=true&spellcheck.build=true&spellcheck.dictionary=a_spell.

The other spellcheck parameters will be explained shortly. There is an additional
related option similar to spellcheck.build called spellcheck.reload. This doesn't
rebuild the index, but it basically re-establishes connections with the index—both
sourceLocation for index-based spellcheckers and spellcheckIndexDir for all
types. If you've decided to have some external process build the dictionary or simply
share built indexes between spellcheckers, then Solr needs to know to reload it to see
the changes—a quick operation.

Issuing spellcheck requests
At this point, we've covered how to configure a spellchecker but not how to issue
requests that actually use it. In summary, all that you are required to do is add
spellcheck=true to a standard search request, but it is more likely that you will
set other options, once you start experimenting.

It's important to be aware that there are effectively three mutually exclusive internal
modes that this component places itself in:

• The default mode is only to offer suggestions for query terms that find
no results. This is intuitive, but sometimes a term that finds results was
an indexed typo.

• If spellcheck.onlyMorePopular=true, then the spellcheck component
will not only try to offer suggestions for query terms that find no results,
it will also do so for the other terms, provided it can offer a suggestion
that occurs more frequently in the index. Now Solr is working harder
and intuitively, this should help fix cases when the query is an indexed
typo. However, the erroneous query term might not be an indexed typo
(for example, June versus Jane); can Solr still try harder? Yes…

• If spellcheck.alternativeTermCount is set, then it will try to find
suggestions for all terms, and the suggestions need not occur more frequently.

Despite these progressively aggressive spellcheck modes, there might still
be no suggestions or fewer than the number asked for if it simply can't find
anything suitable.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[236]

Let's now explore the various request parameters recognized by the spellchecker
component:

• spellcheck: This refers to a Boolean switch that must be set to true to
enable the component in order to see suggested spelling corrections.

• spellcheck.dictionary: This is the named reference to a dictionary
(spellchecker) to use configured in solrconfig.xml. It defaults to default.
This can be set multiple times and Solr will merge the suggestions.

• spellcheck.q or q: The string containing words to be processed by this
component can be specified as the spellcheck.q parameter, and if not
present, then the q parameter. Please look for the information presented
earlier on how these are processed.

Which should you use: spellcheck.q or q?
Assuming you're handling user queries for Solr that might contain
some query syntax, then the default q is right, as Solr will then know
to filter out possible uses of Lucene/Solr's syntax, such as AND, OR,
fieldname:word, and so on. If not, then spellcheck.q is preferred,
as it won't go through that unnecessary processing. This also allows its
parsing to be different on a spellchecker-by-spellchecker basis, which
we'll leverage in our example.

• spellcheck.count: This refers to the maximum number of corrections to
offer per word. The default is 1. Corrections are ordered by those closest to
the original, as determined by the distanceMeasure algorithm.

Although counter-intuitive, raising this number affects the
suggestion ordering—the results get better! The internal
algorithm sees ~10 times as many as this number and then it
orders them by closest match. Consequently, use a number
between 5 and 10 or so to get quality results.

• spellcheck.extendedResults: This is a Boolean switch that adds frequency
information, both for the original word and for the suggestions. It's helpful
when debugging.

• spellcheck.collate: This is a Boolean switch that adds a revised query
string to the output that alters the original query (from spellcheck.q or q)
to use the top recommendation for each suggested word. It's smart enough
to leave any other query syntax in place. The following are some additional
options for use when collation is enabled:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[237]

 ° spellcheck.maxCollations: This specifies the maximum number
of collations to return, defaulting to 1.

 ° spellcheck.maxCollationTries: This specifies the maximum
number of collations to try (verify it yields results), defaulting to 5.
If this is non-zero, then the spellchecker will not return collations
that yield no results.

 ° spellcheck.maxCollationEvaluations: This specifies the
maximum number of word correction combinations to rank before
the top candidates are tried (verified). Without this limit, queries
with many misspelled words could yield a combinatoric explosion
of possibilities. The default is 10000, which should be fine.

 ° spellcheck.collateExtendedResults: This is a Boolean switch
that adds more details to the collation response. It adds the collation
hits (number of documents found) and a mapping of misspelled
words to corrected words.

 ° spellcheck.collateParam.xx: This will allow parameter override,
where xx is the parameter you want to override; for example, to
override mm from a low value to a high value so that the spellchecker is
truly verifying that the replacement (collation) terms exist together in
the same document. This is similar to local-params, but is applied to the
collated query string verification when maxCollationTries is used.

Enable spellcheck.collate as a user interface will most likely want
to present a convenient link to use the spelling suggestions. Furthermore,
ensure the collation is verified to return results by setting spellcheck.
maxCollationTries to a small non-zero number—perhaps 5.

• spellcheck.onlyMorePopular: This is a Boolean switch that will offer
spelling suggestions for queried terms that were found in the index, provided
that the suggestions occur more often. This is in addition to the normal
behavior of only offering suggestions for queried terms not found in the
index. To detect when this happens, enable extendedResults and look for
origFreq being greater than 0. This is disabled, by default.

• spellcheck.alternativeTermCount: This specifies the maximum number
of suggestions to return for each query term that already exists in the index/
dictionary. Normally, the spellchecker doesn't offer suggestions for such
query terms, and so setting this triggers the spellchecker to try to find
suggestions for all query terms. The configured number essentially overrides
spellcheck.count for such terms, giving the opportunity to use a more
conservative (lower) number, since it's less likely one of these query terms
was actually misspelled.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[238]

• spellcheck.maxResultsForSuggest: This specifies the maximum
number of results the request can return in order to both generate spelling
suggestions and set the correctlySpelled element to false. This acts as
an early short-circuit rule in the spellchecker if you set it, otherwise there is
no rule. This option is only applicable when spellcheck.onlyMorePopular
is true or spellcheck.alternativeTermCount is set, because only those
two options can trigger suggestions for queries that return results.

We recommend that you experiment with various options
provided by the SpellChecker component, with the real
data that you are indexing so that you can find out what
options work best for your requirements.

Example usage for a misspelled query
We'll try out a typical spellcheck configuration that we've named a_spell.
We've disabled showing the query results with rows=0 because the actual query
results aren't the point of these examples. In this example, it is imagined that the
user is searching for the band Smashing Pumpkins, but with a misspelling.

Here are the search results for Smashg Pumpkins, using the a_spell dictionary:

<?xml version="1.0"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">124</int>
 <lst name="params">
 <str name="spellcheck">true</str>
 <str name="indent">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 <str name="spellcheck.maxCollationTries">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="rows">0</str>
 <str name="echoParams">explicit</str>
 <str name="q">Smashg Pumpkins</str>
 <str name="spellcheck.dictionary">a_spell</str>
 <str name="spellcheck.count">5</str>
 <str name="qt">/mb_artists</str>
 </lst>
</lst>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[239]

<result name="response" numFound="0" start="0"/>
<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="smashg">
 <int name="numFound">5</int>
 <int name="startOffset">0</int>
 <int name="endOffset">6</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">smash</str>
 <int name="freq">36</int>
 </lst>
 <lst>
 <str name="word">smashing</str>
 <int name="freq">4</int>
 </lst>
 <lst>
 <str name="word">smashign</str>
 <int name="freq">1</int>
 </lst>
 <lst>
 <str name="word">smashed</str>
 <int name="freq">5</int>
 </lst>
 <lst>
 <str name="word">smasher</str>
 <int name="freq">2</int>
 </lst>
 </arr>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <lst name="collation">
 <str name="collationQuery">smashing Pumpkins</str>
 <int name="hits">1</int>
 <lst name="misspellingsAndCorrections">
 <str name="smashg">smashing</str>
 </lst>
 </lst>
 </lst>
</lst>
</response>

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[240]

In this scenario, we intentionally chose a misspelling that is closer to another word:
"smash". Were it not for maxCollationTries, the suggested collation would be
"smash Pumpkins", which would return no results. There are a few things we want
to point out regarding the spellchecker response:

• Applications consuming this data will probably only use the collation query,
despite the presence of a lot of other information.

• The suggestions are ordered by the so-called edit-distance score (closest
match), which is not displayed. It may seem here that it is ordered by
frequency, which is a coincidence.

There is an extension point to the spellchecker to customize the
ordering—search Solr's wiki on comparatorClass for further
information. You could write one that orders results based on a
formula, fusing both the suggestion score and document frequency.

• startOffset and endOffset are the index into the query of the spellchecked
word. This information can be used by the client to display the query
differently, perhaps displaying the corrected words in bold.

• numFound is always the number of suggested words returned, not the total
number available, if spellcheck.count were raised.

• correctlySpelled is intuitively true or false, depending on whether all of
the query words were found in the dictionary or not.

Query complete/suggest
One of the most effective features of a search user interface is automatic/instant-
search or completion of query input in a search input box. It is typically displayed
as a drop-down menu that appears automatically after typing. There are several
ways this can work:

• Instant-search: Here, the menu is populated with search results. Each row
is a document, just like the regular search results are, and as such, choosing
one takes the user directly to the information instead of a search results page.
At your discretion, you might opt to consider the last word partially typed.
Examples of this are the URL bar in web browsers and various person search
services. This is particularly effective for quick lookup scenarios against
identifying information such as a name/title/identifier. It's less effective for
broader searches. It's commonly implemented either with edge n-grams or
with the Suggester component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[241]

• Query log completion: If your application has sufficient query volume,
then you should perform the query completion against previously executed
queries that returned results. The pop-up menu is then populated with
queries that others have typed. This is what Google does. It takes a bit of
work to set this up. To get the query string and other information, you could
write a custom search component, or parse Solr's log files, or hook into the
logging system and parse it there. The query strings could be appended to
a plain query log file, or inserted into a database, or added directly to a Solr
index. Putting the data into a database before it winds up in a Solr index
affords more flexibility on how to ultimately index it in Solr. Finally, at this
point, you could index the field with an EdgeNGramTokenizer and perform
searches against it, or use a KeywordTokenizer and then use one of the
approaches listed for query term completion below. We recommend
reading this excellent article by Jay Hill on doing this with EdgeNGrams at
http://lucidworks.com/blog/auto-suggest-from-popular-queries-
using-edgengrams/.

Monitor your user's queries!
Even if you don't plan to do query log completion, you should
capture useful information about each request for ancillary usage
analysis, especially to monitor which searches return no results.
Capture the request parameters, the response time, the result
count, and add a timestamp.

• Query term completion: The last word of the user's query is searched
within the index as a prefix, and other indexed words starting with that
prefix are provided. This type is an alternative to query log completion
and it's easy to implement. There are several implementation approaches:
facet the word using facet.prefix, use Solr's Suggester feature, or use
the Terms component. You should consider these choices in that order.

• Facet/Field value completion: This is similar to query term completion,
but it is done on data that you would facet or filter on. The pop-up menu
of choices will ideally give suggestions across multiple fields with a label
telling you which field each suggestion is for, and the value will be the exact
field value, not the subset of it that the user typed. This is particularly useful
when there are many possible filter choices. We've seen it used at Mint.com
and elsewhere to great effect, but it is under-utilized in our opinion. If you
don't have many fields to search, then the Suggester component could be
used with one dictionary per field. Otherwise, build a search index dedicated
to this information that contains one document per field and value pair, and
use an edge n-gram approach to search it.

www.it-ebooks.info

http://lucidworks.com/blog/auto-suggest-from-popular-queries-using-edgengrams/
http://lucidworks.com/blog/auto-suggest-from-popular-queries-using-edgengrams/
www.mint.com
http://www.it-ebooks.info/

Search Components

[242]

There are other interesting query completion concepts we've seen on sites too,
and some of these can be combined effectively. First, we'll cover a basic approach
to instant-search using edge n-grams. Next, we'll describe three approaches to
implementing query term completion—it's a popular type of query completion, and
these approaches highlight different technologies within Solr. Lastly, we'll cover
an approach to implement field-value suggestions for one field at a time, using the
Suggester search component.

Instant-search via edge n-grams
As mentioned in the beginning of this section, instant-search is a technique in which
a partial query is used to suggest a set of relevant documents, not terms. It's great for
quickly finding documents by name or title, skipping the search results page.

Here, we'll briefly describe how you might implement this approach using edge
n-grams, which you can think of as a set of token prefixes. This is much faster than
the equivalent wildcard query because the prefixes are all indexed. The edge n-gram
technique is arguably more flexible than other suggest approaches: it's possible to do
custom sorting or boosting, to use the highlighter easily to highlight the query, to offer
infix suggestions (it isn't limited to matching titles left-to-right), and it's possible to
filter the suggestions with a filter query, such as the current navigation filter state in the
UI. It should be noted, though, that this technique is more complicated and increases
indexing time and index size. It's also not quite as fast as the Suggester component.

One of the key components to this approach is the EdgeNGramFilterFactory
component, which creates a series of tokens for each input token for all possible
prefix lengths. The field type definition should apply this filter to the index
analyzer only, not the query analyzer. Enhancements to the field type could
include adding filters such as LowerCaseFilterFactory, TrimFilterFactory,
ASCIIFoldingFilterFactory, or even a PatternReplaceFilterFactory for
normalizing repetitive spaces. Refer to Chapter 3, Text Analysis, for detailed information
on analysis components such as EdgeNGramFilterFactory. Furthermore, you should
set omitTermFreqAndPositions=true and omitNorms=true in the field type since
these index features consume a lot of space and won't be needed.

The Solr Admin Analysis tool (covered in Chapter 3, Text Analysis)
can really help with the design of the perfect field type configuration.
Don't hesitate to use this tool!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[243]

A minimalist query for this approach is to simply query the n-grams field directly;
since the field already contains prefixes, this just works. It's even better to have
only the last word in the query search this field while the other words search a
field indexed normally for keyword search. Here's an example: assuming a_name_
wordedge is an n-grams based field and the user's search text box contains simple
mi: http://localhost:8983/solr/mbartists/select?defType=edismax&qf=a_
name&q.op=AND&q=simple a_name_wordedge:mi.

The search client here inserted a_name_wordedge: before the last word.

The combination of field type definition flexibility (custom filters and so on),
and the ability to use features such as DisMax, custom boosting/sorting, and
even highlighting, really make this approach worth exploring.

Query term completion via facet.prefix
Most people don't realize that faceting can be used to implement query term
completion, but it can. This approach has the unique and valuable benefit of returning
completions filtered by filter queries (such as faceted navigation state) and by query
words prior to the last one being completed. This means the completion suggestions
should yield matching results, which is not the case for the other techniques. However,
there are limits to its scalability in terms of memory use and inappropriateness for
real-time search applications.

Faceting on a tokenized field is going to use an entry in the field value cache
(based on UnInvertedField) to hold all words in memory. It will use a hefty chunk
of memory for many words, and it's going to take a non-trivial amount of time to
build this cache on every commit during the auto-warming phase. For a data point,
consider MusicBrainz's largest field: t_name (track name). It has nearly 700K words
in it. It consumes nearly 100 MB of memory and it took 33 seconds to initialize on my
machine. The mandatory initialization per commit makes this approach unsuitable
for real-time-search applications (See Chapter 10, Scaling Solr, for more information).

Measure this for yourself. Perform a trivial query to trigger its
initialization and measure how long it takes. Then search Solr's
statistics page for fieldValueCache. The size is given in bytes
next to memSize. This statistic is also logged quite clearly.

For this example, we have a search box searching track names and it contains
the following:

michael ja

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[244]

All of the words here except the last one become the main query for the term
suggest. For our example, this is just michael. If there isn't anything, then we'd
want to ensure that the request handler used would search for all documents.
The faceted field is a_spell, and we want to sort by frequency. We also want
there to be at least one occurrence, and we don't want more than five suggestions.
We don't need the actual search results, either. This leaves the facet.prefix
faceting parameter to make this work. This parameter filters the facet values to
those starting with this value.

Remember that facet values are the final result of text analysis, and
therefore are probably lowercased for fields you might want to do
term completion on. You'll need to pre-process the prefix value
similarly, or else nothing will be found.

We're going to set this to ja, the last word that the user has partially typed.
Here is the URL for such a search http://localhost:8983/solr/mbartists/
select?q=michael&df=a_spell&wt=json&omitHeader=true&indent=on&facet=
on&rows=0&facet.limit=5&facet.mincount=1&facet.field=a_spell&facet.
prefix=ja.

When setting this up for real, we recommend creating a request
handler just for term completion with many of these parameters
defined there, so that they can be configured separately from
your application.

In this example, we're going to use Solr's JSON response format. Here is the result:

{
 "response":{"numFound":1919,"start":0,"docs":[]},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "a_spell":[
 "jackson",17,
 "james",15,
 "jason",4,
 "jay",4,
 "jacobs",2]},
 "facet_dates":{},
 "facet_ranges":{}}}

This is exactly the information needed to populate a pop-up menu of choices that the
user can conveniently choose from.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[245]

However, there are some issues to be aware of with this feature:

• You may want to retain the case information of what the user is typing
so that it can then be re-applied to the Solr results. Remember that facet.
prefix will probably need to be lowercased, depending on text analysis.

• If stemming text analysis is performed on the field at the time of indexing,
then the user might get completion choices that are clearly wrong. Most
stemmers, namely Porter-based ones, stem off the suffix to an invalid word.
Consider using a minimal stemmer, if any. For stemming and other text
analysis reasons, you might want to create a separate field with suitable
text analysis just for this feature. In our example here, we used a_spell
on purpose because spelling suggestions and term completion have the
same text analysis requirements.

• If you would like to perform term completion of multiple fields, then you'll
be disappointed that you can't do so directly. The easiest way is to combine
several fields at index time. Alternatively, a query searching multiple fields
with faceting configured for multiple fields can be performed. It would be
up to you to merge the faceting results based on ordered counts.

Query term completion via the Suggester
A high-speed approach to implement term completion, called the Suggester, was
introduced in Version 3 of Solr. Until Solr 4.7, the Suggester was an extension of the
spellcheck component. It can still be used that way, but it now has its own search
component, which is how you should use it. Similar to spellcheck, it's not necessarily
as up to date as your index and it needs to be built. However, the Suggester only
takes a couple of seconds or so for this usually, and you are not forced to do this
per commit, unlike with faceting. The Suggester is generally very fast—a handful of
milliseconds per search at most for common setups. The performance characteristics
are largely determined by a configuration choice (shown later) called lookupImpl,
in which we recommend WFSTLookupFactory for query term completion (but not
for other suggestion types). Additionally, the Suggester uniquely includes a method
of loading its dictionary from a file that optionally includes a sorting weight.

We're going to use it for MusicBrainz's artist name completion. The following is in
our solrconfig.xml:

<requestHandler name="/a_term_suggest" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="suggest">true</str>
 <str name="suggest.dictionary">a_term_suggest</str>
 <str name="suggest.count">5</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[246]

 </lst>
 <arr name="components">
 <str>aTermSuggester</str>
 </arr>
</requestHandler>

<searchComponent name="aTermSuggester"
class="solr.SuggestComponent">
 <lst name="suggester">
 <str name="name">a_term_suggest</str>
 <str name="lookupImpl">WFSTLookupFactory</str>
 <str name="field">a_spell</str>
 <!-- <float name="threshold">0.005</float> -->
 <str name="buildOnOptimize">true</str>
 </lst>
</searchComponent>

The first part of this is a request handler definition just for using the Suggester. The
second part of this is an instantiation of the SuggestComponent search component.
The dictionary here is loaded from the a_spell field in the main index, but if a file
is desired, then you can provide the sourceLocation parameter. The document
frequency threshold for suggestions is commented here because MusicBrainz has
unique names that we don't want filtered out. However, in common scenarios, this
threshold is advised.

The Suggester needs to be built, which is the process of building the dictionary
from its source into an optimized memory structure. If you set storeDir, it will also
save it such that the next time Solr starts, it will load automatically and be ready.
If you try to get suggestions before it's built, there will be no results. The Suggester
only takes a couple of seconds or so to build and so we recommend building it
automatically on startup via a firstSearcher warming query in solrconfig.xml.
If you are using Solr 5.0, then this is simplified by adding a buildOnStartup Boolean
to the Suggester's configuration.

To be kept up to date, it needs to be rebuilt from time to time. If commits
are infrequent, you should use the buildOnCommit setting. We've chosen the
buildOnOptimize setting as the book dataset is optimized after it's completely
indexed; and then, it's never modified. Realistically, you may need to schedule a
URL fetch to trigger the build, as well as incorporate it into any bulk data loading
scripts you develop.

Now, let's issue a request to the Suggester. Here's a completion for the incomplete
query string sma http://localhost:8983/solr/mbartists/a_term_
suggest?q=sma&wt=json.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

And here is the output, indented:

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "suggest":{"a_term_suggest":{
 "sma":{
 "numFound":5,
 "suggestions":[{
 "term":"sma",
 "weight":3,
 "payload":""},
 {
 "term":"small",
 "weight":110,
 "payload":""},
 {
 "term":"smart",
 "weight":50,
 "payload":""},
 {
 "term":"smash",
 "weight":36,
 "payload":""},
 {
 "term":"smalley",
 "weight":9,
 "payload":""}]}}}}

If the input is found, it's listed first; then suggestions are presented in weighted order.
In the case of an index-based source, the weights are, by default, the document
frequency of the value.

For more information about the Suggester, see the Solr Reference
Guide at https://cwiki.apache.org/confluence/
display/solr/Suggester. You'll find information on
lookupImpl alternatives and other details. However, some
secrets of the Suggester are still undocumented, buried in the
code. Look at the factories for more configuration options.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Suggester
https://cwiki.apache.org/confluence/display/solr/Suggester
http://www.it-ebooks.info/

Search Components

[248]

Query term completion via the Terms
component
The Terms component is used to expose raw indexed term information, including
term frequency, for an indexed field. It has a lot of options for paging into this
voluminous data and filtering out terms by term frequency.

The Terms component has the benefit of using no Java heap memory, and
consequently, there is no initialization penalty. It's always up to date with the
indexed data, like faceting but unlike the Suggester. The performance is typically
good, but for high query load on large indexes, it will suffer compared to the other
approaches. An interesting feature unique to this approach is a regular expression
term match option. This can be used for case-insensitive matching, but it probably
doesn't scale to many terms.

For more information about this component, visit the Solr Reference
Guide at https://cwiki.apache.org/confluence/display/
solr/The+Terms+Component.

Field-value completion via the Suggester
In this example, we'll show you how to suggest complete field values. This might be
used for instant-search navigation by a document name or title, or it might be used
to filter results by a field. It's particularly useful for fields that you facet on, but it will
take some work to integrate into the search user experience. This can even be used to
complete multiple fields at once by specifying suggest.dictionary multiple times.

To complete values across many fields at once, you should consider an
alternative approach than what is described here. For example, use a
dedicated suggestion index of each name-value pair and use an edge
n-gram technique or shingling.

We'll use the Suggester once again, but using a slightly different configuration.
Using AnalyzingLookupFactory as the lookupImpl, this Suggester will be able
to specify a field type for query analysis and another as the source for suggestions.
Any tokenizer or filter can be used in the analysis chain (lowercase, stop words,
and so on). We're going to reuse the existing textSpell field type for this example.
It will take care of lowercasing the tokens and throwing out stop words.

For the suggestion source field, we want to return complete field values, so a
string field will be used; we can use the existing a_name_sort field for this,
which is close enough.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/The+Terms+Component
https://cwiki.apache.org/confluence/display/solr/The+Terms+Component
http://www.it-ebooks.info/

Chapter 8

[249]

Here's the required configuration for the suggest component:

<searchComponent name="aNameSuggester"
class="solr.SuggestComponent">
 <lst name="suggester">
 <str name="name">a_name_suggest</str>
 <str name="lookupImpl">AnalyzingLookupFactory</str>
 <str name="field">a_name_sort</str>
 <str name="buildOnOptimize">true</str>
 <str name="storeDir">a_name_suggest</str>
 <str name="suggestAnalyzerFieldType">textSpell</str>
 </lst>
</searchComponent>

And here is the request handler and component:

<requestHandler name="/a_name_suggest" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="suggest">true</str>
 <str name="suggest.dictionary">a_name_suggest</str>
 <str name="suggest.count">5</str>
 </lst>
 <arr name="components">
 <str>aNameSuggester</str>
 </arr>
</requestHandler>

We've set up the Suggester to build the index of suggestions after an optimize
command. On a modestly powered laptop, the build time was about 5 seconds.
Once the build is complete, the /a_name_suggest handler will return field values
for any matching query. Here's an example that will make use of this Suggester:
http://localhost:8983/solr/mbartists/a_name_suggest?wt=json&omitHeade
r=true&q=The smashing,pum.

Here's the response from that query:

{
 "spellcheck":{
 "suggestions":[
 "The smashing,pum",{
 "numFound":1,
 "startOffset":0,
 "endOffset":16,
 "suggestion":["Smashing Pumpkins, The"]},
 "collation","(Smashing Pumpkins, The)"]}}

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[250]

As you can see, the Suggester is able to deal with the mixed case. Ignore The
(a stop word) and also the , (comma) we inserted, as this is how our analysis
is configured. Impressive! It's worth pointing out that there's a lot more that can
be done here, depending on your needs, of course. It's entirely possible to add
synonyms, additional stop words, and different tokenizers to the analysis chain.

There are other interesting lookupImpl choices. FuzzyLookupFactory can suggest
completions that are similarly typed to the input query; for example, words that are
similar in spelling, or just typos. AnalyzingInfixLookupFactory is a Suggester
that can provide completions from matching prefixes anywhere in the field
value, not just the beginning. Other ones are BlendedInfixLookupFactory and
FreeTextLookupFactory. See the Solr Reference Guide for further information.

The QueryElevation component
At times, you may desire to make editorial/manual modifications to the search
results of particular user queries. This might be done as a solution to a popular
user query that doesn't score an expected document sufficiently high—if it even
matched at all. The query might have found nothing at all, perhaps due to a
common misspelling. The opposite may also be true: the top result for a popular
user query might yield a document that technically matched according to your
search configuration, but certainly isn't what you were looking for. Another usage
scenario is implementing a system akin to paid keywords for certain documents
to be on top for certain user queries.

This feature isn't a general approach to fix queries not yielding
effective search results; it is a Band-Aid for that problem. If a query
isn't returning an expected document scored sufficiently high
enough (if at all), then use Solr's query debugging to observe the
score computation. You may end up troubleshooting text analysis
issues too if a search query doesn't match an expected document—
perhaps by adding a synonym. The end result may be tuning the
boosts or applying function queries to incorporate other relevant
fields into the scoring. When you are satisfied with the scoring and
just need to make an occasional editorial decision, this component
is for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[251]

Configuration
This search component is not in the standard component list and so it must be
registered with a handler in solrconfig.xml. Here, we'll add it to the /mb_artists
request handler definition, just for this example, anyway:

<requestHandler name="/mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
…
 </lst>
 <arr name="last-components">
 <str>elevateArtists</str>
 </arr>
</requestHandler>

<searchComponent name="elevateArtists"
 class="solr.QueryElevationComponent">
 <str name="queryFieldType">text</str>
 <str name="config-file">elevateArtists.xml</str>
 <str name="forceElevation">false</str>
</searchComponent>

This excerpt also reveals the registration of the search component using the same
name as that referenced in last-components. A name was chosen to reflect the
fact that this elevation configuration is only for artists. There are three named
configuration parameters for a query elevation component, and they are explained
as follows:

• config-file: This is a reference to the configuration file containing the
editorial adjustments. It is resolved relative to both Solr's conf directory,
and if that fails, then Solr's data directory.

When it's in the data directory (usually a sibling to conf),
it will be reloaded when Solr commits.

• queryFieldType: This is a reference to a field type in schema.xml. It is used
to normalize both a query (the q parameter) and the query text attribute
found in the configuration file, for comparison purposes. A field type might
be crafted just for this purpose, but it should suffice to simply choose one
that at least performs lowercasing. By default, there is no normalization.

• forceElevation: The query elevation component fools Solr into thinking
the specified documents matched the user's query and scored the highest.
However, by default, it will not violate the desired sort as specified by the
sort parameter. In order to force the elevated documents to the top no
matter what sort is, set this parameter to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[252]

A new option in Solr 4.7 is the ability for a request to specify which
docs to elevate (or exclude) via the elevateIds and excludeIds
(comma delimited unique key IDs) request parameters, which
overrides the config file.

Let's take a peek at elevateArtists.xml:

<elevate>
 <query text="corgan">
 <doc id="Artist:11650" /><!--the Smashing Pumpkins-->
 <doc id="Artist:510" /><!-- Green Day -->
 <doc id="Artist:35656" exclude="true" /><!-- Starchildren -->
 </query>
 <!-- others queries... -->
</elevate>

In this elevation file, we've specified that when a user searches for corgan, the
Smashing Pumpkins then Green Day should appear in the top two positions in the
search results and that the artist Starchildren is to be excluded. Note that query
elevation kicks in when the configured query text matches the user's query exactly,
while taking into consideration configured text analysis. Thus, a search for billy
corgan would not be affected by this configuration. It shouldn't be surprising that
the documents are listed by ID in this file, but those IDs may not be clear alone to
whoever reads this file, so we suggest using some comments to clarify the intent of
the changes as seen here.

This component is quite simple with unsurprising results, so an example of this
in action is not given. The only thing notable about the results when searching for
corgan with the preceding configuration is that the top two results, the Smashing
Pumpkins and Green Day, have scores of 1.72 and 0.0, respectively, yet the
maxScore value in the result element is 11.3. Normally, a default sort results in the
first document having the same score as the maximum score, but in this case that
happens at the third position, as the first two were inserted by the query elevation
component. Moreover, normally a result document has a score greater than 0, but in
this case one was inserted by this component that never matched the user's query.

The MoreLikeThis component
Have you ever searched for something and found a link that wasn't quite what you
were looking for but was reasonably close? If you were using an Internet search engine
such as Google, then you may have tried the "more like this…" link next to a search
result. Some sites use other language like "find similar..." or "related documents…"
As these links suggest, they show you pages similar to another page. Solr supports
more like this (MLT) too.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[253]

The MLT capability in Solr can be used in the following three ways:

• As a search component: The MLT search component performs MLT analysis
on each document returned in a search. This is not usually desired and so it
is rarely used.

• As a request handler: The MLT request handler gives MLT results that are
based on a specific indexed document. This is commonly used in reaction to
a user clicking a "more like this" link on existing search results. The key input
to this option is a reference to the indexed document that you want similar
results for.

• As a request handler with externally supplied text: The MLT request
handler can give MLT results based on text posted to the request handler.
For example, if you were to send a text file to the request handler, then it
would return the documents in the index that are most similar to it. This is
atypical, but an interesting option nonetheless.

• As a query parser: Solr 5 includes a query parser named mlt that can more
easily be combined with other queries or relevancy boosting than the other
options. See the Solr Reference Guide for further information.

The essences of the internal workings of MLT operate like this:

1. Gather all of the terms with frequency information from the input document:
 ° If the input document is a reference to a document within the

index, then loop over the fields listed in mlt.fl, and then the
term information needed is readily there for the taking if the
field has termVectors enabled. Otherwise, get the stored text
and reanalyze it to derive the terms (slower).

 ° If the input document is posted as text to the request handler, then
analyze it to derive the terms. The analysis used is that configured
for the first field listed in mlt.fl.

2. Filter the terms based on configured thresholds. What remains are only the
interesting terms.

3. Construct a Boolean OR query with these interesting terms across all of the
fields listed in mlt.fl.

Configuration parameters
In the following configuration options, the input document is either each search
result returned if MLT is used as a component, or it is the first document returned
from a query to the MLT request handler, or it is the plain text sent to the request
handler. It simply depends on how you use it.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[254]

Parameters specific to the MLT search component
Using the MLT search component adorns an existing search with MLT results for
each document returned.

• mlt: You must set this to true to enable MLT when using it as a search
component. It defaults to false.

• mlt.count: This refers to the number of MLT results to be returned for
each document returned in the main query. It defaults to 5.

Parameters specific to the MLT request handler
Using the MLT request handler is more like a regular search, except that the results
are documents similar to the input document. Additionally, filters (the fq parameter)
are applied.

• q, start, and rows: The MLT request handler uses the same standard
parameters for the query start offset, and row count as used for querying.
But in this case, start and rows is for paging into the MLT results instead
of the results of the query. The query is typically one that simply references
one document, such as id:12345 (if your unique field looks like this). start
defaults to 0 and rows to 10.

• mlt.match.offset: This parameter is the offset into the results of q to
pick which document is the input document. It defaults to 0 so that the
first result from q is chosen. As q will typically search for one document,
this is rarely modified.

• mlt.match.include: The input document is normally included in the
response if it is in the index (see the match element in the output of the
example) because this parameter defaults to true. Set this parameter to
false to exclude it, if that information isn't needed.

• mlt.interestingTerms: If this is set to list or details, then the so-called
interesting terms that MLT uses for the similarity query are returned with
the results in an interestingTerms element. If you enable mlt.boost, then
specifying details will additionally return the query boost value used for
each term. The default, none, disables this. Aside from diagnostic purposes,
it might be useful to display these in the user interface, either listed out or in
a tag cloud.

Use mlt.interestingTerms while experimenting with the
results to get an insight into why the MLT results matched the
documents it did.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[255]

• facet, ...: The MLT request handler supports faceting the MLT results. See
the previous chapter on how to use faceting.

Additionally, remember to configure the MLT request
handler in solrconfig.xml. An example of this is
shown later in the chapter.

Common MLT parameters
These parameters are common to both the search component and request handler.
Some of the thresholds here are to tune which terms are interesting to MLT.
In general, expanding thresholds (that is, lowering minimums and increasing
maximums) will yield more useful MLT results at the expense of performance.
The parameters are explained as follows:

• mlt.fl: This provides a comma- or space-separated list of fields to consider
in MLT. The interesting terms are searched within these fields only. These
field(s) must be indexed. Furthermore, assuming the input document is
in the index instead of supplied externally (as is typical), then each field
should ideally have termVectors set to true in the schema (best for query
performance, although index size is larger). If that isn't done, then the field
must be stored so that MLT can re-analyze the text at runtime to derive
the term vector information. It isn't necessary to use the same strategy for
each field.

• mlt.qf: Different field boosts can optionally be specified with this parameter.
This uses the same syntax as the qf parameter that is used by the DisMax
query parser (for example: field1^2.0 field2^0.5). The fields referenced
should also be listed in mlt.fl. If there is a title or similar identifying field,
then this field should probably be boosted higher.

• mlt.mintf: This parameter specifies the minimum number of times
(frequency) a term must be used within a document (across those fields in
mlt.fl anyway) for it to be an interesting term. The default is 2. For small
documents, such as in the case of our MusicBrainz dataset, try lowering
this to 1.

• mlt.mindf: This specifies the minimum number of documents that a term
must be used in for it to be an interesting term. It defaults to 5, which is fairly
reasonable. For very small indexes, as little as 2 is plausible, and maybe
larger for large multi-million document indexes with common words.

• mlt.maxdf: This specifies the maximum number of documents that a term
must be used in for it to be an interesting term. There is no limit, by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[256]

• mlt.minwl: This is used to specify the minimum number of characters
in an interesting term. It defaults to 0, effectively disabling the threshold.
Consider raising this to 2 or 3.

• mlt.maxwl: This parameter specifies the maximum number of characters
in an interesting term. It defaults to 0 and disables the threshold. Some really
long terms might be flukes in input data and are out of your control, but
most likely this threshold can be skipped.

• mlt.maxqt: This specifies the maximum number of interesting terms that
will be used in an MLT query. It is limited to 25 by default, which is plenty.

• mlt.maxntp: Fields without termVectors enabled take longer for MLT to
analyze. This parameter sets a threshold to limit the number of terms to
consider in an input field to further limit the performance impact. It defaults
to 5000.

• mlt.boost: This Boolean toggles whether or not to boost each interesting
term used in the MLT query differently, depending on how interesting the
MLT module deems it to be. It defaults to false, but try setting it to true
and evaluating the results.

Usage advice
For ideal query performance, ensure that termVectors is enabled
for the field(s) referenced in mlt.fl, particularly in the larger fields.
In order to further increase performance, use fewer fields, perhaps
just one that is dedicated for use with MLT. Using the copyField
directive in the schema makes this easy. The disadvantage is that the
source fields cannot be boosted differently with mlt.qf. However,
you might have two fields for MLT as a compromise. Use a typical
full complement of text analysis including lowercasing, synonyms
using a stop list (such as StopFilterFactory), and aggressive
stemming in order to normalize the terms as much as possible.
The field needn't be stored if its data is copied from some other
field that is stored. During an experimentation period, look for
interesting terms that are not so interesting for inclusion in the stop
word list. Lastly, some of the configuration thresholds that scope the
interesting terms can be adjusted based on experimentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[257]

The MLT results example
Firstly, an important disclaimer on this example is in order.

The MusicBrainz dataset is not conducive to applying the MLT feature,
because it doesn't have any descriptive text. If there was perhaps an
artist description and/or widespread use of user-supplied tags, then
there might be sufficient information to make MLT useful. However,
to provide an example of the input and output of MLT, we will use
MLT with MusicBrainz anyway.

We'll be using the request handler method—the recommended approach. The MLT
request handler needs to be configured in solrconfig.xml. The important bit is the
reference to the class, the rest of it is our prerogative.

<requestHandler name="/mlt_tracks" class="solr.MoreLikeThisHandler">
 <lst name="defaults">
 <str name="mlt.fl">t_name</str>
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 </lst>
</requestHandler>

This configuration shows that we're basing the MLT on just track names. Let's now
try a query for tracks similar to the song "The End is the Beginning is the End" by
The Smashing Pumpkins. The query was performed with echoParams to clearly
show the options used:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 <str name="mlt.fl">t_name</str>
 <str name="rows">5</str>
 <str name="mlt.interestingTerms">details</str>
 <str name="indent">on</str>
 <str name="echoParams">all</str>
 <str name="fl">t_a_name,t_name,score</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[258]

 <str name="q">id:"Track:1810669"</str>
 </lst>
</lst>
<result name="match" numFound="1" start="0"
 maxScore="16.06509">
 <doc>
 <float name="score">16.06509</float>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">The End Is the Beginning Is the End</str>
 </doc>
</result>
<result name="response" numFound="855211" start="0"
 maxScore="6.3063927">
 <doc>
 <str name="t_name">End Is the Beginning</str>
 <str name="t_a_name">In Grey</str>
 <float name="score">6.3063927</float></doc>
 <doc>
 <str name="t_name">Is the End the Beginning</str>
 <str name="t_a_name">Mangala Vallis</str>
 <float name="score">5.6426353</float></doc>
 <doc>
 <str name="t_name">The End Is the Beginning</str>
 <str name="t_a_name">Royal Anguish</str>
 <float name="score">5.6426353</float></doc>
 <doc>
 <str name="t_name">The End Is the Beginning</str>
 <str name="t_a_name">Ape Face</str>
 <float name="score">5.6426353</float></doc>
 <doc>
 <str name="t_name">The End Is the Beginning Is the
 End</str>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <float name="score">5.0179915</float></doc>
</result>
<lst name="interestingTerms">
 <float name="t_name:end">1.0</float>
 <float name="t_name:is">0.7513826</float>
 <float name="t_name:the">0.6768603</float>
 <float name="t_name:beginning">0.62302685</float>
</lst>
</response>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[259]

The <result name="match"> element is there due to mlt.match.include
defaulting to true. The <result name="response" …> element has the main
MLT search results. The fact that so many documents were found is not material
to any MLT response; all it takes is one interesting term in common. The interesting
terms were deliberately requested so that we can get an insight on the basis of the
similarity. The fact that is and the were included shows that we don't have a stop
list for this field—an obvious thing to fix to improve the results. Nearly any stop list
is going to have such words.

For further diagnostic information on the score computation, set
debugQuery to true. This is a highly advanced method but it exposes
information invaluable to understand the scores. Doing so in our example
shows that the main reason the top hit was on top was not only because
it contained all of the interesting terms as did the others in the top 5, but
also because it is the shortest in length (a high fieldNorm).

The Stats component
The stats component calculates some mathematical statistics of fields in the index.
The main requirement is that the field be indexed. The following statistics are
computed over the non-null values (except missing which counts the nulls):

• min: The smallest value
• max: The largest value
• sum: The sum
• count: The quantity of non-null values accumulated in these statistics
• missing: The quantity of records skipped due to missing values
• sumOfSquares: The sum of the square of each value; this is probably the least

useful and is used internally to compute stddev efficiently
• mean: The average value
• stddev: The standard deviation of the values
• distinctValues: A list of all distinct (non-duplicating) values
• countDistinct: The size of distinctValues

If you calculate stats on a string or date field, then only min, max, count, missing,
distinctValues, and countDistinct are calculated. The distinctValues and
countDistinct are only present if stats.calcdistinct is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[260]

Configuring the stats component
This component is simple to configure and can be done as follows:

• stats: Set this to true in order to enable the component. It defaults to false.
• stats.field: Set this to the name of the indexed field to calculate statistics

on. It is required. This field must be indexed or preferably have DocValues.
This parameter can be added multiple times in order to calculate statistics on
more than one field. And like facet.field, it can be preceded with a filter
query exclusion in local-params syntax; for example, &stats.field={!ex=t_
duration}t_duration&fq={!tag=t_duration}t_duration:1000.

• stats.calcdistinct: A Boolean option to include a list of all distinct
(non-duplicating) values for this field. Be judicious about using this!
Using it on some fields could trigger an OutOfMemoryError easily.
Solr 5.2 has a scalable option to provide an estimated count.

• stats.facet: Optionally, set this to the name of the field in which you
want to facet the statistics over. Instead of the results having just one set
of stats (assuming one stats.field), there will be a set for each value in
this field, and those statistics will be based on that corresponding subset of
data. This is analogous to the GROUP BY syntax in SQL. This parameter can
be specified multiple times to compute the statistics over multiple fields'
values. In addition, you can use the field-specific parameter name syntax
for cases when you are computing stats on different fields and you want
to use a different facet field for each statistic field. For example, you can
specify f.t_duration.stats.facet=tracktype assuming a hypothetical
field tracktype to categorize the t_duration statistics on. The field should
be indexed or have DocValues and not tokenized.

Due to the bug SOLR-1782, a stats.facet field should not be
multivalued, and it should be limited to a string. If you don't heed
this advice, then the results are in question and you may get an error!

Statistics on track durations
Let's look at some statistics for the duration of tracks in MusicBrainz at
http://localhost:8983/solr/mbtracks/mb_tracks?rows=0&indent=on
&stats=true&stats.field=t_duration.

And here are the results:

<?xml version="1.0" encoding="UTF-8"?>
<response>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[261]

<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5202</int>
</lst>
<result name="response" numFound="6977765" start="0"/>
<lst name="stats">
 <lst name="stats_fields">
 <lst name="t_duration">
 <double name="min">0.0</double>
 <double name="max">36059.0</double>
 <double name="sum">1.543289275E9</double>
 <long name="count">6977765</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">5.21546498201E11</double>
 <double name="mean">221.1724348699046</double>
 <double name="stddev">160.70724790290328</double>
 </lst>
 </lst>
</lst>
</response>

This query shows that on average, a song is 221 seconds (or 3 minutes 41 seconds) in
length. An example using stats.facet would produce a much longer result, which
won't be given here in order to leave space for other components. However, there is
an example at http://wiki.apache.org/solr/StatsComponent.

The Clustering component
The clustering component groups documents into similar clusters using sophisticated
statistical techniques. Each cluster is identified by a few words from the documents
that were used to distinguish the documents in that cluster from the other clusters. As
with the MoreLikeThis component, which also uses statistical techniques, the quality
of the results is hit or miss. This component resides in its own contrib module and it
provides an extension point to integrate a clustering engine.

The primary means of navigation/discovery of your data should
generally be search and faceting. For so-called unstructured text use
cases, there are, by definition, few attributes to facet on. Clustering
search results and presenting tag clouds (a visualization of faceting
on words) are generally exploratory navigation methods of last
resort in the absence of more effective document metadata.

www.it-ebooks.info

http://wiki.apache.org/solr/StatsComponent
http://www.it-ebooks.info/

Search Components

[262]

Presently, there are two search-result clustering algorithms available as part of the
Carrot2 open source project that this module has adapters for; other commercial
options exist too. Solr ships with the needed third-party libraries—JAR files. The
clustering component has an extension point to support full-index clustering (offline
clustering) via the clustering.collection parameter, but no implementation has
materialized yet.

To get started with exploring this feature, we'll direct you to the Solr Reference Guide
at https://cwiki.apache.org/confluence/display/solr/Result+Clustering.
There is quick-start set of instructions in which you'll be clustering Solr's example
documents in under five minutes. It should be easy to copy the necessary configuration
to your Solr instance and modify it to refer to your document's fields. As you dive into
the technology, Carrot2's powerful GUI workbench should be of great help in tuning
it to get more effective results. For a public demonstration of Carrot2's clustering, visit
http://search.carrot2.org/stable/search.

Collapsing and expanding
The collapse query parser and expand search component are two related features that
arrived in Solr 4.7 as an alternative to Solr's Result Grouping feature (group=true).
First, we'll describe these two features and then compare it to result grouping.

The Collapse query parser
The collapse query parser filters search results so that only one document is returned
out of all of those for a given field's value. Said differently, it collapses search results
to one document per group of those with the same field value. This query parser is a
special type called post-filter, which can only be used as a filter query because it needs
to see the results of all other filter queries and the main query. In order to pick which
document of a set is chosen to be the one returned, it by default it picks the highest
scoring one, but it can be configured to choose based on the document with the highest
or lowest value of a field or function query.

An excerpt of the query in action is this filter query: fq={!collapse field=t_a_id}.
A complete example will be shown soon. There are only a few parameters:

• field: This refers to the field to group documents by, which should be
single-valued and ideally have DocValues enabled—the same requirement
and recommendation for a field that you sort on.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Result+Clustering
http://search.carrot2.org/stable/search
http://www.it-ebooks.info/

Chapter 8

[263]

• min or max: This is either a field or function query that yields a ranking
value used to choose which document to return in a grouped set. For min,
the document with the smallest value is chosen, and for max, the largest.
If your function query needs to be computed based on the document's
score, refer to that via cscore().

• nullPolicy: This refers to the policy on how to treat blank/null values
for the group field. It can be ignore, collapse, or expand. By default,
documents having no value are ignored (filtered out). If nullPolicy is
set to collapse, the documents with no value in this field are treated
as one group and therefore one document will be chosen from them.
If this parameter is expand then all of these documents are returned
(they aren't collapsed).

The Expand component
The expand search component augments the response to return more documents
from the groups that were collapsed. It can also be used without collapsing by
similarly returning other documents that share the field values found in the main
search results. This information is in its own part of Solr's response format, quite
unlike the Result Grouping format. Here are the parameters:

• expand: This is set to true. Generally, it's the only required parameter.
• expand.field: This is the field to expand search results for documents

in the main result list. It's inferred if you use the collapse query parser;
otherwise it is required.

• expand.sort: This overrides the sort parameter for use in expanding.
• expand.rows: This defines how many rows to return for each group.

Defaults to 5.
• expand.q: This overrides the q parameter for the expanded results.
• expand.fq: This overrides the fq parameters for the expanded results.

An example
Here's a quick example using MusicBrainz track data collapsing by artist. The query
is Cherub Rock (a song/track name). We expand to show one additional document in
each group:

http://localhost:8983/solr/mbtracks/mb_tracks?wt=json
&q="Cherub+Rock"&fl=score,id,t_a_id,t_a_name,t_name,t_r_name
&rows=2
&fq={!collapse field=t_a_id}
&expand=true&expand.rows=1

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[264]

And here's the response:

{
 "responseHeader":{
 "status":0,
 "QTime":20},
 "response":{"numFound":22575,"start":0,"maxScore":15.757925,"docs":[
 {
 "id":"Track:414903",
 "t_name":"Cherub Rock",
 "t_a_id":11650,
 "t_a_name":"The Smashing Pumpkins",
 "t_r_name":"Cherub Rock",
 "score":15.757925},
 {
 "id":"Track:6855353",
 "t_name":"Cherub Rock",
 "t_a_id":33677,
 "t_a_name":"Razed in Black",
 "t_r_name":"Cherub Rock: A Gothic-Industrial Tribute to the
 Smashing Pumpkins",
 "score":14.348505}]
},
"expanded":{
 "33677":{"numFound":1,"start":0,"maxScore":0.13129683,"docs":[
 {
 "id":"Track:4034054",
 "t_name":"Share This Poison",
 "t_a_id":33677,
 "t_a_name":"Razed in Black",
 "t_r_name":"Rock Sound: Music With Attitude, Volume 52",
 "score":0.13129683}]
 },
 "11650":{"numFound":91,"start":0,"maxScore":12.960967,"docs":[
 {
 "id":"Track:7413518",
 "t_name":"Cherub Rock",
 "t_a_id":11650,
 "t_a_name":"The Smashing Pumpkins",
 "t_r_name":"Guitar Hero™ III: Legends of Rock Companion
 Pack",
 "score":12.960967}]
 }}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[265]

The effect of collapsing is generally straightforward, and there is no impact to the
response format. Interpreting the expanded section can be confusing. Firstly, as you
can see, the ordering of the expanded groups isn't significant—it's not the same as
the main results. Next, understand that each part underneath the expanded section is
a mini result list keyed by the group field value. The first one shown is for field value
33677, and it says numFound is 1. But since the main result list has one document
already, you can interpret this as that there are a total of two documents matching
the query that have this field value. Likewise, 92 (91 + 1) documents have the field
value 11650.

Compared to Result grouping
Result grouping, also known as field collapsing or simply grouping, has been
around since Solr 3 and is somewhat obsoleted by collapse and expand. It's technically
built into the query component instead of being its own component. For comparison
purposes, here is a group query equivalent to the previous example:

http://localhost:8983/solr/mbtracks/mb_tracks?wt=json
&q="Cherub+Rock"
&fl=score,id,t_a_id,t_a_name,t_name,t_r_name&rows=2
&group=true&group.field=t_a_id&group.ngroups=true&group.limit=2

And here is the result:

{
 "responseHeader":{
 "status":0,
 "QTime":49},
 "grouped":{
 "t_a_id":{
 "matches":105155,
 "ngroups":22575,
 "groups":[{
 "groupValue":11650,
 "doclist":{"numFound":92,"start":0,
 "maxScore":15.757925,"docs":[
 {
 "id":"Track:414903",
 "t_name":"Cherub Rock",
 "t_a_id":11650,
 "t_a_name":"The Smashing Pumpkins",
 "t_r_name":"Cherub Rock",
 "score":15.757925},
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Search Components

[266]

 "id":"Track:7413518",
 "t_name":"Cherub Rock",
 "t_a_id":11650,
 "t_a_name":"The Smashing Pumpkins",
 "t_r_name":"Guitar Hero™ III: Legends of Rock
 Companion Pack",
 "score":12.960967}]
 }},
 {
 "groupValue":33677,
 "doclist":{"numFound":2,"start":0,
 "maxScore":14.348505,"docs":[
 {
 "id":"Track:6855353",
 "t_name":"Cherub Rock",
 "t_a_id":33677,
 "t_a_name":"Razed in Black",
 "t_r_name":"Cherub Rock: A Gothic-Industrial
 Tribute to the Smashing Pumpkins",
 "score":14.348505},
 {
 "id":"Track:4034054",
 "t_name":"Share This Poison",
 "t_a_id":33677,
 "t_a_name":"Razed in Black",
 "t_r_name":"Rock Sound: Music With Attitude,
 Volume 52",
 "score":0.13129683}]
 }}]}}}

We've highlighted the beginning part of the grouping, which reflects that a grouped
response has a fairly different response structure than a regular one. The matches
number is 105155, which is equivalent to numFound if grouping weren't enabled—the
number of matching documents. ngroups is 22575, which is the number of groups
found. Each group begins by showing the group's value and then a document list
structure that looks just like normal search results.

Result grouping is often much slower than collapse and expand, particularly when
the number of possible groups is high in relation to the number of documents, as in
the preceding example. It's even more dramatic if you only need the top document
since you needn't use the expand component. Nevertheless, Result grouping is not
quite obsolete because it has some unique features over collapse and expand:

• One request can group results multiple times for different fields
• One request can hold multiple queries to independently get results for

(group.query)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[267]

• It can group based on the value returned from a function query versus being
limited to a field's value

• It can instruct the faceting component to facet on the leading document as if
it had all field values in its group (group.facet)

If you'd like to learn more about Result Grouping and its parameters, see the Solr
Reference Guide at https://cwiki.apache.org/confluence/display/solr/
Result+Grouping.

The TermVector component
This component is used to expose the raw term vector information for fields that
have this option enabled in the schema—termVectors set to true. It is false by
default. The term vector is per field and per document. It lists each indexed term
in order with the offsets into the original text, term frequency, and document
frequency. It's not that useful, so I'll refer you to the wiki for further information,
which can be found at https://cwiki.apache.org/confluence/display/solr/
The+Term+Vector+Component.

Summary
Consider what you've seen with Solr search components: highlighting search results,
suggesting search spelling corrections, query autocomplete, editorially modifying
query results for particular user queries, suggesting documents "more like this",
calculating mathematical statistics of indexed numbers, and grouping/collapsing
search results. By now, it should be clear why the text search capability of your
database is inadequate for all but basic needs. Even Lucene-based solutions don't
necessarily have the extensive feature set that you've seen here. You may have once
thought that searching was a relatively basic thing, but Solr search components really
demonstrate how much more there is to it.

The chapters thus far have aimed to show you the majority of the features in Solr and
to serve as a reference guide for them. The remaining chapters don't follow this pattern.
In the next chapter, you're going to see numerous ways that applications integrate with
Solr. That includes client APIs as well as things like a crawler and Hadoop.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Result+Grouping
https://cwiki.apache.org/confluence/display/solr/Result+Grouping
https://cwiki.apache.org/confluence/display/solr/The+Term+Vector+Component
https://cwiki.apache.org/confluence/display/solr/The+Term+Vector+Component
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[269]

Integrating Solr
As the saying goes, if a tree falls in the woods and no one hears it, did it make a sound?
Similarly, if you have a wonderful search engine, but your users can't access it,
do you really have a wonderful search engine? Fortunately, Solr is very easy to
integrate into a wide variety of client environments via its modern, easy-to-use,
REST-like interface and multiple data formats. In this chapter, we will:

• Quickly prototype a search UI using Solritas (the /browse UI)
• Look at accessing Solr results through various language-based clients,

including Java, Ruby, and PHP
• Learn how to build a dynamic JavaScript-based interface for Solr using

AJAX calls
• Briefly cover building our own Google-like search engine by crawling the

MusicBrainz.org site with the Nutch web crawler
• Leverage Hadoop to build Solr indexes using multiple machines
• Translate search results into the OpenSearch XML standard via XSLT
• Review ManifoldCF, a framework for syncing content from external

repositories that respects the access rules of external documents

There are so many possible topics we could have covered in this chapter, but only
so much space is available. We have put a page together on the Solr community
wiki page that pulls all the options for working with Solr, from language-specific
client libraries, such as .NET and Python, to options for using document processing
pipelines, various Solr compatible crawlers, monitoring tools, and more. Visit
http://wiki.apache.org/solr/SolrEcosystem for the latest listings.

www.it-ebooks.info

www.MusicBrainz.org
http://wiki.apache.org/solr/SolrEcosystem
http://www.it-ebooks.info/

Integrating Solr

[270]

In a hurry?
This chapter covers a wide variety of integrations with Solr. If you
are in a hurry, jump to the next section, Inventory of examples, to find
the source code that you can immediately start using. Then read the
sections that apply to the environment you are working in.

We will be using our MusicBrainz dataset to power these examples. You can
download the full sample code for these integrations from our website http://www.
SolrEnterpriseSearchServer.com. This includes a prebuilt Solr and scripts to load
the collections mbtracks with seven million records and mbartists with 400,000 records.
When you have downloaded the zipped file, you should follow the setup instructions
in the README.txt file.

Working with the included examples
We have included a wide variety of sample integrations that you can run as
you work through this chapter. The examples stored in ./examples/9/ of the
downloadable ZIP file are as self-contained as we could make them. They are
detailed in this chapter, and you shouldn't run into any problems making them
work. Check the support section of the book website for any errata.

Inventory of examples
The following is a quick summary of the various examples of using Solr, available
unless otherwise noted in ./examples/9/:

• ajaxsolr: This is an example of building a fully featured Solr Search UI
using just JavaScript.

• php: This is a bare bones example of the PHP integration with Solr.
• solr-php-client: This is a richer example of integrating Solr results into a

PHP-based application.
• Solritas: This a web search UI using the template files in /cores/mbtypes/

conf/velocity.
• jquery_autocomplete: This is an example of using the jQuery Autocomplete

library to provide search suggestions based on Solr searches.
• myfaves: This is a Ruby on Rails application using the Ruby Solr client

library Sunspot to search for music artists.
• nutch: This is a simple example of the Nutch web crawler integrated with Solr.

www.it-ebooks.info

http://www.SolrEnterpriseSearchServer.com
http://www.SolrEnterpriseSearchServer.com
http://www.it-ebooks.info/

Chapter 9

[271]

• manifoldcf: This is a crawler document ingestion framework with connectors
to many systems such as SharePoint.

• solrj: This is an example of a SolrJ-based Java client.
• solr-map-reduce-example: This shows using Hadoop and the MapReduce

paradigm to build Solr indexes using multiple machines.
• heritrix-2.0.2: This is an example of web crawling with Heritrix. The output

files in heritrix-2.0.2/jobs/ are used in the SolrJ example.

Solritas – the integrated search UI
The contrib module, velocity, nicknamed Solritas, is a simple template engine that
lets you build user interfaces directly in Solr using Apache Velocity, a very simple
macro language to generate the HTML. It's similar to JSP or PHP, but with a simpler
syntax consisting of just a handful of commands. It is very simple to pick up, as you
can see in the following snippet of code, for rendering the HTML that displays the ID
and name of an artist pulled from the first Solr document in a list of results:

#set($doc = $response.results.get(0))
#set($id = $doc.getFieldValue("id"))
<div>ID: $id</div>
<div>Name: #field('a_name')</div>

When a Velocity template is invoked, Solritas places some objects, indicated with
a $ character, into a rendering context that you can use, such as $response and
$request. In the preceding example, you can see that the first result in the response
is assigned to the $doc object variable using the #set command. Java methods such
as getFieldValue() are easily called in Velocity, allowing you to access the full
power of Java within a scripting environment that is evaluated at runtime. Velocity
also supports building your own functions, such as the #field() function for
displaying a field from a document.

You can try out an interface optimized for searching for MusicBrainz artists
by browsing to http://localhost:8983/solr/mbartists/browse. This web
interface supports faceted browsing, autocompletion of queries, boosting of artists
based on how recent the release is, "More Like This" based on artist name, and even
"Did You Mean" spell checking!

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[272]

When the browser invokes the URL, Solr hands the request off to a request handler
with the name, /browse, which is a search request handler that works like any other.
The point where the request takes a different turn is in rendering the response, which
in Solr is configured with the wt parameter. Short for writer type, the choices are better
known as response writers. Instead of letting it default to XML, it's set to velocity.
The Velocity response writer uses the v.layout and v.template parameters to
determine which template file to use for the overall page layout as well as what
template for the specific page to render. The templates are located in conf/velocity/
relative to the Solr core, and they end in .vm. To use another directory, set the v.base_
dir parameter. Note that the use of parameters to choose the template allows you to
override it in the URL if desired.

<?xml version="1.0"?>
<requestHandler name="/browse" class="solr.SearchHandler">
<lst name="defaults">
 <str name="wt">velocity</str>
 <str name="v.template">browse</str>
 <str name="v.layout">layout</str>
 <str name="title">MusicBrainz</str>

 <str name="defType">edismax</str>
 <str name="mm">1</str>
 <str name="q.alt">*:*</str>
 <str name="rows">10</str>
 <str name="fl">*,score</str>
 <str name="qf">a_name^1.5 a_member_name^1.0</str>
 <str name="pf">a_name^1.5 a_member_name^1.0</str>

 <str name="mlt.qf">a_name^1.5 a_member_name^1.0</str>
 <str name="mlt.fl">a_name,a_member_name</str>
 <int name="mlt.count">3</int>
 <int name="mlt.mintf">1</int>
 <int name="mlt.mindf">2</int>
 <str name="mlt.boost">true</str>

 <str name="facet">on</str>
 <str name="facet.field">a_type</str>
 <str name="facet.field">type</str>
 <str name="facet.mincount">1</str>
 <str name="facet.range">a_release_date_latest</str>
 <str name="f.a_release_date_latest.facet.range.start">
 NOW/YEAR-10YEARS</str>
 <str name="f.a_release_date_latest.facet.range.end">NOW</str>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[273]

 <str name="f.a_release_date_latest.facet.range.gap">+1YEAR</str>
 <str name="f.a_release_date_latest.facet.range.other">
 before</str>
 <str name="f.a_release_date_latest.facet.range.other">
 after</str>

 <str name="spellcheck">on</str>
 <str name="spellcheck.dictionary">a_spell</str>
 <str name="spellcheck.collate">true</str>

 <str name="hl">on</str>
 <str name="hl.fl">a_name a_member_name</str>
 <str name="f.a_name.hl.fragsize">0</str>
 <str name="f.a_name.hl.alternateField">a_name</str>
</lst>
<arr name="last-components">
 <str>spellcheck</str>
</arr>
</requestHandler>

The pros and cons of Solritas
Although it is good to impress your boss by quickly building a remarkably
full-featured search interface using Solritas, there are some cons to keep in mind:

• While many of the various Velocity files are fairly agnostic about the
structure of the data being rendered, there are enough places where you
have to both configure some parameters in solrconfig.xml and hardcode
them in the Velocity template and that means you'll have to customize the
templates to fit your schema. This can be a bit of a gotcha!

• Using Velocity to render a UI for a high volume website isn't a good idea as
you are putting the entire search and render load on the same server, and
Solr isn't optimized for serving up assets such as CSS or JavaScript files.

• Building a web application based only on a collection of page templates,
no matter whether the technology is Velocity, JSP, or PHP, gets harder to
maintain and comprehend as it grows in complexity. Arguably, the /browse
out-of-the-box interface has reached that complexity point since there is no
strong MVC model to follow.

• Integrating a Velocity-driven UI into a larger system isn't simple since you
can't easily add your own business logic without modifying Solr itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[274]

However, some aspects of what I really love about Solritas are:

• The ability to quickly prototype an interface. I find that most end users
don't know what fields they want searchable until they have something
they can play with. Quickly prototyping a search interface for the business
stakeholders is powerful.

• If you need to emit a small chunk of HTML to integrate Solr into another
application, or even other text formats such as JSON or custom XML, then
this can be a simple yet powerful integration method. The query http://
localhost:8983/solr/mbartists/select?limit=1&q=corgan&qt=mb_
artists&wt=velocity&v.template=fragment returns a small fragment of
HTML rendered by the completely standalone Velocity template fragment.vm:

To learn more about building your own Velocity-based interface, look at the example
code in /configsets/mbtype/conf/velocity. The example application that ships
with Solr also has some good examples of exposing Solr features, such as spatial
search using Velocity. You can get more information about the list of tools and
objects added to the rendering context from the Solr wiki at http://wiki.apache.
org/solr/VelocityResponseWriter. More information about Velocity is available
at http://velocity.apache.org/.

SolrJ – Solr's Java client API
SolrJ is Solr's Java client API that insulates you from the dirty details of parsing
and sending messages back and forth between your application and Solr. More
than just a client API, it is also the way to run Solr embedded in your code instead
of communicating to one remotely over HTTP—more on that later.

Although you don't have to use SolrJ to communicate with Solr, it's got some great
performance features that may even tempt non-Java applications to use a little Java
(or run on a JVM) in order to use it. The following are the features:

• It communicates with Solr via an efficient and compact binary message
format (still over HTTP) called javabin. It can still do standard XML if
desired (useful if your client and your server are different versions).

www.it-ebooks.info

http://wiki.apache.org/solr/VelocityResponseWriter
http://wiki.apache.org/solr/VelocityResponseWriter
http://velocity.apache.org/
http://www.it-ebooks.info/

Chapter 9

[275]

• It streams documents to Solr asynchronously in multiple threads for
maximizing indexing throughput. This is not the default but it's easy
to configure it this way.

• It routes documents and search requests to a SolrCloud cluster intelligently
by examining the cluster state in ZooKeeper. A document can be delivered
directly to the leader of the appropriate shard, and searches are load-balanced
against available replicas, possibly obviating the need for an independent load
balancer. Read more about SolrCloud in Chapter 10, Scaling Solr.

Aside from performance, SolrJ has some other nice qualities too. It can automatically
map Solr documents to your Java class, and vice versa, simply by following JavaBean
naming conventions and/or using annotations. And it has API convenience methods
for most of Solr's search and response format options that are more often absent in
other client APIs.

The sample code – BrainzSolrClient
To illustrate the use of SolrJ, we've written some sample code in ./examples/9/
solrj/ to index and search the web pages downloaded from MusicBrainz.org.
The web pages were crawled with Heritrix, an open source web crawler used by
the Internet Archive. Heritrix is included with the code supplement to the book
at ./examples/9/crawler/heritrix-2.0.2/, as well as an ARC archive file of
a crawl deep within the jobs/ subdirectory.

Most of the code is found in BrainzSolrClient.java, which has a main method.
There is also a JUnit test that calls main() with various arguments. You will notice
that BrainzSolrClient demonstrates different ways of connecting to Solr and different
ways of searching and indexing for documents.

Dependencies and Maven
Many Java projects are built with Apache Maven, and even if yours isn't, the
information here is adaptable. Solr's artifacts and required dependencies are
all published to Maven Central with decent POMs. Over time, the dependency
information has gotten better but nonetheless it is subject to change and you might
find it necessary to add exclusions related to logging or something else. For example,
SolrJ 4.8 declares a dependency on Log4j even though it doesn't use it directly; SolrJ
4.9 doesn't declare this dependency.

Run mvn dependency:tree to see what your project's
dependencies are and look for problems, such as incompatible
or missing logging jars.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[276]

If your code needs SolrJ to communicate remotely to Solr, then declare a dependency
on SolrJ:

<dependency>
 <groupId>org.apache.solr</groupId>
 <artifactId>solr-solrj</artifactId>
 <version>${solr.version}</version>
 <scope>compile</scope>
</dependency>

Due to transitive dependency resolution, this will automatically inherit SolrJ's
dependencies: commons-io, httpclient, httpcore, and httpmime (from the
Apache HttpComponents project), zookeeper (only used for SolrCloud), noggit,
and wstx-asl. SolrJ 4.8 erroneously includes Log4j too. The wstx-asl dependency
(Woodstox) isn't actually needed; it has been included with SolrJ since the days of
Java 1.6 when Java's built-in XML processing implementation was substantially
slower than Woodstox. Speaking of which, SolrJ 4.7 and onwards requires Java 7.

SolrJ has additional logging dependencies that won't transitively
resolve, jcl-over-slf4j (commons-logging) and an SLF4J
target logger. See the next subsection on logging.

If you wish to use EmbeddedSolrServer for embedding Solr, then add the solr-
core artifact as well instead. Note that this brings in a ton of transitive dependencies
since you're running Solr in-process; some of these might have incompatible versions
with the ones your application uses.

If you wish to write plugins to Solr and test Solr using Solr's excellent test
infrastructure, then add a test dependency on the artifact solr-test-framework
before solr-core or other Lucene/Solr artifacts. If the ordering is wrong, then you
should see a helpful error.

Declaring logging dependencies
Unfortunately, the world of logging in Java is a mess of frameworks. Java includes
one but few use it for a variety of reasons. What just about any Java application
should do (particularly the ones built with Maven or that produce a POM to
publish dependency metadata) is explicitly declare the logging dependencies; don't
leave it to transitive resolution. If you prefer Log4j, the most popular one, then the
dependency list is slf4j-api, jcl-over-slf4j, slf4j-log4j, and finally log4j.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[277]

If the project is a direct plugin into Solr, then declare none, except perhaps for testing
purposes, since the plugin will inherit Solr's. If the project is a library/module that
doesn't wish to insist that its clients use a particular framework, then just depend on
slf4j-api and jcl-over-slf4j and then declare any others as optional or scope
them to test scope so that they aren't transitively required.

The SolrServer class
The first class in SolrJ's API to learn about is the SolrServer class (package org.
apache.solr.client.solrj). In Solr 5, it was renamed as SolrClient, with its
subclasses following suit. As its name suggests, it represents an instance of Solr.
Usually it's a client to a remote instance but, in the case of EmbeddedSolrServer,
it's the real thing. SolrServer is an abstract class with multiple implementations
to choose from:

• HttpSolrServer: This is generally the default choice for communicating
to Solr.

• ConcurrentUpdateSolrServer: This wraps HttpSolrServer, handling
document additions asynchronously with a buffer and multiple concurrent
threads that independently stream data to Solr for high indexing throughput.
It is ideal for bulk-loading data (that is, a re-index), even for SolrCloud.
In Solr 3, this class was named StreamingUpdateSolrServer.

Don't forget to override handleError(); add() usually
won't throw an error if something goes wrong.

• LBHttpSolrServer: This wraps multiple HttpSolrServers with load-
balancing behavior using a round-robin algorithm and temporary host
blacklisting when connection problems occur. It's usually inappropriate
for indexing purposes.

• CloudSolrServer: This wraps LBHttpSolrServer but communicates
to the ZooKeeper ensemble that manages a SolrCloud cluster to make
intelligent routing decisions for both searching and indexing. Compared
to HttpSolrServer, this reduces latency and has enhanced resiliency
when a replica becomes unavailable. If you are using SolrCloud, this is
the implementation to use.

• EmbeddedSolrServer: This is a real local Solr instance without HTTP,
and less (but some) message serialization. More on this later.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[278]

Remember to call shutdown() or close() on the SolrServer
when finished to properly release resources.

With the exception of EmbeddedSolrServer, they are easy to instantiate with simple
constructors. Here's how to instantiate HttpSolrServer, whose only parameter is
the URL to the Solr instance, to include the core or collection name:

public SolrServer createRemoteSolr() {
 return new HttpSolrServer("http://localhost:8983/solr/crawler");
}

Using javabin instead of XML for efficiency
SolrJ uniquely supports the ability to communicate with Solr using a custom binary
format it calls javabin, which is more compressed and efficient to read and write
than XML. However, the javabin format has changed on occasion, and when it
does, it can force you to use the same (or sometimes newer) version on the client.
By default, SolrJ sends requests in XML and it asks for responses back in javabin.
Here's a code snippet to consistently toggle XML versus javabin for both request
and responses:

if (useXml) {// xml, very compatible
 solrServer.setRequestWriter(new RequestWriter());//xml
 solrServer.setParser(new XMLResponseParser());
} else {//javabin, sometimes Solr-version sensitive
 solrServer.setRequestWriter(new BinaryRequestWriter());
 solrServer.setParser(new BinaryResponseParser());
}

We recommend that you make the XML / javabin choice configurable
as we saw earlier, with the default being javabin. During an upgrade
of Solr, your Solr client could be toggled to use XML temporarily.

Searching with SolrJ
Performing a search is very straightforward:

SolrQuery solrQuery = new SolrQuery("Smashing Pumpkins");
solrQuery.setRequestHandler("/select");
QueryResponse response = solrServer.query(solrQuery);
SolrDocumentList docList = response.getResults();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[279]

SolrQuery extends SolrParams to add convenience methods around some common
query parameters. SolrDocumentList is a List<SolrDocument> plus the numFound,
start, and maxScore metadata. For an alternative to working with a SolrDocument,
see the Annotating your JavaBean – an alternative section ahead. A little known alternative
to the query method is queryAndStreamResponse, which takes a callback SolrJ call for
each document it parses from the underlying stream. It can be used to more efficiently
stream large responses from Solr to reduce latency and memory, although it only
applies to the returned documents, not to any other response information.

Here's another example of adding faceting to find out the most popular hosts and
paths indexed by the crawler:

SolrQuery solrQuery = new SolrQuery("*:*");
solrQuery.setRows(0);//just facets, no docs
solrQuery.addFacetField("host","path");//facet on both
solrQuery.setFacetLimit(10);
solrQuery.setFacetMinCount(2);
QueryResponse response = solr.query(solrQuery);
for (FacetField facetField : response.getFacetFields()) {
 System.out.println("Facet: "+facetField.getName());
 for (FacetField.Count count : facetField.getValues()) {
 System.out.println(" " +
 count.getName()+":"+count.getCount());
 }
}

The QueryResponse class has a lot of methods to access the various aspects of a Solr
search response; it's pretty straightforward. One method of interest is getResponse,
which returns a NamedList. If there is some information in Solr's response that
doesn't have a convenience method, you'll have to resort to using that method to
traverse the response tree to get the data you want.

Indexing with SolrJ
To index a document with SolrJ, you need to create a SolrInputDocument, populate
it, and give it to the SolrServer. What follows is an excerpt from the code for the
book that indexes a web-crawled document:

void indexAsSolrDocument(ArchiveRecordHeader meta,
 String htmlStr) throws Exception {
 SolrInputDocument doc = new SolrInputDocument();
 doc.setField("url", meta.getUrl(), 1.0f);
 doc.setField("mimeType", meta.getMimetype(), 1.0f);
 doc.setField("docText", htmlStr);

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[280]

 URL = new URL(meta.getUrl());
 doc.setField("host", url.getHost());
 doc.setField("path", url.getPath());
 solrServer.add(doc); // or could batch in a collection
}

If one of these fields were multivalued, then we would call addField for each value
instead of setField , as you can see in the preceding code.

Depending on your commit strategy, you may want to call commit(). The semantics
of committing documents are described in Chapter 4, Indexing Data.

Unless you are using ConcurrentUpdateSolrServer, you will
want to do some amount of batching. This means passing a Java
Collection of documents to the add method instead of passing just
one at a time. In the Sending data to Solr in bulk section of Chapter 10,
Scaling Solr, there is more information showing how much it improved
performance in a benchmark.

Deleting documents
Deleting documents is simple with SolrJ. In this query, we'll delete everything
(*:* is the query to match all documents):

solrServer.deleteByQuery("*:*");

To delete documents by their ID, call deleteById. As with the add method,
it's overloaded to take commitWithin a number of milliseconds.

Annotating your JavaBean – an alternative
If you already have a class holding the data to index under your control (versus
a third-party library), you may prefer to annotate your class's setters or fields
with SolrJ's @Field annotation instead of working with SolrInputDocument
and SolrDocument. It might be easier to maintain and less code, if a little slower.
Here's an excerpt from the book's sample code with an annotated class RecordItem:

package solrbook;
import org.apache.solr.client.solrj.beans.Field;

public class RecordItem {
 //@Field("url") COMMENTED to show you can put the annotation on
 a setter
 String id;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[281]

 @Field String mimeType;

 @Field("docText") String html;

 @Field String host;

 @Field String path;

 public String getId() { id; }

 @Field("url") void setId(String id) { this.id = id; }

 //… other getter's and setters
}

To search and retrieve a RecordItem instance instead of a SolrDocument, you
simply call this method on QueryResponse:

List<RecordItem> items = response.getBeans(RecordItem.class);

Indexing RecordItem is simple too:

solrServer.addBean(item);

Embedding Solr
One of the most interesting aspects of SolrJ is that, because Solr and SolrJ are both
written in Java, you can instantiate Solr and interact with it directly instead of starting
up Solr as a separate process. This eliminates the HTTP layer and serializing the
request too. The response is serialized; however, the returned documents can avoid it
by using queryAndStreamResponse as mentioned earlier. We'll describe further why
or why not you might want to embed Solr, but let's start with a code example. As you
can see, starting up an embedded Solr is more complex than any other type:

public static SolrServer createEmbeddedSolr(String instanceDir)
 throws Exception {
 String coreName = new File(instanceDir).getName();
 // note: this is more complex than it should be. See SOLR-4502
 SolrResourceLoader resourceLoader =
 new SolrResourceLoader(instanceDir);
 CoreContainer container = new CoreContainer(resourceLoader,
 ConfigSolr.fromString(resourceLoader, "<solr />"));
 container.load();
 Properties coreProps = new Properties();
 //coreProps.setProperty(CoreDescriptor.CORE_DATADIR,

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[282]

 dataDir);//"dataDir" (optional)
 CoreDescriptor descriptor = new CoreDescriptor(
 container, coreName, instanceDir, coreProps);
 SolrCore core = container.create(descriptor);
 container.register(core, false);//not needed in Solr 4.9+
 return new EmbeddedSolrServer(container, coreName);
}

A nonobvious limitation of instances of EmbeddedSolrServer is
that it only enables you to interact with one SolrCore. Curiously,
the constructor takes a core container, yet only the core named by
the second parameter is accessible.

Keep in mind that your application embedding Solr will then take on all of Solr's
dependencies, of which there are many.

When should you use embedded Solr? Tests!
In my opinion, a great use case for embedding Solr is unit testing!. Starting up an
embedding Solr configured to put its data into memory in RAMDirectoryFactory is
efficient and it's much easier to incorporate into tests then awkwardly attempting to
use a real Solr instance. Note that using EmbeddedSolrServer in tests implies that
your application shouldn't hardcode how it instantiates its SolrServer since tests
will want to supply it. If you wish to test while communicating with Solr over HTTP
then take a look at JettySolrRunner, a convenience class in the same package as
EmbeddedSolrServer, with a main method that starts Jetty and Solr. Depending on
how you use this class, this is another way to embed Solr without having to manage
another process. Yet another option to be aware of is mostly relevant when testing
custom extensions to Solr. For that case, you won't use a SolrServer abstraction, your
test will extend SolrTestCaseJ4, which embeds Solr and has a ton of convenience
methods. For more information on this, review a variety of Solr's tests that use that
class and learn by example.

What about using it in other places besides tests? No application needs to embed
Solr, but some apps may find it preferable. Fundamentally, embedded Solr is in-
process (with the application) and doesn't listen on a TCP/IP port. It's easy to see
that standalone Java-based desktop applications may prefer this model. Another use
case seen in Solr's MapReduce contrib module and, in at least a couple of open source
projects in the wild, is to decouple index building from the search server. The process
that produces the document indexes it to disk with an embedded Solr instead of
communicating remotely to one. Communicating to a standalone Solr process would
of course also work but it's operationally more awkward.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[283]

After the index is built, it's copied to where a standalone Solr search process is
running (this can be skipped for shared filesystems). If the index needs to get
merged into an existing index instead of replacing or updating one, then it is
merged with the MERGEINDEXES core admin command. A final commit to the
search process will make the new index data visible in search results.

One particular case that people seek to embed Solr is for an anticipated performance
increase, particularly during indexing. However, there is rarely a convincing
performance win in doing so because the savings are usually negligible compared to
all the indexing work that Solr has to do, such as tokenizing text, inverting documents,
and of course writing to disk. Nonetheless, there are always exceptions (such as when
leveraging Hadoop as a builder), and you might have such a case.

An alternative way to achieve in-process indexing is to
write a custom RequestHandler class (possibly extending
ContentStreamHandlerBase) that fetches and processes
your data to your liking. It could be more convenient than
using EmbeddedSolrServer depending on your use case.

Using JavaScript/AJAX with Solr
During the Web 1.0 epoch, JavaScript was primarily used to provide basic
client-side interactivity such as a roll-over effect for buttons in the browser for
what were essentially static pages generated by the server. However, in today's Web
2.0 environment, AJAX has led to JavaScript being used to build much richer web
applications that blur the line between client-side and server-side functionality. Solr's
support for the JavaScript Object Notation (JSON) format for transferring search
results between the server and the web browser client makes it simple to consume
Solr information by modern Web 2.0 applications. JSON is a human-readable format
for representing JavaScript objects, which is rapidly becoming a de facto standard for
transmitting language-independent data with parsers available to many languages.
The JSON.parse() function will safely parse and return a valid JavaScript object that
you can then manipulate:

var json_text = ["Smashing Pumpkins","Dave Matthews Band","The
 Cure"];
var bands = JSON.parse('(' + json_text + ')');
alert("Band Count: " + bands.length()); // alert "Band Count: 3"

While JSON is very simple to use in concept, it does come with its own set of quirks
related to security and browser compatibility. To learn more about the JSON format,
the various client libraries that are available, and how it is and is not like XML, visit
the homepage at http://www.json.org.

www.it-ebooks.info

http://www.json.org
http://www.it-ebooks.info/

Integrating Solr

[284]

As you may recall from the discussion on query parameters in Chapter 4, Indexing
Data, you change the format of the response from Solr from the default XML to
JSON by specifying the JSON writer type as a parameter in the URL via wt=json.
Here is the result with indent=on:

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "q":"hills rolling",
 "wt":"json",
 "indent":"on"}},
 "response":{"numFound":44,"start":0,"docs":[
 {
 "a_name":"Hills Rolling",
 "a_release_date_latest":"2006-11-30T05:00:00Z",
 "a_type":"2",
 "id":"Artist:510031",
 "type":"Artist"}
…
]
}}

Solr can be configured to change the way it structures certain parts of the response,
most notably for field value faceting. This affects JSON, Ruby, and Python response
formats: json.nl. Yes, it's not just for JSON, and it technically affects the output
of Solr's so-called NamedList internal data, but only in rare circumstances. The
default choice, flat, is inconvenient to work with despite its succinctness, so other
options are available. Note that the map choice does not retain the ordering once
it is materialized in memory. Here is a table showing the effects of each choice on
faceting on the MusicBrainz artist type:

Choice Effect
flat "a_type":["person",126,"group",71,"0",0]

map "a_type":{"person":126,"group":71,"0":0}

arrarr "a_type":[["person",126],["group",71],["0",0]]

arrmap "a_type":[{"person":126},{"group":71},{"0":0}]

You will find that you run into difficulties while parsing JSON in various client
libraries, as some are stricter about the format than others. Solr does output very clean
JSON, such as quoting all keys and using double quotes and offers some formatting
options for customizing the handling of lists of data. If you run into difficulties, a very
useful website for validating your JSON formatting is http://www.jsonlint.com/.
This can be invaluable for finding issues such as an errant trailing comma.

www.it-ebooks.info

http://www.jsonlint.com/
http://www.it-ebooks.info/

Chapter 9

[285]

Wait, what about security?
If requests to Solr come from a web browser, then you must consider security. You will
learn in Chapter 11, Deployment, that one of the best ways to secure Solr is to limit what
IP addresses can access your Solr install through firewall rules. Obviously, if users on
the Internet are accessing Solr through JavaScript, then you can't do this. However, this
chapter describes how to expose a read-only request handler that can be safely exposed
to the Internet without exposing the complete admin interface. Also, make sure that
any filters that must be applied to your data, such as a filter query enforcing only active
products, are shown as appends parameters in your request handler. Additionally,
you might proxy Solr requests to ensure the parameters meet a whitelist, to include
their values. This can be where you apply various business rules, such as preventing
a malicious user from passing parameters such as rows=1000000!

Building a Solr-powered artists autocomplete
widget with jQuery and JSONP
Now, it's well established in the search industry that some form of query
autocompletion remarkably improves the effectiveness of a search application.
There are several fundamentally different types of autocompletion—be sure to
read about them in Chapter 8, Search Components. Here is a screenshot of Google
showing completions based on search queries it has seen before:

Building an autocomplete textbox powered by Solr is very simple by leveraging
the JSON output format and the very popular jQuery JavaScript library's
Autocomplete widget.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[286]

jQuery is a fast and concise JavaScript library that simplifies
HTML document traversing, event handling, animating, and
AJAX interactions for rapid web development. It has gone through
explosive usage growth in 2008 and is one of the most popular
AJAX frameworks. jQueryUI is a subproject that provides widgets
such as Autocomplete. You can learn more about jQuery at
http://www.jquery.com and http://www.jqueryui.com.

A working example using search-result-based completions (versus query log
completion or term completion) is available at /examples/9/jquery_autocomplete/
index.html that demonstrates suggesting an artist as you type in his or her name.
You can read the doc and see a live demo of various autocompletions online at
http://jqueryui.com/demos/autocomplete/.

There are three major sections to the HTML page:

• The JavaScript script import statements at the top
• The jQuery JavaScript that actually handles the events around the text

being input
• A very basic HTML page for the form at the bottom

We start with a very simple HTML form that has a single text input box with the
id="artist" attributes:

<div class="ui-widget">
 <label for="artist">Artist: </label>
 <input id="artist" />
</div>

We then add a function that runs, after the page has loaded, to turn our basic input
field into a text field with suggestions:

$("#artist").autocomplete({
 source: function(request, response) {
 $.ajax({
 url: "http://localhost:8983/solr/mbartists/
 artistAutoComplete?wt=json&json.wrf=?",
 dataType: "jsonp",
 data: {
 q: request.term,
 rows: 10,
 fq: "type:Artist"
 },
 success: function(data) {

www.it-ebooks.info

http://www.jquery.com
http://www.jqueryui.com
http://jqueryui.com/demos/autocomplete/
http://www.it-ebooks.info/

Chapter 9

[287]

 response($.map(data.response.docs,function(doc) {
 return {
 label: doc.a_name,
 value: doc.a_name,
 }
 }));
 }
 });
 },
 minLength: 2,
 select: function(event, ui) {
 log(ui.item ?
 "Selected: " + ui.item.label :
 "Nothing selected, input was " + this.value);
 },
 open: function() {
 $(this).removeClass("ui-corner-all").addClass
 ("ui-corner-top");
 },
 close: function() {
 $(this).removeClass("ui-corner-top").addClass
 ("ui-corner-all");
 }
});

The $("#artist").autocomplete() function takes in the URL of our data source,
in our case Solr, and an array of options and custom functions and ties it to the input
form element. The source: function(request, response) function supplies
the list of suggestions to display via a $.ajax callback. The dataType: "jsonp"
option informs jQuery that we want to retrieve our data using JSONP. JSONP stands
for JSON with Padding, an admittedly not very intuitive name! This means when
you call the server for JSON data, the server wraps its typical JSON response in a call
to a function provided by jQuery. This allows you to work around the web browser
cross-domain scripting issues of running Solr on a different URL and/or port from
the originating web page. jQuery takes care of all of the low level plumbing to
create the callback function, which is supplied to Solr through the json.wrf=? URL
parameter. If you look at the Solr logs, you will see the name of a function passed in:
json.wrf=jQuery15104412757297977805_1309313922023.

Notice the data structure:

data: {
 q: request.term,
 rows: 10,
 fq: "type:Artist"
},

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[288]

These items are tacked onto the URL as query parameters to Solr.

Following the best practices, we have created a Solr request handler called
/artistAutoComplete, which is configured with the DisMax query parser to
search over all of the fields in which an artist's name might show up: a_name,
a_alias, and a_member_name, so arguably this is more of an instant search than
word autocompletion. It's nice to use different request handlers for different
search types rather than using /select for absolutely everything.

The response() function is called to convert the JSON result data from Solr into the
format Autocomplete requires. It consists of a map() function that takes the returned
JSON data structure for the documents returned and calls an anonymous function
for each document. The anonymous function parses out the value to use as the label
and value, in our case just the artist name.

Once the user has selected a suggestion, the select() function is called, and the
name of the selected artist is appended to the <div id="log"> div.

One thing that we haven't covered is the pretty common use case for an
Autocomplete widget that populates a text field with an identifier for the suggestion
used to take the user to a detail page on it—typical of instant-search type completion.
For example, in order to store a list of artists, I would want the Autocomplete widget
to simplify the process of looking up the artists, but would need to store the list of
selected artists in a database. You can still leverage Solr's superior search ability, but
tie the resulting list of artists to the original database record through a primary key
ID, which is indexed as part of the Solr document.

If you try to lookup the primary key of an artist using the name of the artist, then
you might run into problems, such as having multiple artists with the same name or
unusual characters that don't translate cleanly from Solr to the web interface to your
database record.

Instead, a hidden field stores the primary key of the artist and is used in your server-
side processing in place of the text typed into the search box:

<input type="hidden" id="artist_id"/>
<input id="artist" />

We use the change() function to ensure freeform text that doesn't result in a
match is ignored by clearing out the artist_id form field and returning false
from the function:

change: function(event, ui) {
 if (!ui.item){
 log("term " + $(this).val() + " was not found, clearing");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[289]

 $(this).val("");
 return false;
 } else {
 log("hidden field artist_id:" + ui.item.id);
 $("#artist_id").val(ui.item.id);
 return true;
 }
}

Look at /examples/9/jquery_autocomplete/index_with_id.html for a complete
example. Change the field artist_id from input type="hidden" to type="text"
so that you can see the ID changing more easily as you select different artists.
Make sure you click away from the suggestion box to see the change occur!

Where should I get my results to display as suggestions?
There are many approaches for supplying the list of suggestions
for autocomplete, and even the nomenclature of autosuggest,
autocomplete, or suggest-as-you-type have loosely defined
meanings. This important subject is covered in the Query
complete/suggest section in Chapter 8, Search Components.

AJAX Solr
AJAX Solr is an excellent Solr search UI framework for building AJAX-based search
interfaces. It is an off-shoot of an older project called SolrJS, which is now defunct.
AJAX Solr adds some interesting visualizations of result data, including widgets for
displaying the tag clouds of facets, plotting country code-based data on a map of the
world using the Google Chart API, and filtering results by date fields. When it comes to
integrating Solr into your web application, if you are comfortable with JavaScript, then
this can be a very effective way to add a really nice AJAX view of your search results
without changing the underlying web application. If you're working with an older web
framework that is brittle and hard to change, such as IBM's Lotus Notes or ColdFusion
frameworks, then this keeps the integration from touching the actual business objects,
and keeps the modifications in the client layer via HTML and JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[290]

The AJAX Solr project's homepage is at https://github.com/evolvingweb/ajax-
solr and provides a great demo of searching Reuter's business news wire results:

A slightly tweaked copy of the demo is at /examples/9/ajaxsolr/reuters.html.
Note that if you try to access the demo and see no content, then most likely the
Internet-accessible demo Solr instance is offline.

AJAX Solr provides rich UI functionality through widgets—small blocks of
JavaScript that render a specific UI component. It comes with widgets, such as
an autocompletion of field values, a tag cloud, a facet view, a country code, and
calendar-based date ranges, as well as displaying the results with paging. They
all inherit from an AbstractWidget and follow pretty much the same pattern.
They are configured in reuters/js/reuters.js by passing in a set of options.
Here is an example of configuring the autocomplete widget to populate the search
box with autocomplete suggestions drawn from the topics, organizations, and
exchanges fields:

Manager.addWidget(new AjaxSolr.AutocompleteWidget({
id: 'text',
target: '#search',
field: 'allText',
fields: ['topics', 'organisations', 'exchanges']
 }));

www.it-ebooks.info

https://github.com/evolvingweb/ajax-solr
https://github.com/evolvingweb/ajax-solr
http://www.it-ebooks.info/

Chapter 9

[291]

A central AjaxSolr.Manager object coordinates the event handling between the
various widgets, makes the queries to Solr, and messages the widgets. The preceding
code shows the call to add the widget to the AjaxSolr.Manager object. Working with
AJAX Solr and creating new widgets for your specific display purposes comes easily
to anyone who comes from an object-oriented background.

The various widgets that come with AJAX Solr serve more as a
foundation and source of ideas rather than as a finished set of
widgets. You'll find yourself customizing them extensively to
meet your specific display needs.

We've developed a MusicBrainz-based example at ./examples/9/ajaxsolr/
mbtracks.html for browsing track data. It is based on the Reuters example with
a custom widget for term autocompletion using the facet.prefix technique.
We did not configure Solr to load these facets via Solr's firstSearcher event in
solrconfig.xml because this is the only demo that uses it, and it takes up to 30
seconds to load given the large index. Therefore, be patient while waiting for the
first completion results.

Using XSLT to transform XML search
results
A relatively unknown, but powerful way to integrate with Solr is via its support for
XSLT (eXtensible Stylesheet Language Transformations). XSLT is a specification
for transforming XML documents into other XML formats, which includes HTML.
There are various implementations of this specification and Java includes one.
Solr provides a query response writer that executes a provided XSLT stylesheet
to transform Solr's XML search results into some other format. Solr comes with a
couple of examples in ./conf/xslt/. Here is an example of transforming search
results into an RSS feed:

http://localhost:8983/solr/mbartists/select/
?q=marley&wt=xslt&tr=example_rss.xsl

The wt parameter triggers the use of XSLT, and the tr parameter supplies the name
of the stylesheet to be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[292]

There are some caveats to keep in mind for XSLT support. Internally, XSLT files
are compiled before they are used, and while Solr will cache the last compiled
XSLT for a period of time, configured in the queryResponseWriter via the
xsltCacheLifetimeSeconds parameter, it only caches a single one. So, if you use
more than one XSLT stylesheet, then you are likely to find degraded performance.
Additionally, because Solr has to have the entire XML document in memory first to
render the XSLT stylesheet, you may run into memory issues if you are returning
large numbers of results.

For a practical example of Solr's XSLT support, see SOLR-2143, which
adds support for the OpenSearch specification to Solr. OpenSearch
is a collection of simple formats and standards for search engine
interoperability. It's most useful in federated search.

Need a debugger for Solr queries?
Want to understand how Solr determined the score for the documents
you returned? You can use example.xsl to quickly transform your
results to HTML and expose the query debugging information in
an easy-to-read format. Just make sure you specify the score field to
be returned so that you get the toggle for the scoring info: http://
localhost:8983/solr/mbartists/select/?q=smashing&wt=
xslt&tr=example.xsl&fl=*,score&debugQuery=true.

Accessing Solr from PHP applications
There are a number of ways to access Solr from PHP, and none of them seem to have
taken hold of the market as the single best approach. So keep an eye on the wiki page
at http://wiki.apache.org/solr/SolPHP for new developments.

Adding the URL parameter, wt=php, produces simple PHP output in a typical array
data structure:

array(
 'responseHeader'=>array(
 'status'=>0,
 'QTime'=>0,
 'params'=>array(
 'wt'=>'php',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso')),

www.it-ebooks.info

http://wiki.apache.org/solr/SolPHP
http://www.it-ebooks.info/

Chapter 9

[293]

 'response'=>array('numFound'=>523,'start'=>0,'docs'=>array(
array(
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'))
))

The same response using the Serialized PHP output specified by wt=phps URL
parameter is a much less human-readable format that is more compact to transfer
over the wire:

a:2:{s:14:"responseHeader";a:3:{s:6:"status";i:0;s:5:"QTime";i:1;s
:6:"params";a:5:{s:2:"wt";s:4:"phps";s:6:"indent";s:2:"on";s:4:"ro
ws";s:1:"1";s:5:"start";s:1:"0";s:1:"q";s:11:"Pete
Moutso";}}s:8:"response";a:3:{s:8:"numFound";i:523;s:5:"start";i:0
;s:4:"docs";a:1:{i:0;a:4:{s:6:"a_name";s:11:"Pete
Moutso";s:6:"a_type";s:1:"1";s:2:"id";s:13:"Artist:371203";s:4:"ty
pe";s:6:"Artist";}}}}

Think twice before using the PHP writer types
Un-serializing potentially untrusted data can increase security
vulnerability. Additionally, the future of these writer types is in some
doubt as PHP client abstraction projects such as solr-php-client and
Solarium both use JSON in preference to the PHP writer types.

solr-php-client
A richer option for PHP integration is the solr-php-client. It is available at
http://code.google.com/p/solr-php-client/. Interestingly enough, this
project leverages the JSON writer type to communicate with Solr instead of the
PHP writer type, showing the prevalence of JSON for facilitating interapplication
communication in a language-agnostic manner. The developers chose JSON over
XML because they found that JSON parsed much quicker than XML in most PHP
environments. Moreover, using the native PHP format requires using the eval()
function, which has a performance penalty and opens the door for code injection
attacks.

The solr-php-client can both create documents in Solr as well as perform queries
for data. In /examples/9/solr-php-client/demo.php, there is a demo on how to
create a new artist document in Solr for the singer Susan Boyle, and then performing
some queries. Installing the demo in your specific local environment is left as an
exercise for the reader. On a Macintosh, you should place the solr-php-client
directory in /Library/WebServer/Documents/.

www.it-ebooks.info

http://code.google.com/p/solr-php-client/
http://www.it-ebooks.info/

Integrating Solr

[294]

An array data structure of key value pairs that match your schema can be easily
created and then used to create an array of Apache_Solr_Document objects to be
sent to Solr. Notice that we are using the artist ID value -1. Solr doesn't care what
the ID field contains, just that it needs to be present. Using -1 ensures that we can
find Susan Boyle by ID later!

 $artists = array(
 'susan_boyle' => array(
 'id' => 'Artist:-1',
 'type' => 'Artist',
 'a_name' => 'Susan Boyle',
 'a_type' => 'person',
 'a_member_name' => array('Susan Boyle')
)
);

The value for a_member_name is an array, because a_member_name is a
multivalued field.

Sending the documents to Solr and triggering the commit and optimize operations
is as simple as follows:

 $solr->addDocuments($documents);
 $solr->commit();
 $solr->optimize();

If you are not running Solr on the default port, then you will need to tweak the
Apache_Solr_Service configuration:

$solr = new Apache_Solr_Service('localhost', '8983',
 '/solr/mbartists');

Queries can be issued using one line of code; the variables $query, $offset,
and $limit contain what you would expect them to:

$response = $solr->search($query, $offset, $limit);

Displaying the results is very straightforward as well. Here we are looking for
Susan Boyle based on her ID of -1, highlighting the result using a blue font:

foreach ($response->response->docs as $doc) {

 $output = "$doc->a_name ($doc->id)
";

 // highlight Susan Boyle if we find her.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[295]

 if ($doc->id == 'Artist:-1') {
 $output = "" . $output . "";
 }

 echo $output;
}

Successfully running the demo creates Susan Boyle and issues a number of queries.
Notice that if you know the ID of the artist, it's almost like using Solr as a relational
database to select a single specific row of data. Instead of select * from artist
where id=-1, we did q=id:"Artist:-1", but the result is the same!

Solarium may be what you want!
Solarium (http://www.solarium-project.org/) attempts to
improve on other PHP client libraries by not just abstracting away
the HTTP communication layer but also more fully modeling the
concepts expressed by Solr. It has objects that allow you to easily
build complex filter queries and faceting logic.

Drupal options
Drupal is a very successful open source Content Management System (CMS) that
has been used for building everything from the WhiteHouse.gov site to political
campaigns and university websites. Drupal's built-in search has always been
considered adequate, but not great, so the option of using Solr to power search
is very popular.

The Apache Solr Search integration module
The Apache Solr Search integration module, hosted at http://drupal.org/project/
apachesolr, builds on top of the core search services provided by Drupal, but
provides extra features such as faceted search and better performance by offloading
servicing search requests to another server. The module has had significant adoption
and is the basis of some other Drupal search-related modules.

In order to see the Apache Solr module in action, just visit Drupal.org and perform
a search to see the faceted results.

www.it-ebooks.info

http://www.solarium-project.org/
WhiteHouse.gov
http://drupal.org/project/apachesolr
http://drupal.org/project/apachesolr
www.drupal.org
http://www.it-ebooks.info/

Integrating Solr

[296]

Hosted Solr by Acquia
Acquia is a company providing commercially supported Drupal distributions, and
also offers hosted Solr search for Drupal sites that want better search than the built-in
MySQL-based search. Acquia's adoption of Solr as a better solution for Drupal than
Drupal's own search shows the rapid maturing of the Solr community and platform.

Acquia maintains in the cloud, a large infrastructure of Solr servers saving individual
Drupal administrators from the overhead of maintaining their own Solr server. A
module provided by Acquia is installed into your Drupal and monitors for content
changes. Every five or ten minutes, the module sends content that either hasn't been
indexed, or needs to be re-indexed, up to the indexing servers in the Acquia network.
When a user performs a search on the site, the query is sent up to the Acquia
network, where the search is performed, and then Drupal is just responsible for
displaying the results. Acquia's hosted search option supports all of the usual Solr
goodies, including faceting. Drupal has always been very database intensive, with
only moderately complex pages performing hundreds of individual SQL queries
to render! Moving the load of performing searches off one's Drupal server into the
cloud, drastically reduces the load of indexing and performing searches on Drupal.

Acquia has developed some slick integration beyond the standard Solr features based
on their tight integration into the Drupal framework, which include the following:

• The Content Construction Kit (CCK) allows you to define custom fields for
your nodes through a web browser. For example, you can add a particular
field onto a blog node such as oranges/apples/peaches. Solr understands
these CCK data model mappings and actually provides a facet of oranges/
apples/peaches for it.

• Turn on a single module and instantly receive content recommendations
giving you more-like-this functionality based on results provided by Solr.
Any Drupal content can have recommendation links displayed with it.

• Multisite search is a strength of Drupal and provides the support of running
multiple sites on a single codebase, such as drupal.org, groups.drupal.
org, and api.drupal.org. Currently, part of the Apache Solr module is the
ability to track where a document came from when indexed, and as a result,
add the various sites as new filters into the search interface.

Acquia's hosted search product is a great example of Platform as a Service
(PaaS), and hosted Solr search is a very common integration approach for many
organizations that don't wish to manage their own Java infrastructure or need to
customize the behavior of Solr drastically. For a list of all the companies offering
hosted Solr search, visit http://wiki.apache.org/solr/SolrHostingProviders.

www.it-ebooks.info

www.drupal.org
groups.drupal.org
groups.drupal.org
api.drupal.org
http://wiki.apache.org/solr/SolrHostingProviders
http://www.it-ebooks.info/

Chapter 9

[297]

Ruby on Rails integrations
There has been a lot of churn in the Ruby on Rails world for adding Solr support, with
a number of competing libraries attempting to support Solr in the most Rails-native
way. Rails brought to the forefront the idea of Convention over Configuration, the
principle that sane defaults and simple rules should suffice in most situations versus
complex configuration expressed in long XML files. The various libraries for integrating
Solr in Ruby on Rails applications establish conventions in how they interact with Solr.
However, there are often a lot of conventions to learn, such as suffixing String object
field names with _s to match up with the dynamic field definition for String in Solr's
schema.xml.

Solr's Ruby response writer
The Ruby hash structure looks very similar to the JSON data structure with some
tweaks to fit Ruby, such as translating nulls to nils, using single quotes for escaping
content, and the Ruby => operator to separate key/value pairs in maps. Adding a
wt=ruby parameter to a standard search request, returns results that can be eval()
into a Ruby hash structure like this:

{
 'responseHeader'=>{
 'status'=>0,
 'QTime'=>1,
 'params'=>{
 'wt'=>'ruby',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso'}},
 'response'=>{'numFound'=>523,'start'=>0,'docs'=>[
 {
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'}]
}}

Beware—running eval()has security implications!

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[298]

The sunspot_rails gem
The sunspot_rails gem hooks into the lifecycle of the ActiveRecord model objects
and transparently indexes them in Solr as they are created, updated, and deleted.
This allows you to do queries that are backed by Solr searches, but still work with
your normal ActiveRecord objects. Let's go ahead and build a small Rails application
that we'll call myFaves, which allows you to store your favorite MusicBrainz artists
in a relational model and also to search for them using Solr.

Sunspot comes bundled with a full install of Solr as part of the gem, which you can
easily start by running rake sunspot:solr:start, running Solr on port 8982. This
is great for quickly doing development since you don't need to download and set up
your own Solr. Typically, you are starting with a relational database already stuffed
with content that you want to make searchable. However, in our case, we already
have a fully populated index of artist information, so we are actually going to take
the basic artist information out of the mbartists index of Solr and populate our local
myfaves database used by the Rails application. We'll then fire up the version of
Solr shipped with Sunspot, and see how sunspot_rails manages the lifecycle of
ActiveRecord objects to keep Solr's indexed content in sync with the content stored
in the relational database. Don't worry, we'll take it step by step! The completed
application is at /examples/9/myfaves for your reference.

Setting up the myFaves project
This example assumes you have Rails 3.x already installed. We'll start with the
standard plumbing to get a Rails application set up with our basic data model:

>>rails new myfaves
>>cd myfaves
>>./script/generate scaffold artist name:string group_type:string
 release_date:datetime image_url:string
>>rake db:migrate

This generates a basic application backed by a SQLite database. Now, we need
to specify that our application depends on Sunspot. Edit Gemfile and add the
following code:

gem 'sunspot_rails', '~> 1.2.1'

Next, update your dependencies and generate the config/sunspot.yml
configuration file:

>>bundle install
>>rails generate sunspot_rails:install

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[299]

We'll also be working with roughly 399,000 artists, so obviously we'll need some
page pagination to manage that list, otherwise pulling up the artists' /index listing
page will timeout. We'll use the popular will_paginate gem to manage pagination.
Add the will_paginate gem declaration to your Gemfile and re-run bundle
install:

gem "will_paginate", "~> 3.0.pre4"

Edit the ./app/controllers/artists_controller.rb file, and replace the call to
@artists = Artist.all in the index method with:

@artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'

Also, add a call to the view helper at ./app/views/artists/index.html.erb to
generate the page links:

<%= will_paginate @artists %>

Start the application using ./script/rails start, and visit the page
http://localhost:3000/artists/. You should see an empty listing page
for all of the artists. Now that we know that the basics are working, let's go
ahead and actually leverage Solr.

Populating the myFaves relational database from Solr
Step one will be to import data into our relational database from the mbartists
Solr index. Add the following code to ./app/models/artist.rb:

class Artist < ActiveRecord::Base
 searchable do
 text :name, :default_boost => 2
 string :group_type
 time :release_date
 end
end

The searchable block maps the attributes of the Artist ActiveRecord object to the
artist fields in Solr's schema.xml. Since Sunspot is designed to store any kind of data
in Solr that is stored in your database, it needs a way of distinguishing among various
types of data model objects. For example, if we wanted to store information about
our User model object in Solr, in addition to the Artist object, then we would need to
provide a field in the schema to distinguish the Solr document for the artist with the
primary key of 5 from the Solr document for the user, which also has the primary key
of 5. Fortunately, the mbartists schema has a field named type that stores the value
Artist, which maps directly to our ActiveRecord class name of Artist.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[300]

There is a simple script called populate.rb at the root of /examples/9/myfaves
that you can run, which will copy the artist data from the existing Solr mbartists
index into the myFaves database:

>>./populate.rb

The populate.rb is a great example of the types of scripts you may need to develop
to transfer data in and out of Solr. Most scripts typically work with some sort of
batch size of records that are pulled from one system and then inserted into Solr. The
larger the batch size, the more efficient the pulling and processing of data typically
is at the cost of more memory being consumed, and the slower the commit and
optimize operations are. When you run the populate.rb script, play with the batch
size parameter to get a sense of resource consumption in your environment. Try a
batch size of 10 versus 10000 to see the changes. The parameters for populate.rb
are available at the top of the script:

MBARTISTS_SOLR_URL = 'http://localhost:8983/solr/mbartists'
BATCH_SIZE = 1500
MAX_RECORDS = 100000

There are roughly 399,000 artists in the mbartists index, so if you are impatient,
then you can set MAX_RECORDS to a more reasonable number to complete running
the script faster.

The connection to Solr is handled by the RSolr library. A request to Solr is simply a
hash of parameters that is passed as part of the GET request. We use the *:* query
to find all of the artists in the index and then iterate through the results using the
start parameter:

rsolr = RSolr.connect :url => MBARTISTS_SOLR_URL
response = rsolr.select({
:q => '*:*',
:rows=> BATCH_SIZE,
:start => offset,
:fl => ['*','score']
})

In order to create our new Artist model objects, we just iterate through the results of
response['response']['docs'], parsing each document in order to preserve our
unique identifiers between Solr and the database and creating new ActiveRecord
objects. In our MusicBrainz Solr schema, the ID field functions as the primary key
and looks like Artist:11650 for The Smashing Pumpkins. In the database, in order
to sync the two, we need to insert the Artist with the ID of 11650. We wrap the
insert statement a.save! in a begin/rescue/end structure so that if we've already
inserted an artist with a primary key, then the script continues. This allows us to run
the populate script multiple times without erroring out:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[301]

response['response']['docs'].each do |doc|
 id = doc["id"]
 id = id[7..(id.length)]
 a = Artist.new(
 :id => id,
 :name => doc["a_name"],
 :group_type => doc["a_type"],
 :release_date => doc["a_release_date_latest"]

 begin
 a.save!
 rescue ActiveRecord::StatementInvalid => err
 raise err unless err.to_s.include?("PRIMARY KEY must be
 unique") # sink duplicates
 end
end

We've successfully migrated the data we need for our myFaves application out of
Solr and we're ready to use the version of Solr that's bundled with Sunspot.

Solr configuration information is listed in ./myfaves/config/sunspot.yml.
Sunspot establishes the convention that development is on port 8982, unit tests
that use Solr connect on port 8981, and then production connects on the traditional
8983 port:

development:
 solr:
 hostname: localhost
 port: 8982

Start the included Solr by running rake sunspot:solr:start. To shut down Solr,
run the corresponding rake command, sunspot:solr:stop. On the initial startup,
rake will create a new top level ./solr directory and populate the conf directory
with default configuration files for Solr (including schema.xml, stopwords.txt,
and so on) pulled from the Sunspot gem.

Building Solr indexes from a relational database
Now, we are ready to trigger a full index of the data from the relational database
into Solr. sunspot provides a very convenient rake task for this with a variety of
parameters that you can learn about by running rake -D sunspot:reindex:

>>rake sunspot:solr:start
>>rake sunspot:reindex

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[302]

Browse to http://localhost:8982/solr/admin/schema.jsp to see the list of
dynamic fields generated by following the Convention over Configuration pattern
of Rails applied to Solr. Some of the conventions that are established by Sunspot and
expressed by Solr in ./solr/conf/schema.xml are as follows:

• The primary key field of the model object in Solr is always called id.
• The type field that stores the disambiguating class name of the model object

is called type.
• Heavy use of the dynamic field support in Solr. The data type of

ActiveRecord model objects is based on the database column type.
Therefore, when sunspot_rails indexes a model object, it sends a
document to Solr with the various suffixes to leverage the dynamic
column creation. In ./solr/conf/schema.xml, the only fields defined
outside of the management fields are dynamic fields:
<dynamicField name="*_text" type="text" indexed="true"
stored="false"/>

• The default search field is called text. However, you need to define what
fields are copied into the text field. Sunspot's DSL is oriented towards
naming each model field you'd like to search from Ruby.

The document that gets sent to Solr for our Artist records creates the dynamic
fields such as name_text, group_type_s and release_date_d, for a text, string,
and date field, respectively. You can see the list of dynamic fields generated through
the schema browser at http://localhost:8982/solr/admin/schema.jsp.

Now we are ready to perform some searches. Sunspot adds some new methods to
our ActiveRecord model objects such as search() that lets us load ActiveRecord
model objects by sending a query to Solr. Here we find the group Smash Mouth by
searching for matches to the word smashing:

% ./script/rails console
Loading development environment (Rails 3.0.9)
>>search= Artist.search{keywords "smashing"}
=><Sunspot::Search:{:fq=>["type:Artist"], :q=>"smashing",
:fl=>"* score", :qf=>"name_text^2", :defType=>"dismax", :start=>0,
:rows=>30}>
>>search.results.first
=>[#<Artist id: 93855, name: "Smashing Atoms", group_type: nil,
release_date: nil, image_url: nil, created_at: "2011-07-21 05:15:21",
updated_at: "2011-07-21 05:15:21">]

The raw results from Solr are stored in the search.hits variable. The search.
results variable returns the ActiveRecord objects from the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[303]

Let's also verify that Sunspot is managing the full lifecycle of our objects. Assuming
Susan Boyle isn't yet entered as an artist; let's go ahead and create her:

>>Artist.search{keywords 'Susan Boyle', :fields => [:name]}.hits
=>[]
>>susan = Artist.create(:name => "Susan Boyle", :group_type =>'1',
 :release_date => Date.new)
=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2011-07-22
21:05:53"", updated_at: "2011-07-22 21:05:53"">

Check the log output from your Solr running on port 8982, and you should also have
seen an update query triggered by the insert of the new Susan Boyle record:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=24

Now, delete Susan's record from your database:

>>susan.destroy
=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2009-04-21
 13:11:09", updated_at: "2009-04-21 13:11:09">

As a result, there should be another corresponding update issued to Solr to remove
the document:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=57

You can verify this by doing a search for Susan Boyle directly, which should return
no rows at http://localhost:8982/solr/select/?q=Susan+Boyle.

Completing the myFaves website
Now, let's go ahead and put in the rest of the logic for using our Solr-ized model
objects to simplify finding our favorite artists. We'll store the list of favorite artists
in the browser's session space for convenience. If you are following along with your
own generated version of the myFaves application, then the remaining files you'll
want to copy over from /examples/9/myfaves are as follows:

• ./app/controller/myfaves_controller.rb: This contains the controller
logic for picking your favorite artists.

• ./app/views/myfaves/: This contains the display files for picking and
showing the artists.

• ./app/views/layouts/myfaves.html.erb: This is the layout of the
myFaves views. We use the Autocomplete widget again so that this layout
embeds the appropriate JavaScript and CSS files.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[304]

• ./public/stylesheets/jquery.autocomplete.css and ./public/
stylesheets/indicator.gif: They are stored locally in order to fix
pathing issues with the indicator.gif showing up when the
autocompletion search is running.

The only other edits you need to make are:

• Edit ./config/routes.rb by adding resources :myfaves and root :to
=> "myfaves#index".

• Delete ./public/index.html to use the new root route you just defined.
• Copy the index method out of ./app/controllers/artists_controllers.

rb because we want the index method to respond with both HTML and
JSON response types.

• Run rake db:sessions:create to generate a sessions table, then rake
db:migrate to update the database with the new sessions table. Edit
./config/initializers/session_store.rb and change to using
:active_record_store for preserving the session state.

You should now be able to run ./script/rails start and browse to
http://localhost:3000/. You will be prompted to enter the search by entering
the artist's name. If you don't receive any results, then make sure you have started
Solr using rake sunspot:solr:start. Also, if you have only loaded a subset of the
full 399,000 artists, then your choices may be limited. You can load all of the artists
through the populate.rb script and then run rake sunspot:reindex, although it
will take a long time to complete. This is something good to do just before you head
out for lunch or home for the evening!

If you look at ./app/views/myfaves/index.rhtml, then you can see that the jQuery
autocomplete call is a bit different:

$("#artist_name").autocomplete('/artists.json?callback=?', {

The URL we are hitting is /artists.json, with the .json suffix telling Rails that we
want the JSON data back instead of normal HTML. If we ended the URL with .xml,
then we would have received XML-formatted data about the artists. We provide a
slightly different parameter to Rails to specify the JSONP callback to use. Unlike the
previous example, where we used json.wrf, which is Solr's parameter name for
the callback method to call, we use the more standard parameter name callback.
We changed the ArtistController index method to handle the autocomplete
widget's data needs through JSONP. If there is a q parameter, then we know that
the request was from the autocomplete widget, and we ask Solr for @artists to
respond with. Later on, we render @artists into JSON objects, returning only the
name and id attributes to keep the payload small.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[305]

We also specify that the JSONP callback method is what was passed when using the
callback parameter:

def index
if params[:q]
 @artists = Artist.search{ keywords params[:q]}.results
else
 @artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'
end

respond_to do |format|
format.html # index.html.erb
format.xml { render :xml => @artists }
format.json { render :json => @artists.to_json(:only => [:name,
 :id]), :callback => params[:callback] }
end
end

At the end of all of this, you should have a nice autocomplete interface for quickly
picking artists.

When you are selecting Sunspot as your integration method, you are implicitly
agreeing to the various conventions established for indexing data into Solr. If you
are used to working with Solr directly, you may find understanding the Sunspot
DSL for querying a bit of an obstacle. However, if your background is in Rails,
or you are building very complex queries, then learning the DSL will pay off in
productivity and the ability to maintain complex expressive queries.

Which Rails/Ruby library should I use?
The two most common high-level libraries for interacting with Solr are acts_as_
solr and Sunspot. However, in the last couple of years, Sunspot has become the
more popular choice, and comes in a version designed to work explicitly with
Rails called sunspot_rails that allows Rails' ActiveRecord database objects
to be transparently backed by a Solr index for full text search.

For lower-level client interface to Solr from Ruby environments, there are two libraries
duking it out to be the client of choice: solr-ruby, a client library developed by the
Apache Solr project and rsolr, which is a reimplementation of a Ruby-centric client
library. Both of these solutions are solid and act as great low-level API libraries.
However, rsolr has gained more attention, has better documentation, and some nice
features such as a direct embedded Solr connection through JRuby. rsolr also has
support for using curb (Ruby bindings to curl, a very fast HTTP library) instead of
the standard Net::HTTP library for the HTTP transport layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[306]

In order to perform a select using solr-ruby, you need to issue the following code:

response = solr.query('washington', {
:start=>0,
:rows=>10
 })

In order to perform a select using rsolr, you need to issue the following code:

response = solr.select({
:q=>'washington',
:start=>0,
:rows=>10
 })

So you can see that doing a basic search is pretty much the same in either library.
Differences crop up more as you dig into the details on parsing and indexing
records. You can learn more about solr-ruby on the Solr wiki at http://wiki.
apache.org/solr/solr-ruby and learn more about rsolr at http://github.com/
mwmitchell/rsolr/.

Think whether you really need another layer of abstraction
between you and Solr. Making a call to Solr using wt=ruby
and evaluating the results may be the simplest solution.

Nutch for crawling web pages
A very common source of data to search is content in web pages, either from the
Internet or inside the firewall. The long-time popular solution for crawling and
indexing web pages, especially for millions of them, is Nutch, a former Lucene
subproject. If you need to scale to millions of pages up, then consider Nutch
or Heritrix. For smaller scales, there are many options (that are also simpler),
including ManifoldCF, which is discussed later.

What about Heritrix?
In the previous editions of the book, we highlighted Heritrix—a
crawler sponsored by the Internet Archive that was arguably a more
scalable crawler than Nutch. The output files from the crawler are
used in the SolrJ example, and there is an example in /examples/9/
heritrix-2.0.2/. However, Nutch has shown more development
activity than Heritrix in the past couple of years, and thus, we are
focusing only on it in this edition.

www.it-ebooks.info

http://wiki.apache.org/solr/solr-ruby
http://wiki.apache.org/solr/solr-ruby
http://github.com/mwmitchell/rsolr/
http://github.com/mwmitchell/rsolr/
http://www.it-ebooks.info/

Chapter 9

[307]

Nutch is an Internet scale web crawler similar to Google with components such as
the web crawler itself, a link graphing database, and parsers for HTML and other
common formats found on the Internet. Nutch is designed to scale horizontally
over multiple machines during crawling using the big data platform, Hadoop,
to manage the work.

The Nutch project is the progenitor of the BigData/Search
world! Nutch was developed by Doug Cutting and Mike
Cafarella in 2002, a few years after Doug developed Lucene
(the underpinnings of Solr). To scale it, they built the Nutch
Distributed File System (NDFS), which became HDFS. To parse
data, they used MapReduce, which spun off to become Hadoop!

Nutch has gone through varying levels of activity and community involvement and
has two lines of development—1.x which is very stable and mature, and 2.x which is
less but has a more flexible architecture. Previously, Nutch used its own custom search
interface based on Lucene, but now, it leverages Solr for search in the 1.9 codebase.
This allows Nutch to focus on web crawling, while Solr provides a powerful dedicated
search platform with features such as query spellcheck and faceting that Nutch
previously didn't have. Nutch natively understands web relevancy concepts such as
the value of links towards calculating a page rank score, and how to factor in what an
HTML <title/> tag is, when building the scoring model to return results. In the 2.0
version, it leverages more standard open source components, such as HBase for the
link database instead of its own internal technology. While a better approach, it has
more dependencies, so the demo uses the 1.9 codebase.

Nutch uses a seed list of URLs that tells it where to start finding web pages to crawl.
The directory at ./examples/9/nutch/ contains a configured copy of Nutch for
crawling through a list of Wikipedia pages for the 300 most popular artists according
to MusicBrainz's count of track lookups. Look at the seed_urls.rb script to see the
logic used for building the URL seed list wikipedia_seed_urls.txt. To crawl the
Internet for a handful of documents, starting from the seed list and index into Solr
run from ./examples/9/nutch/ directory:

>> ./apache-nutch-1.8/bin/crawl wikipedia_seed_urls.txt testCrawl/
http://127.0.0.1:8983/solr/nutch/ 1

Browse to http://localhost:8983/solr/nutch/select?q=*:*&fl=url,title
and you will see some wiki pages crawled and indexed by Nutch into Solr.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[308]

The sizeFetchlist=10 parameter in the ./apache-nutch-1.8/bin/crawl
bash script tells Nutch how many documents to crawl. We have hardcoded it
to 10 to make sure the example crawl doesn't consume all your resources. Once
you are satisfied that Nutch is working the way you want, uncomment the line
sizeFetchlist=`expr $numSlaves * 50000`, and trigger the crawl again to
index each of the wiki pages listed in the wikipedia_seed_urls.txt file.

The schema file (at ./cores/nutch/conf/schema.xml) that Nutch uses is very
selfexplanatory. The biggest change you might make is to set stored="false"
on the content field to reduce the index size if you are doing really big crawls
and need to save space.

For more information about the plugins that extend Nutch, and how to configure
Nutch for more sophisticated crawling patterns, look at the documentation at
http://nutch.apache.org.

Solr and Hadoop
Apache Hadoop and the big data ecosystem have exploded in popularity and most
developers are at least loosely familiar with it. Needless to say, there are many pieces
of the Hadoop ecosystem that work together to form a big data platform. It's mostly
an a-la-carte world in which you combine the pieces you want, each having different
uses, or makes different trade-offs between ease-of-coding and performance. What
does Solr have to do with Hadoop, you may ask? Read on.

HDFS
As an alternative to a standard filesystem, Solr can store its indexes in Hadoop
Distributed File System (HDFS). HDFS acts like a shared filesystem for Solr,
somewhat like how networked storage is (for example, a SAN), but is implemented
at the application layer instead of at the OS or hardware layer. HDFS offers almost
limitless growth, and you can increase storage incrementally without restarting
or reconfiguring the server processes supporting it. HDFS has redundancy too,
although this is extra-redundant with SolrCloud replication. Ideally, Solr nodes
should be running on the same machines as HDFS data nodes. If you already have
HDFS for other purposes, be it for MapReduce jobs or whatever, then this may be
particularly appealing, but otherwise, it is probably more complex than it's worth.
Solr's HDFS integration is built into Solr—see the Solr Reference Guide for the details
and read it thoroughly. If you've already got HDFS running, it's really quite easy to
get Solr to use it.

www.it-ebooks.info

http://nutch.apache.org
http://www.it-ebooks.info/

Chapter 9

[309]

A nice bonus of using HDFS is the option of using the autoAddReplicas feature in
Solr 4.10. With this feature, Solr will respond to a node failure by automatically adding
replacement replicas on other nodes to maintain the desired replicationFactor.
Although it may work with any shared filesystem, only HDFS is supported right
now. A planned benefit of shared filesystems is having leaders and replicas use the
same index, thereby saving space and freeing replicas from much of the impact of
concurrent indexing activity. See SOLR-6237 (https://issues.apache.org/jira/
browse/SOLR-6237) for the current status. Once that feature is released, using HDFS
will be far more compelling!

Indexing via MapReduce
Solr includes a contrib module named map-reduce that provides Hadoop
MapReduce components for indexing documents into new Solr indexes stored
on HDFS. It includes a cool go-live feature that will then merge those generated
indexes into Solr's existing indexes in HDFS without experiencing any downtime.
This module provides the most value when your data is already in HDFS and there
is a lot of data and/or CPU-intensive work in generating the resulting Solr input
documents, such as doing text extraction from common document formats. Using
the MapReduce paradigm, this work is parallelized across a cluster of Hadoop nodes
in a fault-tolerant manner, and even the resulting Solr indexes get built from this
process. Even if you are doing trivial text processing on tweets, you can benefit from
this module by leveraging your large Hadoop cluster to index all of your data faster
than you would be able to with just your Solr cluster. Furthermore, your search
performance is not going to be heavily impacted by the ongoing indexing activity
because it is separated.

To learn more about the map-reduce module, start with MapReduceIndexerTool,
a command-line program and façade to the nuts and bolts here. It's not documented
in Solr's Reference Guide; instead Google it and you will wind up looking at
its documentation within the documentation for Cloudera Search: http://www.
cloudera.com/content/cloudera/en/documentation/cloudera-search/v1-
latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html.

www.it-ebooks.info

https://issues.apache.org/jira/browse/SOLR-6237
https://issues.apache.org/jira/browse/SOLR-6237
http://www.cloudera.com/content/cloudera/en/documentation/cloudera-search/v1-latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera/en/documentation/cloudera-search/v1-latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera/en/documentation/cloudera-search/v1-latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.it-ebooks.info/

Integrating Solr

[310]

Morphlines
This module and two other related contrib modules use an Extract Transform Load
(ETL) framework called Morphlines, open sourced by Cloudera. However, unlike
some other popular ETLs, this one is lightweight and developer friendly (no IDE!)
and has a data model matching Lucene/Solr—String keys supporting multiple
values. Morphlines enables MapReduceIndexerTool to support any input format and
custom transformations just by editing a configuration file. If the numerous built-in
Morphline commands aren't sufficient, you can of course write your own commands
to plug in. Morphlines does not require Hadoop or even Solr, though you will see
strong associations with both. If you have non-trivial steps to construct a Solr input
document for indexing, then you should definitely check it out. The best source of
information for this is available at http://kitesdk.org/docs/current/kite-
morphlines/index.html.

Running a Solr build using Hadoop
The source code for this example is available at /examples/9/solr-map-reduce-
example.

The original code was published by SolrCloud lead developer
Mark Miller: https://github.com/markrmiller/solr-
map-reduce-example.

Make sure you don't have any Solr or Hadoop processes running before you start
performing the following steps:

1. Start the example via the ./run-example.sh script. You'll see that the
Hadoop and Solr distributions are downloaded, and various processes
related to them are run.

2. When it completes, browse to http://127.0.0.1:8042 and you'll see the
Hadoop WebApp. Assuming all went well, you can query some Twitter data
via http://localhost:8983/solr/collection1/select?q=*:*.

Looking at the storage
So what makes this special, or different than a traditional SolrCloud setup?
Well, first off, the Lucene data files aren't stored on your local filesystem, instead
they are on a locally running HDFS cluster. If you browse to one of the shards at
http://localhost:8983/solr/#/collection1, you will see that the filesystem
implementation is listed as org.apache.solr.core.HdfsDirectoryFactory,
and that the data is being stored on the HDFS cluster:

www.it-ebooks.info

http://kitesdk.org/docs/current/kite-morphlines/index.html
http://kitesdk.org/docs/current/kite-morphlines/index.html
https://github.com/markrmiller/solr-map-reduce-example
https://github.com/markrmiller/solr-map-reduce-example
http://www.it-ebooks.info/

Chapter 9

[311]

How did that happen? If you dig around in run-example.sh, you'll see that when
Solr was started, some additional HDFS-related parameters were passed in:

 -Dsolr.directoryFactory=solr.HdfsDirectoryFactory -
Dsolr.lock.type=hdfs -Dsolr.hdfs.home=hdfs://127.0.0.1:8020/solr1
-Dsolr.hdfs.confdir=$hadoop_conf_dir

The solr.directoryFactory parameter told Solr to change the default
<directoryFactory/> setting in solrconfig.xml to be a HDFS directory factory
instead of the traditional filesystem one. Additionally, solr.lock.type overrides
the native lock type to enable HDFS, own semantics around locking.

HDFS works very similar to the Unix filesystem that you are already used to, except
instead of the solr.home parameter pointing to a local directory, the solr.hdfs.
home parameter is the URL of the directory in HDFS. In this case, the data is stored
in /solr1/ at the root of the HDFS server running locally on port 8020. Since we are
running two Solrs in our local environment, if you look at run-example.sh, you'll
see that the second Solr has started with the same parameters except for the HDFS
location to store the second shard:

-Dsolr.hdfs.home=hdfs://127.0.0.1:8020/solr2

Let's take a look at the HDFS cluster. From the root of ./examples/9/solr-
map-reduce-example, run the command to list the command of all the files and
directories on our HDFS cluster:

./hadoop-2.2.0/bin/hadoop fs -fs hdfs://127.0.0.1:8020 -ls /

The command is pretty selfexplanatory; we are using the Hadoop client to make
a file listing call. The location of the filesystem is passed in as a url starting with
hdfs://, which means you can see how HDFS is meant, from the ground up,
to be used in a distributed manner. The command we wish to run is to list all
the files in the root directory. The output should be something like this:

Found 5 items
drwxr-xr-x - epugh supergroup 0 2014-11-12 09:53 /indir
drwxr-xr-x - epugh supergroup 0 2014-11-12 09:54 /outdir
drwxr-xr-x - epugh supergroup 0 2014-11-12 09:53 /solr1
drwxr-xr-x - epugh supergroup 0 2014-11-12 09:53 /solr2
drwxr-xr-x - epugh supergroup 0 2014-11-12 09:53 /tmp

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[312]

Ignore /indir and /outdir for now. As you can see, we have two filesystems rooted
on the HDFS cluster at /solr1 and /solr2. With HDFS, as the size of the data in
these filesystems grow, you just add more hardware to the HDFS cluster, and HDFS
manages distributing the additional data to the new hardware. Let's look in a bit
more detail at the data files stored in HDFS:

hadoop-2.2.0/bin/hadoop fs -fs hdfs://127.0.0.1:8020 -ls
/solr1/collection1/core_node2/data/index

As you can see, we have our write lock file, but this time in HDFS, as well as some
Lucene segment files. (To save space, I have only listed the first couple of files):

Found 13 items
-rw-r--r-- 1 epugh supergroup 0 2014-11-12 09:53
/solr1/collection1/core_node2/data/index/HdfsDirectory@798a0aac
lockFactory=org.apache.solr.store.hdfs.HdfsLockFactory@5ef215db-
write.lock
-rwxr-xr-x 1 epugh supergroup 42943 2014-11-12 09:54
/solr1/collection1/core_node2/data/index/_0.fdt
-rwxr-xr-x 1 epugh supergroup 89 2014-11-12 09:54
/solr1/collection1/core_node2/data/index/_0.fdx
-rwxr-xr-x 1 epugh supergroup 2951 2014-11-12 09:54
/solr1/collection1/core_node2/data/index/_0.fnm

So let's see if we can use the power of HDFS to quickly add another Solr process.
We've added a script called add-third-solr.sh that fires up another Solr server
process, and add it to the cluster of Solrs supporting collection1. List out the root
directory in HDFS and you'll see that the data is now being stored in HDFS in /
solr3. Look at the log file in the solr-4.10.1/example3/example3.log file to see
the behavior. Keen-eyed readers will notice, however, that the /solr3 directory is a
complete copy of the original /solr1 or /solr2 directory that has the leader's data.
As we mentioned in the intro, once SOLR-6237 is wrapped up, this will drastically
reduce the amount of disk storage required, making HDFS a much more compelling
option over the traditional SolrCloud.

One last thing to keep in mind when looking at using HDFS is that HDFS is primarily
oriented towards the storage of fewer larger files that can be split up and stored on
multiple servers versus many small files that are rapidly changing. If you have a near
real-time scenario, with many small incremental changes to your data, then you will
want to make sure that the overhead of HDFS isn't prohibitive. On the other hand, if
you periodically build an index, optimize it, and leave it alone, then the strengths of
HDFS may meet your needs perfectly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[313]

The data ingestion process
This demo uses source Twitter data stored in a format called Avro. Apache Avro is a
powerful data serialization framework, like Thrift and ProtoBuf. What makes Avro
great is that each .avro file includes the schema that describes the data that is stored
inside that file. This means that you can interrogate any .avro file and figure out
how to read back the data. This makes this data format very stable, with none of the
stubs required by Thrift or ProtoBuf for writing and reading the data. Go ahead and
open the sample-statuses-20120906-141433-medium.avro file with a text editor.
You'll see the schema for the data listed in the binary file as shown here:

{"type":"record","name":"Doc","doc":"adoc","fields":[{"name":"id",
"type":"string"},{"name":"user_friends_count","type":["int","null"
]},{"name":"user_location","type":["string","null"]},{"name":"user
_description","type":["string","null"]},{"name":"user_statuses_cou
nt","type":["int","null"]},{"name":"user_followers_count","type":[
"int","null"]},{"name":"user_name","type":["string","null"]},{"nam
e":"user_screen_name","type":["string","null"]},{"name":"created_a
t","type":["string","null"]},{"name":"text","type":["string","null
"]},{"name":"retweet_count","type":["int","null"]},{"name":"retwee
ted","type":["boolean","null"]},{"name":"in_reply_to_user_id","typ
e":["long","null"]},{"name":"source","type":["string","null"]},{"n
ame":"in_reply_to_status_id","type":["long","null"]},{"name":"medi
a_url_https","type":["string","null"]},{"name":"expanded_url","typ
e":["string","null"]}]}

Remember how we performed a ls command on the HDFS cluster? Similar commands
in run-example.sh are used to insert the sample data into the cluster:

samplefile=sample-statuses-20120906-141433-medium.avro
$hadoop_distrib/bin/hadoop --config $hadoop_conf_dir fs -mkdir
hdfs://127.0.0.1/indir
$hadoop_distrib/bin/hadoop --config $hadoop_conf_dir fs -put
$samplefile hdfs://127.0.0.1/indir/$samplefile

Want to try it yourself? The following command will upload a copy of the sample
data into /indir, which is the staging directory for in-bound data for processing
using Hadoop:

./hadoop-2.2.0/bin/hadoop fs -fs hdfs://127.0.0.1:8020 -put sample-
statuses-20120906-141433-medium.avro hdfs://127.0.0.1/indir/sample-
statuses-20120906-141433-medium2.avro

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[314]

Once the data is loaded, we are ready to run the Morphline process in our
Hadoop cluster to import the data into Solr. The files stored in the HDFS cluster
under /indir will be processed into Lucene indexes that are placed into /outdir
in HDFS. Let's look at /outdir to see one of the segment files:

./hadoop-2.2.0/bin/hadoop fs -fs hdfs://127.0.0.1:8020 -ls
/outdir/results/part-00000/data

Morphlines works by taking a configuration file that describes the steps in the data
processing pipeline. Open up the readAvroContainer.conf file in your text editor.
You can see that this is DSL for data processing. And yes, it's YAFF (Yet Another
File Format) called HOCON (Human-Optimized Config Object Notation), so it
may take you a bit to get used to it.

The key bit to understand is that the file declares a set of commands:

• readAvroContainer, extractAvroPaths, convertTimestamp,
sanitizeUnknownSolrFields, and finally loadSolr. Each of these
commands is documented in the readAvroContainer.conf file; however,
you can guess from the names that the first step of the Morphline is to read
records from our .avro files that where uploaded into the /indir directory.

• The second step, extractAvroPaths is interesting, as it uses a basic path
expression, akin to XPath, to map the fields in the Avro document to the
names of the fields in Solr. In this simple example, it's pretty redundant
since there is a 1-to-1 mapping between field names in Avro and in the
Solr schema, but you can see how this would be useful in mapping Avro
documents to an existing Solr schema.

• convertTimestamp is a nice example of the types of manipulations
that you always have to do when importing data into Solr. Solr is very
fussy about getting all dates in the full ISO standard format of yyyy-MM-
dd'T'HH:mm:ss'Z', and this function makes it easy.

• sanitizeUnknownSolrFields takes advantage of the RESTful APIs added
to Solr to query the schema service for the list of fields that Solr knows about,
and then filters the documents being sent to drop any fields that Solr doesn't
know about.

• Lastly, the loadSolr command pops the documents into your Solr.
The amazing thing is that what you think of as complex process turns
out to be the easiest step:
loadSolr {
 solrLocator : ${SOLR_LOCATOR}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[315]

Unfortunately, like many things with Hadoop, the command line to invoke loading
data with Morphlines is quite intimidating. To make things simpler, look at the
run-just-morphline.sh script, it only runs the Morphline. It assumes you've
already run the run-example.sh script to start up the Hadoop and Solr processes.
Most of the parameters are pretty selfexplanatory. The really interesting parameter
is the --go-live parameter. What this tells the Morphline process to do is to take
all the index data generated by the Morphline process in /outdir, and uses the
information in ZooKeeper to deploy this new data into the right locations in HDFS
for the Solr servers (for us that's /solr1 and /solr2), and then merge them into the
live indexes.

Look at the console output from running the script, you can see the MapReduce
jobs running all the steps of the Morphline. It gives you a sense of how MapReduce
works! If you are debugging the Morphline, add the –dry-run parameter to the
command. When you run the Morphline, it will output to the console the documents
that it would have otherwise inserted into Solr, giving you a way of debugging what
is going on.

Want to know it's working? Look at the Gen value in the Solr admin for one of your
shards, and then rerun the Morphline process. You will see the Gen value increment
by one. One thing to note is that while the number of live documents in the index
won't go up, remaining at 2104, the total number of documents in the index will
continue to go up because new segment files are being appended constantly. This can
be a bit confusing since Solr considers the shard to be optimized, despite the existence
of ostensibly deleted documents in the index!

ManifoldCF – a connector framework
Apache ManifoldCF (CF meaning Connector Framework) provides a framework
for extracting content from multiple repositories, enriching it with document-level
security information, and outputting the resulting document into Solr based on
the security model found in Microsoft's Active Directory platform. Working with
ManifoldCF requires an understanding of the interaction between extracting content
from repositories via a Repository Connector, outputting the documents and security
tokens via an Output Connector into Solr, listing a specific user's access tokens from
an Authority Connector, and finally performing a search that filters the document
results based on the list of tokens. ManifoldCF takes care of ensuring that, as content
and security classifications for content are updated in the underlying repositories, it is
synched to Solr, either on a scheduled basis or a constantly monitoring basis. Finally,
it has a convenient web UI to manage the connector states.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[316]

Connectors
ManifoldCF provides connectors that index into Solr content from a number
of enterprise content repositories, including SharePoint, Documentum, Meridio,
LiveLink, and FileNet. Competing with DataImportHandler and Nutch, ManifoldCF
also crawls web pages, RSS feeds, JDBC databases, and remote Windows shares
and local filesystems, while adding the document-level security tokens, where
applicable. Also of note is its MediaWiki connector. The most compelling use case
for ManifoldCF is leveraging ActiveDirectory to provide access tokens for content
indexed in Microsoft SharePoint repositories, followed by just gaining access to
content in the other enterprise-content repositories.

Putting ManifoldCF to use
While the sweet spot for using ManifoldCF is with an authority like ActiveDirectory,
we're going to reuse our MusicBrainz.org data and come up with a simple scenario
for playing with ManifoldCF and Solr. We will use our own MusicBrainzConnector
class to read in data from a simple CSV file that contains a MusicBrainz ID for an
artist, the artist's name, and a list of music genre tags for the artist:

4967c0a1-b9f3-465e-8440-4598fd9fc33c,Enya,folk,pop,irish

The data will be streamed through Manifold and out to our /manifoldcf Solr
core with the list of genres used as the access tokens. To simulate an Authority
service that translates a username to a list of access tokens, we will use our own
GenreAuthority. It will take the first character of the supplied username, and
return a list of genres that start with the same character. So a call to ManifoldCF
for the username paul@example.com would return the access tokens pop and punk.
A search for "Chris" would match on "Chris Isaak" since he is tagged with pop, but
"Chris Cagle" would be filtered out since he plays only American and country music.

Browse the source for both MusicBrainzConnector and GenreAuthority in
./examples/9/manifoldcf/connectors/ to get a better sense of how specific
connectors work with the greater ManifoldCF framework.

To get started, we need to add some new dynamic fields to our schema in cores/
manifoldcf/conf/schema.xml:

<dynamicField name="allow_token_*" type="string" indexed="true"
stored="true" multiValued="true"/>
<dynamicField name="deny_token_*" type="string" indexed="true"
stored="true" multiValued="true"/>

These rules will allow the Solr output connector to store access tokens in the fields
such as allow_token_document and deny_token_document.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[317]

Now we can start up ManifoldCF. The version distributed with this book is a
stripped-down version, with just the specific connectors required for this demo!
In a separate window from ./examples/9/manifoldcf/example run the
following code:

>>java -jar start.jar

ManifoldCF ships with Jetty as a servlet container, hence the very similar start
command to the one Solr uses!

Browse to http://localhost:8345/mcf-crawler-ui/ to access the ManifoldCF
user interface which exposes the following main functions:

• List Output Connections: This provides a list of all the recipients of the
extracted content. It is configured to store content in the manifoldcf Solr core.

• List Authority Connections: This translates user credentials to a list of
security tokens. You can test that our GenreAuthority is functioning by
calling the API at http://localhost:8345/mcf-authority-service/
UserACLs?username=paul@example.com and verifying you receive a list
of genre access tokens starting with the letter p.

• List Repository Connections: This is the only repository of content we have
is the CSV file of author/genre information. The other repositories, such
as RSS feeds or SharePoint sites would be listed here. When you create a
repository, you associate a connector and the Authority you are going to use,
in our case, GenreAuthority.

• List All Jobs: This lists all the combinations of input repository and
output Solrs.

• Status and Job Management: This very useful screen allows you to
stop, start, abort, and pause the jobs you have scheduled, and provide a
basic summary of the number of documents that have been found in the
repository as well as those processed in Solr.

Go ahead and choose the Status and Job Management screen and trigger the
indexing job. Click on Refresh a couple of times, and you will see the artist's
content being indexed into Solr. To see the various genres being used as access
tokens, browse to:

http://localhost:8983/solr/manifoldcf/select?q=*:*&facet=true&face
t.field=allow_token_document&rows=0.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Solr

[318]

At the time of writing, neither ManifoldCF nor Solr have a component that hooked
ManifoldCF-based permissions directly into Solr. However, based on the code from
the ManifoldCF in Action manuscript, available at http://code.google.com/p/
manifoldcfinaction/, you can easily add a Search Component to your request
handler. Add the following code to solrconfig.xml:

<requestHandler name="standard" class="solr.SearchHandler"
 default="true">
 <arr name="components">
 <str>manifoldcf</str>
 </arr>
</requestHandler>

<searchComponent name="manifoldcf" class="org.apache.manifoldcf.
 examples.ManifoldCFSecurityFilter">
 <str name="AUTHENTICATED_USER_NAME">username</str>
</searchComponent>

You are now ready to perform your first query! Do a search for Chris, specifying your
username as paul@example.com and you should see only pop and punk music artists
being returned!

http://localhost:8983/solr/manifoldcf/select?q=Chris&username=paul
@example.com

Change the username parameter to courtney@example.com and Chris Cagle,
country singer should be returned! As documents are added/removed from the
CSV file, ManifoldCF will notice the changes and reindex the updated content.

Document-level security
A frequent requirement for search engines is to maintain document-level security.
While a public search engine may expose all documents to all users, many intranet-
oriented search engines maintain information that it is accessible to only a subset of
users. Historically, the solution to maintaining document-level security has been a
roll-your-own with the most common approaches being listed here:

1. Hopefully your requirements allow you to enrich your indexed document with
access tokens that can be searched for using a filter query based on the current
user's access tokens. For a simplistic example, to allow only documents marked
as accessible to the marketing department, or unclassified, you might add this
parameter: fq=group_label:(marketing_department OR UNCLASSIFIED)
to your query. However, there will be syncing challenges if the authorization
lists per document are managed elsewhere. ManifoldCF helps with that and
uses this general approach to document security.

www.it-ebooks.info

http://code.google.com/p/manifoldcfinaction/
http://code.google.com/p/manifoldcfinaction/
http://www.it-ebooks.info/

Chapter 9

[319]

2. Write a custom Solr post-filter QParser. This isn't too hard to work correctly
but it's fundamentally difficult to scale when an external service must be
consulted. This is because it operates on every document the search matches,
not just the top X results.

3. Separate from Solr, implement a postprocessing filter on the document
result set that removes documents that the user shouldn't see. This
approach is convenient because you can just wrap your calls to Solr with
your own proprietary security model. However, this approach is often
flawed, particularly when faceting is used, since the facet counts can't be
based on the access control rules.

Summary
As you've seen, Solr offers a plethora of integration options, from its ability to
customize its output using the various query response writers, to clients for specific
languages, to frameworks that enable powerful frontends for both indexing content as
well as providing a jump start in developing the search user interface. The simplicity
of using HTTP GET to request actions to be performed by Solr and responding with
simple documents makes it very straightforward to integrate Solr-based search into
your applications regardless of what your preferred development environment is.

Don't forget to explore all the integration options available for your favorite language,
framework, or other needs at http://wiki.apache.org/solr/SolrEcosystem.

In the next chapter, we are going to look at how to scale Solr to meet the growing
demand by covering approaches for scaling an individual Solr server as well as
scaling out by leveraging multiple Solr servers working cooperatively.

www.it-ebooks.info

http://wiki.apache.org/solr/SolrEcosystem
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[321]

Scaling Solr
You've deployed Solr, and the world is beating a path to your door, leading to a sharp
increase in the number of queries being issued, and meanwhile you've indexed tenfold
the amount of information you originally expected. You discover that Solr is taking
longer to respond to queries and index new content. When this happens, it's time to
start looking at what configuration changes you can make to Solr to support more
load. We'll look at a series of changes/optimizations that you can make, starting with
the simplest changes that give the most bang for your buck to more complex changes
that require thorough analysis of the impact of the system changes.

In this chapter, we will cover the following topics:

• Tuning complex systems
• Testing Solr performance with SolrMeter
• Optimizing a single Solr server – scale up
• Configuring Solr for near real-time search
• Moving to multiple Solr servers (scale wide with SolrCloud)

In a hurry?
If you flipped to this chapter because you need to speed up Solr
queries, look at the Solr caching section. If you have lots of data,
or want near real-time search, then jump down to SolrCloud in
the Scale Wide section.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[322]

Tuning complex systems is hard
Tuning any complex system, whether it's a database, a message queuing system, or the
deep dark internals of an operating system, is something of a black art. Researchers
and vendors have spent decades figuring out how to measure the performance of
systems and coming up with approaches for maximizing the performance of those
systems. For some systems that have been around for decades, such as databases, you
can just search online for tuning tips for X database and find explicit rules that suggest
what you need to do to gain performance. However, even with those well-researched
systems, it still can be a matter of trial and error.

In order to measure the impact of your changes, you should look at a couple of
metrics and optimize for these three parameters:

• Transactions Per Second (TPS): In the Solr world, how many search
queries and document updates are you able to perform per second?
You can get a sense of that by using the Plugins / Stats page and looking
at the avgTimePerRequest and avgRequestsPerSecond parameters of
your request handlers.

• CPU usage: This is used to quickly gain a sense of the CPU usage of Solr using
JConsole. You can also use OS-specific tools such as PerfMon (Windows) and
top (Unix) to monitor your Java processes, which can be helpful if you have a
number of services running on the same box that are competing for resources
(not recommended for maximum scaling).

• Memory usage: When tuning for memory management, you are looking to
ensure that the amount of memory allocated to Solr doesn't constantly grow.
While it's okay for the memory consumption to go up a bit, letting it grow
unconstrained eventually means you will receive out-of-memory errors!
As a result, you need to have balanced increases in memory consumption
with significant increases in TPS. You can use JConsole to keep an eye on
memory usage.

In order to get a sense of what the Steady State for your application is, you can gather
the statistics by using the SolrMeter load testing tool to put your Solr deployment
under load. We'll discuss in the next section how to build a load testing script with
SolrMeter that accurately mirrors your real-world interactions with Solr. This effort
will give you a tool that can be run repeatedly and allows more of an apple-to-apple
comparison of the impact of the changes to your configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[323]

Solr's architecture has benefited from its heritage as the search engine developed
in-house from 2004 to 2006 to power CNET.com, a site that, at the time of writing,
is ranked 86th for traffic by Alexa.com. Solr, out-of-the-box, is already very
performant, with extensive effort spent by the community to ensure that there
are minimal bottlenecks. Additional tuning will trade-off increases in search
performance at the expense of disk index size, indexing speed, and/or memory
requirements (and vice versa). The approaches are as follows:

• Scale up: This is the optimization of a single instance of Solr, which looks
at caching and memory configuration. Run Solr on a dedicated server
(no virtualization) with very fast CPUs and SSD drives with lots of RAM
if you can afford it. In the scale up approach, you are trying to maximize
what you can get out of a single server.

• Scale horizontally: This looks at moving to multiple Solr servers using
SolrCloud. If your queries run quickly with an acceptable avgTimePerRequest,
but have too many incoming requests, then replicate your complete index
across multiple Solr nodes. If your queries take too long to complete due to
the complexity or size of the index, then use sharding to share the load of
processing a single query across multiple sharded Solr servers.

Use SolrMeter to test Solr performance
One of the biggest challenges when conducting performance testing is to know when
you've accomplished your goals. SolrMeter, available at http://code.google.com/p/
solrmeter/, makes it very easy to test your Solr configuration. When performance
testing Solr, you are typically tweaking configuration values such as cache sizes and
query parameters in response to two ongoing activities: the pace of the documents
being indexed into Solr, and the pace of the queries being issued to Solr. SolrMeter
makes it very easy to control the pace of these two activities through a simple GUI tool.
SolrMeter brings together both basic load testing functionality with some visualization
and analytics of your Solr instance. A typical example is looking at your cache rates.
While you can use the Solr Admin Plugins / Stats page to pull back these results,
you are only seeing a snapshot in time.

www.it-ebooks.info

CNET.com
Alexa.com
http://code.google.com/p/solrmeter/
http://code.google.com/p/solrmeter/
http://www.it-ebooks.info/

Scaling Solr

[324]

In the following screenshot, you can see a visualization of the queryResultCache
over time:

The middle four slopes were created because I began the Update Console 75 seconds
after starting to index new data. You can easily see the impact of commits on the
caches. This type of visualization can help you go beyond just using the default
caching configurations.

Start SolrMeter with the embedded configuration for the mbartists core by running
from ./examples/10/solrmeter:

>>java –Dsolrmeter.configurationFile=./mbartists.smc.xml-jar
solrmeter-0.2.0-jar-with-dependencies_3_1_4_0.jar

mbartists.smc.xml specifies to SolrMeter which data files to use to power the
queries to be made and the data to be indexed. SolrMeter takes in separate data files
to randomly build combinations of queries with filters, faceting, and updates applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[325]

If you are already using Solr and logging the queries, then you should instead
provide an externalQueries.txt file that has the full set of query parameters:

q="Maxtor Corp"+OR+Belkin&rows=5&fq=inStock:true&
facet=true&facet.field=price

Just extract the entire line after the ? character logged by the GET requests in the Solr
log. This is great for repeating the same set of queries, so you are doing A/B testing
as you are tweaking the various settings. SolrMeter also supports exporting the query
time and a histogram of the query time in the CSV format to make your own graphs.

You can also use SolrMeter to place a "base" load on a Solr, and then use other
testing tools that offer more scripting or analytics options to ensure that what works
just fine when Solr isn't under load continues to meet expectations when Solr is
under load, for example, you might want to set up 60 updates per minute and 300
queries per minute as a base load. Using SolrMeter, you can quickly set this scenario
up, and then use another tool like JMeter that drives your frontend search user
interface to ensure your application meets your expected SLA when Solr is under
load. Alternatively, you can easily change settings, such as cache configurations or
faceting settings, and see the impact that these changes have on performance. Finally,
SolrMeter now runs as a command-line application, so you can use it as the heart of
automated performance tests.

I like to build my list of queries for load testing by extracting a day's
worth of queries from the existing search engine log or the HTTP
web server log files. This gives me a realistic set of data, so I am
tuning to what my users actually search for, not what I think they
are searching for! SolrMeter can be used for this.

Optimizing a single Solr server – scale up
There are a large number of different options that Solr gives you for enhancing the
performance of a specific Solr instance, and for most of these options, deciding to
modify them depends on the specific performance result you are trying to tune for.
This section is structured from the most generally useful optimizations to more
specific optimizations.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[326]

Configuring JVM settings to improve memory
usage
Solr runs inside a Java Virtual Machine (JVM), an environment that abstracts your
Java-based application from the underlying operating system. JVM performance
improves with every release, so use the latest version. There are many different
parameters that you can tune the JVM for. However, most of them are "black magic",
and changing them from the defaults can quickly cause problems if you don't know
what you're doing. Additionally, the folks who write the JVMs spend a lot of time
coming up with sophisticated algorithms that mean the JVM will usually tune itself
better than you can. However, there is a fairly simple configuration change that most
Java server applications benefit from (not just Solr), which is to set the initial and
maximum heap memory allocated to the JVM to the same value and to specify that
you are running a server application, so the JVM can tune its optimization strategy
for a long running process:

java()–Xms2G -Xmx2G -server -jar start.jar

Of course, the question now is how much memory should be allocated to the Java heap.
If you specify too little, then you run the risk of getting an OutOfMemoryException.
If you specify the largest practical value, which is the actual memory you have, less
some for the operating system and other processes, this is a suboptimal configuration
too. Operating systems make use of available memory as a cache for disk access, and
Solr searches benefit substantially from this, while indexing does not, especially since
Solr 4.0 was released. I recommend measuring how much heap you need by picking
some high value, then running a full battery of representative queries against Solr so
that all its caches get filled, then using JConsole to perform a full garbage collection.
At that point, you can see how much memory it's using. With that figure, provide
some breathing room of 20 percent.

With 8 GB of RAM available, I typically set Solr to use 4 GB. I don't
go above 6 or 8 GB without a very good reason because the impact of
garbage collection starts to be very appreciable. Add -XX:+PrintGC
ApplicationStoppedTime to your startup to see GC pause.

The ultimate figure is of course highly dependent on the size of your Solr caches and
other aspects of the Solr configuration; therefore, tuning the heap size should be one of
the later steps.

Jump forward to Chapter 11, Deployment, for a discussion
about enabling JMX to work with JConsole.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[327]

Using MMapDirectoryFactory to leverage additional
virtual memory
If you have plenty of virtual memory relative to your index size, then using
memory-mapped I/O via MMapDirectoryFactory should be faster than
StandardDirectoryFactory for interacting with the filesystem on 64-bit JVMs.
This is set via the <directoryFactory /> tag in solrconfig.xml, and is chosen
by default on 64-bit Solaris and Linux JVMs. The memory used is outside of the
Java heap, so you do not need to modify any JVM startup options. This is one of
the reasons that even if you have 32 or 64 GB of memory, your Solr instance may
only be set to use 8 GB.

Enabling downstream HTTP caching to
reduce load
Solr has great support for using HTTP caching headers to enable downstream HTTP
software to cache results. Frequently, you may have the same search being issued
over and over, even though the results are always the same. Placing an intermediate
caching server, such as Squid, in front of Solr should reduce the load on Solr and
potentially reduce Solr's internal "query cache" requirements, thus, freeing up more
RAM. When a request uses certain caching headers, Solr can then indicate whether
the content has changed by either sending back an HTTP 200 status code if it has,
or a 304 Not Modified code when the content hasn't changed since the last time the
request asked for it.

In order to specify that you want Solr to do HTTP caching, you need to configure the
<httpCaching/> stanza in solrconfig.xml. By default, Solr is configured to never
return a 304 code, instead it always returns a 200 response (a normal non-cached
response) with the full body of the results. In ./examples/configsets/mbtype/
solrconfig.xml, uncomment the "production" httpCaching stanza and restart Solr:

<httpCachinglastModifiedFrom="openTime"
 etagSeed="SolrMusicBrainz" never304="false">
 <cacheControl>max-age=43200, must-revalidate</cacheControl>
</httpCaching>

We have specified that sending back 304 messages is okay. We have also specified in
cacheControl that the max time to store responses is 43,200 seconds, which is half
a day. We've also specified through must-revalidate that any shared cache, such as
a Squid proxy, needs to check back with Solr to see whether anything has changed,
even checking to see whether the max-age has expired, which acts as an extra check.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[328]

During development, leave never304="true" to ensure that you
are always looking at the results of fresh queries and aren't misled
by looking at cached results, unless you are using eTags and the
browser properly honors them.

By running curl with the mbartists core, we can see additional cache-related
information in the header. For your typing convenience, these curl commands are
available in ./examples/10/http_cache_commands.txt:

>>curl -v "http://localhost:8983/solr/mbartists
/mb_artists?q=Smashing+Pumpkins"
< HTTP/1.1 200 OK
< Cache-Control: max-age=43200, must-revalidate
< Expires: Tue, 08 Oct 2013 05:42:20 GMT
< Last-Modified: Mon, 07 Oct 2013 17:42:14 GMT
<ETag: "NDgwMDAwMDAwMDAwMDAwMFNvbHJNdXNpY0JyYWlueg=="

So, let's look at what we get back if you pass a last modified header specifying that
we have downloaded the content after the previously returned last modified time:

>>curl -v -z "Mon, 07 Oct 2013 17:42:15 GMT"
 http://localhost:8983/solr/mbartists/mb_artists?q=Smashing+Pumpkins
* About to connect() to localhost port 8983 (#0)
* Trying ::1... connected
* Connected to localhost (::1) port 8983 (#0)
> GET /solr/mbartists/select/?q=Smashing+Pumpkins HTTP/1.1
> Host: localhost:8983
> Accept: */*
>If-Modified-Since: Mon, 07 Oct 2013 17:42:14 GMT
>
< HTTP/1.1 304 Not Modified
< Cache-Control: max-age=43200
< Expires: Tue, 08 Oct 2013 05:45:23 GMT
< Last-Modified: Mon, 07 Oct 2013 17:42:14 GMT
<ETag: "NDgwMDAwMDAwMDAwMDAwMFNvbHJNdXNpY0JyYWlueg=="

Specifying an If-Modified-Since time just one second after the Last-Modified
time means that Solr gives us back a 304 Not Modified code and doesn't have
to execute the search nor send a large response to the client, leading to a faster
response time and less load on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[329]

Entity tags are a newer method that are more robust and flexible than using
the Last-Modified date. An ETag is a string that identifies a specific version of a
component. In the case of Solr, they are generated by combining the current version
of the index with the etagSeed value. Every time the index is modified, the current
ETag value will change. If we add the fake artist "The Eric Band" to the mbartists
index, and then run our previous query, we'll see that the ETag has changed because
the version of the Solr index has changed:

>>curl 'http://localhost:8983/solr/mbartists/update?commit=true' -H
 "Content-Type: text/xml" --data-binary '<add><doc><field name=
 "a_name">The Eric Band</field><field name="id">Fake:99999
 </field><field name="type">Artist</field></doc></add>'

>>curl -v -z "Tue, 03 May 2011 09:36:36 GMT GMT"
 http://localhost:8983/solr/mbartists/select/?q=Smashing+Pumpkins
>
< HTTP/1.1 304 Not Modified
< Cache-Control: max-age=43200
<Expires: Sat, 07 May 2011 02:17:02 GMT
<Last-Modified: Fri, 06 May 2011 14:16:55 GMTGMT
<ETag: "NTMyMzQwMzhmNDgwMDAwMFNvbHJNdXNpY0JyYWlueg=="
< Server: Jetty(6.1.3)

To take advantage of the HTTP protocol level caching supplied by Solr, you need
to make sure your client respects the caching directives returned by Solr. Two very
popular caches that understand ETags are Varnish (http://www.varnish-cache.
org) and Squid (http://www.squid-cache.org).

Remember, the fastest query possible from Solr's perspective
is the query that it doesn't have to make!

Solr caching
Caching is a key part of what makes Solr fast and scalable, and the proper
configuration of caches is a common topic on the solr-user mailing list! Solr
uses multiple in-memory caches. The caches are associated with individual Index
Searchers, which represent a snapshot view of the data. Following a commit,
new index searchers are opened and then auto-warmed. Auto-warming is when
the cached queries of the former searcher are rerun to populate the new searcher.
Following auto-warming, predefined searches are run as configured in solrconfig.
xml. Put some representative queries in the newSearcher and firstSearcher
listeners, particularly for queries that need sorting on fields. Once complete, the
new searcher will begin servicing new incoming requests.

www.it-ebooks.info

http://www.varnish-cache.org
http://www.varnish-cache.org
http://www.squid-cache.org
http://www.it-ebooks.info/

Scaling Solr

[330]

Each auto-warming query and predefined search increases the
commit time, so make sure those searches are actually increasing
the cache hit ratio and don't over do it!

There are a number of different caches configured in solrconfig.xml, which are
as follows:

• filterCache: This stores unordered lists of documents that match a query.
It is primarily used for storing filter queries (the fq parameter) for reuse, but
it's also used in faceting under certain circumstances. It is arguably the most
important cache. The filter cache can optionally be used for queries (the q
parameter) that are not score-sorted if useFilterForSortedQuery is enabled
in solrconfig.xml. However, unless testing reveals performance gains, it is
best left disabled—the default setting.

• queryResultCache: This stores ordered lists of document IDs from searches.
The order is defined by any sorting parameters passed. This cache should
be large enough to store the results of the most common searches, which
you can identify by looking at your server logs. This cache doesn't use
much memory, as only the ID of the documents is stored in the cache.
The queryResultWindowSize setting allows you to preload document IDs
into the cache if you expect users to request documents that fall within the
ordered list. So, if a user asks for products 20 through 29, then there is a good
chance they will next look for 30 through 39. If the queryResultWindowSize
is 50, then the initial request will cache the first 50 document IDs. When the
user asks for 30 through 39, they will retrieve the cached data and won't have
to access the Lucene indexes.

• documentCache: This caches field values that have been defined in schema.
xml as being stored, so that Solr doesn't have to go back to the filesystem to
retrieve the stored values. Fields are stored by default.

The documented wisdom on sizing this cache is to be larger than the
max results * max concurrent queries being executed by Solr to prevent
documents from being re-fetched during a query. As this cache
contains the fields being stored, it can grow large very quickly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[331]

These caches are all configured the same way, which is explained as follows:

• class: This specifies the cache implementation Java class name. Solr comes
with LRUCache, FastLRUCache, and LFUCache. The current wisdom is that
for caches that don't have a high hit ratio, and, therefore, have more churn
use LRUCache, because the cache is evicting content frequently. If you have
a high hit ratio, then the benefits of FastLRUCache kick in because it doesn't
require a separate thread for managing the removal of unused items. You
want a high hit ratio to maximize FastLRUCache because storing data is
slower as the calling thread is responsible for making sure that the cache
hasn't grown too large.

• size: This defines the maximum items that the cache can support and is
mostly dependent on how much RAM is available to the JVM.

• autowarmCount: This specifies how many items should be copied from an
old search to a new one during the auto-warming process. Set the number
too high and you slow down commits; set it too low and the new searches
following those commits won't gain the benefits of the previously cached
data. Look at the warmupTime statistic on Solr's admin screen to see how long
the warm up takes. There are some other options too, such as initialSize,
acceptableSize, minSize, showItems, and cleanupThread specific to
FastLRUCache, but specifying these are uncommon. There is a wealth of
specific information available on the wiki at http://wiki.apache.org/
solr/SolrCaching that covers this topic.

Tuning caches
Monitoring the Plugins / Stats admin page for caches, you can get a sense of how
large you need to make your caches. If the hit ratio for your caches is low, then it
may be that they aren't caching enough to be useful. However, if you find that the
caches have a significant number of evictions, then it implies that they are filling
up too quickly and need to be made larger. Caches can be increased in size as long
as Solr has sufficient RAM to operate in.

If your hit ratio for a cache is very low, then you should consider
shrinking its size, and perhaps turning it off altogether by
commenting out the cache configuration sections in solrconfig.
xml. This will reduce the memory footprint and may help improve
performance by removing the overhead of checking the caches and
auto-warming the caches during commits.

www.it-ebooks.info

http://wiki.apache.org/solr/SolrCaching
http://wiki.apache.org/solr/SolrCaching
http://www.it-ebooks.info/

Scaling Solr

[332]

Indexing performance
There are several aspects of Solr tuning that increase indexing performance.
We'll start with optimizing the schema, then look at sending data to Solr in bulk,
and then finish with Lucene's merge factor and optimization.

Designing the schema
Good schema design is probably one of the most important things you can do to
enhance the scalability of Solr. You should refer to Chapter 2, Schema Design, for a
refresher on many of the design questions that are inextricably tied to scalability.
The easiest schema issue to look at for maximizing scalability is, "Are you storing
the minimum information you need to meet the needs of your users?" There are a
number of attributes in your schema field definitions, which inform us about what
is being indexed and are discussed here:

• indexed: Some fields are purely there to be returned in search results—
not to be searched (used in a query like q or fq). For such fields, set
indexed="false". If the field is not needed for search but is needed
for faceting or a variety of other features, then see the last bullet,
docValues, instead.

• stored: Storing field values in the index simplifies and speeds up search
results because results need not be cross-referenced and retrieved from
original sources. It is also required for features such as highlighting.
However, storing field values will obviously increase the index size and
indexing time. A quick way to see what fields are stored is to do a simple
search with fl=* as a parameter; the fields in the result are the stored fields.
You should only store fields that you actually display in your search results
or need for debugging purposes. It is likely that your index has some data
repeated but indexed differently for specialized indexing purposes such as
faceting or sorting—only one of those, if any, needs to be stored.

• docValues: If a field is sorted, faceted, or used in a function query,
grouping, collapsing, or stats, then you should usually set docValues="true".
Those features require either indexed or docValues, but docValues is ideal.
So-called "DocValues" data reduces Java heap memory requirements by
memory mapping field data for certain features, and reduces commit latency,
making it almost a necessity for real-time search.

If you need faster indexing, see if you can reduce the text analysis
you perform in schema.xml to just what you need, for example,
if you are certain the input is plain ASCII text, then don't bother
mapping accented characters to ASCII equivalents.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[333]

Sending data to Solr in bulk
Indexing documents into Solr is often a major bottleneck due to the volume of
data that needs to be indexed initially compared to the pace of ongoing updates.
The best way to speed up indexing is to index documents in batches. Solr supports
sending multiple documents in a single add operation, and this will lead to a drastic
speedup in performance.

However, as the size of your individual documents increase, performance may start
to decrease. A reasonable rule of thumb is doing document add operations in batches
of 10 for large documents, and in batches of 100 for small documents.

To see the impact of batching, I indexed some data using the script examples/10/
batch/simple_test.rb and documented the time it took. Take a look at the
following table:

Scenario Time
Single process adding documents one at a time 24m13.391s
Single process adding documents in batches of 100 5m43.492s

Single process adding documents in batches of 500 5m51.322s

You can see the impact that moving from sending one document at a time to a
batch of 100 had an almost five-fold reduction in time. However, after a certain point,
increasing the batch size doesn't decrease the overall time, instead, it may increase it.

SolrJ can load data the fastest
The fastest client approach to load data into Solr is SolrJ's
ConcurrentUpdateSolrServer Java class. It places documents to
be added into a queue that is consumed by multiple threads that each
have a separate HTTP connection to Solr. Furthermore, it uses the
compact javabin format. Due to the asynchronous nature of its use, the
ConcurrentUpdateSolrServer.handleError() method must be
extended to implement a callback to respond to errors. Also, with this
client, you needn't add documents in batches, as it will only waste memory.

Disabling unique key checking
By default, if you specify a uniqueKey for your schema, when indexing content,
Solr checks the uniqueness of the document being indexed so that you don't end
up with multiple documents sharing the same primary key. If you know you have
unique keys and don't have those documents in the index when doing a bulk load of
data, then you can disable this check. For an update request in any format supported
by Solr, add overwrite=false as a request parameter in the URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[334]

Index optimization and mergeFactor settings
When you add a document to Lucene, they get added to an in-memory write buffer
that has a limited size—see ramBufferSizeMB in solrconfig.xml. When it gets
full or if a commit happens (to include gracefully shutting down Solr), the buffer
is flushed into a new Lucene segment on disk. A segment comprises about 11 files
or so, and it's read-only. Deleted documents get flagged as such but aren't actually
purged right away. As the number of segments increase, Lucene periodically merges
them together into larger segments, which purges deleted documents as a side effect
too. A key setting controlling this is the mergeFactor in solrconfig.xml, which is
basically how many segments get merged into one at once.

Check out this great blog post (with illustrated video)
at http://blog.mikemccandless.com/2011/02/
visualizing-lucenes-segment-merges.html by Mike
McCandless, the author of Lucene in Action, that visualizes
what happens during segment merging. This really helped
me understand the behavior of Solr during commits.

The rule of thumb is that the more static your content is (that is, the less frequent
you need to commit data), the lower the merge factor you want. If your content is
changing frequently, or if you have a lot of content to index, then a higher merge
factor allows for faster indexing throughput at the expense of search performance.
So, if you have infrequent index updates, then a low merge factor of 2 will have
fewer segments, which leads to faster searching. However, if you expect to have
large indexes, significantly above 10 GB, then having a higher merge factor like
20 will help with the indexing time, but then dial it back once you are done with
bulk indexing.

After indexing a lot of documents (or perhaps at off-peak hours), it's sometimes
beneficial to issue an optimize command. Optimize forces the merging of Lucene's
segments down to one (or whatever the optional maxSegments parameter is),
which increases search performance, and it also purges wasted space from
deleted documents.

You can see the number of segments on the Overview screen's
Statistics section. You can also issue an optimize from this screen.

www.it-ebooks.info

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://www.it-ebooks.info/

Chapter 10

[335]

Optimizing your index is no longer quite as important as it used to be, and indeed
the optimize command might eventually be renamed to forceMerge to make it less
attractive to invoke by unsuspecting users. Optimization consumes significant CPU,
temporary disk space, disk I/O, and will mean index replication must replicate larger
segments, so it's not something to invoke often. If you do optimize, consider setting
maxSegments as a trade-off.

Consider having two strategies for indexing your content—the first
strategy that is used during bulk loads that minimizes commits and
merging to allow for the highest indexing throughput possible, and
then a second strategy used during day-to-day routine operations
that indexes documents and commits as needed to make them
visible, and does some merging to keep the segment count in-check
(via either a low mergeFactor or optimize).

Enhancing faceting performance
There are a few items to look at when ensuring that faceting performs well. First of
all, faceting and filtering (the fq parameter) go hand-in-hand, thus, monitoring the
filter cache to ensure that it is adequately sized. The filter cache is used for faceting
itself as well. In particular, any facet.query or facet.range based facets will store
an entry for each facet count returned. You should ensure that the resulting facets are
as reusable as possible from query to query. For example, it's probably not a good
idea to have direct user input involved in either a facet.query or in fq because of
the variability. As for dates, try to use fixed intervals that don't change often or round
off NOW relative dates to a chunkier interval (for example, NOW/DAY instead of just NOW).
For text faceting (for example, facet.field), the filterCache is not used unless you
explicitly set facet.method to enum. You should do this when the total number of
distinct values in the field is somewhat small, say less than 50. Finally, you should
add representative faceting queries to firstSearcher in solrconfig.xml so that
when Solr executes its first user query, the relevant caches are already warmed up.

Using term vectors
A term vector is a list of terms resulting from the text analysis of a field's value.
It optionally contains the term frequency, document frequency, and numerical
offset into the text. Without them, the same information can be derived at runtime
but that's slower. While disabled by default, enabling term vectors for a field in
schema.xml enhances:

• MoreLikeThis queries, assuming that the field is referenced in mlt.fl
and the input document is a reference to an existing document (that is
not externally passed in).

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[336]

• By highlighting search results with the standard or FastVector highlighter

By enabling term vectors for a field increases the index size and indexing time, and
isn't required to perform MoreLikeThis queries or highlight search results; however,
typically, if you are using these features, then the enhanced performance gained is
worth the longer indexing time and greater index size.

Improving phrase search performance
For indexes reaching a million documents or more, phrase searches can be slow.
If you are using the automatic phrase boosting features of the DisMax query parser
(excellent for relevancy), then more phrase queries are occurring than you may be
aware of. What slows down phrase searches are the presence of terms in the phrase
that show up in a lot of documents. In order to ameliorate this problem, particularly
common and uninteresting words such as "the" can be filtered out through a
stop filter. But this thwarts searches for a phrase such as "to be or not to be" and
prevents disambiguation in other cases where these words, despite being common,
are significant. Besides, as the size of the index grows, this is just a band-aid for
performance as there are plenty of other words that shouldn't be considered for
filtering out, yet are common.

Shingling (sometimes called word-grams) is a clever solution to this problem, which
combines pairs of consecutive terms into one so-called shingle. The original terms
still get indexed, but only the shingles are used in phrase queries. Shingles naturally
have a very low frequency relative to single words. Consider the text "The quick
brown fox jumped over the lazy dog". The use of shingling in a typical configuration
would yield the indexed terms (shingles) "the quick", "quick brown", "brown fox",
"fox jumped", "jumped over", "over the", "the lazy", and "lazy dog" in addition to all
of the original nine terms. Since so many more terms are indexed, naturally there is a
commensurate increase in indexing time and resulting index size. Common-grams is
a more selective variation of shingling that only shingles when one of the consecutive
words is in a configured list. Given the preceding sentence using an English stop
word list, the indexed terms would be "the quick", "over the", "the lazy", and the
original nine terms.

As a side benefit, these techniques also improve search relevancy
since the TF and IDF factors are using coarser units (the shingles)
than the individual terms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[337]

In our MusicBrainz dataset, there are nearly seven million tracks, and that is a lot!
These track names are ripe for either shingling or common-grams. Despite the high
document count, the documents are small and so the actual index is only a couple
gigabytes. Both the approaches are quite plausibly appropriate given different trade-
offs. Here is a variation of the MusicBrainz title field called title_commonGrams:

<fieldType name="title_commonGrams" class="solr.TextField"
 positionIncrementGap="100"">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
 <filter class="solr.CommonGramsFilterFactory"
 words="commongrams.txt" ignoreCase="true"/>"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
 <filter class="solr.CommonGramsQueryFilterFactory"
 words="commongrams.txt" ignoreCase="true""/>
 </analyzer>
</fieldType>

Notice that the filter's class name varies from index to
query time, which is very unusual.

To come up with a list of common words for common-grams, use stop words and
add some of the Top Terms list in Solr's schema browser as a guide for the field
in question. You could try a more sophisticated methodology, but this is a start.
Shingle filters go in the same position, but they are configured a little differently:

<!-- index time …-->
<filter class="solr.ShingleFilterFactory"
 maxShingleSize="2" outputUnigrams="true"/>
<!-- query time -->
<filter class="solr.ShingleFilterFactory"
 maxShingleSize="2" outputUnigrams="false"
 outputUnigramsIfNoShingles="true"/>

You might choose to save additional index space and search performance by adding
a stop filter after shingling or common-grams for typical stop-words so long as they
don't need to be searchable by themselves. This wasn't done here for MusicBrainz
song titles since we didn't feel it was worth it on name data.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[338]

Evaluating the search performance improvement of shingling proved to be tricky
for the limited time I gave it. Some rough (nonscientific) testing showed that a search
for Hand in my Pocket against the shingled field versus the nonshingled field was two
to three times faster. I've seen very compelling search performance numbers using
common-grams from others online, but I didn't evaluate it.

Shingling and common-grams increase phrase search performance at the expense
of indexing speed and disk use. In the following table, I present the relative cost of
these two techniques on the track name field in MusicBrainz compared to the cost
of doing typical text analysis. These percentages may look high and might scare you
away, but remember that these are based purely on one aspect (the index portion) of
one field. The overall index time and disk use didn't change dramatically, not even
with shingling. You should try it on your data to see the effects.

Indexing time increase % Disk space increase %
Common-grams 220% 25%
Shingling 450% 110%

The use of either is recommended for most applications
Given that shingling takes over five times as long and uses twice
as much disk space, it makes more sense on small-to-medium
scale indexes, where phrase boosting is used to improve relevancy.
Common-grams is a relative bargain for all other applications.

Configuring Solr for near real-time
search
Real-time search is the ability to search for content immediately after adding/
updating it. A typical scenario is that a user is performing some sort of add/update
action on content, then the system is able to process the change fast enough so that
if the user then searches for that immediately, they will always be able to see the
latest changes applied. Near real-time search (often abbreviated to NRT) allows
for a larger time window—most would say less than 5 seconds. This time window,
however big or small it is, is also known as the index latency. Solr 4's commits are
faster than before, and it has a new even faster soft commit ability. As a result, all
apps can have NRT search, and with some tuning, some can commit so fast that
you can reasonably say you have real-time search!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[339]

Here are a series of tips to consider in your quest for the holy grail of real-time search
with Solr:

• Use soft commits with autoCommit! Solr's default example configuration
ships this way; the only thing you need to do is supply a commitWithin
time (perhaps 1 or 2 seconds) on the commits you issue from a client, which
will trigger a soft commit sometime within that window. Ensure that your
window is large enough for how long a soft commit takes. Test this simply
by using softCommit=true in your URL to update Solr. The indexing
chapter has some more information on the subject. The autoCommit window
in solrconfig.xml should be somewhere between 15 seconds and a minute
or so.

• If your query load is high enough that you need replicas, you should
use SolrCloud and definitely not the old master/slave replication setup.
Near real-time search at scale is one of SolrCloud's main features.

• Minimize warming, which hugely affects how long commits, especially
soft ones, take. Reduce the autowarmCount of your caches and reduce the
amount of work your queries do in the newSearcher listener. Keep those
queries to their essentials—a query that uses sorting, faceting, and function
queries on applicable fields.

• Use docValues on any field that you sort on, facet on, or some other features.
This was explained earlier in this chapter.

• Follow any previous guidance on performance tuning, especially schema-
related advice to minimize indexing time.

• Use SSD disks if you can afford it. Definitely avoid virtualization.
• Spread the documents over more shards so that the shards are smaller, which

will query faster. In striving for NRT search, many configuration choices slow
down searches, and so, smaller shards help balance those effects.

• Consider reducing the ratio of Solr shards on a machine per number of CPU
cores so that more machine resources are available for the frequent commit
rate and warming activity.

Use SolrCloud to go big – scale wide
Once you've optimized Solr running on a single server, and reached the point of
diminishing returns for optimizing further, the next step is to shard your single
index over multiple Solr nodes, and then share the querying load over many Solr
nodes. The ability to scale wide is a hallmark of modern scalable Internet systems,
and Solr shares this.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[340]

Arguably the biggest feature in Solr 4, SolrCloud provides a self-managing cluster
of Solr servers (also known as nodes) to meet your scaling and near real-time search
demands. SolrCloud is conceptually quite simple, and setting it up to test is fairly
straightforward. The challenge typically is keeping all of the moving pieces in sync
over time as your data set grows and you add and remove nodes.

What about master/slave replication?
In the past years, our data volumes were small enough that we could
store all our data in a single index, and use a master/slave replication
process to create many copies of our index to deal with query volume,
at the cost of introducing more latency to the update process. SolrCloud,
however, deals with the twin problems of massive data volumes that
require sharding to support them, and minimizing latency to support
near real-time search.

SolrCloud uses Apache ZooKeeper to keep your nodes coordinated and to host
most of the configuration files needed by Solr and your collections. ZooKeeper is
not unique to Solr; other projects such as Apache Hadoop and Kafka use it too.
ZooKeeper is responsible for sharing the configuration information and, critically,
the state of the cluster's nodes. SolrCloud uses that state to intelligently route index
and search requests around the cluster. ZooKeeper is a compact piece of server
software installed on a few of the hosts in your cluster, although you can use an
embedded version that ships with Solr for development. You don't want to use
embedded ZooKeeper in production because if you take down a Solr node that is
running ZooKeeper, then you might also paralyze your SolrCloud cluster if the
number of ZooKeeper nodes falls below a quorum. See more about ZooKeeper
in Chapter 11, Deployment.

Handling failover automatically is a huge benefit of SolrCloud,
particularly as the node count increases.

This new way of managing Solr clusters comes with some new and modified
terminology. Let's take a look at the terms you'll need to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[341]

SolrCloud glossary
The first step in learning SolrCloud is understanding the subtle changes to the
definition of terms we've used with Solr in the past. For example, cores and shards
were often treated as interchangeable in simple Solr installations. In SolrCloud, they
live on two separate tiers of the architecture; one represents a logical concept while
the other represents a physical container for data.

We've broken down our SolrCloud terms by layer. Collections and shards comprise
the logical layer. The physical layer contains the implementation details that make
the logical layer possible such as cores, leaders, replicas, and clusters.

Logical layout

collection This is a logical container for a set of documents. They share the same
schema and configuration. If a collection is large enough to warrant it, it is
further divided into multiple shards.

shard This is a logical slice of a collection. There may be one or more shards for
each collection. A shard has one or more physical Solr cores assigned to the
shard that are replicas of each other for durability and for handling higher
load for the shard. The replicas for a shard are generally distributed across
multiple nodes / machines.

Physical layer
core,
replica

A core is a replica of a shard of a collection, it's an index with all of the
documents assigned to that shard and so do the other cores/replicas
assigned to the same shard. In SolrCloud, all cores are assigned to a shard
and thus a collection. And unlike a core before SolrCloud, the configuration
is in ZooKeeper linked via the collection; it's not read from the filesystem.

leader This is a replica designated to additionally be responsible for managing
new or updated documents. Exactly one of the replicas for the shard always
has this designation. When new or updated documents are submitted
to a replica, it is forwarded to the leader if that replica doesn't have that
role. The leader then propagates the document to all replicas. SolrCloud
manages assigning and changing leadership roles among the cores; you
generally don't have to concern yourself with who is the leader.

node This is a single running Solr Java process in SolrCloud mode. Solr is in
SolrCloud mode by virtue of configuring the ZooKeeper information
at startup (for example, –DzkHost=…). Typically, you'll have one node
running on each server, but this isn't always true for bigger hardware.

cluster This is a group of nodes configured with the same ZooKeeper information.
A cluster hosts document collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[342]

Now, let's look at a diagram of how these various components map to each other:

Physical tier of SolrCloud

Launching Solr in SolrCloud mode
We can leverage the techniques covered in Chapter 11, Deployment, to host SolrCloud
but we'll also need to include a few arguments to Java, as well as planning a strategy
for running ZooKeeper.

At minimum the zkHost system property will need to be included and should
contain a list of ZooKeeper URIs separated with a semicolon. These URIs will
almost always include the port that ZooKeeper is running on. The root key for
this specific cluster is sometimes included as well when a ZooKeeper instance is
shared by multiple SolrClouds.

Here's an example of launching Solr from a command prompt with two ZooKeeper
hosts named zk1.example.com and zk2.example.com:

>> java -DzkHost=zk1.example.com:2181;zk2.example.com:2181 …

In Solr 5, and optionally in Solr 4.10, you will instead do this:
bin/solr -z zk1.example.com:2181;zk2.example.com:2181

Note that this command will throw an error if none of the ZooKeeper hosts listed
here are alive and responding to requests, or if you haven't created a configuration
for your collection in ZooKeeper already.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[343]

The simplest way around these requirements is passing the bootstrap_conf and
zkRun parameters. Note that neither of these are recommended for a production
cluster. The zkRun parameter causes Solr to start an embedded instance of ZooKeeper
and the bootstrap_conf parameter requires that the node have its own copy of the
configuration files for the collection. These options might be useful for a trivial or
learning implementation, but might interfere with availability and manageability
for all but the smallest clusters.

As a general rule, keep your Solr startup parameters for each node as
simple as possible. Anything that can be managed by the collections API
or ZooKeeper (both discussed later) should not be included in the launch
config for individual nodes. A good node configuration might just include
the zkHost parameter and any required JVM tuning settings. Most
SolrCloud tutorials outside of this book will have you clearly violating
our advice, but we recommend sticking to this, even when getting started.
Otherwise, it confuses collection configuration with Solr startup—things
that should have nothing to do with each other.

Managing collections and configurations
"Apache ZooKeeper is a centralized network service for maintaining configuration
information, naming, providing distributed synchronization, and providing group
services.", as defined on ZooKeeper's website. A simpler way to understand it, as
seen by a developer is, that it appears as a distributed in-memory filesystem. It was
designed specifically to help manage the data about a distributed application, and
to be clustered and highly available in the face of inevitable failures. The index data
does not go in ZooKeeper.

SolrCloud uses ZooKeeper as a system of record for
the cluster state, for centralized configuration, and
to coordinate leader election.

As mentioned earlier, we don't want to rely on the bootstrap_conf option when
we are launching nodes. So the first thing we need to do with ZooKeeper is upload
the configuration for one of our collections. The SolrCloud documentation includes a
great example of how to create a configuration. We'll include it here for convenience.

This next set of examples is based on the all-in-one SolrCloud script in
./examples/10/start-musicbrainz-solrcloud.sh. When you run the script it will:

1. Download the Solr distribution from the book website.
2. Unpack it and copy it multiple times, once for each node you want to start up.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[344]

3. Load, using the following command line, the mbtypes general purpose
configuration into ZooKeeper:
>> java -classpath example/solr-webapp/WEB-INF/lib/*
org.apache.solr.cloud.ZkCLI -cmd upconfig -zkhost
localhost:2181 -confdir configsets/mbtype/conf -confname
mbtypes -solrhome example/solr

In Solr 5, replace everything before -cmd with a bash script
reference to server/scripts/cloud-scripts/zkcli.sh.

4. Start up multiple separate Solr processes. The first one runs on port 8983,
the subsequent ones start on port 8985,8986, and so on.

Eventually, you will want to update the configuration files in SolrCloud.
We recommended keeping these files in some type of source control system
such as Git or SVN; that way anyone can check them out and make adjustments.
Once changes have been made, they will need to be posted back to ZooKeeper
using the same upconfig command we saw earlier.

If you'd like finer control, you can post individual files or even arbitrary data
to be treated like a configuration file as well as deleting, linking, and even
bootstrapping multiple configuration sets. See the Solr Command Line Utilities
documentation at https://cwiki.apache.org/confluence/display/solr/
Command+Line+Utilities for specifics.

Stand up SolrCloud for our MusicBrainz artists index
So let's start up SolrCloud for our MusicBrainz dataset that we have played with in
previous chapters. We've provided an example script that downloads Solr, unpacks
it, and runs as many servers as you want. I recommend 2 to 4 nodes on a typical
multicore laptop.

Under /examples/10, run the script to stand up your SolrCloud nodes:

>>./start-musicbrainz-solrcloud.sh 2 2

Refresh the Admin Cloud Graph view and you will have something like the
following diagram:

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities
https://cwiki.apache.org/confluence/display/solr/Command+Line+Utilities
http://www.it-ebooks.info/

Chapter 10

[345]

The script takes two parameters, the number of nodes you want and the number of
shards for your default index, called collection1. This script is heavily influenced
by the /cloud-dev scripts that are in the Solr source tree, a resource worth looking at.

Once the script has downloaded Solr and fired up the various Solr nodes, pull up
the Cloud admin panel, and you will see the default collection1 created. As part
of the script, it loaded the mbtype configuration files into ZooKeeper. You can see
them listed under /configs in the Tree view. Inspect the shell script to see the exact
command we used to upload the configuration files to ZooKeeper.

To monitor the progress of the various nodes, you can easily tail the logs:

>> tail -f solrcloud-working-dir/example*/example*.log

To create the collections, just call the collections API:

>> curl 'http://localhost:8983/solr/admin/collections?action=CREATE&
name=mbartists&numShards=2&replicationFactor=1&maxShardsPerNode=2&col
lection.configName=mbtypes'

Once the command finishes, refresh the cloud view in the Solr admin. Play with
the numShards, replicationFactor, and maxShardsPerNode settings, to visually
get a sense of how SolrCloud distributes shards. Go big, try numShards of 8,
replicationFactor of 4, and maxShardsPerNode of 30 to see the possibilities
of SolrCloud.

Once you have the configuration you want, back up to /examples and reindex the
MusicBrainz data:

>> ant index:mbartists

In my experiments, even running all the nodes on my local laptop, the time to index
the mbartists dataset dropped by 25 percent due to the sharding of the dataset over
multiple processes compared to not using SolrCloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[346]

Choosing the replication factor and number
of shards
When you create a collection, you specify the degree to which its documents are
replicated (copied) and sharded (divided) using the replicationFactor and
numShards parameters, respectively.

The number of shards tells SolrCloud how many different logical slices the
documents are to be divided into. Each additional shard improves indexing
performance and usually increases query performance. Each search will internally
be a distributed search among the shards. If a collection has too many shards, there
will be diminishing returns due to coordinating and merging so many requests.

One way to think about the number of shards versus the replication factor is to
imagine you are ordering a set of encyclopedias to share with your family. In this
example, we'll say each volume in the encyclopedia set is a shard containing a
number of articles (that is, Solr documents). We'll assume one volume per letter in
the alphabet, so numShards=26. This keeps each volume small enough that it's easy
to read and we don't need to "scale up" our desk or bookshelf. And for our first
illustrated example, we'll use a replicationFactor of 1—just one copy of the data.
In SolrCloud terms, each physical volume is the only replica (also known as core) for
its shard since the replicationFactor is 1. If I want to read or "update" the entry
for Antelope, I'll need the "A" volume.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[347]

If we were buying encyclopedias for a local library, we might find that the volume
of requests was high enough that people were lingering by the shelves waiting for a
volume to become free (note that Solr isn't going to queue the requests but replicas
will slow down if overwhelmed with concurrent load). Assuming we have plenty of
room on our shelves, we could order two more sets of the same encyclopedia; now
we have a numShards of 26 and a replicationFactor of 3. Even more importantly,
this means if one of the replicas were to become corrupt or if a library patron loses
a copy, the library now has other copies and it can replicate them when needed.
We have durability now.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[348]

Creating and deleting collections
Collections are managed using the collections or core admin APIs—RESTful APIs
invoked via simple URLs. This is a big difference compared to pre-SolrCloud
approaches in which you usually pre-position cores where Solr expects to see them
or refer to them in solr.xml. Just send a request to the collections API on any node
in our cluster, and SolrCloud will manage that change across all the nodes.

Assuming you have started a SolrCloud cluster using ./examples/10/start-
musicbrainz-solrcloud.sh, then to add a new collection named musicbrainz
with data split into 4 shards, each with 2 replicas (8 cores total), we run:

>> curl 'http://localhost:8983/solr/admin/collections?action=CREATE
&name=musicbrainz&numShards=4&replicationFactor=2&collection.configNa
me=mbtype'

A few other parameters the CREATE action accepts are as follows:

• collection.configName: This allows you to specify which named
configuration to use for the collection if it doesn't have the same name
as the collection. The configuration must be uploaded into ZooKeeper
before creating the collection.

• createNodeSet: This takes a comma-separated list of nodes, and limits
the new collection to only those nodes. It lets you deploy a collection on a
subset of SolrCloud nodes. It becomes more important if you are deploying
many collections on a single SolrCloud cluster, and want to make sure you
are controlling the distribution of load across the cluster. SolrCloud doesn't
know which nodes are heavily taxed and which are not, or which nodes are
on the same rack when it provisions replicas, but you can tell it where to
provision them.

• maxShardsPerNode: This sets the maximum number of shards that a node
supporting this collection can contain. The preceding example needs 8
cores across the cluster, which will default to requiring 8 nodes. Setting
maxShardsPerNode=4 will only require 2 nodes; each one will be hosting
4 replicas. SolrCloud is smart enough to divide the shards evenly among
the available nodes to reduce single-points-of-failure when that's possible.
Furthermore, you should generally have at least as many CPU cores on
these nodes as there are Solr cores since each search will result in one
concurrent search thread per shard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[349]

Replicas and leaders
Each shard has one or more copies of itself in the cloud at any point in time. SolrCloud
will strive to make sure that each shard has a number of replicas at least equal to the
replicationFactor specified for that collection. Any of these replicas can be used
during a search query.

Update queries must be handled by a leader for that shard. Leaders are responsible for
managing changes to all the documents in their shard. At any given time there will be
exactly one leader for a given shard. Imagine, if, instead of encyclopedias like in the
precious example, we were keeping a list of all the telephone numbers for people in a
company. We could break that list up by department (sharding) as well as making a
copy for each person in that department (replication). Then we appoint one person in
each department to keep the list up to date and send updated copies to everyone else.
If they leave, we appoint someone else to the job. The leaders in SolrCloud operate the
same way. For each shard/department in our analogy, we appoint one node to process
all changes for that shard. If that node disappears, a new leader is elected.

A new leader is elected when the existing leader disconnects
from ZooKeeper.

If a client issues an update to any node in the cloud, it will be automatically routed to
the leader for the appropriate shard. While this is very efficient, it's worth noting that
the SolrJ library takes an even more efficient route. The CloudSolrServer SolrJ client
connects to the ZooKeeper server, and is able to always send requests to the node
that's acting as the leader for a shard without routing through a middleman.

Document routing
Out of the box, SolrCloud uses a hash of the document's IDs to determine which shard
it belongs to. Most of the time, this is fine; it will result in equal shard sizing. However,
sometimes you need more control over which documents are colocated. For example,
if you are using result grouping (also known as field collapsing), then all documents
in the same group must be on the same shard. And to optimize search over huge
collections, you can sometimes identify useful groupings of the documents that you
keep together on certain shards such that when you do a search you can sometimes
specify a subset of the shards to search. There are a couple options that SolrCloud has
beyond the default.

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[350]

The primary option is enabled by what's called the compositeId router—the default
mechanism a collection uses. Basically, you tell SolrCloud what piece of data in a
document it should take the hash on to determine which shard it belongs to. There
are two ways to do this: by configuring the collection to use a certain field via
router.field (a parameter supplied when creating the collection) which has this
data, or by prefixing the ID with the data using ! as a delimiter. If you use router.
field, then the specified field is now required. As an example, if we had a set of
products in our search index that could be easily categorized into departments, we
could use the department instead of the ID to control sharding without adjusting
the configuration. Provide the department as a prefix to the document ID, separated
by ! (for example, "housewares!12345"). Later, if we know a user is searching
within that specific department, we can limit the query to only that shard by passing
route=housewares in our search query. This can greatly increase search speed on
a large index, and in some cases may help improve relevancy precision.

>> curl http://localhost:8983/solr/collection1/select?
collection=collection1&_route_=housewares

The other option is to use the implicit router, otherwise known as manual
sharding. It's used when the desired mapping of documents to shards doesn't
match the preceding description. For example, what if all your data is time-stamped
(like Twitter tweets or log data) and you only want to keep the last year of data on
an on-going basis. The most efficient way to do this is to divide the past year into
shards, perhaps by month, and then when a new month starts, you simply remove
the oldest shard (month) and you add a new one. This is really fast since only
one shard is being indexed to. To use the implicit router, you create the collection
without specifying numShards (not very intuitive, ehh?). When in this mode, your
indexing client is responsible for sending the document to the correct shard; Solr
won't route it.

The compositeId router is definitely the simplest to use,
and it's harder to use shard splitting with the implicit router.

Shard splitting
As of Solr 4.3.1, you can split a shard into two smaller shards, even while indexing
and searching—this is a very important feature. Over the life of a collection, you
may need to split your shards to maintain search performance as the size of the
index grows. If you customized how documents are routed, some specific shards
may be larger or receive more traffic and thus might need to be split without
necessarily splitting the others.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[351]

After SolrCloud finishes the split, the old shard will still exist but be in an inactive
state, so you'll want to delete it afterwards. Sending the following command to any
SolrCloud node will result in shard1 being split and replaced with shard1_0 and
shard1_1:

>> curl 'http://localhost:8983/solr/admin/collections?
action=SPLITSHARD&collection=mbartists&shard=shard1'

Now check that it finished successfully. When it has, delete the original shard:

>> curl 'http://localhost:8983/solr/admin/collections?
action=DELETESHARD&collection=mbartists&shard=shard1'

Dealing with long running collection tasks
Added in Solr 4.8 is the ability to submit long running tasks in an asynchronous
mode. For example, splitting a shard or creating a collection that is highly sharded
and has many replicas may take a long time. To support this, just supply the async
parameter with a unique ID that you want to refer the operation by. Let's create a
collection asynchronously:

>> curl 'http://localhost:8983/solr/admin/collections?
action=CREATE&name=massive_sharding&numShards=6&replicationFactor=6&m
axShardsPerNode=40&collection.configName=mbtype&async=99'

The async=99 parameter is determined by you, and needs to track this operation.
The response will come back immediately, and then you can check the status by
using a REQUESTSTATUS command:

>> curl 'http://localhost:8983/solr/admin/collections?
Action=REQUESTSTATUS&requestid=99'

Oddly enough, the parameter is called async when you create it, and requestid
when you go back to look it up. It will give you status information; however, if the
operation is failing, you might not get the same level of debugging. For example,
if you try to create a collection with the same name as an existing collection, the
REQUESTSTATUS command just tells you that the command failed.

To clear out the history of requests, call REQUESTSTATUS with a requestid of -1:

>> curl 'http://localhost:8983/solr/admin/collections?
Action=REQUESTSTATUS&requestid=-1'

www.it-ebooks.info

http://www.it-ebooks.info/

Scaling Solr

[352]

Adding nodes
New nodes can be added to SolrCloud at anytime just by launching Solr and
providing the zkHost parameter that points to your ZooKeeper ensemble:

>> java -DzkHost=zk1.example.com:2181

This new node will then become available to host replicas for any of the collections
registered with ZooKeeper. You can then use the ADDREPLICA command to create
new replicas that are hosted by the newly added node. To add a new node to our
MusicBrainz cluster, run the script ./examples/10/add-musicbrainz-node.sh
and pass in an unused port number for Jetty:

>>./add-musicbrainz-nodes.sh 8989

Then you can add more replicas using the following code:

>> curl 'http://localhost:8983/solr/admin/collections?
Action=ADDREPLICA&collection=mbartists&shard=shard2&node=10.0.1.200:8
989_solr'

Notice that the node name is a very specific pattern. It is the name that is assigned to
it when the node joined ZooKeeper, and you can find it listed in the Cloud Tree view
under /live_nodes. When you add a new replica, it will start, using replication under
the covers, to copy all the data from the leader to the newly added replica. Refresh the
Cloud Graph view and you will see the node go from Recovering to Active state.

Summary
Solr offers many knobs and levers for increasing performance; the biggest challenge
can be figuring out which knobs and levers to use! Make sure you budget your time
to try a number of approaches, and take a step-wise approach to trying different
approaches out. From turning the simpler knobs for enhancing the performance
of a single server, to pulling the big levers of scaling wide through using SolrCloud,
performance and scalability with appropriate hardware are issues that can be solved
fairly easily, and Solr provides almost linear scaling. The SolrCloud codebase has
evolved quickly over the course of 4.x, so if you are on an older version, especially
prior to 4.7.1, you will find many enhancements and stability fixes to encourage you
to upgrade.

www.it-ebooks.info

http://www.it-ebooks.info/

[353]

Deployment
Now that you have identified the information you want to make searchable,
built the Solr schema to support your expected queries, and made the tweaks
to the configuration you need, you're ready to deploy your Solr-based search
platform into production. While the process of deployment may seem simple
after all the effort you've gone through in development, it brings its own set
of challenges. In this chapter, we'll look at the issues that come up when going
from "Solr runs on my desktop" to "Solr is ready for the enterprise".

We'll cover the following topics in this chapter:

• Implementation methodology
• Installing Solr into a Servlet container
• Configuring logging
• A SearchHandler per search interface
• Solr cores, and the new admin features
• Setting up ZooKeeper for SolrCloud
• Monitoring Solr
• Securing Solr

Deployment methodology for Solr
There are a number of questions that you need to ask yourself in order to inform the
development of a smooth deployment strategy for Solr. The deployment process
should ideally be fully scripted and integrated into the existing Configuration
Management (CM) process of your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[354]

Configuration Management is the task of tracking and controlling
changes in the software. CM attempts to make the changes that
occur in software knowable as it evolves to mitigate mistakes
caused due to those changes.

Questions to ask
The list of questions that you'll want to answer to work in conjunction with your
operations team includes:

• How similar is my deployment environment to my development and test
environments? Can I project that if one Solr instance was enough to meet
my load requirements in test, then it is also applicable to the load expected
in production based on having similar physical hardware?

• Do I need multiple Solr servers to meet the projected load or for failover?
If you do, look back at Chapter 10, Scaling Solr.

• Do I have an existing build tool such as Ant/MSBuild/Capistrano with which
to integrate the deployment process? Even better, does my organization use a
deployment tool such as Puppet or Chef that I can leverage?

• How will I import the initial data into Solr? Is this a one-time-only process
that might take hours or days to perform and needs to be scheduled ahead of
time? Is there a nightly process in the application that will perform this step?
Can I trigger the load process from the deploy script?

• Have I changed the source code required to build Solr to meet my
own needs? Do I need to version it in my own source control repository?
Can I package my modifications to Solr as discrete components instead
of changing the source of Solr and rebuilding?

• Do I have full access to the data in production, or do I have to coordinate
with an operations team who are responsible for controlling access to
production? If operations is performing the indexing tasks, are the steps
required properly documented and automated?

• Have I defined acceptance tests for ensuring Solr is returning the appropriate
results for a specific search before moving to production?

• What are the defined performance targets, such as requests per second,
time to index data, time to perform query that Solr needs to meet? Are these
documented as a Service Level Agreement (SLA)?

• Into what kind of servlet container (Tomcat, Jetty, or JBoss) will Solr be
deployed? Does how I secure Solr change depending on the servlet container?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[355]

• What is my monitoring strategy for making sure Solr is performing properly?
This isn't just about Solr's response time or error monitoring but critically
includes the user queries. The single best tool for improving your search
relevance is to look at your user queries. A reasonable user query that is
returning zero results directly points to how you can improve your relevancy.

• Do I need to store index data directories separately from application code
directories, for instance, on a separate hard drive? If I have small enough
indexes to fit in RAM, can I use a memory-based filesystem? Can I use SSDs?

• What is my backup strategy for my indexes, if any? If the indexes can be
rebuilt quickly from another data source, then backups may not be needed.
However, if the indexes are the "Gold Master", such as from crawling the
Web for data that can't be re-crawled, or the time to rebuild an index is
too great, then frequent backups are crucial.

• Are any scripted administration tasks required, for example, performing index
optimizations, old backups removal, deletion of stale data, or rebuilding spell
check dictionaries?

• Am I better off with an externally hosted Solr capability? There are a number
of companies that have launched SaaS offerings for Solr, from Acquia offering
hosted Solr search specifically for Drupal websites to WebSolr providing a
generic Solr hosting option.

Installing Solr into a Servlet container
Solr is deployed as a simple WAR (Web application archive) file that packages up
the servlet, JavaScript files, code libraries, and all of the other bits that are required
to run Solr. Therefore, Solr can be deployed into any Java EE Servlet container that
meets the Servlet 2.4 specification, such as Apache Tomcat, JBoss, and GlassFish,
as well as Jetty, which by default ships with Solr.

Differences between Servlet containers
The key thing to resolve when working with Solr and the various Servlet containers
is that technically you are supposed to compile a single WAR file and deploy that
into the Servlet container. It is the container's responsibility to figure out how to
unpack the components that make up the WAR file and deploy them properly.
For example, with Jetty, you place the WAR file in /webapps, but when you start
Jetty, it unpacks the WAR file in /work as a subdirectory, with a somewhat cryptic
name that looks something like Jetty_0_0_0_0_8983_solr.war__solr__k1kf17.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[356]

In contrast, with Apache Tomcat, you place the solr.war file into /webapp. When
you either start up Tomcat, or Tomcat notices the new .war file, it unpacks it into /
webapp. Therefore, you will have the original /webapp/solr.war and the newly
unpacked (exploded) /webapp/solr version. The Servlet specification carefully
defines what makes up a WAR file. However, it does not define exactly how to
unpack and deploy the WAR files, so your specific steps will depend on the Servlet
container you are using. For information specific to various servlet containers, see
Solr's wiki at http://wiki.apache.org/solr/SolrInstall. If you are not strongly
predisposed to choosing a particular Servlet container, then choose Jetty, which is a
remarkably lightweight, stable, and fast Servlet container. It is what Solr is developed
against, and is the least likely to give you problems. Note that, in Solr 5, the need for
a servlet container to host Solr will be removed, and Solr will run in it's own process,
like MySQL or any other server process does, using the installation and start scripts.
For more information, refer to the following wiki pages: https://cwiki.apache.
org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrto
Production-ServiceInstallationScript and https://cwiki.apache.org/
confluence/display/solr/Solr+Start+Script+Reference.

Defining the solr.home property
Probably the biggest thing that trips up folks deploying into different containers is
specifying the solr.home property. Solr stores all of its configuration information
outside of the deployed webapp, separating the data part from the code part for
running Solr. In the example app, while Solr is deployed and running from a
subdirectory in /work, the solr.home directory is pointing to the top level /solr
directory, where all of the data and configuration information is kept. You can think
of solr.home as being analogous to where the data and configuration is stored for
a relational database such as MySQL. You don't package your MySQL database as
part of the WAR file, and nor do you package your Lucene indexes.

By default, Solr expects the solr.home directory to be a subdirectory called /solr
in the current working directory as defined by the Servlet container. With both Jetty
and Tomcat you can override that by passing in a JVM argument that is somewhat
confusingly namespaced under the solr namespace as solr.solr.home:

-Dsolr.solr.home=/Users/epugh/solrbook/solr

Alternatively, you might find it easier to specify the solr.home property by appending
it to the JAVA_OPTS system variable. On Unix systems, you would do the following:

>>export JAVA_OPTS=\"$JAVA_OPTS -
Dsolr.solr.home=/Users/epugh/solrbook/solr"

www.it-ebooks.info

http://wiki.apache.org/solr/SolrInstall
https://cwiki.apache.org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrtoProduction-ServiceInstallationScript
https://cwiki.apache.org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrtoProduction-ServiceInstallationScript
https://cwiki.apache.org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrtoProduction-ServiceInstallationScript
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference
http://www.it-ebooks.info/

Chapter 11

[357]

Alternatively, lastly, you might choose to use JNDI with Tomcat to specify the
solr.home property as well as where the solr.war file is located. JNDI (Java Naming
and Directory Interface) is a very powerful, if somewhat difficult to use, directory
service that allows Java clients such as Tomcat to look up data and objects by name.

By configuring the stanza appropriately, we were able to load up the solr.war file
and home directory from the example configuration shipped with Jetty using Tomcat
instead. The following stanza went in the /apache-tomcat-6-0.18/conf/Catalina/
localhost directory that we downloaded from http://tomcat.apache.org, in a file
called solr.xml:

<Context docBase="/Users/epugh/solr_src/example/webapps/solr.war"
 debug="0" crossContext="true" >
<Environment name="solr/home" type="java.lang.String"
 value="/Users/epugh/solr_src/example/solr"
 override="true" />
</Context>

We had to create the ./Catalina/localhost subdirectories manually.

Note the somewhat confusing JNDI name for solr.home is
solr/home. This is because JNDI is a tree structure, with the home
variable being specified as a node of the Solr branch of the tree.
By specifying multiple different context stanzas, you can deploy
multiple separate Solr instances in a single Tomcat instance.

Configuring logging
Solr's logging facility provides a wealth of information, from basic performance
statistics, to what queries are being run, to any exceptions encountered by Solr.
The log files should be one of the first places you look when you want to investigate
any issues with your Solr deployment. There are two types of logs:

• The HTTP server request style logs, which record the individual web
requests made to Solr.

• The Solr application logging that uses SLF4J (Simple Logging Framework
for Java, a logging façade), which uses the built-in Java JDK logging facility
to log the internal operations of Solr.

www.it-ebooks.info

http://tomcat.apache.org
http://www.it-ebooks.info/

Deployment

[358]

HTTP server request access logs
The HTTP server request logs record the requests that come in and are defined by the
Servlet container in which Solr is deployed. For example, the default configuration
for managing the server logs in Jetty is defined in jetty.xml:

<Ref id="RequestLog">
 <Set name="requestLog">
 <New id="RequestLogImpl"
 class="org.mortbay.jetty.NCSARequestLog">
 <Arg><SystemProperty name="jetty.logs"
 default="./logs"/>/yyyy_mm_dd.request.log</Arg>
 <Set name="retainDays">90</Set>
 <Set name="append">true</Set>
 <Set name="extended">false</Set>
 <Set name="LogTimeZone">GMT</Set>
 </New>
 </Set>
</Ref>

The log directory is created in the subdirectory of the Jetty directory. If you have
multiple drives and want to store your data separately from your application
directory, then you can specify a different directory. Depending on how much
traffic you get, you should adjust the number of days to preserve the log files.

We recommend you keep the log files for as long as possible by archiving them. The
search request data in these files is some of the best data available to help you improve
the relevancy of your search results. By using web analytics tools such as the open
source AWStats package to parse your request logs, you can quickly visualize how
often different queries are run, and what search terms are frequently being used.
This leads to a better understanding of what your users are searching for.

Tailing the HTTP logs is one of the best ways to keep an eye on a deployed Solr.
You'll see each request as it comes in and can gain a feel for what types of transactions
are being performed, whether it is frequent indexing of new data, or different types
of searches being performed. A pause in the logging will quickly highlight garbage
collection issues!

The request time data will let you quickly see performance issues. Here is a sample
of some requests being logged. You can see that the first request is a POST to the /
solr/update URL from a browser running locally (127.0.0.1) with the date. The
request was successful, with a 200 HTTP status code being recorded. The POST took
149 milliseconds. The second line shows a request for the admin page being made,
which also was successful and took a slow 3,816 milliseconds, primarily because in
Jetty, the JSP page is compiled the first time it is requested.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[359]

The last line shows a search for dell being made to the /solr/select URL.
You can see that up to 10 results were requested and that it was successfully
executed in 378 milliseconds.

On a faster machine with more memory and a properly "warmed" Solr cache,
you can expect a few tens of milliseconds result time. Unfortunately, you don't
get to see the number of results returned, as this log only records the request.

127.0.0.1 - - [25/02/2015:22:57:14 +0000] "POST /solr/update
HTTP/1.1" 200 149
127.0.0.1 - - [25/02/2015:22:57:33 +0000] "GET /solr/admin/
HTTP/1.1" 200 3816
127.0.0.1 - - [25/02/2015:22:57:33 +0000] "GET /solr/admin/
 solr-admin.css
 HTTP/1.1" 200 3846
127.0.0.1 - - [25/02/2015:22:57:33 +0000] "GET
 /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2015:22:57:33 +0000] "GET /solr/admin/
 solr_small.png
 HTTP/1.1" 200 7926
127.0.0.1 - - [25/02/2015:22:57:33 +0000] "GET
 /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2015:22:57:36 +0000] "GET
 /solr/select/?q=dell%0D%0A&version=2.2&
 start=0&rows=10&indent=on
 HTTP/1.1" 200 378

While you may not see things quite the same way Neo did in the movie The Matrix,
you will get a good gut feeling of how Solr is performing!

AWStats is a full-featured open source request log file analyzer
under the GPL license and is available from http://awstats.
sourceforge.net.

Solr application logging
Logging events is a crucial part of any enterprise system. Veteran Java programmers
know that the history of Java and logging is complicated, resulting in a fragmented
landscape. However, logging in Solr has long been a fraught situation, with various
approaches to logging, from Java's built-in logging (also known as JDK logging) to
Log4J competing with each other.

www.it-ebooks.info

http://awstats.sourceforge.net
http://awstats.sourceforge.net
http://www.it-ebooks.info/

Deployment

[360]

As of Version 1.4, Solr standardized on using the Simple Logging Facade for Java
(SLF4J) package, which logs to another target logging package selected at runtime
instead of at compile time, but to do this, you have to change the logging JAR files
inside the WAR file, a nonobvious process! So in Solr 4.3, all the logging files were
removed from the Solr WAR file. Instead, you are to provide your own logging files
for your chosen implementation. If you use the default Jetty-based Solr package,
you'll see that the SLF4J, Log4J, and related jars are in ./lib/ext/. If you want
to change what logging you use, change the jar files there, without repackaging
Solr. There is more information on the wiki at https://wiki.apache.org/solr/
SolrLogging; however, hopefully, logging is a solved topic for the Solr community
from here on out. Logging has been, as Erik Hatcher in a post to the solr-dev
mailing list memorably called it: a JARmageddon.

Configuring logging output
By default, Solr sends its logging messages to the standard error stream:

0 [main] INFO org.eclipse.jetty.server.Server – jetty-
8.1.10.v20130312

Obviously, in a production environment, Solr will be running as a service, and you
will want the messages to be recorded to a log file instead. Here is an example of
setting up logging to a file using JDK logging. Create a logging.properties file
(an example is at examples/11/logging.properties) with the following content:

Default global logging level:
.level = INFO

Write to a file:
handlers = java.util.logging.ConsoleHandler,
java.util.logging.FileHandler

Write log messages in human readable format:
java.util.logging.FileHandler.formatter =
java.util.logging.SimpleFormatter
java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

Log to the logs subdirectory, with log files named solrxxx.log
java.util.logging.FileHandler.pattern = ./logs/solr_log-%g.log
java.util.logging.FileHandler.append = true
java.util.logging.FileHandler.count = 10
java.util.logging.FileHandler.limit = 10000000 #Roughly 10MB

www.it-ebooks.info

https://wiki.apache.org/solr/SolrLogging
https://wiki.apache.org/solr/SolrLogging
http://www.it-ebooks.info/

Chapter 11

[361]

When you start Solr, you need to pass the location of the logging.properties file:

>>java -Djava.util.logging.config.file=logging.properties -jar
 start.jar

By specifying two log handlers, you can send the output to the console as well as log
files. The FileHandler logging is configured to create up to 10 separate logs, each
with 10 MB of information. The log files are appended, so that you can restart Solr
and not lose previous logging information. Note, if you are running Solr as a service,
it is probably going to redirect the STDERR output from ConsoleHandler to a log file
as well. In that case, you will want to remove java.util.ConsoleHandler from the
list of handlers. Another option is to reduce how much is considered as output by
specifying java.util.logging.ConsoleHandler.level = WARNING.

Jetty startup integration
Regardless of which logging solution you go with, you don't want to make the
startup arguments for Solr more complex. You can leverage Jetty's configuration to
specify the system properties during startup. Edit jetty.xml and add the following
stanza to the outermost <Configure id="Server" class="org.mortbay.jetty.
Server"/> element:

<Call class="java.lang.System" name="setProperty">
<Arg>log4j.configuration</Arg>
<Arg>file:/Users/epugh/log4j.properties</Arg>
</Call>

This is also how you can configure other system properties that you might pass in
via –D parameters.

Managing log levels at runtime
Sometimes you need more information than you are typically logging to debug a
specific issue, so Solr provides an admin interface to change the logging verbosity
of the components in Solr.

While you can't change the overall setup of your logging strategy, such as the
appenders or file rollover strategies at runtime, you can change the level of detail to
log without restarting Solr. If you change a component like org.apache.solr.core.
SolrCore to FINE level of logging, then make a search request to see more detailed
information. One thing to remember is that these customizations are NOT retained
through restarts of Solr. If you find that you are reapplying log configuration changes
after every restart, then you should change your default logging setup to specify
custom logging detail levels.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[362]

Even if you adjust the logging levels here to something more
detailed, you probably still won't see the messages in the console.
By default, ConsoleHandler has an INFO level threshold. You
can lower it with this in your logging.properties: java.
util.logging.ConsoleHandler.level = FINE.
One of the challenges with logging is that you need to log enough
details to troubleshoot issues, but not so much that your log files
become ridiculously large and you can't winnow through the
information to find what you are looking for.
Tools have arisen to manage those log files and make actionable
decisions on the information stored within. Splunk and Loggly
are commercial options; however, recently, LucidWorks has
paired LogStash for collecting logs, Kibana for visualization, and
Solr for storing, and powering the interface has become available.
You can download the tool, and the open source components,
from http://www.lucidworks.com/lucidworks-silk/.

A RequestHandler per search interface
There are two questions to answer early on when configuring Solr and thinking
about who the consumers of the search services are—"Are you providing generic
search services that may be consumed by a variety of end user clients?" or "Are
you providing search to a specific application?"

If you are providing generic search functionality to an unknown set of clients, then
you might just have a single request handler handling search requests at /solr/
select, which provides full access to the index. However, it is likely that Solr is
powering interfaces for one or more applications that you know are going to make
certain specific kinds of searches.

For example, say you have an e-commerce site that supports searching for products.
In that case, you may want to only display products that are available for purchase.
A specifically named request handler that always returns the stock products (using
appends, as fq can be specified multiple times) and limits the rows to 50 (using
invariants) would be appropriate:

<requestHandler name="/products" class="solr.SearchHandler" >
 <lst name="invariants">
 <int name="rows">50</int>
 </lst>
 <lst name="appends">
 <str name="fq">inStock:true</str>

www.it-ebooks.info

http://www.lucidworks.com/lucidworks-silk/
http://www.it-ebooks.info/

Chapter 11

[363]

 </lst>
</requestHandler>

However, the administrators of the same site would want to be able to find all
products, regardless of whether they are in stock or not. They would be using a
different search interface and so you would provide a different request handler
that returns all of the information available about your products:

<requestHandler name="/allproducts" class="solr.SearchHandler" />

Later on, if your site needs to change, or if the internal searching site changes,
particularly with respect to tuning search relevancy, you can easily modify the
appropriate request handler without impacting other applications interacting
with Solr. In particular, if you have complex query parsing logic, you can hide
much of that behind the request handler, so that your clients can work with a
simpler query structure.

You can always add new request handlers to meet new needs by
requiring the qt request parameter to be passed in the query like this:
/solr/select?qt=/allproducts. However, this doesn't look
quite as clean as having specific URLs like /solr/allproducts. A
fully named request handler can also have access to them controlled
by the use of Servlet security (see the Securing Solr from prying eyes
section later in this chapter).

Leveraging Solr cores
Recall from Chapter 2, Schema Design, that you can either put different types of
data into a single index or use separate indexes. Up to this point, the only way
you would know how to use separate indexes is to actually run multiple instances
of Solr. However, adding another complete instance of Solr for each type of data
you want to index is rather time consuming and unnecessary.

A Solr server instance supports multiple separate indexes (cores) to exist within a
single Solr server instance as well as bringing features like hot core reloading and
swapping that make administration easier. In fact, the MusicBrainz setup with this
book has 6 cores. The core name immediately follows the /solr/ part and precedes
the request handler (for example, /select). In SolrCloud mode, this spot is the
collection name. In this URL, we search the mbartists core like this:

http://localhost:8983/solr/mbartists/select?q=dave%20matthews

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[364]

Other than the introduction of the core name in the URL, you still perform all of your
management tasks, searches, and updates in the same way as you always did in a
single core setup.

Configuring solr.xml
Since Solr started supporting multiple cores, solr.xml, located in the solr.home
directory has been how Solr would find all the cores. Starting in 4.4, Solr auto
discovers cores as an alternative mechanism. At startup, Solr will look through
all the subdirectories below solr.home, and in each subdirectory, no matter how
many levels deep, if it finds a file named core.properties, then it knows it has
found a directory with configuration information on a core to be loaded. The core.
properties file only has to exist, it doesn't have to have any content, although it
can contain core-specific configuration parameters. In Solr 5.0, solr.xml will no
longer list cores; it will only contain properties related to running Solr such as
SolrCloud-related properties. We have included the old style solr.xml in the
example code in ./cores/solr_legacy.xml; this will look familiar to folks
who have used earlier versions of Solr. The ./cores/solr.xml reflects the
new approach. You might remember a property called persistent="true"
in solr.xml, it has been removed as this file is now immutable.

Some of the configuration options are:

• sharedLib="lib": This specifies the path to the lib directory containing
shared JAR files for all the cores. On the other hand, if you have a core
with its own specific JAR files, then you would place them in the core/lib
directory. For example, the karaoke core uses Solr Cell (see Chapter 4, Indexing
Data) for indexing rich content, so the JARs for parsing and extracting data
from rich documents are located in ./examples/cores/karaoke/lib/.

• shareSchema: This allows you to use a single in-memory representation of
the schema for all the cores that use the same instanceDir. This will cut
down on your memory use and startup time, especially in situations where
you have many cores. I have seen Solr run with dozens of cores with no
issues beyond increased startup time as each index is opened.

• solrCloud: This is a stanza of XML for configuring SolrCloud across all
collections deployed in SolrCloud. There are a number of options such as
distribUpdateConnTimeout, distribUpdateSoTimeout, leaderVoteWait,
leaderConflictResolveWait, and zkClientTimeout that are all related
to managing timeouts. In general, the defaults should be fine, but if your
SolrCloud has many collections, is running on a slow network, or your nodes
are on multiple networks, then you may need to increase the timeouts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[365]

• shardHandler: This is a stanza that also deals with the HTTP layer and
has options that expose the Apache HTTP Client library settings such as
socketTimeout and connTimeout that you may need to change.

Each core is configured via a fairly obvious set of properties provided in core.
properties. This file is mutable, and you should put your custom properties into it:

• name: This specifies the name of the core, and therefore what to put in the
URL to access the core.

• configSet: This specifies the name of a shared configuration that you
want to use for the core. See Chapter 10, Scaling Solr for more about using
configuration sets.

• instanceDir: This specifies the path to the directory that contains the conf
directory for the core, and data directory too, by default. A relative path is
relative to solr.home. In a basic single-core setup, this is typically set to the
same place as solr.home. In the preceding example, we have three cores
using the same configuration directory, and two that have their own specific
configuration directories.

• dataDir: This specifies where to store the indexes and any other supporting
data, like spell check dictionaries. If you don't define it, then by default each
core stores its information in the <instanceDir>/data directory.

• You can also provide your own properties just by defining them in the file,
and then referencing them in your solr configuration.

Some of the most interesting properties in the core.properties file are the
loadOnStartup and the transient properties. If you have a Solr node with hundreds
or thousands of cores, for example, if you have one core per user interacting with the
system, then you would only want to load the cores of the people who are actively
using your system, otherwise, Solr will run out of memory. By default, loadOnStartup
is true so that each core will load, but in this use case you would want it to be false, and
only load the core when the user logs in. The inverse, setting the transient property
to true allows Solr to start unloading cores if too many users are logged on at the same
time. You must be wondering how to load the core in response to the user login action,
check the RELOAD command (see the Managing cores section later in this chapter) that is
part of the Solr Core Admin API.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[366]

Property substitution
Property substitution allows you to externalize configuration values, which can be
very useful for customizing your Solr install with environmental specific values.
For example, in production, you might want to store your indexes on a separate
solid state drive, then you would specify it as a property: dataDir="${ssd.dir}".
You can also supply a default value to use if the property hasn't been set as well:
dataDir="${ssd.dir:/tmp/solr_data}". This property substitution works in
solr.xml, solrconfig.xml, schema.xml, and DIH configuration files.

Properties can be defined in core.properties or as Java system properties. To set
a Java system property, use the –D parameter like this: -Dssd.dir=/Volumes/ssd.

Include fragments of XML with XInclude
XInclude stands for XML Inclusions and is a W3C standard for merging a chunk
of XML into another document. Solr has support for using XInclude tags in
solrconfig.xml to incorporate a chunk of XML at load time.

In ./examples/cores/karaoke/conf/solrconfig.xml, we have externalized the
<query/> configuration into three flavors: a default query cache setup, a no caching
setup, and a big query cache setup:

<xi:includehref="cores/karaoke/conf/${karaoke.xinclude.query}"
 parse="xml" xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:fallback>
 <xi:include href="cores/karaoke/conf/solrconfig-query-default.
 xml"/>
 </xi:fallback>
</xi:include>

The ${karaoke.xinclude.query} property is defined in the core definition:

<core name="karaoke" instanceDir="karaoke"
 dataDir="../../cores_data/karaoke">
<property name="karaoke.xinclude.query"
 value="solrconfig-query-nocache.xml"/>
</core>

If the XML file defined by the href attribute isn't found, then the xi:fallback
included file is returned. The fallback metaphor is primarily if you are including XML
files that are loaded via HTTP and might not be available due to network issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[367]

Managing cores
While there isn't a nice GUI for managing Solr cores the way there is for some other
options, the URLs you use to issue commands to Solr cores are very straightforward,
and they can easily be integrated into other management applications. The response
by default is XML, but you can also return results in JSON by appending wt=json to
the command.

We'll cover a couple of the common commands using the example Solr setup
in ./examples. The individual URLs listed here are stored in plain text files in
./examples/11/ to make it easier to follow along in your own browser:

• STATUS: Getting the status of the current cores is done through http://
localhost:8983/solr/admin/cores?action=STATUS. You can select the
status of a specific core, such as mbartists through http://localhost:8983/
solr/admin/cores?action=STATUS&core=mbartists. The STATUS command
provides a nice summary of the various cores, and it is an easy way to monitor
statistics showing the growth of your various cores.

• CREATE: You can generate a new core called karaoke_test based on the
karaoke core, on the fly, using the CREATE command through http://
localhost:8983/solr/admin/cores?action=CREATE&name=karaoke_te
st&instanceDir=karaoke&config=solrconfig.xml&schema=schema.
xml&dataDir=./examples/cores_data/karaoke_test. If you create a new
core that has the same name as an old core, then the existing core serves up
requests until the new one is generated, and then the new one takes over.

• RENAME: Renaming a core can be useful when you have fixed names of cores
in your client, and you want to make a core fit that name. To rename the
mbartists core to the more explicit core name music_brainz_artists, use
the URL http://localhost:8983/solr/admin/cores?action=RENAME&c
ore=mbartists&other=music_brainz_artists. This naming change only
happens in memory, as it doesn't update the filesystem paths for the index
and configuration directories.

• SWAP: Swapping two cores is one of the key benefits of using Solr cores.
Swapping allows you to have an offline "on deck" core that is fully populated
with updated data. In a single fast-atomic operation, you can swap out the
current live core that is servicing requests with your freshly populated "on
deck" core. As it's an atomic operation, there isn't any chance of mixed data
being sent to the client. As an example, we can swap the mbtracks core with
the mbreleases core through http://localhost:8983/solr/admin/cor
es?action=SWAP&core=mbreleases&other=mbtracks. You can verify the
swap occurred by going to the mbtracks admin page and verifying that Solr
home is displayed as cores/mbreleases/.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[368]

• RELOAD: As you make minor changes to a core's configuration through
solrconfig.xml, schema.xml, and supporting files you don't want to be
stopping and starting Solr constantly. In an environment with even a couple
of cores, it can take some tens of seconds to restart all the cores during which
Solr is unavailable. By using the RELOAD command, you can trigger a reload of
just one specific core without impacting the others. An example of this is if you
use synonyms.txt for query time synonym expansion. If you modify it, you
can just reload the affected core! A simple example for mbartists is http://
localhost:8983/solr/admin/cores?action=RELOAD&core=mbartists.

• UNLOAD: Just like you would expect, the unload action allows you to remove
an existing core from Solr. Currently running queries are completed, but
no new queries are allowed. A simple example for mbartists is http://
localhost:8983/solr/admin/cores?action=UNLOAD&core=mbartists.

• MERGEINDEXES: (For advanced users) The merge command allows you to
merge one or more indexes into yet another core. This can be very useful if
you've split data across multiple cores and now want to bring them together
without re-indexing the source data all over again. It can also be used as the
final step of an off-line indexing step in which index data is added (merged)
into a live index. You need to issue commits to the individual indexes that
are sources for data. After merging, issue another commit to make the
searchers aware of the new data. This all happens at the Lucene index level
on the filesystem, so functions such as deduplication that work through
update request processors are not invoked. The full set of commands using
curl is listed in ./11/MERGE_COMMAND.txt.

Some uses of multiple cores
Solr's support of multiple cores in a single instance enables you to serve multiple
indexes of data in a single Solr instance. Multiple cores also address some key needs
for maintaining Solr in a production environment:

• Rebuilding an index: While Solr has a lot of features to handle, such as
doing sparse updates to an index with minimal impact on performance,
occasionally you need to bulk update significant amounts of your data.
This invariably leads to performance issues, as your searchers are constantly
being reopened. By supporting the ability to populate a separate index in a
bulk fashion, you can optimize the offline index for updating content. Once
the offline index has been fully populated, you can use the SWAP command
to take the offline index and make it the live index.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[369]

• Testing configuration changes: Configuration changes can have very differing
impacts depending on the type of data you have. If your production Solr has
massive amounts of data, moving that to a test or development environment
may not be possible. By using the CREATE and the MERGE commands, you
can make a copy of a core and test it in relative isolation from the core being
used by your end users. Use the RELOAD command to restart your test core to
validate your changes. Once you are happy with your changes, you can either
SWAP the cores or just reapply your changes to your live core and RELOAD it.

• Merging separate indexes together: You will find that over time you have
more separate indexes than you need, and you want to merge them together.
You can use the MERGEINDEXES command to merge two cores together into
a third core. However, note that you need to do a commit on both cores and
ensure that no new data is indexed while the merge is happening.

• Renaming cores at runtime: You can build multiple versions of the same
basic core and control which one is accessed by your clients using the RENAME
command to rename a core to match the URL the clients are connecting to.

You can learn more about Solr core related features at https://cwiki.apache.
org/confluence/display/solr/Core+Admin and https://cwiki.apache.org/
confluence/display/solr/Core-Specific+Tools.

Setting up ZooKeeper for SolrCloud
ZooKeeper is the technology that keeps all the nodes in SolrCloud in sync, and in
Chapter 10, Scaling Solr, we discussed how to leverage it. However, for convenience, we
told Solr to run the ZooKeeper service internally (embedded, in-process) by passing
the zkRun parameter to Solr on startup. While you could do that in production, you
usually shouldn't because then you tie your ZooKeeper service to your Solr nodes. So
imagine the scenario where you want to stop and restart Solr? Running embedded
ZooKeeper means that you also take down one of your ZooKeeper nodes when
you stop a Solr node. ZooKeeper has the concept of a quorum of servers that all
host the exact same configuration file, and to have a valid quorum, at least half of
the ZooKeeper processes must be functioning. If you have three Solr nodes running
embedded ZooKeeper, and you restart two of the Solr nodes, you no longer have
a quorum of 2 out of 3 servers, a situation called split brain, and your SolrCloud
cluster goes down. Since your Solr nodes are much more volatile in nature than
your ZooKeeper nodes, you hamstring the reliability of your ZooKeeper service.

www.it-ebooks.info

https://cwiki.apache.org/confluence/display/solr/Core+Admin
https://cwiki.apache.org/confluence/display/solr/Core+Admin
https://cwiki.apache.org/confluence/display/solr/Core-Specific+Tools
https://cwiki.apache.org/confluence/display/solr/Core-Specific+Tools
http://www.it-ebooks.info/

Deployment

[370]

Folks are often concerned when you spec out a set of servers for SolrCloud and
mention that you need an additional three or five servers to run your ZooKeeper
service on, beyond the servers hosting Solr. However, since ZooKeeper, in the
context of providing configuration management to a cluster of SolrCloud servers, is
pretty lightly used, and therefore doesn't generate much load. It has two tasks: store
the configuration files for a Solr collection, including the locations of all the nodes
making up each collection, and send messages to all the Solr nodes when the state
changes for one of them like a node going up or down, or a new collection being
defined. When a message about a state change is sent to Solr, then each Solr node
queries back to ZooKeeper about the state change, and adjusts accordingly. That
adjustment may be downloading a new synonyms.txt or a solrconfig.xml and
restarting the core to load the new configuration.

Neither of these tasks requires extensive disk space, CPU, or memory, so it's very
reasonable to run your ZooKeeper nodes on virtual machines. All the heavy work
of indexing data, performing queries, is done on the Solr nodes, so they should be
sized appropriately.

Installing ZooKeeper
Installing ZooKeeper by hand is pretty straightforward, though it's a great thing
to automate with tools like Puppet since you have to repeat the same basic steps
multiple times!

Solr pretty much keeps up with the latest ZooKeeper; check the release notes for
your specific Solr download. Download the ZooKeeper package and unzip to a
reasonable directory like /opt/ZooKeeper. In the unzipped directory, there will be
a sample configuration file at ./conf/zoo_sample.cfg, copy it to zoo.cfg. Edit the
file and add two parameters that point to where the ZooKeeper data and transaction
logs are store. In very high performance situations, you might want dedicated disks
for that, but in most cases, with SolrCloud, you can have both sets of data stored
on the same disk. Also, provide a list of all the servers that are in the ensemble of
ZooKeeper servers:

dataDir=/var/lib/zookeeperdata
dataLogDir=/var/log/zookeeper
servers in the ensemble
server.1=zk1.mycompany.com:2888:3888
server.2=zk2.mycompany.com:2888:3888
server.3=zk3.mycompany.com:2888:3888

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[371]

There is one odditiy in ZooKeeper in which you provide a magic file called myid that
specifies the name of the server at the root of dataDir: /var/lib/zookeeperdata/
myid. On zk1.mycompany.com, that would be the value 1, on zk2.mycompany.com, it
would be 2, and so on. You can then start ZooKeeper by running the following code:

>> ./bin/zkServer.sh ../conf/start zoo.cfg

Repeat these steps on each server, changing the myid file.

Administering Data in ZooKeeper
There are two ways of interacting with ZooKeeper, one is the SolrCloud centric
script called zkcli.sh that comes with Solr. Assuming you have a local SolrCloud
running using ./examples/10/start-musicbrainz-solrcloud.sh, navigate to
./examples/10/solrcloud-working-dir/example/scripts/cloud-scripts.
To list out the contents of the data in ZooKeeper, run the list command:

>> ./zkcli.sh -zkhost localhost:9983 -cmd list

You can upload a specific file using the put command or just push up, or pull down
a complete set of configuration files using the upconfig or downconfig commands.

However, if you want to treat the ZooKeeper data as a simple Unix filesystem
with commands such as ls or rm, then you need to use the command-line client
that comes with ZooKeeper. To make things more confusing, it is called zkCli.sh,
just one character case off of the Solr version called zkcli.sh.

>> ./zookeeper-3.4.6/bin/zkCli.sh -server 127.0.0.1:9983

Notice that we pass in the IP address and port of the ZooKeeper ensemble we
want to connect to. You can now list out all the config files that belong to the
mbtypes collection:

>> ls /configs/mbtypes

To see all the commands available for interacting with the data in ZooKeeper, run help:

>> help

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[372]

Monitoring Solr performance
Ensuring that Solr is meeting the SLA expectations for performance is the goal of
monitoring. Solr provides both RESTful and JMX hooks to allow you to integrate
Solr into your enterprise monitoring platform.

Don't have your own monitoring platform? There are two offerings,
available from New Relic (http://newrelic.com) and Sematext
(http://sematext.com/spm/) that provide a comprehensive
monitoring solution. Both are cloud based (SaaS) and communicate via
a small agent installed into Solr that provides a wealth of statistics and
analysis about the JVM, as well as Solr specific metrics such as request
response time and throughput, cache hit rate, and indexing performance.

Stats Admin interface
From the admin interface, when you click on the Plugins / Stats link, you get a list
of all the plugins for Solr, and can drill down by plugin and get detailed information,
including any custom components you develop! However, what isn't immediately
obvious is that this information is actually being served up to the browser as JSON
data that is consumed by the Admin page. This means, if you perform a GET request,
you can return the data in whichever format you want, based on the wt parameter:

>>curl "http://localhost:8983/solr/mbartists/admin/mbeans?stats=true&
cat=CACHE&wt=xml&indent=true"

Open the downloaded file and you will see all the data as XML. The following is
an excerpt of the statistics available for the cache that stores individual documents
and the standard request handler, where the metrics you might want to monitor
are highlighted:

<entry>
 <name>documentCache</name>
 <class>org.apache.solr.search.LRUCache</class>
 <version>1.0</version>
 <description>LRU Cache(maxSize=512,
 initialSize=512)</description>
 <stats>
 <stat name="lookups">3251</stat>
 <stat name="hits">3101</stat>
 <stat name="hitratio">0.95</stat>

www.it-ebooks.info

http://newrelic.com
http://sematext.com/spm/
http://www.it-ebooks.info/

Chapter 11

[373]

 <stat name="inserts">160</stat>
 <stat name="evictions">0</stat>
 <stat name="size">160</stat>
 <stat name="warmupTime">0</stat>
 <stat name="cumulative_lookups">3251</stat>
 <stat name="cumulative_hits">3101</stat>
 <stat name="cumulative_hitratio">0.95</stat>
 <stat name="cumulative_inserts">150</stat>
 <stat name="cumulative_evictions">0</stat>
 </stats>
</entry>
<entry>
 <name>standard</name>
 <class>org.apache.solr.handler.component.SearchHandler</class>
 <version>$Revision: 1052938 $</version>
 <description>Search using components:
 org.apache.solr.handler.component.QueryComponent,
 org.apache.solr.handler.component.FacetComponent
 </description>
 <stats>
 <stat name="handlerStart">1298759020886</stat>
 <stat name="requests">359</stat>
 <stat name="errors">0</stat>
 <stat name="timeouts">0</stat>
 <stat name="totalTime">9122</stat>
 <stat name="avgTimePerRequest">25.409472</stat>
 <stat name="avgRequestsPerSecond">0.446995</stat>
 </stats>
</entry>

While integrating into each monitoring system will be different, as an example,
you can look at ./examples/11/check_solr.rb for a simple Ruby script that
queries a core and checks whether the average hit ratio and the average time
per request are above certain thresholds:

>> ./check_solr.rb -w 13 -c 20 –I mbartists
CRITICAL - Average Time per request more than 20 milliseconds old:
39.5

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[374]

Monitoring Solr via JMX
Java Management Extensions (JMX) is a Java standard API for monitoring and
managing applications and network services. Originally meant to help with server
administration, it was added to J2SE Version 5. JMX-enabled applications and services
expose information and available operations for resources such as MBeans (Managed
Bean). MBeans can be managed remotely by a wide variety of management consoles
such as the JConsole GUI that comes with Java and the web-based JMX Console that
comes with the JBoss application server. Here is a screenshot of a nice sawtooth pattern
of memory usage that you want from Solr; as you can see, garbage collection kicks in
on a regular basis:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[375]

Solr exposes information about its components through MBeans. However, actual
management operations, such as re-indexing information, are not exposed through
JMX. You can leverage JMX to monitor the status of Solr, such as finding out how
many documents have been indexed. In large enterprise environments, the JMX
standard simplifies integrating monitoring tasks into existing monitoring platforms.

The information exposed via JMX Mbeans is now exposed as
XML as well as other formats by appending a wt parameter:
http://localhost:8983/solr/mbartists/admin/
mbeans?stats=true&wt=json. This is an easier way to
quickly query for JMX information.

Starting Solr with JMX
In solrconfig.xml, the <jmx/> tag needs to be uncommented to enable JMX
support. In order to actually start up with JMX, you need to provide some extra
parameters to support remote connections, including the port to be connected to:

>>java -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=3000 -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.authenticate=false -jar start.jar

However, this configuration is totally insecure. In a production environment, you
would want to require usernames and passwords for access. For more information,
please refer to the JMX documentation at http://java.sun.com/j2se/1.5.0/
docs/guide/management/agent.html#remote.

J2SE ships with JConsole, a GUI client for connecting to JMX servers. In order to start
it, run the following command:

>> [JDK_HOME]/bin/jconsole

In order to connect to Solr, choose the Remote tab, and enter localhost for Host or
IP and 3000 for Port. As we have started without requiring authentication, you do
not need to enter a username and password.

For Solr, the key tabs to use in JConsole are Memory and MBeans. Memory provides a
visual charting of the consumption of memory and can help you monitor low memory
situations and when to start optimizing your indexes (as discussed in Chapter 9,
Integrating Solr).

www.it-ebooks.info

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote
http://www.it-ebooks.info/

Deployment

[376]

You can also monitor the various components of Solr by choosing the MBeans
tab. In order to find out how many documents you've indexed, you would look
at the SolrIndexSearch Mbean. Select solr from the tree listing on the left, and
drill down to the searcher folder and select the org.apache.solr.search.
SolrIndexSearcher component. You will see information such as the number
of documents, and how many are marked deleted (it's the difference between
maxDocs and numDocs). While you can pull this type of information out of the
admin statistics web page, the JMX standard provides a much simpler method
that can be easily integrated into other tools.

In order to save yourself typing in the extra startup parameters, see the previous
Jetty startup integration section for how to add these JMX startup parameters, such
as -Dcom.sun.management.jmxremote to your Jetty configuration.

Securing Solr from prying eyes
Solr, by default, comes completely open. Anyone can make search requests, anyone
can upload documents, anyone can access the administration interface, and anyone
can delete data. However, it isn't difficult to lock down Solr for use in any kind of
environment. We can do this by making use of the standard practices that you
would apply to any kind of web application or server software.

Limiting server access
The single biggest thing you can do to secure Solr is to lock down who has access to
the server. Using standard firewall techniques, you can control what IP addresses are
allowed to connect to the Solr through the 8983 port.

Unless you have very unusual needs, you won't expose Solr to the Internet
directly; instead users will access Solr through some sort of web application,
that in turn forwards requests to Solr, collects the results, and displays them
to your users. By limiting the IP addresses that can connect to Solr to just those
belonging to your web farm, you've ensured that random Internet users and
internal users don't mess with Solr.

If you lock down access via IP addresses, then don't forget that if
you have external processes uploading content, you need to make
sure those IP addresses are added.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[377]

Using IP addresses to control access is crude and basic; it doesn't help if someone is
connecting to Solr from one of the valid IP addresses. Fortunately, Solr is just a WAR
file deployed in a Servlet container, so you can use all of the capabilities of Servlet
containers to control access. In order to limit access to /solr/update* and /solr/
admin/* in Jetty by requiring BASIC authentication from your users, you merely
edit the web.xml in your Solr WAR adding the following stanza at the bottom:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Solr Admin</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Solr Update</web-resource-name>
 <url-pattern>/update*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>content_updater</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Test Realm</realm-name>
</login-config>

This specifies that access to the /update* URLs is limited to anyone in the roles
of admin or content_updater, although only admin users can access the /admin/*
URLs. The realm-name is what ties the security constraints to the users configured
in Jetty.

Customizing web.xml in Jetty
Sometimes cracking open a WAR file just to customize web.xml
can be a pain. However, if you are a Jetty user, then you can put
the changes into ./etc/webdefault.xml and Jetty will apply
the changes to any WAR file deployed. This is a nice trick if you
have just a single webapp in the Jetty container. See ./examples/
solr/etc/webdefault.xml and ./examples/solr/etc/
jetty.xml for example.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[378]

Edit the jetty.xml file and uncomment the <Set name="UserRealms"/> stanza so
that it looks like the following:

<Set name="UserRealms">
 <Array type="org.mortbay.jetty.security.UserRealm">
 <Item>
 <New class="org.mortbay.jetty.security.HashUserRealm">
 <Set name="name">Solr Realm</Set>
 <Set name="config">
 <SystemProperty name="jetty.home" default="."/>/etc/
 realm.properties
 </Set>
 </New>
 </Item>
 </Array>
</Set>

The ./etc/realm.properties file contains a list of users with their passwords and
roles to which they belong. We've specified that the user named administrator has
the roles of content_updater and admin, and therefore can access any /update and
/admin URLs. However, the user eric can only access the /update URLs as shown
in the following code:

administrator: $ecretpa$$word,content_updater,admin
eric: mypa$$word, content_updater
guest: guest,read-only

Adding authentication introduces an extra roadblock for automated scripts that
need to interact with Solr to upload information. However, if you use BASIC
authentication, then you can easily pass the username and password as part of
the URL request. The only downside is that the password is being transmitted in
cleartext, and you should wrap the entire request in SSL for maximum security:

http://USERNAME:PASSWORD@localhost:8080/solr/update

Normally, you wouldn't want to store passwords in plain text on
the server in a file such as realm.properties that isn't encrypted.
More information is available at http://docs.codehaus.org/
display/JETTY/Realms.

www.it-ebooks.info

http://docs.codehaus.org/display/JETTY/Realms
http://docs.codehaus.org/display/JETTY/Realms
http://www.it-ebooks.info/

Chapter 11

[379]

Put Solr behind a Proxy
Another approach to securing Solr is to lock it down via firewall rules and run a
proxy that mediates access to the locked down Solr. If you specify that port 8983 isn't
accessible to the public, but only accessible on the local box, then you can deploy a
proxy on the same server that controls access. There are a some Solr-specific proxy
servers available: https://github.com/o19s/solr_nginx, and a NodeJS option:
https://github.com/dergachev/solr-security-proxy.

Let's try out the NodeJS option. Assuming that you have Node Package Manager
npm installed, run the following code:

>> npm install solr-security-proxy

Then, to start the proxy that allows access to the mbartists and mbtracks cores,
but none of the other cores on port 9090, run the startup script in /examples/11
as follows:

>> ./start-solr-security-proxy.sh

You can verify access by trying to access the mbartists core at http://
localhost:9090/solr/mbartists/select?q=*:*, but being denied access to
the karoke core at http://localhost:9090/solr/mbartists/select?q=*:*.
Go ahead, try out some attacks like trying to trigger commits or access the admin
control panel!

To administer the protected Solr, you will either need to be on the local box, or set
up the firewall to allow access to your specific IP address.

Securing public searches
Although, typically, you access Solr through an intermediate web application, you
may want to expose Solr directly to the Internet, albeit in a limited way. One scenario
for this is exposing a search in an RSS/Atom feed made possible with Solr's XSLT
support (see Chapter 5, Searching, for more on XSLT). Another is using JavaScript,
AJAX, and JSONP callbacks from the browser to directly connect to Solr and issue
searches. There may be other scenarios where firewall rules and/or passwords might
still be used to expose parts of Solr, such as for modifying the index, but some search
requests must be exposed to direct Internet access. In this case, you need to configure
the exposed request handlers with invariants and/or appends clauses as applicable.
For a limited example of this, see the A RequestHandler per search interface section earlier
in this chapter.

www.it-ebooks.info

https://github.com/o19s/solr_nginx
https://github.com/dergachev/solr-security-proxy
http://www.it-ebooks.info/

Deployment

[380]

If there are certain records that need to be excluded from public access, then
you'll need to specify an appropriate fq (filter query). If there are certain fields on
documents that need to be kept private, then this can be problematic to completely
secure, especially if you are working with sensitive data. It's simple enough to
specify fl (field list) through invariants, but there are a good number of other
parameters that might expose the data (for example, highlighting, maybe faceting)
in ways you didn't realize:

<lst name="invariants">
 <int name="fl">public_id,public_description</int>
 <str name="fq">public:true</int>
</lst>

Therefore, if you are working with sensitive data, exposing Solr in this way is
not recommended.

Controlling JMX access
If you have started Solr with JMX enabled, then you should also have a JMX
username and password configured. While, today, the JMX interface only exposes
summary information about the Solr components and memory consumption, in the
future versions, actual management options such as triggering optimizing indexes
will most likely be exposed through JMX. So, putting JMX access under lock and
key is a good idea.

Securing index data
One of the weaknesses of Solr, due to the lack of a built-in security model, is that
there aren't well-defined approaches for controlling which users can manipulate
the indexes by adding, updating, and deleting documents, and who can search
which documents. Nevertheless, there are some approaches for controlling access
to documents.

Controlling document access
You can start off with some of the ideas talked about in the A RequestHandler per search
interface section to control search access to your index. However, if you need to control
access to documents within your index and must control it based on the user accessing
the content, then one approach is to leverage the faceted search capabilities of Solr.
You may want to look back at Chapter 7, Faceting, to refresh your memory on faceting.
For example, you may have a variety of documents that have differing visibility
depending on whether someone is a member of the public or an internal publicist.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[381]

The public can only see a subset of the data, but a publicist can see more information,
including information that isn't ready for public viewing. When indexing documents,
you should store the roles in a separate multiValued field that a user must belong to
in order to gain access to the document:

<field name="roles" type="text" indexed="true" stored="true"
 multiValued="true" />

A document that was for everyone would be indexed with the role values Public and
Publicist. Another document that was for internal use would just have the Publicist
role. Then, at query time, you could append extra request parameters to limit what
is returned depending on the roles that someone belonged to by treating the roles as
a facet:

/solr/select/?q=music&start=0&facet=on&facet.field=roles&fq=role%3
Apublic

In the preceding example, we are querying for music that is accessible by anyone with
the role public. Obviously, this requires significant logic to be implemented on the
client side interfacing with Solr, and is not as robust a solution as we may wish.

Other things to look at
Remote streaming is the ability to give Solr the URL to a remote resource or local
file and have Solr download the contents as a stream of data. This can be very useful
when indexing large documents as it reduces the amount of data that your updating
process needs to move around. However, it means that if you have the /debug/dump
request handler enabled, then the contents of any file can be exposed. Here is an
example of displaying to anyone my authorized_keys file:

http://localhost:8983/solr/mbartists/debug/dump?stream.file=/Users
/epugh/.ssh/authorized_keys

If you have this turned on, then make sure that you are monitoring the log files, and
also that access to Solr is tightly controlled. The example application has this function
turned on by default.

In addition, in a production environment, you want to comment out the /debug/
dump request handler, unless you are actively debugging an issue.

www.it-ebooks.info

http://www.it-ebooks.info/

Deployment

[382]

Just as you need to be wary of a SQL injection attack for a relational database, there
is a similar concern for Solr. Solr should not be exposed to untrusted clients if you
are concerned about the risk of a denial of service attack. This is also a concern if you
are lax in how your application acts as a broker to Solr. It's fairly easy to bring down
Solr by asking it to sort by every field in the schema, which would result in sudden
exorbitant memory usage. There are other similar attacks if an attacker can submit
an arbitrary function query as part of their query.

Summary
We briefly covered a wide variety of the issues that surround taking a Solr
configuration that works in a development environment and getting it ready
for the rigors of a production environment. Solr's modular nature and stripped
down focus on search allows it to be compatible with a broad variety of deployment
platforms. Solr offers a wealth of monitoring options, from log files to HTTP request
logs to JMX options. Nonetheless, for a really robust solution, you must define what
the key performance metrics are that concern you, and then implement automated
solutions for tracking them.

Assuming you haven't already built your application, look back at Chapter 9,
Integrating Solr, to see how easily you can integrate Solr search through various
client libraries. Otherwise, just enjoy the stability and performance of the most
popular search engine, helping your users find what they are looking for!

www.it-ebooks.info

http://www.it-ebooks.info/

[383]

Quick Reference
This chapter is a convenient reference for common search-related request parameters.
It is assumed that you have already read the related material in the book and are just
looking for something to jog your memory.

You can find an electronic PDF version of this chapter at http://www.
solrenterprisesearchserver.com. Having it printed makes it quite convenient.

The third column indicates whether a parameter can be
specified only once (single) or multiple times (multi).

Core search
The following parameters are commonly used in most search queries. These are also
covered in Chapter 5, Searching:

Parameter Description Single/
multi

qt=/select A named request handler. single
q The query string. Usually, as entered by an end user. single
defType=lucene The query parser for q. The recommended one is

edismax (or dismax). single

fq A filter query. multi
start=0 The index into the search results to start returning

documents. single

rows=10 The number of search result document rows to return. single
fl=* The field list to retrieve, comma separated. To get

scores: *,score multi

www.it-ebooks.info

http://www.solrenterprisesearchserver.com
http://www.solrenterprisesearchserver.com
http://www.it-ebooks.info/

Quick Reference

[384]

Parameter Description Single/
multi

sort=score
desc

The sort order. A comma-separated list with asc or
desc. single

wt=xml The writer type for the response format. One of xml,
json, python, php, phps, ruby, javabin, csv,
xslt, or velocity.

single

Other parameters are: version=2.2, omitHeader=off, and timeAllowed=-1.

Diagnostic
Diagnostic parameters covered in Chapter 5, Searching, are: indent=off,
debugQuery=off, explainOther (a query for one doc), debug.explain.
structured=off, echoParams=explicit (none/explicit/all), and
echoHandler=off.

Use wt=xslt&tr=example.xsl&debugQuery=true&fl=*,score.

The Lucene query parser
The following table shows parameters for the Lucene query parser. These are covered
in Chapter 5, Searching:

Parameter Description Single/multi
df The default field to search. single
q.op=OR The default query operator. One of AND or OR. single

The DisMax query parser
The following table shows parameters for the DisMax query parser. These are covered
in Chapter 5, Searching, and Chapter 6, Search Relevancy:

Parameter Description Single/multi
q.alt This is an alternate query to run when q is absent.

The recommended one is: *:* (all docs)
single

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[385]

Parameter Description Single/multi
qf This stands for query fields, including optional

boosts, for example, id^5.0 name^2.0 body.
multi

mm=100% This is the min-should-match specification. It is
used to change to all-optional, use 0%

single

qs=0 This is the query slop for phrases explicitly in the
query string.

single

pf This stands for phrase fields for automatic phrase
boosting. This is same as qf syntax.

single

ps=0 This is the phrase slop for pf. single
tie=0 This is the score tie-breaker. The recommended

one is 0.1.
single

bq This is a boost query. The boost is added. multi
bf This is a boost function. The boost is added. multi
boost This is a boost function. The boost is multiplied.

Works for edismax only.
multi

The other edismax additions are lowercaseOperators=on, pf2, pf3, ps2, ps3,
stopwords=on, and uf.

The Lucene query syntax
Lucene query syntax, covered in Chapter 5, Searching, has the following Boolean
operators: AND, OR, NOT, &&, and ||with leading + or -. Here is an example:

{!lucene df=title q.op=$myop} "phrase query slop"~2 w?ldcard*
fuzzzy~0.7 -(updatedAt:[* TO NOW/DAY-2YEAR] +boostMe^5)

Faceting
The following parameters are commonly used in facet queries, and are covered in
Chapter 7, Faceting:

• Field specific parameter: (Works for highlighting too) f.myfieldname.
facet.mincount=1

• Field value faceting: facet=on, facet.field=myfieldname, facet.
sort=count (count, index), facet.limit=100, facet.offset=0,
facet.mincount=0, facet.missing=off, facet.prefix, facet.method
(enum, fc, or fcs)

www.it-ebooks.info

http://www.it-ebooks.info/

Quick Reference

[386]

•	 Range faceting:	facet=on,	facet.range=myfieldname,	facet.range.
start,	facet.range.end,	facet.range.gap	(for	example,	+1DAY),	
facet.range.hardend=off,	facet.range.other=off,	facet.range.
include=lower (lower	upper,	edge,	outer,	or	all)

•	 Facet queries:	facet=on, facet.query
•	 Facet pivots:	facet.pivot=field1,field2,field3
•	 Facet keys:	facet.field={!key=Type}r_type
•	 Filter exclusion:	fq={!tag=r_type}r_type:Album&facet.field={!ex=r_

type}r_type

Highlighting
The	following	parameters	are	applicable	to	the	highlighting	component,	covered	
in	Chapter 8,	Search Components:	hl=off,	hl.fl,	hl.requireFieldMatch=off,	
hl.usePhraseHighlighter=off(the	recommended	one	is	on),	
hl.highlightMultiTerm=off,	hl.snippets=1,	hl.fragsize=100,	and	
hl.mergeContiguous=off.

Spell checking
These	parameters	are	applicable	to	the	spellcheck	component,	detailed	in	Chapter 8,		
Search Components:	spellcheck=off,	spellcheck.dictionary=default,	
spellcheck.q	(alternative	to	q),	spellcheck.count=1,	spellcheck.
onlyMorePopular=off,	spellcheck.extendedResults=off,	spellcheck.
collate=off,	spellcheck.maxCollations=1,	spellcheck.maxCollationTries=0,	
spellcheck.maxCollationEvaluations=10000,	and	spellcheck.
collateExtendedResults=off.

Miscellaneous nonsearch
•	 Commit:	/update?commit=true (optimize=true to optimize)
•	 Delete:	/update?stream.body=<delete><query>*:*</query></delete>
•	 Reload config:	/admin/cores?action=RELOAD&core=mycorename

www.it-ebooks.info

http://www.it-ebooks.info/

[387]

Index
A
Acquia 296
administrative interface, Solr

about 10, 11
Dashboard page 11
primary navigation choices 12
subchoice menu 13

AJAX
using, with Solr 283, 284

AJAX Solr
about 289-291
URL 290

alphabetic range bucketing 200, 201
analyzers 53
Apache Camel

about 81
URL 81

Apache Solr Search integration module
URL 295

Apache Velocity 271
ARC archive file 275
atomic updates

about 90
considerations 91

attributes, schema field definitions
indexed 332
stored 332

Authority Connector 315
autoCommit

about 87
using 88

automatic phrase boosting
about 174
configuring 174

partial phrase boosting 175
phrase slop configuration 175

auto-warming 329
Avro 313
AWStats

URL 359

B
block-join-children parser 154
block-join-parent parser 154, 155
block-join query parsers 153
BM25 169
boost functions

about 177
boosts, adding 178
boosts, multiplying 178

boosting
about 141, 168
based on increasing numeric field 190-192
based on recent dates 192, 193
by distance 163
memory 163, 164
performance 163, 164

boost query parser 179
BrainzSolrClient 275
BreakIterator 222
built-in field type classes

CurrencyField 49
dates 48
EnumField 49
enumName 49
ExternalFileField 49
numbers 48

www.it-ebooks.info

http://www.it-ebooks.info/

[388]

C
caches

tuning 331
caches, solrconfig.xml

documentCache 330
filterCache 330
queryResultCache 330

Carrot2
reference link 262

character filters
about 54, 57
HTMLStripCharFilterFactory 57
MappingCharFilterFactory 57
PatternReplaceCharFilterFactory 57

clustering component 261, 262
clusters 261
collapse query parser

about 262, 263
example 263-265

collapsing 262
collections

creating 348
deleting 348
managing 343

combined index
about 30, 31
single combined index, issues 32

commands
delta import 106
importing 105

commit
about 86, 87
hard commit 86
index optimization 88, 89
overlap, avoiding 88
soft commit 86
uncommitted changes, rolling 89

commitWithin
about 87
using 88

common-grams 175, 336
common MLT parameters

mlt.boost 256
mlt.fl 255
mlt.maxdf 255

mlt.maxntp 256
mlt.maxqt 256
mlt.maxwl 256
mlt.mindf 255
mlt.mintf 255
mlt.minwl 256
mlt.qf 255

ComplexPhrase query parser 222
complex systems

tuning 322
components 218
configuration files, Solr 20, 21
Configuration Management (CM) 353
configuration options

encapsulator 93
escape 93
fieldnames 93
header 93
keepEmpty 93
literal 94
map 94
overwrite 94
rowid 94
rowidOffset 94
separator 93
skip 93
skipLines 93
split 94
trim 93

configuration options, caches
autowarmCount 331
class 331
size 331

configuration options, spellcheckers
accuracy 230
classname 229
distanceMeasure 230
field 230
fieldType 230
name 229

configuration parameters, MoreLikeThis
component

common MLT parameters 255, 256
parameters specific, to MLT request

handler 254
parameters specific, to MLT search

component 254

www.it-ebooks.info

http://www.it-ebooks.info/

[389]

configuration, QueryElevation component
config-file 251
forceElevation 251
queryFieldType 251

configurations
managing 343

connectors 316
Content Construction Kit (CCK) 296
Content Management System (CMS) 295
Continuous Integration (CI) 186
Convention over Configuration 297, 302
coordination factor 174
core search

parameters 384
CSV-formatted data

configuration options 93, 94
sending, to Solr 91, 92

Cygwin
URL 82

D
data

administering, in Zookeeper 371
data formats

CSV 81
Java-Bin 81
Rich documents 81
Solr's Update-JSON 81
Solr's Update-XML 81

DataImportHandler framework
about 4, 94
alternatives 95
capabilities 94
commands, importing 105
configuration file, writing 97
configuring 95
development console 96
example configurations 101
URL 95

date faceting 202
debugger, Solr queries 292
delta import 106
dependencies

and Maven 275
deployment methodology, Solr 353-355

diagnostic parameters
about 129, 384
debug 129
debug.explain.structured 129
debugQuery 129
echoHandler 129
echoParams 129
indent 129

DIH approach
URL 106

DIH configuration examples
about 101
importing, from databases 101, 102
multiple rich document files, importing 104
XML, importing with XSLT 103, 104

DIH configuration file
data sources 97
entity processors 98, 99
fields 99, 100
transformers 99, 100
writing 97

directory structure, Solr
about 7
contrib 7
dist 8
docs 8
example 9
server 9

DirectSolrSpellChecker component, options
maxEdits 230
maxInspections 230
maxQueryFrequency 231
minPrefix 230
minQueryLength 231
thresholdTokenFrequency 231

DisMax query parser
about 143, 173, 179
automatic phrase boosting 174
boost functions 177
boost queries 176
DisjunctionMaxQuery 173
parameters 384, 385

distance
returning 163

distance sorting
memory 163, 164
performance 163, 164

www.it-ebooks.info

http://www.it-ebooks.info/

[390]

document
about 2
access, controlling 380, 381
deleting 280
duplication detection, URL 111
indexing, with SolrJ 279, 280

document frequency 32
document-level security 318
document routing 349, 350
DocValues

URL 42
Domain Specific Language (DSL) 81
Drupal 295
Drupal options

about 295
Acquia 296
Apache Solr Search integration module 295

E
EdgeNGrams

reference link 241
eDisMax 4
edismax query parser 167
ensemble 370
entity 30
entity processors

CachedSqlEntityProcessor 98
FileListEntityProcessor 99
LineEntityProcessor 99
MailEntityProcessor 99
PlainTextEntityProcessor 99
SqlEntityProcessor 98
TikaEntityProcessor 99
XPathEntityProcessor 99

entity tags 329
EnumField

reference link 49
event 30
examples, Solr

ajaxsolr 270
heritrix-2.0.2 271
jquery_autocomplete 270
manifoldcf 271
myfaves 270
nutch 270
php 270

Solritas 270
solrj 271
solr-map-reduce-example 271
solr-php-client 270

existence queries 141
expand component 263
expanding 262
eXtensible Stylesheet Language

Transformations. See XSLT
Extract Transform Load (ETL) 102, 310

F
facet

filter query, building from 207
facet count 197
faceted navigation 2
faceting

about 2, 195
facet keys 386
facet pivots 386
facet queries 386
field specific parameter 385
field value faceting 385
filter exclusion 386
range faceting 386

faceting field values
alphabetic range bucketing 200, 201

faceting performance
enhancing 335

faceting release types 196, 197
faceting, types

field 198
interval 198
pivot 198
query 198
range 198

faceting, with relational databases
reference link 196

facet.method
specifying 200

facet queries 206
facet range filter queries 208
factors, influencing score

about 168
co-ordination factor (coord) 168
field length (fieldNorm) 168

www.it-ebooks.info

http://www.it-ebooks.info/

[391]

inverse document frequency (idf) 168
term frequency (tf) 168

FastVector highlighter (FVH) 223
features, Solr

clustering 19
faceting 19
geospatial search 19
highlighting 19
more-like-this 19
query boosting 19
query debugging 19
query-suggest 19
standard keyword search 19

field
about 2
requisites 197

field cache 180
field collapsing 37, 265
FieldMutatingUpdateProcessorFactor,

extensions
ConcatFieldUpdateProcessorFactory 112
CountFieldValuesUpdateProcessor

Factory 113
FirstFieldValueUpdateProcessor

Factory 112
HTMLStripFieldUpdateProcessor

Factory 113
IgnoreFieldUpdateProcessorFactory 113
LastFieldValueUpdateProcessorFactory 112
MaxFieldValueUpdateProcessor

Factory 112
MinFieldValueUpdateProcessorFactory 112
PreAnalyzedUpdateProcessorFactory 113
RegexReplaceProcessorFactory 113
RemoveBlankFieldUpdateProcessor

Factory 112
TrimFieldUpdateProcessorFactory 112
TruncateFieldUpdateProcessorFactory 113

field types
configuring 52-55

field value cache 243
field value faceting

about 198
request parameters 199

field value filter queries 208
FileBasedSpellChecker 226

FileBasedSpellChecker component, options
buildOnCommit 232
buildOnOptimize 232
sourceLocation 232
spellcheckIndexDir 232

filtering
about 60, 61, 149
by distance 161, 162
by rectangle 161, 162

filter query
about 149
building, from facet 207

filters 54
fl parameter

Aliases 128
Document transformers 128
Field names 127
Functions 128
Glob 128
Score 128

frange (function range) query parser 179
full-index clustering 262
func query parser 179
function queries 167
function query boosting

about 186
inverse reciprocal 188
linear 190
logarithm 186, 187
reciprocal 189

function references
about 181
Boolean functions 183
external field values 185
Geometric/Trigonometric operations 182
mathematical functions 182, 183
mathematical primitives 182
miscellaneous functions 184
ord 184
relevancy statistics functions 183
rord 184

functions
about 179
field references 180, 181
function reference 181
incorporating, into searches 179, 180

fuzzy queries 138

www.it-ebooks.info

http://www.it-ebooks.info/

[392]

G
Gisgraphy

URL 160
go-live feature 309
grouping 265

H
Hadoop

about 307
and Solr 308
used, for running Solr build 310

Hadoop Distributed File
System (HDFS) 308, 309

Heritrix 275, 306
hierarchical faceting

about 211
reference link 211

highlight component
about 220
example 220, 221

highlighters
FastVector highlighter (FVH) 223
postings highlighter 223
selecting 222
standard (default) highlighter 222

highlighting
configuration 224, 225
parameters 386
reference link 225

HOCON (Human-Optimized Config
Object Notation) 314

HTTP server request access logs 358, 359

I
implementations, SolrServer

CloudSolrServer 277
ConcurrentUpdateSolrServer 277
EmbeddedSolrServer 277
HttpSolrServer 277
LBHttpSolrServer 277

implicit router 350
importing 79
included examples

working with 270
index 2

IndexBasedSpellChecker component,
options

buildOnCommit 231
buildOnOptimize 231
sourceLocation 232
spellcheckIndexDir 231
thresholdTokenFrequency 232

indexing
about 79
via Map-Reduce 309

indexing performance
about 332
data, sending to Solr in bulk 333
mergeFactor settings 334
optimization settings 334
schema, designing 332
unique key checking, disabling 333

indexing points 160
index latency 338
Index Searcher 329
index time

versus query time, synonym expansion 65
index-time boosting 86, 170
Information Retrieval (IR) 3
installing

ZooKeeper 370, 371
International Components for Unicode

(ICU) 52
interval faceting

reference link 207
inverse reciprocal 191
inverted index 2

J
Java

URL 7
Java 7

obtaining 7
JavaBean

annotating 280, 281
javabin

about 274
using, instead of XML 278

Java Development Kit (JDK) 7
Javadocs

URL 70, 74

www.it-ebooks.info

http://www.it-ebooks.info/

[393]

Java Management Extensions (JMX)
Solr, monitoring via 374
Solr, starting with 375, 376
URL, for documentation 375

Java Runtime Environment (JRE) 7
JavaScript

using, with Solr 283, 284
JavaScript Object Notation (JSON)

about 283
URL 283

Java Virtual Machine (JVM) 326
JDBC (Java Database Connectivity) 94
JMX access

controlling 380
JNDI (Java Naming and Directory

Interface) 357
joining 151
join query parser 151
Join support 33
jQuery

about 286
Solr powered artists autocomplete widget,

building with 285-288
URL 286

jQueryUI
reference link, for autocompletions 286
URL 286

JSONLint
URL 284

JSON with Padding (JSONP)
Solr powered artists autocomplete widget,

building with 285-288
JVM settings

configuring, for improving memory
usage 326

L
Language Detection

URL 115
leaders 349
Least Recently Used 329
local-params 130, 181
logging

configuring 357
logging dependencies

declaring 276

logical layout, SolrCloud
collection 341
shard 341

long running collection tasks
dealing with 351

Lucene
about 2
features 3

lucene query parser
about 131
boolean operators 133, 134
clauses, mandatory 132
clauses, optional 132
clauses, prohibited 132
documents, matching 132
specific fields, querying 136

Lucene query parser
parameters 384
syntax 385

LucidWorks
URL 362

M
ManifoldCF

about 315
using 316-318

manual sharding 350
Map-Reduce

used, for indexing 309
MapReduceIndexerTool

about 309
URL 309

master/slave replication 340
Maven

dependencies 275
MBeans (Managed Bean) 374
miscellaneous nonsearch

parameters 386
misspelled query

example usage 238-240
MMapDirectoryFactory

used, for leveraging additional virtual
memory 327

MoreLikeThis component
about 252
as request handler 253

www.it-ebooks.info

http://www.it-ebooks.info/

[394]

as request handler, with externally
supplied text 253

as search component 253
configuration parameters 253
example 257, 259
working 253

Morphlines
about 310
URL 310

multicore approach 76
multifield approach 75
multilingual search

about 75
multicore approach 76
multifield approach 75
single field approach 76, 77

multiple cores
uses 368, 369

multiselect faceting 212-215
multiterm query

URL 137
multiword synonym 65
MusicBrainz 29
MusicBrainz artists index

SolrCloud, standing up for 344, 345
MusicBrainz.org

about 29
URL 29

N
natural language processing (NLP) 111
near real-time (NRT) 89
near real-time search

about 338
Solr, configuring for 338

nested queries 134
New Relic

URL 372
n-gram analysis 70, 71
n-gram costs 71
NodeJS

URL 379
nodes

adding, to SolrCloud 352
non-cached filter queries

URL 149

nonexistence queries 141
Nutch

about 306
URL 308
used, for crawling web pages 306-308

Nutch Distributed File System (NDFS) 307

O
OpenSearch 292
optimistic concurrency

about 90, 91
URL, for examples 91

optimize command 334
optimized state 88
options, spellcheck.collate

spellcheck.collateExtendedResults 237
spellcheck.collateParam.xx 237
spellcheck.maxCollationEvaluations 237
spellcheck.maxCollations 237
spellcheck.maxCollationTries 237

Output Connector 315
output-related parameters

about 127
fl 127
sort 127
version 127
wt 127

P
parallel index 226
parameter, facet queries

facet.query 206, 207
parameter, for enabling faceting

facet 198
parameters, collapse query parser

field 262
max 263
min 263
nullPolicy 263

parameters, CREATE action
collection.configName 348
createNodeSet 348
maxShardsPerNode 348

parameters, expand component
expand 263
expand.field 263

www.it-ebooks.info

http://www.it-ebooks.info/

[395]

expand.fq 263
expand.q 263
expand.rows 263
expand.sort 263

parameters, highlighter search component
hl 224
hl.fl 224
hl.fragsize 225
hl.mergeContiguous 225
hl.requireFieldMatch 225
hl.snippets 225

parameters, MLT request handler
facet 255
mlt.interestingTerms 254
mlt.match.include 254
mlt.match.offset 254
q 254
rows 254
start 254

parameters, MLT search component
mlt 254
mlt.count 254

parameters, pivot faceting
facet.pivot 209
facet.pivot.mincount 209

parameters, stats component
stats 260
stats.calcdistinct 260
stats.facet 260
stats.field 260

params 16
parser

URL 137
partial phrase boosting 175
PerfMon tool 322
phonetic analysis 67, 68
PHP applications

Solr, accessing from 292, 293
phrase fields 174
phrase query 136
phrase search performance

improving 336-338
phrase slop configuration 175
physical layer, SolrCloud

cluster 341
core 341
leader 341

node 341
replica 341

pivot faceting
about 209
parameters 209

pivot stats feature
reference link 211

Platform as a Service (PaaS) 296
post-filter 262
postings highlighter 223
post.jar tool 82
Proxy

Solr, putting behind 379
PUID (PortableUniqueIdentifier) 30

Q
QTime 16
Quepid

about 172
URL 172

query complete/suggest
about 240
Facet/Field value completion 241, 242
field-value completion,

via Suggester 248-250
instant-search 240
instant-search, via edge n-grams 242, 243
query log completion 241
query term completion 241
query term completion,

via facet.prefix 243-245
query term completion,

via Suggester 245-247
query term completion, via Terms

component 248
QueryElevation component

about 250
configuring 251, 252

query parameters
about 123-125
diagnosis-related parameters 129
search criteria related parameters 126, 127

query parser
about 130
URL 131

query response writer 127

www.it-ebooks.info

http://www.it-ebooks.info/

[396]

query syntax, Lucene
URL 47

query-time boosting 86, 170
quorum 340, 369

R
Rails/Ruby library

selecting 305, 306
range faceting 202, 203
range facet parameters

facet.range 204
facet.range.end 204
facet.range.gap 205
facet.range.hardend 205
facet.range.include 205, 206
facet.range.other 205
facet.range.start 204

range queries
about 139, 140
date math 140

RDBMS 4
realm.properties

reference link 378
RealTime Get

URL 90
real-time search 338
reciprocal 193
regular expression

URL 58
regular expression queries 139
related data

denormalizing 35
one-to-many associated data,

denormalizing 36, 37
one-to-one associated data,

denormalizing 36
remote streaming 81-84
replicas 349
Repository Connector 315
RequestHandler per search

interface 362, 363
request handlers 21, 123-125
request parameters, field value faceting

facet.field 199
facet.limit 199
facet.method (advanced) 200

facet.mincount 199
facet.missing 199
facet.offset 199
facet.prefix 199
facet.sort 199
facet.threads (advanced) 200

request parameters, spellchecker component
spellcheck 236
spellcheck.alternativeTermCount 237
spellcheck.collate 236
spellcheck.count 236
spellcheck.dictionary 236
spellcheck.extendedResults 236
spellcheck.maxResultsForSuggest 238
spellcheck.onlyMorePopular 237
spellcheck.q 236

response format types 120
response writers 272
REST

URL 82
result grouping 37
Result Grouping

about 265, 266
reference link 267

result pagination related parameters 126
ReversedWildcardFilter 70
root entity 98
Ruby on Rails integrations

about 297
Solr's Ruby response write 297
sunspot_rails gem 298

S
scale horizontally approach 323
scale up approach 323
Schema API

reference link 50
schema design

about 33
entities returned from search,

determining 35
inclusion of fields, omitting 38, 39
related data, denormalizing 35
Solr powered searches, determining 34

schema.xml file
about 39

www.it-ebooks.info

http://www.it-ebooks.info/

[397]

built-in field type classes 48
default search field 43
dynamic field definitions 41
field definitions 40
fields, copying 44
field types, defining 47
indexed fields, advanced field

options 41, 42
MusicBrainz field definitions 44-46
query operator 43
unique key 43

score 2
scoring

about 167, 168
index-time boosting 170
queries, troubleshooting 170-172
query-time boosting 170
reference 167
scoring models 169
troubleshooting 170-172

ScriptUpdateProcessor
URL 114

search
performing, with SolrJ 278, 279

search components 125, 219
search criteria related parameters

about 126
defType 126
fq 126
q 126
qt 126

searching 118, 119
search-result clustering algorithms 262
segment 334
Sematext

URL 372
separate indices 30, 33
server directory

example/solr-webapp 9
example/webapps 9
server/contexts 9
server/etc 9
server/logs 9
server/resources 9
server/solr 9

Service Level Agreement (SLA) 354

Servlet containers
comparing 355
Solr, installing into 355

shard splitting 350
shingling 175, 336
side-car index 226
Simple Logging Facade for Java (SLF4J) 360
single combined index

issues 32
single field approach 76, 77
single Solr server optimization

about 325
downstream HTTP caching, enabling for

reducing load 327-329
faceting performance, enabling 335
indexing performance 332
JVM settings, configuring for memory

usage 326
phrase search performance,

improving 336-338
Solr caching 329-331
term vectors, using 335, 336

Solarium
URL 295

Solr
about 1-3
accessing, from PHP applications 292, 293
administrative interface 10, 11
AJAX, using with 283, 284
and Hadoop 308
code supplement 7
communicating with 80
comparison, to database technology 4, 5
configuration files 20, 21
configuring, for near real-time search 338
convenient client API, using 80
CSV-formatted data 91, 92
data formats 81
data formats, for indexing data 81
DataImportHandler framework 94
data, pulling 81
data, pushing 81
deployment methodology 353-355
direct HTTP, using 80
directory structure 7
downloading 6
embedding 281-283

www.it-ebooks.info

http://www.it-ebooks.info/

[398]

features 3, 4
HTTP POSTing options 82, 83
index data, securing 380
installing, into Servlet containers 355
integration 25
JavaScript, using with 283, 284
launching, in SolrCloud mode 342, 343
monitoring, via JMX 374
public searches, securing 379, 380
putting, behind Proxy 379
quick tour 10
remote streaming 81-84
running 10
sample browse interface 19
sample data, loading 14, 15
schema design 22
schemaless concept 28
searching 24
securing 376
security 285
server access, limiting 376-378
simple query 15-18
starting, with JMX 375, 376
statistics 18, 19
text analysis 23
URL 28
URL, for installation scripts 356
URL, for start scripts 356
URL, for wiki 356
XML response format 121
XML structured data representation 121

Solr 4
about 35
versus Solr 5 6

Solr 4.8
versions, URL 107

SOLR-6237
URL 309

Solr application logging
about 359
Jetty startup integration 361
logging output, configuring 360, 361
log levels, managing at runtime 361
reference link 360

Solr build, running with Hadoop
about 310
data ingestion process 313-315

storage, viewing 310-312
Solr caching

about 329
URL 331

Solr Cell
about 4
configuring 108
metadata, extracting from files 107, 108
parameters 109, 110
text, extracting from files 107, 108
URL 107
used, for indexing documents 107
used, for indexing documents 107

Solr Cell parameters
boost.[fieldname] 111
capture 109
captureAttr 109
defaultField 110
extractFormat 111
extractOnly 111
fmap.[tikaFieldName] 110
literal.[fieldname] 110
lowername 110
resource.name 109
stream.type 109
uprefix 110
xpath 110

SolrCloud
about 340
glossary 341
logical layout 341
nodes, adding to 352
number of shards, selecting 346
physical layer 341
replication factor, selecting 346
standing up, for MusicBrainz artists

index 344, 345
using 339
ZooKeeper, setting up for 369, 370

SolrCloud mode
Solr, launching in 342, 343

Solr Command Line Utilities
documentation

URL 344
Solr contrib modules

analysis-extras 7
clustering 8

www.it-ebooks.info

http://www.it-ebooks.info/

[399]

dataimporthandler 8
extraction 8
langid 8
map-reduce 8
morphlines-core 8
uima 8
velocity 8

Solr cores, leveraging
about 363
cores, managing 367, 368
solr.xml, configuring 364, 365

SolrEcosystem
URL 95, 269

Solr filters
URL 74

Solr function queries 177
solr.home property

defining 356, 357
Solritas

about 19, 271, 272
cons 273
pros 274

SolrJ
about 274
BrainzSolrClient example 275
document, indexing with 279, 280
features 274
logging dependencies 275
search, performing with 278, 279

SolrJS 289
SolrMeter

URL 323
used, for testing Solr performance 323-325

Solr performance
monitoring 372
Stats Admin interface 372, 373
testing, SolrMeter used 323-325

solr-php-client
about 294, 295
reference link 293

Solr powered artists autocomplete widget
building, with jQuery 285-288
building, with JSONP 285-288

solr-ruby
reference link 306

SolrServer class 277

Solr's Update-JSON
URL 81

SolrUIMA
URL 111

solr.xml configuration
about 364
fragments of XML, including with

XInclude 366
property substitution 366

sorting
about 150, 151, 180
by distance 162

SpanQueries 222
spatial, in Solr 3

about 156
configuration 157

spatial, in Solr 4
about 157-159
configuration, basics 159, 160

spatial search
about 155, 156
advanced 164
URL 164

special characters
escaping 142

SpellCheck component
about 225
configuration, in solrconfig.xml 228
index- and file-based spellcheckers,

building 234, 235
q parameter, processing 233
schema configuration 227
spellcheck.q parameter, processing 234

Spell Checker Oriented Word Lists
(SCOWL) 232

spellcheckers
configuring 229, 230
DirectSolrSpellChecker 226, 230, 231
FileBasedSpellChecker 226, 232
IndexBasedSpellChecker 226, 231, 232
request parameters 236, 237
WordBreakSolrSpellChecker 226, 233

spell checking
parameters 386

spellcheck query converter 234
spellcheck requests

issuing 235-238

www.it-ebooks.info

http://www.it-ebooks.info/

[400]

Splainer
about 172
URL 172

split brain 369
Squid

URL 329
standard (default) highlighter 222
stats component

about 259
configuring 260
reference link 261
statistics, on track durations 260

status 16
Steady State 322
stemming

about 2, 62
augmenting 63
correcting 63
EnglishMinimalStemFilterFactory 63
KStemFilterFactory 63
PorterStemFilterFactory 62
SnowballPorterFilterFactory 62
URL 62

stock dynamic fields, schema.xml file 23
stop words 66, 67
subqueries

about 134, 135
prohibited clauses, limitations 135

substring indexing 69
Suggester

reference link 247
Suggester SpellChecker 226
sunspot_rails gem

about 298
myFaves project, setting up 298
myFaves relational database, populating

from Solr 299-301
myFaves website, completing 303-305
Solr indexes, building from relational

database 301-303
Surround query parser 222
synonyms

expansion, at index time versus
query time 65

processing 64, 65

T
tailing 358
term proximity 136
Terms component

reference link 248
TermVector component

about 267
URL 267

term vectors
using 335, 336

text
sorting 72, 73

text analysis
about 2, 51
experimenting with 55, 56
URL 52

text analyzer 2
TF-IDF 169
time to live (TTL) 114
token filters 54, 73, 74
tokenization

ClassicTokenizerFactory 58
KeywordTokenizerFactory 58
LetterTokenizerFactory 59
LowerCaseTokenizerFactory 59
PathHierarchyTokenizerFactory 59
PatternTokenizerFactory 59
StandardTokenizerFactory 58
UAX29URLEmailTokenizer 58
WhitespaceTokenizerFactory 58

tokenize 2
tokenizer 54, 58, 59
tokens 2, 58
TokenStream 60
Tomcat

URL 357
top tool 322
tracks 30
transaction log 89, 90
Transactions Per Second (TPS) 322
transformers

about 99
ClobTransformer 100
DateFormatTransformer 100
HTMLStripTransformer 100
LogTransformer 100

www.it-ebooks.info

http://www.it-ebooks.info/

[401]

NumberFormatTransformer 100
RegexTransformer 100
ScriptTransformer 100
TemplateTransformer 100

U
uniqueKey 333
Universally Unique Identifier (UUID) 43
Unstructured Information Management

Architecture (UIMA) 111
update request processors

about 111
CloneFieldUpdateProcessorFactory 113
DocBasedVersionConstraintsProcessor

Factory 114
DocExpirationUpdateProcessorFactory 114
FieldMutatingUpdateProcessorFactor 112
LangDetectLanguageIdentifier

UpdateProcessorFactory 115
LogUpdateProcessorFactory 112
RegexpBoostProcessorFactory 114
RunUpdateProcessorFactory 112
SignatureUpdateProcessorFactory 111
StatelessScriptUpdateProcessorFactory 114
TikaLanguageIdentifierUpdate

ProcessorFactory 115
UIMAUpdateProcessorFactory 111
URL 115

Update-XML format, Solr
about 85
documents, deleting 86

URL encoding
URL 123

UX Design Pattern Library
URL 195

V
ValueSources 179
Varnish

URL 329
Vector Space Model 169
Velocity

URL 274
VelocityResponseWriter

URL 274
version parameter 127

W
WAR (Web application archive) file 355
Web Hook

URL 98
web pages

crawling, Nutch used 306-308
Well Known Text (WKT) 164
wildcard queries

about 137, 138
fuzzy queries 138
regular expression queries 139

wildcards 69
WordBreakSolrSpellChecker component,

options
breakWords 233
combineWords 233
maxChanges 233

WordNet
URL 64

writer type (wt) 127, 272

X
XInclude 33, 366
XML response format

about 121, 122
URL, parsing 122, 123

XML search results
transforming, XSLT used 291, 292

XML structured data representation 121
XSLT

about 291
used, for transforming XML search

results 291, 292

Y
YAFF (Yet Another File Format) 314

Z
ZooKeeper

about 340, 369
data, administering in 371
installing 370, 371
setting up, for SolrCloud 369, 370

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Apache Solr Enterprise Search Server

Third Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster,
more reliable, and return better results

1. Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable.

2. Solve performance, setup, configuration,
analysis, and query problems in no time.

3. Get to grips with, and master, the new exciting
features of Apache Solr 4.

Apache Solr High Performance
ISBN: 978-1-78216-482-1 Paperback: 124 pages

Boost the performance of Solr instances and
troubleshoot real-time problems

1. Achieve high scores by boosting query time
and index time, implementing boost queries
and functions using the Dismax query parser
and formulae.

2. Set up and use SolrCloud for distributed
indexing and searching, and implement
distributed search using Shards.

3. Use GeoSpatial search, handling homophones,
and ignoring listed words from being indexed
and searched.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience
with real-world data with this practical guide
to Apache Solr

1. Learn to use Solr in real-world contexts, even
if you are not a programmer, using simple
configuration examples.

2. Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3. Teaches you in an easy-to-follow style,
full of examples, illustrations, and tips
to suit the demands of beginners.

Apache Solr PHP Integration
ISBN: 978-1-78216-492-0 Paperback: 118 pages

Build a fully-featured and scalable search application
using PHP to unlock the search functions provided
by Solr

1. Understand the tools that can be used
to communicate between PHP and Solr,
and how they work internally.

2. Explore the essential search functions
of Solr such as sorting, boosting, faceting,
and highlighting using your PHP code.

3. Take a look at some advanced features
of Solr such as spell checking, grouping,
and auto complete with implementations
using PHP code.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Quick Starting Solr
	An introduction to Solr
	Lucene—the underlying engine
	Solr—a Lucene-based search server
	Comparison to database technology

	A few differences between Solr 4 and Solr 5
	Getting started
	Solr's installation directory structure
	Running Solr

	A quick tour of Solr
	Loading sample data
	A simple query
	Some statistics
	The sample browse interface

	Configuration files
	What's next?
	Schema design and indexing
	Text analysis
	Searching
	Integration

	Resources outside this book
	Summary

	Chapter 2: Schema Design
	Is Solr schemaless?
	MusicBrainz.org
	One combined index or separate indices
	One combined index
	Problems with using a single combined index

	Separate indices

	Schema design
	Step 1 – determine which searches are going to be powered by Solr
	Step 2 – determine the entities returned from each search
	Step 3 – denormalize related data
	Denormalizing – one-to-one associated data
	Denormalizing – one-to-many associated data

	Step 4 – omit the inclusion of fields only used in search results (optional)

	The schema.xml file
	Field definitions
	Dynamic field definitions

	Advanced field options for indexed fields
	The unique key
	The default search field and query operator
	Copying fields
	Our MusicBrainz field definitions
	Defining field types
	Built-in field type classes
	Numbers and dates
	Some other field types

	Summary

	Chapter 3: Text Analysis
	Configuring field types
	Experimenting with text analysis

	Character filters
	Tokenization
	Filtering
	Stemming
	Correcting and augmenting stemming

	Processing synonyms
	Synonym expansion at index time versus query time

	Working with stop words
	Phonetic analysis
	Substring indexing and wildcards
	ReversedWildcardFilter
	N-gram analysis
	N-gram costs

	Sorting text
	Miscellaneous token filters

	The multilingual search
	The multifield approach
	The multicore approach
	The single field approach

	Summary

	Chapter 4: Indexing Data
	Communicating with Solr
	Using direct HTTP or a convenient client API
	Pushing data to Solr or have Solr pull it
	Data formats
	Solr's HTTP POST options
	Remote streaming

	Solr's Update-XML format
	Deleting documents

	Commit, optimize, and rollback the transaction log
	Don't overlap commits
	Index optimization
	Rolling back an uncommitted change
	The transaction log

	Atomic updates and optimistic concurrency
	Sending CSV-formatted data to Solr
	Configuration options

	The DataImportHandler framework
	Configuring the DataImportHandler framework
	The development console
	Writing a DIH configuration file
	Data sources
	Entity processors
	Fields and transformers

	Example DIH configurations
	Importing from databases
	Importing XML from a file with XSLT
	Importing multiple rich document files – crawling

	Importing commands
	Delta imports

	Indexing documents with Solr Cell
	Extracting text and metadata from files
	Configuring Solr
	Solr Cell parameters

	Update request processors
	Summary

	Chapter 5: Searching
	Your first search – a walk-through
	A note on response format types

	Solr's generic XML structured data representation
	Solr's XML response format
	Parsing the URL

	Understanding request handlers
	Query parameters
	Search criteria related parameters
	Result pagination related parameters
	Output-related parameters
	More about the fl parameter

	Diagnosis-related parameters

	Query parsers and local-params
	Query syntax (the lucene query parser)
	Matching all the documents
	Mandatory, prohibited, and optional clauses
	Boolean operators

	Subqueries
	Limitations of prohibited clauses in sub-queries

	Querying specific fields
	Phrase queries and term proximity
	Wildcard queries
	Fuzzy queries
	Regular expression queries

	Range queries
	Date math

	Score boosting
	Existence and non-existence queries
	Escaping special characters

	The DisMax query parser – part 1
	Searching multiple fields
	Limited query syntax
	Min-should-match
	Basic rules
	Multiple rules
	What to choose

	A default query
	The uf parameter

	Filtering
	Sorting
	Joining
	The join query parser
	The block-join query parsers
	The block-join-children parser
	The block-join-parent parser

	Spatial search
	Spatial in Solr 3 – LatLonType and friends
	Configuration

	Spatial in Solr 4 – SpatialRecursivePrefixTreeFieldType
	Configuration – basic

	Indexing points
	Filtering by distance or rectangle
	Sorting by distance
	Returning the distance
	Boosting by distance
	Memory and performance of distance sorting
and boosting

	Advanced spatial

	Summary

	Chapter 6: Search Relevancy
	Scoring
	Alternative scoring models
	Query-time and index-time boosting
	Troubleshooting queries and scoring
	Tools – Splainer and Quepid

	The DisMax query parser – part 2
	Lucene's DisjunctionMaxQuery
	Boosting – automatic phrase boosting
	Configuring automatic phrase boosting
	Phrase slop configuration
	Partial phrase boosting

	Boosting – boost queries
	Boosting – boost functions
	Add or multiply boosts

	Functions and function queries
	Field references
	Function reference
	Mathematical primitives
	Other math
	Boolean functions
	Relevancy statistics functions
	Ord and rord
	Miscellaneous functions
	External field values

	Function query boosting
	Formula – logarithm
	Formula – inverse reciprocal
	Formula – reciprocal
	Formula – linear

	How to boost based on an increasing
numeric field?
	Step by step…

	How to boost based on recent dates
	Step by step…

	Summary

	Chapter 7: Faceting
	A quick example – faceting release types
	Field requirements
	Types of faceting
	Faceting field values
	Alphabetic range bucketing

	Faceting numeric and date ranges
	Range facet parameters

	Facet queries
	Building a filter query from a facet
	Field value filter queries
	Facet range filter queries

	Pivot faceting
	Hierarchical faceting

	Excluding filters – multiselect faceting
	Summary

	Chapter 8: Search Components
	About components
	The highlight component
	A highlighting example
	Choose the Standard, FastVector, or Postings highlighter
	The Standard (default) highlighter
	The FastVector highlighter
	The Postings highlighter

	Highlighting configuration

	The SpellCheck component
	Schema configuration
	Configuration in solrconfig.xml
	Configuring spellcheckers – dictionaries
	Processing the q parameter
	Processing the spellcheck.q parameter

	Building Index- and file-based spellcheckers
	Issuing spellcheck requests
	Example usage for a misspelled query

	Query complete/suggest
	Instant-search via edge n-grams
	Query term completion via facet.prefix
	Query term completion via the Suggester
	Query term completion via the Terms component
	Field-value completion via the Suggester

	The QueryElevation component
	Configuration

	The MoreLikeThis component
	Configuration parameters
	Parameters specific to the MLT search component
	Parameters specific to the MLT request handler
	Common MLT parameters

	The MLT results example

	The Stats component
	Configuring the stats component
	Statistics on track durations

	The Clustering component
	Collapsing and expanding
	The Collapse query parser
	The Expand component
	An example
	Compared to Result grouping

	The TermVector component
	Summary

	Chapter 9: Integrating Solr
	Working with the included examples
	Inventory of examples

	Solritas – the integrated search UI
	The pros and cons of Solritas

	SolrJ – Solr's Java client API
	The sample code – BrainzSolrClient
	Dependencies and Maven
	Declaring logging dependencies

	The SolrServer class
	Using javabin instead of XML for efficiency

	Searching with SolrJ
	Indexing with SolrJ
	Deleting documents

	Annotating your JavaBean – an alternative
	Embedding Solr
	When should you use embedded Solr? Tests!

	Using JavaScript/AJAX with Solr
	Wait, what about security?
	Building a Solr-powered artists autocomplete widget with jQuery and JSONP
	AJAX Solr

	Using XSLT to transform XML search results
	Accessing Solr from PHP applications
	solr-php-client
	Drupal options
	The Apache Solr Search integration module
	Hosted Solr by Acquia

	Ruby on Rails integrations
	Solr's Ruby response writer
	The sunspot_rails gem
	Setting up myFaves project
	Populating myFaves relational database from Solr
	Build Solr indexes from a relational database
	Complete myFaves website

	Which Rails/Ruby library should I use?

	Nutch for crawling web pages
	Solr and Hadoop
	HDFS
	Indexing via MapReduce
	Morphlines

	Running a Solr build using Hadoop
	Looking at the storage
	The data ingestion process

	ManifoldCF – a connector framework
	Connectors
	Putting ManifoldCF to use

	Document-level security
	Summary

	Chapter 10: Scaling Solr
	Tuning complex systems is hard
	Use SolrMeter to test Solr performance
	Optimizing a single Solr server – scale up
	Configuring JVM settings to improve memory usage
	Using MMapDirectoryFactory to leverage additional virtual memory

	Enabling downstream HTTP caching to reduce load
	Solr caching
	Tuning caches

	Indexing performance
	Designing the schema
	Sending data to Solr in bulk
	Disabling unique key checking
	Index optimization and mergeFactor settings

	Enhancing faceting performance
	Using term vectors
	Improving phrase search performance

	Configuring Solr for near real-time search
	Use SolrCloud to go big – scale wide
	SolrCloud glossary
	Launching Solr in SolrCloud mode
	Managing collections and configurations
	Stand up SolrCloud for our MusicBrainz artists index
	Choosing the replication factor and number
of shards
	Creating and deleting collections
	Replicas and leaders
	Document routing
	Shard splitting
	Dealing with long running collection tasks
	Adding nodes

	Summary

	Chapter 11: Deployment
	Deployment methodology for Solr
	Questions to ask

	Installing Solr into a Servlet container
	Differences between Servlet containers
	Defining solr.home property

	Configuring logging
	HTTP server request access logs
	Solr application logging
	Configuring logging output
	Jetty startup integration
	Managing log levels at runtime

	A RequestHandler per search interface
	Leveraging Solr cores
	Configuring solr.xml
	Property substitution
	Include fragments of XML with XInclude

	Managing cores
	Some uses for multiple cores

	Setting up ZooKeeper for SolrCloud
	Installing ZooKeeper
	Administering Data in ZooKeeper

	Monitoring Solr performance
	Stats Admin interface
	Monitoring Solr via JMX
	Starting Solr with JMX

	Securing Solr from prying eyes
	Limiting server access
	Put Solr behind a Proxy
	Securing public searches
	Controlling JMX access

	Securing index data
	Controlling document access
	Other things to look at

	Summary

	Appendix: Quick Reference
	Core search
	Diagnosis related
	Lucene query parser
	DisMax query parser
	Lucene query syntax
	Faceting
	Highlighting
	Spell checking
	Miscellaneous nonsearch

	Index

