

Apache	Solr	for	Indexing	Data

Table	of	Contents

Apache	Solr	for	Indexing	Data

Credits

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started

Overview	and	installation	of	Solr

Installing	Solr	in	OS	X	(Mac)

Running	Solr

Installing	Solr	in	Windows

Installing	Solr	on	Linux

The	Solr	architecture	and	directory	structure

Solr	directory	structure

Cores	in	Solr	(Multicore	Solr)

Summary

2.	Understanding	Analyzers,	Tokenizers,	and	Filters

Introducing	analyzers

Analysis	phases

Tokenizers

Standard	tokenizer

Keyword	tokenizer

Lowercase	tokenizer

N-gram	tokenizer

Filters

Lowercase	filter

Synonym	filter

Porter	stem	filter

Running	your	analyzer

Summary

3.	Indexing	Data

Indexing	data	in	Solr

Introducing	field	types

Defining	fields

Defining	an	unique	key

Copy	fields	and	dynamic	fields

Building	our	musicCatalogue	example

Using	the	Solr	Admin	UI

Facet	searching

Summary

4.	Indexing	Data	–	The	Basic	Technique	and	Using	Index	Handlers

Inserting	data	into	Solr

Configuring	UpdateRequestHandler

Indexing	documents	using	XML

Adding	and	updating	documents

Deleting	a	document

Indexing	documents	using	JSON

Adding	a	single	document

Adding	multiple	JSON	documents

Sequential	JSON	update	commands

Indexing	updates	using	CSV

Summary

5.	Indexing	Data	with	the	Help	of	Structured	Datasources	–	Using	DIH

Indexing	data	from	MySQL

Configuring	datasource

DIH	commands

Indexing	data	using	XPath

Summary

6.	Indexing	Data	Using	Apache	Tika

Introducing	Apache	Tika

Configuring	Apache	Tika	in	Solr

Indexing	PDF	and	Word	documents

Summary

7.	Apache	Nutch

Introducing	Apache	Nutch

Installing	Apache	Nutch

Configuring	Solr	with	Nutch

Summary

8.	Commits,	Real-Time	Index	Optimizations,	and	Atomic	Updates

Understanding	soft	commit,	optimize,	and	hard	commit

Using	atomic	updates	in	Solr

Using	RealTime	Get

Summary

9.	Advanced	Topics	–	Multilanguage,	Deduplication,	and	Others

Multilanguage	indexing

Removing	duplicate	documents	(deduplication)

Content	streaming

UIMA	integration	with	Solr

Summary

10.	Distributed	Indexing

Setting	up	SolrCloud

The	collections	API

Updating	configuration	files

Distributed	indexing	and	searching

Summary

11.	Case	Study	of	Using	Solr	in	E-Commerce

Creating	an	AutoSuggest	feature

Facet	navigation

Search	filtering	and	sorting

Relevancy	boosting

Summary

Index

Apache	Solr	for	Indexing	Data

Apache	Solr	for	Indexing	Data
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1151215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78355-323-5

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Sachin	Handiekar

Anshul	Johri

Reviewers

Damiano	Braga

Florian	Hopf

Commissioning	Editor

Ashwin	Nair

Acquisition	Editors

Rebecca	Pedley

Reshma	Raman

Content	Development	Editor

Rohit	Kumar	Singh

Technical	Editor

Utkarsha	S.	Kadam

Copy	Editor

Vikrant	Phadke

Project	Coordinator

Mary	Alex

Proofreader

Safis	Editing

Indexer

Rekha	Nair

Production	Coordinator

Manu	Joseph

Cover	Work

Manu	Joseph

About	the	Authors
Sachin	Handiekar	is	a	senior	software	developer	with	over	5	years	of	experience	in	Java
EE	development.	He	graduated	in	computer	science	from	the	University	of	Greenwich,
London,	and	currently	works	for	a	global	consulting	company,	developing	enterprise
applications	using	various	open	source	technologies,	such	as	Apache	Camel,	ServiceMix,
ActiveMQ,	and	ZooKeeper.

He	has	a	lot	of	interest	in	open	source	projects	and	has	contributed	code	to	Apache	Camel
and	developed	plugins	for	the	Spring	Social,	which	can	be	found	on	GitHub	at
https://github.com/sachin-handiekar.

He	also	actively	writes	about	enterprise	application	development	on	his	blog
(http://www.sachinhandiekar.com/).

Anshul	Johri	has	more	than	10	years	of	technical	experience	in	software	engineering.	He
did	his	masters	in	computer	science	from	the	computer	science	department	in	the
University	of	Pune.	Anshul	has	always	been	a	start-up	mindset	guy,	working	on	fast-paced
development	using	cutting-edge	technologies	and	doing	multiple	things	at	a	time.	His	core
strength	has	always	been	search	technology,	whereby	Solr	plays	an	important	role	in	his
career.	Anshul	started	using	Solr	around	9	years	ago,	and	since	then,	he	has	never	looked
back.	He	did	better	and	better	with	Solr,	whether	using	it	or	contributing	to	the	open
source	search	community.	He	has	used	Solr	extensively	in	all	his	organizations	across
various	projects.

As	mentioned	earlier,	Anshul	has	always	been	a	start-up	mindset	guy.	Because	of	that,	he
has	worked	with	many	start-ups	in	his	career	so	far,	which	includes	early-age	and	mid-size
start-ups	as	well.	To	name	a	few,	they	are	Ibibo.com,	Asklaila.com,	Bookadda.com,	and	so
on.	His	last	company	was	Amazon,	where	he	spent	around	2	years	building	scalable
systems	for	Amazon	Prime	(a	global	product).	Anshul	recently	started	his	own	company
in	India	with	another	friend	from	Amazon	and	founded	http://www.rentomo.com/,	a
unique	concept	of	a	peer-to-peer	sharing	platform	in	a	trusted	community.	He	heads	the
technology	and	other	core	pillars	of	his	own	start-up.

Anshul	did	the	technical	review	of	the	book	Indexing	with	Solr,	published	by	Packt
Publishing.

https://github.com/sachin-handiekar
http://www.sachinhandiekar.com/
http://www.rentomo.com/

About	the	Reviewers
Damiano	Braga	is	the	technical	search	lead	at	Trulia,	where	he	leads	all	the	backend
search	and	browsing-related	projects.	He’s	also	an	open	source	contributor	and	has
participated	as	a	speaker	at	the	Lucene	Revolution	2014,	where	he	presented	Thoth,	a	real-
time	Solr	monitoring	and	search	analysis	engine.	He	also	previously	reviewed	the	book
Apache	Solr	Search	Patterns,	Packt	Publishing.

Prior	to	Trulia,	Damiano	studied	and	worked	for	the	University	of	Ferrara	(Italy),	where
he	also	completed	his	master’s	degree	in	computer	science	engineering.

Florian	Hopf	works	as	a	freelance	software	developer	and	consultant	in	Karlsruhe,
Germany.	He	familiarized	himself	with	Lucene-based	searching	while	working	with
different	content	management	systems	on	the	Java	platform.	He	is	responsible	for	small
and	large	search	systems,	on	both	the	Internet	and	Intranet,	for	web	content	and
application-specific	data	based	on	Lucene,	Solr,	and	Elasticsearch.	He	helps	organize	the
local	Java	user	group	as	well	as	the	Search	Meetup	in	Karlsruhe.	Florian	has	also	written	a
German	book	on	Elasticsearch.	He	posts	blogs	at	http://blog.florian-hopf.de/.

http://blog.florian-hopf.de/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

I	would	like	to	dedicate	this	book	to	my	parents,	especially	my	late	mother,	Anuradha
Johri,	who	has	always	been	my	inspiration	and	my	friend	for	life.	After	that	I	would
like	to	thank	my	wife,	Aparna,	who	is	always	there	with	me	in	every	situation	no
matter	how	tough	it	is;	she	is	someone	who	always	makes	me	feel	complete.

http://www.PacktPub.com

Preface
Welcome	to	Apache	Solr	for	Indexing	Data.	Solr	is	an	amazing	enterprise	tool	that	gives
us	a	search	engine	with	various	possibilities	to	index	data	and	gives	users	a	better
experience.	This	book	will	cover	the	various	indexing	methods	that	we	can	use	to	improve
the	indexing	process	by	covering	step-by-step	examples.

The	book	is	all	about	indexing	in	Solr,	and	we’ll	cover	all	the	possible	topics	in	Solr	that
developers	can	use	in	their	use	cases	by	following	simple	examples.

What	this	book	covers
Chapter	1,	Getting	Started,	covers	the	basic	setup	and	installation	needed	to	run	Solr.	It
also	covers	the	directory	structure	and	the	main	configuration	files	used	by	Solr.

Chapter	2,	Understanding	Analyzers,	Tokenizers,	and	Filters,	shows	you	the	basic
building	blocks	of	Solr,	such	as	analyzers,	tokenizers,	and	filters.	These	help	in	the
indexing	of	data.	This	chapter	also	covers	the	most	commonly	used	components	in	detail
and	how	they	work	together.

Chapter	3,	Indexing	Data,	helps	you	get	a	better	understanding	of	how	indexing	works	in
Solr	by	building	a	real-life	example	that	covers	various	aspects,	for	example,	the	copy
field,	facet,	indexing	time	boosting,	and	so	on.

Chapter	4,	Indexing	Data	–	The	Basic	Techniques	and	Using	Index	Handlers,	covers
various	techniques	by	which	we	can	index	data	in	Solr.	This	chapter	explains	the	various
request	handlers	that	are	used	by	Solr	to	index	CSV,	JSON,	and	XML	data	type
documents.

Chapter	5,	Indexing	Data	Using	Structured	Datasource	Using	DIH,	covers	how	we	can
use	indexed	data	from	a	database	by	using	the	data	import	handler	available	in	Solr.

Chapter	6,	Indexing	Data	Using	Apache	Tika,	illustrates	the	integration	of	Apache	Tika
with	Solr	for	the	indexing	of	documents.

Chapter	7,	Apache	Nutch,	covers	the	integration	of	Apache	Nutch	with	Solr	for	indexing
crawl	data	from	the	Internet.

Chapter	8,	Commits,	Real-Time	Index	Optimizations,	and	Atomic	Updates,	shows	us	how
we	can	use	the	real-time	indexing	features	available	in	Solr	and	utilize	these	features	to
provide	a	real-time	search	experience.

Chapter	9,	Advanced	Topics	–	Multilanguage,	Deduplication,	and	Others,	covers
advanced	topics	such	as	indexing	multilanguage	documents	and	removing	duplicate
documents	from	Solr.

Chapter	10,	Distributed	Indexing,	tells	us	how	we	can	utilize	SolrCloud	to	provide	a	high-
availability	and	fault-tolerant	cluster.

Chapter	11,	Case	Study	of	Using	Solr	in	E-Commerce,	covers	a	case	study	by	going
through	easy-to-use,	simple	examples	that	can	be	used	in	an	e-commerce	website.

What	you	need	for	this	book
We	are	going	to	cover	various	approaches	to	Solr	indexing.	Each	chapter	will	introduce
different	approaches	with	different	software.	Also,	each	chapter	will	cover	the	installation
steps/instructions	needed	to	run	the	examples	for	the	specific	scenario.

The	minimal	installation	which	we’ll	need	to	run	the	example	code	are	as	follows:

JDK	1.6+	(the	JAVA_HOME	variable	should	be	set	up	correctly	on	the	system	path)
Apache	Solr	4.10.1
The	cURL	tool	(Windows	users	can	download	it	from
http://curl.haxx.se/download.html)

http://curl.haxx.se/download.html

Who	this	book	is	for
This	book	is	for	developers	who	want	to	increase	their	experience	of	indexing	in	Solr	by
learning	about	the	various	index	handlers,	analyzers,	and	methods	available	in	Solr.
Beginner	level	Solr	development	skills	are	expected.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

<solr	persistent="false">

<cores	adminPath="/admin/cores"	defaultCoreName="core1">

<core	name="core1"	instanceDir="core1"/>

<core	name="core2"	instanceDir="core2"/>

</cores>

</solr>

Any	command-line	input	or	output	is	written	as	follows:

$cd	$SOLR_HOME/example/exampledocs/

$./post.shvidcard.xml

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Click	on	Install
service.	You	should	get	a	service	successfully	installed	message.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started
We	will	start	this	chapter	with	a	quick	overview	of	Solr,	followed	by	a	section	that	helps
you	get	Solr	up	and	running.	We	will	also	cover	some	basic	building	blocks	of	the	Solr
architecture,	its	directory	structure,	and	its	configurations	files.	This	chapter	covers
following	topics:

Overview	and	installation	of	Solr
Running	Solr
The	Solr	architecture	and	directory	structure
Multicore	Solr

Overview	and	installation	of	Solr
Solr	is	the	one	of	the	most	popular	open	source	enterprise	search	platforms	from	the
Apache	Lucene	open	source	project.	Its	features	include	full	text	search,	faceted	search,
highlighting,	near-real-time	indexing,	dynamic	clustering,	rich	document	handling,	and
geospatial	search.	Solr	is	highly	reliable	and	scalable.	This	is	the	reason	Solr	powers	the
search	features	of	the	world’s	largest	Internet	sites,	for	example,	Netflix,	TicketMaster,
SourceForge,	and	so	on	(source:	https://wiki.apache.org/solr/PublicServers).

Solr	is	written	in	Java	and	runs	as	a	standalone	full	text	search	server	with	a	REST-like
API.	You	feed	documents	into	it	(which	is	called	indexing)	via	XML,	JSON,	CSV,	and
binary	over	HTTP.	You	query	it	through	HTTP	GET	and	receive	XML,	JSON,	CSV,	and
binary	results.

Let’s	go	through	the	installation	process	of	Solr.	This	section	describes	how	to	install	Solr
on	various	operating	systems	such	as	Mac,	Windows,	and	Linux.	Let’s	go	through	each	of
them	one	by	one.

https://wiki.apache.org/solr/PublicServers

Installing	Solr	in	OS	X	(Mac)
The	easiest	way	to	install	Solr	on	OS	X	is	by	using	homebrew.	If	you	are	not	aware	of
homebrew	and	don’t	have	homebrew	installed	on	your	Mac,	then	go	to	http://brew.sh/.
Homebrew	is	the	easiest	way	of	installing	packages/software	on	Mac.

You	will	require	JRE	1.7	or	above	to	install	Solr	on	OS	X.	Just	type	java	–version	in	the
terminal	and	see	what	the	version	of	JRE	installed	in	your	computer	is.	If	it’s	less	than	1.7,
then	you	need	to	upgrade	it	to	higher	version	and	proceed	with	the	following	instructions.

Just	type	the	following	command	in	the	terminal	and	it	will	automatically	download	all	the
files	needed	for	Solr.	Sit	back	and	relax	for	a	few	minutes	until	it	completes:

$	brew	install	Solr

http://brew.sh/

Running	Solr
To	test	whether	your	installation	was	completed	successfully,	you	need	to	run	Solr.	Type
these	commands	in	the	terminal	to	run	it:

$	cd	/usr/local/Cellar/solr/4.4.0/libexec/example/

$	java	-jar	start.jar

After	you	run	the	preceding	commands,	you	will	see	lots	of	dumping	messages/logs	on	the
terminal.	Don’t	worry!	It’s	normal.	Just	try	to	fix	any	error	if	it	is	there.	Once	the	messages
are	stopped	and	there	is	no	error	message,	simply	go	to	any	web	browser	and	type
http://localhost:8983/solr/#/.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

You	will	see	following	screen	on	your	browser:

Fresh	Solr	do	not	contain	any	data.	In	Solr	terminology,	data	is	termed	as	a	document.	You
will	learn	how	to	index	data	in	Solr	in	upcoming	chapters.

http://www.packtpub.com
http://www.packtpub.com/support

Installing	Solr	in	Windows
There	are	multiple	ways	of	installing	Solr	on	a	Windows	machine.	Here,	I	have	explained
the	way	to	set	up	Solr	with	Jetty	running	as	a	service	via	NSSM:

1.	 Install	the	latest	Java	JDK	from
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

2.	 Download	the	latest	Solr	release	(ZIP	version)	from
http://www.apache.org/dyn/closer.cgi/lucene/solr/.	At	the	time	of	writing	this	book,
the	latest	Solr	release	was	4.10.1.

3.	 Unzip	the	Solr	download.	You	should	have	files	as	shown	in	the	following
screenshot.	Open	the	example	folder.

4.	 Copy	the	etc,	lib,	logs,	solr,	and	webapps	folders	and	start.jar	to	C:\solr	(you
will	need	to	create	the	folder	at	C:\solr),	as	shown	in	the	following	screenshot:

5.	 Now	open	the	C:\solr\solr	folder	and	copy	the	contents	back	to	the	root	C:\solr
folder.	When	you	are	done,	you	can	delete	the	C:\solr\solr	folder.	See	the
following	image,	the	selected	folder	you	can	delete	now:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.apache.org/dyn/closer.cgi/lucene/solr/

At	this	point,	your	C:\solr	directory	should	look	like	what	is	shown	in	the	following
screenshot:

6.	 Solr	can	be	run	at	this	point	if	you	start	it	from	the	command	line.	Change	your
directory	to	C:\solr	and	then	run	java	-Dsolr.solr.home=C:/solr/	-jar
start.jar.

7.	 If	you	go	to	http://localhost:8983/solr/,	you	should	see	the	Solr	dashboard.
8.	 Now	Solr	is	up	and	running,	so	we	can	work	on	getting	Jetty	to	run	as	a	Windows

service.	Since	Jetty	comes	bundled	with	Solr,	all	that	we	need	to	do	is	run	it	as	a
service.	There	are	several	options	to	do	this,	but	the	one	I	prefer	is	through	Non-
Sucking	Service	Manager	(NSSM)program	in	windows	which	is	the,	the	most
compatible	service	manager	across	Windows	environment.	NSSM	can	be
downloaded	from	http://nssm.cc/download.

9.	 Once	you	have	downloaded	NSSM,	open	the	win32	or	win64	folder	as	appropriate
and	copy	nssm.exe	to	your	C:\solr	folder.

10.	 Open	Command	Prompt,	change	the	directory	to	C:\solr,	and	then	run	nssm
install	Solr.

11.	 A	dialog	will	open.	Select	java.exe	as	the	application	located	at
C:\Windows\System32\.

12.	 In	the	options	input	box,	enter:	Dsolr.solr.home=C:/solr/	-
Djetty.home=C:/solr/	-Djetty.logs=C:/solr/logs/	-cp

C:/solr/lib/*.jar;C:/solr/start.jar	-jar	C:/solr/start.jar.
13.	 Click	on	Install	service.	You	should	get	a	service	successfully	installed	message.
14.	 Finally	run	net	start	Solr.
15.	 Jetty	should	now	be	running	as	a	service.	Check	this	by	going	to

http://localhost:/8983/solr/.

http://nssm.cc/download

Installing	Solr	on	Linux
To	install	Solr	on	Linux/Unix,	you	will	need	Java	Runtime	Environment	(JRE)	version
1.7	or	higher.	Then	follow	these	steps:

1.	 Download	the	latest	Solr	release	(.tgz)	from
http://www.apache.org/dyn/closer.cgi/lucene/solr/.	At	the	time	of	writing	this	book,
the	latest	release	was	4.10.1.

2.	 Unpack	the	file	to	your	desired	location.
3.	 Solr	runs	inside	a	Java	servlet	container,	such	as	Tomcat,	Jetty,	and	so	on.	Solr

distribution	includes	a	working	demo	server	in	the	example	directory,	which	runs	in
Jetty.	You	can	use	Jetty	servlet	container,	or	use	your	preferred	servlet	container.	If
you	are	using	a	servlet	container	other	than	Jetty	and	it’s	already	running,	then	stop
that	server.

4.	 Copy	the	solr-4.10.1.war	file	from	the	Solr	distribution	under	the	dist	directory	to
the	webapps	directory	of	your	servlet	container.	Change	the	name	of	this	file;	it	must
be	named	solr.war.

5.	 Copy	the	Solr	home	directory,	solr-4.x.0/example/solr/,	from	the	distribution	to
your	desired	Solr	home	location.

6.	 Start	your	servlet	container,	passing	to	it	the	location	of	your	Solr	home	in	one	of
these	ways:

1.	 Set	the	solr.solr.home	Java	system	property	to	your	Solr	home	(for	example,
using	this	example	jetty	setup:	java	-Dsolr.solr.home=/some/dir	-jar
start.jar).

2.	 Configure	the	servlet	container	so	that	a	JNDI	lookup	of
java:comp/env/solr/home	by	the	Solr	web	app	will	point	to	your	Solr	Home.

3.	 Start	the	servlet	container	in	the	directory	containing	./solr.	The	default	Solr
Home	is	solr	under	the	JVM’s	current	working	directory	($CWD/solr).

7.	 To	confirm	the	installation,	just	go	to	http://localhost:/8983/solr/	and	you	will
see	the	Solr	dashboard.	Now	your	Solr	is	up	and	running.

Thus,	by	the	end	of	the	installation,	your	Solr	is	up	and	running.	But	since	we	have	not	fed
any	data	into	Solr,	it	will	not	index	any	data.	Let’s	try	to	insert	some	example	data	into	our
server.

The	Solr	download	comes	with	example	data	bundled	in	it.	We	can	use	the	same	data	for
indexing	as	an	example.	Go	to	the	exampledocs	directory	under	the	example	directory.
Here,	you	will	see	a	lot	of	files.	Now	go	to	the	command	line	(terminal)	and	type	the
following	commands:

$	cd	$SOLR_HOME/example/exampledocs/

$./post.sh	vidcard.xml

Within	the	post.sh	file,	the	script	will	call	http://localhost:8983/solr/update	using
curl	to	post	xml	data	from	the	vidcard.xml	file.	When	the	import	completes	(without	any

http://www.apache.org/dyn/closer.cgi/lucene/solr/

error),	you	will	see	a	message	that	looks	something	like	this:

Now	let’s	try	to	check	out	our	imported	data	from	web	browser.	Try
http://localhost:8983/solr/select?q=*:*&wt=json	to	fetch	all	of	the	data	in	your
Solr	instance,	like	this:

When	you	see	the	preceding	data,	it	means	that	your	Solr	server	is	running	properly	and	is
ready	to	index	your	desired	feed.	You	will	be	reading	indexing	in	depth	in	upcoming
chapters.

The	Solr	architecture	and	directory
structure
In	real-world	scenarios,	Solr	runs	with	other	applications	on	a	web	server.	A	typical
example	is	an	online	store	application.	The	store	provides	a	user	interface,	a	shopping	cart,
an	items	catalogue,	and	a	way	to	make	purchases.	It	needs	to	store	this	information	some
sort	of	database.	Here,	Solr	makes	easy	so	add	the	capability	of	searching	data	in	the
online	store.	To	make	data	searchable,	you	need	to	feed	it	to	Solr	for	indexing.	Data	can	be
fed	to	Solr	in	various	ways	and	also	in	various	formats,	such	as	.pdf,	.doc,	.txt,	and	so
on.	In	the	process	of	feeding	data	to	Solr,	you	need	to	define	a	schema.	A	schema	is	a	way
of	telling	Solr	about	data	and	how	you	want	to	make	your	data	indexed.	A	lot	many	factors
need	to	be	considered	while	feeding	data,	which	we	will	discuss	in	detail	in	upcoming
chapters.

Solr	queries	are	RESTful,	which	means	that	a	Solr	query	is	just	a	simple	HTTP	request
and	the	response	is	a	structured	document,	mainly	in	XML,	but	it	could	be	JSON,	CSV,	or
any	other	format	as	well	based	on	your	requirement.	A	typical	architecture	of	Solr	in	the
real	world	looks	something	like	this:

Do	not	worry	if	you	are	not	able	to	understand	the	preceding	diagram	right	now.	We	will
cover	every	component	related	to	indexing	in	detail.	The	purpose	of	this	diagram	is	to	give
you	a	feel	of	the	current	architecture	of	Solr	and	its	working	in	the	real	world.	If	you	see
the	preceding	diagram	properly,	you	will	find	two	.xml	files	named	schema.xml	and
solrconfig.xml.	These	are	the	two	most	important	files	in	the	Solr	configuration	and	are
considered	the	building	blocks	of	Solr.

Solr	directory	structure
Here’s	the	directory	layout	of	a	typical	Solr	Home	directory:

|	+	conf	

|					-	schema.xml	

|					-	solrconfig.xml	

|					-	stopwords.txt

|					-	synonyms.txt	etc

|	+	data	

|					-	index	

|					-	spellchecker

Let’s	get	a	brief	understanding	of	solrconfig.xml	and	schema.xml	here	before	we
proceed	further,	as	these	are	the	building	blocks	of	Solr	(as	stated	earlier).	We	will	cover
them	in	detail	in	the	next	few	chapters.

The	solrconfig.xml	file	is	the	core	configuration	file	of	Solr,	with	most	parameters
affecting	Solr	itself	directly.	This	file	can	be	found	in	the	solr/collection1/conf/
directory.	When	configuring	Solr,	you’ll	work	with	solrconfig.xml	often.	The	file
consists	of	a	series	of	XML	statements	that	set	configuration	values,	and	some	of	the	most
important	configurations	are:

Defining	data	dir	(the	directory	where	indexed	files	remain)
Request	handlers	(handle	upcoming	HTTP	requests)
Listeners
Request	dispatchers	(used	to	manage	HTTP	communications)
Admin	web	interface	settings
Replication	and	duplication	parameters

These	are	some	of	the	important	configurations	defined	in	solrconfig.xml.	This	file	is
well	commented;	I	would	advise	you	to	go	through	it	from	the	start	and	read	all	the
comments.	You	will	get	a	very	good	understanding	of	the	various	components	involved	in
the	Solr	configuration.

The	second	most	important	configuration	file	is	called	schema.xml.	This	file	can	be	found
in	the	solr/collection1/conf/	directory.	As	the	name	says,	this	file	is	used	to	define	the
schema	of	the	data	(content)	that	you	want	to	index	and	make	searchable.	Data	is	called
document	in	Solr	terminology.	The	schema.xml	file	contains	all	the	details	about	the
fields	that	your	documents	can	contain,	and	how	these	fields	should	be	dealt	with	when
adding	documents	to	the	index	or	when	querying	those	fields.	This	file	can	be	divided
broadly	into	two	sections:

The	types	section	(the	definitions	of	all	types)
The	fields	section	(the	definitions	of	the	document	structure	using	types)

The	structure	of	your	document	should	be	defined	as	a	field	under	the	fields	section.
Let’s	say	you	have	to	define	a	book	as	a	document	in	Solr	with	fields	as	isbn,	title,
author,	and	price.	The	schema	will	be	as	follows:

<field	name="isbn"	type="string"	required="true"	indexed="true"	

stored="true"/>	<field	name="title"	type="text_general"	indexed="true"	

stored="true"/>

<field	name="author"	type="text-general"	indexed="true"	stored="true"	

multiValued="true"/>

<field	name="price"	type="int"	indexed="true"	stored="true"/>

In	the	preceding	schema,	you	see	a	type	attribute,	which	defines	the	data	type	of	the	field.
You	can	change	the	behavior	of	the	field	by	changing	the	type.	The	multiValued	attribute
is	used	to	tell	Solr	that	the	field	can	hold	multiple	values,	while	the	required	attribute
makes	the	field	mandatory	for	creating	a	document.	After	the	fields	section	ends,	we
need	to	mention	which	field	is	going	to	be	unique.	In	our	case,	it	is	going	to	be	isbn:

<uniqueKey>isbn</uniqueKey>

The	schema.xml	file	is	also	well-commented	file.	I	will	again	advise	you	to	go	through	the
comments	of	this	file,	for	starting	this	will	help	you	understand	the	various	field	types	and
data	types	in	detail.

Cores	in	Solr	(Multicore	Solr)
Solr	cores	make	it	possible	to	run	multiple	indexes	with	different	configurations	and
schemas	in	a	single	Solr	instance.	The	multicore	feature	of	Solr	helps	in	unified
administration	of	Solr	instances	for	complete	and	different	applications.	Cores	in	Solr	are
fairly	isolated	and	have	their	own	configuration	and	schema	files.	This	helps	manage	cores
at	runtime	(create	or	remove)	from	a	Solr	instance	without	restarting	the	process.

Cores	in	Solr	are	managed	through	a	configuration	file	called	solr.xml.	The	solr.xml	file
is	present	in	your	Solr	Home	directory.	Since	its	inception,	solr.xml	has	evolved	from
configuring	one	core	to	managing	multiple	cores	and	eventually	defining	parameters	for
SolrCloud.	Do	not	worry	much	about	SolrCloud	if	you	are	not	aware	of	it,	as	we	have	a
dedicated	chapter	that	covers	SolrCloud	in	detail.	In	brief,	SolrCloud	is	a	terminology
used	in	distributed	search	and	indexing.	When	we	need	to	index	huge	amounts	of	data,	we
need	to	think	of	scalability	and	performance.	This	is	where	SolrCloud	comes	into	the
picture.

Starting	from	Solr	4.3,	Solr	will	maintain	two	distinct	formats	for	solr.xml;	one	is	legacy
and	the	other	is	discovery	mode.	The	legacy	format	will	be	supported	until	the	4.x.0	series
and	it	will	be	deprecated	in	the	5.0	release	of	Solr.	The	default	solr.xml	config	file	looks
something	like	this:

<solr>

		<solrcloud>

				<str	name="host">${host:}</str>

				<int	name="hostPort">${jetty.port:8983}</int>

				<str	name="hostContext">${hostContext:solr}</str>

				<int	name="zkClientTimeout">${zkClientTimeout:30000}</int>

				<bool	name="genericCoreNodeNames">${genericCoreNodeNames:true}</bool>

		</solrcloud>

		<shardHandlerFactory	name="shardHandlerFactory"

				class="HttpShardHandlerFactory">

				<int	name="socketTimeout">${socketTimeout:0}</int>

				<int	name="connTimeout">${connTimeout:0}</int>

		</shardHandlerFactory>

</solr>

The	preceding	configuration	shows	that	Solr	configurations	are	SolrCloud	friendly,	but
this	does	not	mean	that	Solr	is	running	in	SolrCloud	mode,	unless	you	start	Solr	with	some
special	parameters	(explained	in	the	SolrCloud	Chapter	10,	Distributed	Indexing).	To
configure	multiple	cores	in	Solr	in	legacy	format,	you	need	to	edit	the	solr.xml	file	with
the	following	code	snippet	and	remove	the	existing	discovery	code	from	solr.xml:

<solr	persistent="false">

				<cores	adminPath="/admin/cores"	defaultCoreName="core1">

				<core	name="core1"	instanceDir="core1"	/>

				<core	name="core2"	instanceDir="core2"	/>

		</cores>

</solr>

Now	you	need	to	create	two	cores	(new	directories,	core1	and	core2)	in	the	Solr
directory.	You	also	need	to	create	Solr	configuration	files	for	new	cores.	To	do	this,	just
copy	the	same	configuration	files	(the	conf	directory	in	collections1)	in	both	cores	for
now	and	restart	the	Solr	server	after	you	have	made	these	settings.

Once	you	restart	the	Solr	server	with	the	preceding	configuration,	two	cores	will	be
created,	with	names	core1	and	core2	and	the	existing	default	Solr	configuration	settings.
The	instanceDir	variable	defines	the	directory	name	relative	to	solr.xml—where	to	look
for	configuration	and	data	files.	You	can	modify	the	paths	of	these	cores	according	to	your
wishes	and	the	configuration	files	according	to	your	use	case.	You	can	also	change	the
names	of	the	cores.

You	can	verify	your	settings	by	opening	the	following	URL	in	your	browser:
http://localhost:8983/solr/.

You	will	see	two	new	cores	created	in	the	Solr	dashboard.	Currently,	there	is	no	document
in	any	of	the	cores	because	we	have	not	indexed	any	data	so	far.	So,	this	concludes	the
process	of	creating	multiple	cores	in	Solr.

Summary
Thus,	by	the	end	of	the	first	chapter,	you	have	learned	what	Solr	is,	how	to	install	and	run
it	on	various	operating	systems,	what	the	various	components	and	basic	building	blocks	of
Solr	are	(such	as	its	configuration	files	and	directory	structure),	and	how	to	set	up
configuration	files.	You	also	learned	in	brief	about	the	architecture	of	Solr.	In	the	last
section,	we	covered	multicore	setup	in	the	Solr	4.x.0	series.	However,	the	legacy	method
of	multicore	setup	is	going	to	be	deprecated	in	the	Solr	5.x	release	and	then	it’s	going	to	be
only	discovery	mode,	which	is	called	SolrCloud.

In	the	next	chapter,	we	will	look	deeply	into	the	various	components	used	in	Solr
configuration	files,	such	as	tokenizers,	analyzers,	filters,	field	types,	and	so	on.

Chapter	2.	Understanding	Analyzers,
Tokenizers,	and	Filters
In	the	previous	chapter,	we	read	how	to	install	and	run	Solr	on	various	operating	systems
and	covered	its	architecture.	We	talked	briefly	about	the	basic	building	blocks	of	Solr,
such	as	Solr	config	files.

In	this	chapter,	we	will	cover	the	following	core	components	of	the	Solr	configuration:

Analyzers
Tokenizers
Filters

Introducing	analyzers
To	make	us	able	to	search	effectively	and	efficiently,	Solr	splits	text	into	tokens	during
indexing	as	well	as	during	search	(query	time).	Solr	does	all	of	this	with	the	help	of	its
three	main	components:	analyzers,	tokenizers,	and	filters.	Analyzers	are	used	during	both
indexing	and	searching.	An	analyzer	examines	the	text	of	fields	and	the	generated	token
stream	with	the	help	of	tokenizers.	Then,	filters	examine	the	stream	of	tokens	and	perform
filtering	jobs	of	any	one	of	these:	keeping	them,	discarding	them,	or	creating	new	tokens.
Tokenizers	and	filters	might	be	combined	in	the	form	of	pipelines	or	chains	such	that	the
output	of	one	is	the	input	of	the	other.	Such	a	sequence	of	tokenizers	and	filters	is	called
an	analyzer,	and	the	resulting	output	of	the	analyzer	is	used	to	match	search	queries	or
build	indices.	Let’s	see	how	we	can	use	these	components	in	Solr	and	implement	them.

Analyzers	are	core	components	that	preprocess	input	text	at	indexing	and	search	time.	It’s
recommended	that	you	use	similar	or	the	same	analyzers	to	preprocess	text	in	a
compatible	manner	at	query	and	index	time.	In	simple	terms,	the	role	of	an	analyzer	is	to
examine	the	input	text	and	generate	token	streams.	An	analyzer	is	specified	as	a	child	of	a
<fieldType>	element	in	the	schema.xml	configuration	file.

In	normal	usage,	only	fields	of	the	solr.TextField	type	specify	an	analyzer.	There	are
two	ways	to	specify	how	text	fields	are	analyzed	in	Solr	with	the	help	of	analyzers	in
schema.xml:

One	way	is	to	specify	the	class	name	of	an	analyzer	whose	class	attribute	is	a	fully
qualified	Java	class	name.	This	is	the	simplest	way	of	configuring	an	analyzer	with	a
single	<analyzer>	element.	The	class	name	must	be	derived	from
org.apache.lucene.analysis.Analyzer.	The	following	is	an	example:

<fieldType	name="nametext"	class="solr.TextField">

		<analyzer	class="org.apache.lucene.analysis.WhitespaceAnalyzer"/>

</fieldType>

In	this	case,	a	single	class,	WhitespaceAnalyzer,	is	responsible	for	analyzing	the
content	of	the	named	text	field	and	emitting	the	corresponding	tokens.	This	analyzer
can	be	used	in	simple	cases	where	only	plain	English	input	text	is	present.	But	in
general,	there	is	always	more	complex	analysis	that	is	done	on	field	content.

The	second	way	is	to	specify	a	TokenizerFactory	followed	by	a	list	of	optional
TokenFilterFactory,	which	are	applied	in	the	listed	order.	This	is	the	way	of
performing	complex	analyses	on	input	text	content;	for	example,	you	can	decompose
your	analysis	into	discrete	and	relatively	simple	steps.	Here	is	an	example:

<fieldType	name="nametext"	class="solr.TextField">

		<analyzer>

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.StandardFilterFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

				<filter	class="solr.StopFilterFactory"/>

				<filter	class="solr.EnglishPorterFilterFactory"/>

		</analyzer>

</fieldType>

In	the	preceding	case,	we	are	trying	to	set	up	an	analysis	chain	by	simply	specifying
the	<analyzer>	element	(no	class	attribute)	and	child	elements,	which	are	factory
classes	for	the	tokenizers	and	filters	in	the	order	that	you	want	to	run.	In	this	case,	no
analyzer	class	is	defined	in	the	<analyzer>	element.	Rather,	there	is	a	sequence	of
more	specialized	classes	clubbed	together	to	act	as	an	analyzer	for	the	field	which	is
going	to	be	analyzed.	Soon,	you	will	discover	that	a	Solr	distribution	comes	with	a
large	selection	of	tokenizers	and	filters	that	will	help	by	covering	most	of	the
scenarios	that	you	are	likely	to	encounter.

Note
Note	that	classes	in	the	org.apache.solr.analysis	package	may	be	referred	to	here
with	the	short	alias	solr.prefix.

We	will	cover	tokenizers	and	filters	in	detail	in	upcoming	topics.

Analysis	phases
We	read	earlier	that	analysis	happens	in	two	contexts.	At	index	time,	when	a	field	is	being
created,	the	token	stream	that	results	from	the	analysis	is	added	to	the	index	and	defines	a
set	of	terms	such	as	position,	size,	and	so	on	for	the	field.	At	query	time,	the	search	query
is	analyzed	and	the	terms	are	matched	against	those	that	are	stored	in	the	field’s	index.	In
many	cases,	the	same	analysis	is	used	at	index	and	query	time,	but	there	might	be	some
cases	in	which	you	may	want	to	use	different	steps	of	analysis	during	indexing	and	search
time.	Here	is	an	example	of	this:

<fieldType	name="nametext"	class="solr.TextField">

		<analyzer	type="index">

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

				filter	class="solr.RemoveWordFilterFactory"	words="removewords.txt"/>

				<filter	class="solr.SynonymFilterFactory"	synonyms="synonyms.txt"/>

		</analyzer>

		<analyzer	type="query">

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

		</analyzer>

</fieldType>

In	the	preceding	example,	you	can	see	that	we	have	used	two	<analyzer>	definitions,
distinguished	by	the	type	attribute.	Based	on	the	type	attribute,	Solr	applies	the	analyzer
to	the	input	field	at	index	and	query	time.	At	the	time	of	indexing	data,	we	told	the
analyzer	to	follow	different	steps,	in	comparison	to	query	time.	At	index	time,	we	told	Solr
to	tokenize	the	text	using	the	solr.StandardTokenizerFactory	class,	after	which	we
used	a	filter	called	solr.LowerCaseFilterFactory	to	make	the	tokens	lowercase.	After
making	the	tokens	lowercase,	we	used	another	filter	called
solr.RemoveWordFilterFactory,	which	removes	the	tokens	as	per	the	words	defined	in
removewords.txt.	The	final	filter	that	we	used	maps	the	tokens	to	an	alternate	value	using
the	solr.SynonymFilterFactory	filter,	which	uses	the	synonyms.txt	file.	But	at	query
time,	we	asked	analyzer	to	apply	only	the	lowercase	filter	to	convert	query	terms	to
lowercase.	Other	filters	that	were	applied	at	index	time	were	not	applied	at	query	time.

Tokenizers
The	function	of	a	tokenizer	is	to	break	input	text	into	tokens,	where	each	token	is	a	stream
of	characters	in	the	text.	You	configure	a	tokenizer	for	a	text	field	type	in	schema.xml	with
a	<tokenizer>	element,	which	is	a	child	of	<analyzer>,	like	this	for	example:

<fieldType	name="text"	class="solr.TextField">

				<analyzer	type="index">

								<tokenizer	class="solr.StandardTokenizerFactory"/>

								<filter	class="solr.StandardFilterFactory"/>

				</analyzer>

</fieldType>

In	the	preceding	example,	you	can	see	that	a	class	attribute	names	a	factory	class	that	will
instantiate	a	tokenizer	object	when	needed.	Tokenizer	factory	classes	implement
org.apache.solr.analysis.TokenizerFactory.	You	can	pass	arguments	to	tokenizer
factories	by	setting	attributes	in	the	<tokenizer>	element.	Here	is	an	example	of	this:

<fieldType	name="semicolonDelimited"	class="solr.TextField">

		<analyzer	type="query">

		<tokenizer	class="solr.PatternTokenizerFactory"	pattern=";	"/>

		<analyzer>

</fieldType>

In	the	preceding	example,	the	PatternTokenizerFactory	class	implements
org.apache.solr.analysis.TokenizerFactory	and	an	argument	is	passed	to	this	class
with	the	attribute	name	pattern.

There	are	a	lot	of	factory	classes	that	are	included	in	the	Solr	release.	Let’s	go	through
some	of	them.

Standard	tokenizer
The	standard	tokenizer	splits	input	text	into	tokens	considering	whitespaces	and
punctuations	as	delimiters.	This	is	the	most	used	tokenizer	in	Solr	configuration.	Here	is
an	example	of	it:

<analyzer>

		<tokenizer	class="solr.StandardTokenizerFactory"/>

</analyzer>

Input	text:	"Hello,	packt.pub@uk.com	01-17,	re:	m56-nm."

Output:	"Hello",	"packt.pub",	"uk.com",	"01",	"17",	"re",	"m56",	"xq"

In	this	tokenizer,	delimiter	characters	are	discarded,	with	the	following	exceptions:

Periods	(dots)	that	are	not	followed	by	whitespaces	are	kept	as	part	of	the	token,
including	Internet	domain	names
The	@	character	belongs	to	the	set	of	token-splitting	punctuation,	so	e-mail	addresses
are	not	preserved	as	single	tokens

Keyword	tokenizer
The	keyword	tokenizer	treats	the	entire	input	text	as	a	single	token.	An	example	of	it	is	as
follows:

<analyzer>

		<tokenizer	class="solr.KeywordTokenizerFactory"/>

</analyzer>

Input	text:	"Hello,	packt.pub@uk.com	01-17,	re:	m56-nm."

Output:	"Hello,	packt.pub@uk.com	01-17,	re:	m56-nm."

Lowercase	tokenizer
As	the	name	suggests,	the	lowercase	tokenizer	tokenizes	the	input	text	by	delimiting	at
non-letters	and	converting	all	letters	to	lowercase.	In	this	tokenizer,	whitespaces	and	non-
letters	are	discarded.	Here	is	an	example	of	it:

<analyzer>

		<tokenizer	class="solr.LowerCaseTokenizerFactory"/>

</analyzer>

Input	text:	"I	LOVE	Packtpub	Books!"

Output:	"i",	"love",	"packtpub",	"books"

N-gram	tokenizer
The	N-gram	tokenizer	reads	the	input	text	and	generates	N-gram	tokens	based	on	the	input
parameters	of	sizes	in	the	given	range.	An	example	of	this	tokenizer	is	as	follows:

<analyzer>

		<tokenizer	class="solr.NGramTokenizerFactory"/>

</analyzer>

The	default	behavior	of	this	tokenizer	is	not	to	break	the	field	at	whitespaces.	So,	the
resulting	output	in	this	example	contains	a	whitespace	as	a	token.	The	default	minimum
gram	size	is	1	and	the	maximum	gram	size	is	2.

Input	text:	"packt	pub"

Output:	"p",	"a",	"c",	"k",	"t",	"	",	"p",	"u",	"b",	"pa",	"ck",	"t	",	"	p",
"ub"

The	following	is	an	example	with	an	N-gram	size	of	4	to	5:

<analyzer>

		<tokenizer	class="solr.NGramTokenizerFactory"	minGramSize="4"	

maxGramSize="5"/>

</analyzer>

Input	text:	"packtpub"

Output:	"pack",	"packt",	"ackt",	"acktp",	"cktp",	"cktpu",	"ktpu",	"ktpub",
"tpub"

Other	widely	used	tokenizers	are:

Letter	tokenizer
Classic	tokenizer
Whitespace	tokenizer
Edge	N-gram	tokenizer
ICU	tokenizer
Path	hierarchy	tokenizer
Regular-expression	tokenizer
UAX29	URL	e-mail	tokenizer

You	can	go	through	the	schema.xml	file,	and	you	will	see	good	examples	of	tokenizers
and	their	use	cases.	This	file	has	well-commented	sections.

Filters
Like	tokenizers,	filters	consume	tokens	as	input	and	again	produce	a	stream	of	tokens.	The
function	of	a	filter	is	a	bit	different	from	that	of	a	tokenizer.	Unlike	a	tokenizer,	a	filter
receives	tokens	as	the	input	(passed	by	a	tokenizer),	and	its	function	is	to	look	at	each
token	and	decide	whether	to	keep	this	token,	change/replace	it,	or	discard	it.	Filters	are
also	derive	from	org.apache.lucene.analysis.TokenStream.

A	typical	example	of	a	filter	looks	something	like	this:

<fieldType	name="text"	class="solr.TextField">

		<analyzer>

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.StandardFilterFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

</analyzer>

</fieldType>

Filters	are	configured	in	schema.xml	with	a	<filter>	element	as	a	child	of	<analyzer>,
following	the	<tokenizer>	element.	Since	filters	take	token	streams	as	input,	the	filter
definition	should	follow	the	tokenizer	or	another	filter	definition,	as	shown	in	the
preceding	example.

The	preceding	example	starts	with	a	standard	tokenizer;	it	tokenizes	the	input	text.	Then
these	tokens	pass	through	Solr’s	standard	filter,	which	removes	dots	from	acronyms	and
performs	some	other	common	operations.	All	the	tokens	are	then	set	to	lowercase,	which
will	help	in	case-insensitive	matching	at	query	time.

Like	tokenizers,	the	class	attribute	names	a	factory	class	that	instantiates	a	filter	object	as
needed.	Filter	factory	classes	must	implement	the
org.apache.solr.analysis.TokenFilterFactory	interface.	Arguments	may	be	passed
to	tokenizer	factories	to	change	their	behavior	by	setting	attributes	in	the	<filter>
element.	An	example	of	filter	factory	is	as	follows:

<fieldType	name="hyphenDelimited"	class="solr.TextField">

		<analyzer	type="query">

				<tokenizer	class="solr.PatternTokenizerFactory"	pattern="-	"	/>

				<filter	class="solr.LengthFilterFactory"	min="3"	max="6"/>

		</analyzer>

</fieldType>

Let’s	see	some	of	the	filter	factories	that	are	included	in	the	Solr	release.

Lowercase	filter
The	lowercase	filter	converts	all	uppercase	letters	to	lowercase	tokens,	and	all	other
characters	are	left	unchanged:

<analyzer>

		<tokenizer	class="solr.StandardTokenizerFactory"/>

		<filter	class="solr.LowerCaseFilterFactory"/>

</analyzer>

Input	text:	"I	Love	Apache	Solr"

Tokenizer	input	to	filter:	"I",	"Love",	"Apache",	"Solr"

Output:	"i",	"love",	"apache",	"solr"

Synonym	filter
The	synonym	filter	is	responsible	for	synonym	mapping.	Each	token	is	matched	with	a	list
of	synonyms	present	in	the	synonym	file	passed	as	an	argument,	and	if	a	match	is	found,
then	the	synonym	is	put	in	place	of	the	token:

<analyzer>

		<tokenizer	class="solr.StandardTokenizerFactory"/>

		<filter	class="solr.SynonymFilterFactory"	synonyms="synonyms.txt"/>

</analyzer>

The	format	of	the	synonyms.txt	file	is	as	follows:

i-phone,	i	phone,	iphone		=>	iphone

iit,	IIT,	I.I.T	=>	Indian	Institute	of	Technology

small	=>	tiny,	short,	teeny

Input	text:	"new	i-phone	is	small"

Tokenizer	input	to	filter:	"new",	"i-phone",	"is",	"small"

Output:	"new",	"iphone",	"is",	"tiny",	"short",	"teeny"

Porter	stem	filter
The	Porter	stem	filter	applies	the	Porter	stemming	algorithm	for	the	English	language.
This	filter	is	very	similar	to	the	Snowball	Porter	stem	filter	with	the	English	language.	In
the	snowball	porter	stem	filter,	you	can	provide	a	language	as	the	input	parameter,	such	as
French,	Spanish,	and	so	on:

<analyzer	type="index">

		<tokenizer	class="solr.StandardTokenizerFactory	"/>

		<filter	class="solr.PorterStemFilterFactory"/>

</analyzer>

Input	text:	"run	runs	running	ran"

Tokenizer	input	to	filter:	"run",	"runs",	"running",	"ran"

Output:	"run",	"run",	"run",	"run"

Other	filters	are:

Length	filter
Keep	words	filter
ICU	transform	filter
KStem	filter
N-gram	filter
Pattern	replace	filter
Position	filter	factory
Remove	duplicates	token	filter
Shingle	filter
Reversed	wildcard	filter
Token	offset	payload	filter
Trim	filter
Type	token	filter
Word	delimiter	filter

Running	your	analyzer
Once	you	are	done	with	configuring	your	Solr	according	to	your	use	case,	such	as
analyzers,	tokenizers,	and	filters,	you	can	actually	test	your	configuration	without
indexing	data.	The	Solr	admin	interface	provides	a	very	clean	and	easy	way	to	test	your
configuration.	Refer	to	the	following	screenshot	to	see	analyzer	page	for	core1:

Let’s	create	a	new	field	type	and	put	the	following	configuration	into	schema.xml:

<fieldType	name="mytextfield"	class="solr.TextField">

		<analyzer	type="index">

				<tokenizer	class="solr.WhitespaceTokenizerFactory"/>

				<filter	class="solr.HyphenatedWordsFilterFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

		</analyzer>

		<analyzer	type="query">

				<tokenizer	class="solr.StandardTokenizerFactory"/>

				<filter	class="solr.LowerCaseFilterFactory"/>

		</analyzer>

</fieldType>

Now	restart	your	Solr	and	go	to	the	analyzer.	Next,	choose	your	defined	field	type,
mytextfield,	from	the	dropdown,	like	this:

Now	you	can	type	your	input	text	and	see	how	Solr	indexes	your	data.	You	can	play	with
different	pieces	of	input	text	and	analyze	your	analyzer	setting	for	each	field.	Based	on
your	use	case,	you	can	further	modify	your	field	type.	Here	is	an	example	of	this:

Summary
In	this	chapter,	we	saw	how	we	can	use	analyzers,	tokenizers,	and	filters	in	Solr,	which
gives	us	the	ability	to	transform	data	during	index	and	query	time.	We	also	saw	how	we
can	remove	words	using	the	solr.RemoveWordFilterFactory	filter	and	use
solr.StandardTokenizerFactory	to	tokenize	text	that	is	getting	indexed	into	Solr.

In	the	next	chapter,	we’ll	see	how	we	can	use	the	components	that	we’ve	discussed	in	this
chapter	to	create	a	schema.

Chapter	3.	Indexing	Data
In	the	previous	chapter,	we	saw	the	various	analyzers,	tokenizers,	and	filters	provided	by
Solr	that	help	us	select	the	most	important	data	from	a	given	document.	In	this	chapter,
we’ll	see	how	Solr	provides	us	a	way	to	index	this	data	so	that	we	can	run	queries	on	top
of	it.	We’ll	cover	the	following	topics	in	this	chapter:

Defining	field	types	in	Solr
Creating	a	custom	musicCatalogue	example
Facet	searching

The	Solr	indexing	process	can	mainly	be	broken	down	into	two	major	parts:

Converting	the	document	from	its	native	format	to	XML	or	JSON,	both	of	which	are
supported	by	Solr
Adding	documents	into	Solr	datastore	using	API	or	HTTP	POST

To	better	understand	the	preceding	two	parts,	we’ll	create	an	example	of	a	music	catalogue
that	contains	metadata	related	to	songs.	The	music	catalogue	will	contain	metadata	related
to	a	song	that	can	later	be	used	to	retrieve	important	information	regarding	the	song.

We’ll	also	see	how	Solr	provides	various	ways	of	feeding	this	information	into	it	and	how
we	can	retrieve	it.

Indexing	data	in	Solr
Indexing	of	data	in	Solr	is	done	using	a	document	that	contains	fields	that	are	used	to
provide	major	information	to	Solr.	A	document	can	be	broken	down	further	into	fields,
which	contain	major	pieces	of	information	that	is	used	by	Solr	to	further	provide	better
search	results.

The	musicCatalogue	core	that	we’ll	build	will	contain	fields	representing	information
related	to	a	song.	For	example,	an	artistName	field	will	contain	the	name	of	the	artist	who
sang	the	song.	Another	field	such	as	duration	can	contain	the	length	of	the	song.	A	fields
can	also	contain	a	data	type,	which	will	further	describe	the	type	of	data	that	can	be	used.
For	example,	artistName	can	be	described	as	a	text	field.	On	the	other	hand,	the	duration
field	can	be	of	type	float	or	double.	The	fieldType	property	specifies	the	kind	of	field	to
be	used	by	Solr.

Note
More	information	about	floating-point	numbers	can	be	found	at
https://en.wikipedia.org/wiki/Floating_point.

So	let’s	go	ahead	and	create	a	schema	for	our	musicCatalogue	example.	As	we	progress
through	this	chapter,	we’ll	see	what	Solr	provides	us	when	we	create	a	schema	for	our
musicCatalogue	example.

To	create	our	example,	we’ll	use	the	default	installation	of	Solr	that	we	set	up	in	Chapter
1,	Getting	Started.	We	will	do	so	to	create	a	core	for	our	musicCatalogue.

We’ll	create	a	directory	called	musicCatalog	in	SOLR_HOME//solr.	After	we	have	created
a	directory,	we’ll	create	a	folder	named	conf	to	hold	schema.xml	and	solrconfig.xml,
which	will	be	used	by	Solr:

music-catalog

\---conf

								schema.xml

								solrconfig.xml

The	schema.xml	config	will	define	the	fields	that	are	necessary	for	our	musicCatalogue
example.	To	keep	the	music	catalogue	simple,	we’re	going	to	use	the	following	fields
only:

Field	name Data	type Solr	field	type

songId Long solr.TrieLongField

songName String solr.StrField

artistName String solr.StrField

albumArtist String solr.StrField

songDuration Double solr.TrieDoubleField

https://en.wikipedia.org/wiki/Floating_point

Rating Float solr.TrieFloatField

Composer String solr.StrField

Rating Float solr.TrieFloatField

Year Integer solr.intField

Genre String solr.StrField

So	let’s	see	what	our	schema.xml	file	should	look	like	and	the	various	fields	and	field
types	that	we	can	use	while	building	this	schema.

A	basic	schema.xml	file	looks	like	this:

<?xml	version="1.0"	encoding="UTF-8"	?>

<schema	name="uniqueSchemaName"	version="1.5">

<!--More	elements	go	here	-->

</schema>

As	we	can	see	from	the	preceding	XML,	every	schema	must	consist	of	a	unique	name	that
will	distinguish	it	from	others.

For	this	example,	we’ll	name	it	musicCatalogue.	A	schema	can	contain	the	following
elements	within	it:

Field	types
Fields,	copyFields,	and	dynamicFields
A	unique	key
A	Solr	query	parser
A	copy	field
Similarity

Introducing	field	types
A	field	type	in	Solr	defines	how	data	should	be	interpreted	and	how	Solr	can	use	it	to
index	the	data.	A	field	type	can	contain	an	analyzer	and	a	filter,	which	we’ve	seen	in
Chapter	2,	Understanding	Analyzers,	Tokenizers,	and	Filters.	These	help	Solr	refine	the
data	that	it	needs	to	index.

To	keep	it	simple,	we	won’t	be	using	any	filters	or	analyzers	in	our	example.	For	our
example,	we’ve	defined	the	following	field	types:

				<fieldType	name="int"	class="solr.TrieIntField"/>

				<fieldType	name="float"	class="solr.TrieFloatField"/>

				<fieldType	name="string"	class="solr.StrField"/>

				<fieldType	name="double"	class="solr.TrieDoubleField"/>

				<fieldType	name="long"	class="solr.TrieLongField"/>

As	we	can	see	from	the	fieldType	element	contains	the	following	main	attributes:

name:	This	attribute	contains	the	name	of	the	fieldType	elements,	which	can	be	used
later	on	while	defining	the	field	element
class:	This	is	the	Solr	class	that	can	be	used	to	denote	the	data	type	used

By	default	Solr	supports	various	data	types	that	we	can	use	when	creating	a	schema.

Note
A	list	of	these	field	types	can	be	found	in	the	Solr	documentation	at
https://cwiki.apache.org/confluence/display/solr/Field+Types+Included+with+Solr.

After	creating	the	field	type	element	within	our	schema,	let’s	create	the	major	fields	that
are	necessary	for	storing	information	related	to	the	music	catalogue.

https://cwiki.apache.org/confluence/display/solr/Field+Types+Included+with+Solr

Defining	fields
Fields	are	a	main	part	of	the	Solr	schema,	which	provides	major	information	to	Solr	while
indexing.	For	our	musicCatalogue	example,	we’ll	define	the	following	fields:

<!--	Unique	SongID	-->

		<field	name="songId"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

		<!--	Song	name	-->

		<field	name="songName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"	/>	

		<!--	Artist	name	-->

		<field	name="artistName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

		<!--	Album	Artist	-->

		<field	name="albumArtist"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

		<!--	Album	name	-->

		<field	name="albumName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

		<!--	Duration	of	the	Song	-->

		<field	name="songDuration"	type="double"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

		<!--	Duration	of	the	Song	-->

		<field	name="composer"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

		<!--	Song	rating	-->

		<field	name="rating"	type="float"	indexed="true"	stored="true"	

required="false"	default="0.0"	multiValued="false"/>

		<!--	Year	which	the	song	has	been	published	-->

		<field	name="year"	type="int"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

		<!--	Genre	of	the	song	(e.g.	rock,	pop,	indie,	etc)-->

		<field	name="genre"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

		<!--	Temporary	field	for	storing	all	the	information	-->

		<field	name="tmpField"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="true"/>

The	preceding	fields,	which	we	have	defined,	contain	the	following	attributes:

name:	This	denotes	the	name	of	the	field
type:	This	is	the	field	type	that	we	set	up	in	the	previous	section
indexed:	Whether	the	field	should	be	indexed	by	Solr	or	not	(true	or	false)
required:	The	required	attribute	tells	Solr	that	when	we’re	indexing	the	document,

this	field	should	be	mandatory
multivalued:	If	this	is	set	to	true,	a	document	can	contain	multiple	values	of	the
same	field
default:	This	is	the	default	value	that	should	be	used	if	there	is	no	value	available	in
the	document
stored:	This	field	tells	Solr	to	index	the	given	field	if	the	stored	is	set	to	true

Defining	an	unique	key
A	unique	key	element	helps	Solr	maintain	documents	in	a	consistent	way.	This	is	an
optional	field	and	can	be	used	as	per	the	indexing	requirements.	If	we	think	that	the	data
that	we	feed	into	Solr	will	never	come	across	as	a	duplicate	document,	we	can	avoid	using
this	element.

The	uniqueKey	element	can	help	us	maintain	a	similar	set	of	data.	The	format	is	as
follows:

<uniqueKey>songId</uniqueKey>

Here,	songId	is	a	uniqueKey;	it	will	be	held	in	Solr	just	like	a	primary	key	in	a	database.

Copy	fields	and	dynamic	fields
A	copy	field	tells	Solr	to	copy	the	source	field	to	the	destination.	This	feature	of	Solr	can
be	useful	if	we	want	to	merge	inputs	of	different	elements	into	a	single	field.	The
following	is	the	format	by	which	we	can	introduce	a	copyField	element	in	the	schema:

<copyField	source="sourceElement"	destination="destinationElement"	/>

We	can	also	merge	all	input	fields	into	a	single	field	using	the	*	symbol	in	the	source
attribute.	This	will	merge	all	the	fields	into	a	single	destination	field,	like	this	for	example:

<copyField	source="*"	dest="result"/>

Dynamic	copy	fields	can	also	be	created	in	Solr	using	the	following	format:

<copyField	source="*_t"	dest="*_copyField"/>

So,	suppose	we’re	sending	a	field	called	album_name_t.	Solr	will	dynamically	create	a
new	field	called	album_name_t_copyField.

Dynamic	fields	can	be	used	in	Solr	where	we	don’t	have	to	define	all	the	fields	in
schema.xml.	For	example,	the	following	line	of	code	tells	Solr	to	create	a	dynamic	field	of
the	string	type	whenever	it	sees	a	field	name	ending	with	_txt:

<dynamicField	name="*_txt"	type="string"	indexed="true"	store="true"/>

Building	our	musicCatalogue	example
In	our	previous	section,	we	saw	how	we	can	create	a	Solr	schema	using	different	fields
and	field	types.	Now	let’s	use	this	schema	to	create	a	working	Solr	example.

To	do	this,	we’ll	need	to	follow	these	steps:

1.	 As	we’ve	already	created	the	folder	structure	required	for	our	musicCatalogue
example	to	work,	let’s	go	ahead	and	create	the	solrconfig.xml	config	file.

The	solrconfig.xml	looks	like	the	following:

<?xml	version="1.0"	encoding="UTF-8"	?>

<config>

		<luceneMatchVersion>4.10.1</luceneMatchVersion>

		<dataDir>${solr.data.dir:}</dataDir>

		<requestDispatcher	handleSelect="false">

				<httpCaching	never304="true"/>

		</requestDispatcher>

		<requestHandler	name="/select"	class="solr.SearchHandler"	/>

		<requestHandler	name="/update"	class="solr.UpdateRequestHandler"/>

		<requestHandler	name="/admin"	class="solr.admin.AdminHandlers"/>

		</config>

2.	 After	we	have	created	solrconfig.xml,	we	need	to	update	solr.xml	to	add	our
musicCatalgoue	core	to	it:

<solr	persistent="false">

<cores	adminPath="/admin/cores"	defaultCoreName="collection1">

						<core	name="collection1"	instanceDir="collection1"	/>

						<core	name="musicCatalog"	instanceDir="musicCatalog"	/>

				</cores>

		</solr>

Note
In	Solr	4.4	and	above,	a	new	feature	has	been	introduced	in	Solr,	called
autoDiscovery.	It	automatically	detects	cores	in	the	SOLR_HOME	directory	path.

3.	 Start	the	Solr	server.	After	starting	the	Solr	server,	we	can	navigate	to	the	Solr	Admin
UI	(http://localhost:8383/solr).We’ll	see	the	following	screen:

4.	 In	the	Solr	Admin	UI,	we	can	navigate	to	our	newly	created	musicCatalog	core	by
selecting	it	from	the	drop-down	list.

5.	 After	going	to	the	musicCatalog	core,	we	can	add	some	data	into	it	by	clicking	on
the	Document	tab	and	selecting	CSV	from	the	drop-down	box.	We	can	use	the
sample	CSV	file	available	in	the	book	code	file	at	http://github.com/sachin-
handiekar/solr-indexing-book/Chapter-3	to	populate	the	text	field,	and	then	click	on
Submit	Document.

http://github.com/sachin-handiekar/solr-indexing-book/Chapter-3

Using	the	Solr	Admin	UI
After	we	have	inserted	some	data	into	Solr	for	indexing,	we	can	use	the	query	browser	to
see	how	Solr	queries	the	indexed	data.

We	can	use	the	Query	Browser	available	in	the	Solr	Admin	UI	to	run	our	queries.	In	our
musicCatalogue	core,	we	can	click	on	the	Query	tab	to	open	the	following	window:

After	opening	this	window,	let’s	perform	some	queries	on	our	recently	added	data,	just	to
test	whether	our	search	query	works	or	not.	We’ll	simply	use	the	default	query	and	click
on	the	Execute	Query	button.	This	will	bring	up	all	of	the	data	that	Solr	has	indexed	in
the	musicCatalogue	core.

When	we	open	the	Query	tab,	we	can	see	that	Solr	has	automatically	selected	the	/select
search	handler	for	us,	as	shown	here:

When	we	click	on	the	Execute	Query	button,	Solr	will	use	the	/select	handler	and
perform	the*:*	query	on	it.	The	*:*	query	tells	Solr	to	give	us	all	the	results,	as	the	syntax

of	the	query	is	[field-name]:[value],	and	the	wildcard	character	(*)	will	give	us	all	the
results.	This	results	in	bringing	forth	all	of	the	data	that	has	been	indexed.	The	following
image	shows	the	Solr	Query	Browser	UI	with	the	result	and	the	query	field	populated:

We	can	also	use	a	direct	URL	to	query	the	Solr	Index,	which	will	be	helpful	if	we’re	using
an	API	to	get	the	indexed	data.	This	link	is	also	available	above	the	search	results	on	the
Query	browser:

http://localhost:8983/solr/musicCatalog/select?q=*%3A*&wt=json&indent=true

Let’s	modify	the	search	parameters	and	search	for	a	song	with	a	specific	search	criteria.
To	do	this,	let’s	go	back	the	query	browser	and	modify	the	search	criteria.

After	changing	the	query	q	parameter	to	artistName:P*,	we	tell	Solr	to	get	retrieve	all	the
songs	for	which	artistName	starts	with	the	letter	“P”	by	passing	a	wildcard	character	(*).
Moreover,	after	we	execute	this	query,	we’ll	get	the	following	result:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	0

		},

		"response":	{

				"numFound":	1,

				"start":	0,

				"docs":	[

						{

								"songId":	"100000001",

								"tmpField":	[

										"100000001",

										"Pitbull	Feat	TJR",

										"Various	Artists"

],

								"songName":	"Don't	Stop	the	Party",

								"artistName":	"Pitbull	Feat	TJR",

								"albumArtist":	"Various	Artists",

								"albumName":	"The	official	UK	Top	40	Singles",

								"songDuration":	3.27,

								"rating":	3.5,

								"year":	2012,

								"genre":	"Pop"

						}

]

		}

}

Then,	after	performing	this	query,	let’s	see	one	more	special	feature	provided	by	Solr,
called	faceting.

Facet	searching
In	Solr,	a	facet	provides	us	with	a	way	to	arrange	the	result	into	categories	based	on	the
index	terms.	For	example,	in	our	musicCatalogue,	we	can	arrange	the	songs	based	on
genre	(for	example,	rock,	pop,	world	music,	and	so	on).	This	feature	is	very	helpful	in	e-
commerce	websites,	where	we	need	to	see	data	in	a	categorical	way.	Let’s	see	how	we	can
enable	faceting	in	our	search	queries.	There	are	no	special	settings	needed	to	get	faceting
to	work	in	our	musicCatalogue	example.

Let’s	open	the	query	browser	tab	for	our	musicCatalgoue	example	from	the	Solr	Admin
UI.	This	time,	in	the	query	input	fields,	we’ll	enable	the	facet	checkbox	and	input	the
genre	field	in	the	facet.field	textbox,	like	this:

After	clicking	on	Execute	Query,	we	can	see	the	following	JSON	output,	which	will
contain	a	special	JSON	element.	This	element	will	contain	facet_counts:

"facet_counts":	{

				"facet_queries":	{},

				"facet_fields":	{

						"genre":	[

								"Pop",

								3,

								"Dance/Electronic",

								2,

								"Hip-Hop,Rap",

								1,

								"R&B,Soul",

								1

]

				},

				"facet_dates":	{},

				"facet_ranges":	{},

				"facet_intervals":	{}

		}

As	we	can	see	from	the	preceding	JSON	output,	the	genre	facet	element	contains	the
group	counts	for	the	music	that	is	indexed	in	Solr.	The	output	that	we’ve	obtained	can	help
users	in	performing	better	search	queries.

Summary
In	this	chapter,	we	saw	how	we	can	create	a	schema	from	scratch	and	how	Solr	provides
us	with	different	functionalities.	We	can	add	these	to	our	schema	to	help	us	achieve	better
search	results.

We	also	created	a	schema	for	storing	a	music	catalog	and	performed	custom	queries	on	it.
These	showed	us	a	real-life	example	of	how	we	can	index	data	and	get	information	back
from	Solr.

In	the	next	chapter,	we’ll	see	how	we	can	use	the	different	index	handlers	provided	by	Solr
to	import	our	existing	data.

Chapter	4.	Indexing	Data	–	The	Basic
Technique	and	Using	Index	Handlers
In	the	previous	chapter,	we	saw	how	Solr	provides	us	with	a	way	to	index	data	using	a
schema.	This	chapter	will	cover	techniques	that	can	be	used	to	index	data	in	Solr.	There
are	many	ways	of	sending	data	to	Solr	using	API	or	by	making	a	POST	call	to	update
handlers.	We’ll	cover	the	following	topics	in	this	chapter:

Inserting	data	into	Solr	using	basic	POST	tools
Using	XML	and	JSON	handlers

Inserting	data	into	Solr
Solr	provides	an	easy-to-use	command-line	tool	for	sending	data	in	various	formats	to	the
Solr	server.	We	can	use	the	post.jar	or	post.sh	tool	to	send	data	to	the	Solr	server	to
index	data.	Both	of	these	tools	are	located	in	%SOLR_HOME%/example/exampledocs	in	the
default	installation	folder.

Note
To	see	the	commands	for	Solr	5.x,	visit	the	Solr	Wiki	(https://wiki.apache.org/solr/).

We’ll	copy	the	two	files	(post.sh	and	post.jar)	to	the	%SOLR_HOME/bin	folder.	The
post.sh	is	a	Unix	shell	script	that	wraps	around	the	cURL	command	to	send	data	to	the
Solr	server.	For	Windows	users,	Solr	has	provided	a	standalone	Java	application	packaged
in	a	JAR	format.	It	can	be	used	in	a	way	similar	to	the	post.sh	tool.

To	run	post.jar,	open	Command	Prompt	in	Windows	and	enter	the	following:

$	%SOLR_HOME%/bin>java	–jar	post.jar	–h

The	result	obtained	by	executing	the	preceding	commands	is	as	follows:

SimplePostTool	version	1.5

Usage:	java	[SystemProperties]	-jar	post.jar	[-h|-]	[<file|folder|url|arg>	

[<file|folder|url|arg>...]]

Supported	System	Properties	and	their	defaults:

		-Ddata=files|web|args|stdin	(default=files)

		-Dtype=<content-type>	(default=application/xml)

		-Durl=<solr-update-url>	(default=http://localhost:8983/solr/update)

		-Dauto=yes|no	(default=no)

		-Drecursive=yes|no|<depth>	(default=0)

		-Ddelay=<seconds>	(default=0	for	files,	10	for	web)

		-Dfiletypes=<type>[,<type>,...]	

(default=xml,json,csv,pdf,doc,docx,ppt,pptx,xl

s,xlsx,odt,odp,ods,ott,otp,ots,rtf,htm,html,txt,log)

		-Dparams="<key>=<value>[&<key>=<value>...]"	(values	must	be	URL-encoded)

		-Dcommit=yes|no	(default=yes)

		-Doptimize=yes|no	(default=no)

		-Dout=yes|no	(default=no)

Let’s	test	the	post.jar	utility	by	sending	a	JSON	document	to	our	Solr	server.	We’ll	feed
some	data	to	the	musicCatalogue	example,	which	we	created	in	Chapter	3,	Indexing	Data.
The	sample	files	are	available	in	this	chapter	code	base,	which	can	be	used	to	feed	the	data
into	the	Solr	instance.

For	sending	this	JSON	data,	we’ll	execute	the	following	command	from	the	examples’
directory	that	comes	with	this	book.	We’re	specifying	the	-Durl	system	property,	which
will	refer	to	our	musicCatalog	core:

$	java	-Durl="http://localhost:8983/solr/musicCatalog/update"	-

Dtype=application/json	-jar	%SOLR_HOME%/post.jar	

%SOLR_INDEXING_EXAMPLE/Chapter-4/sampleMusic.json

https://wiki.apache.org/solr/

SimplePostTool	version	1.5

Posting	files	to	base	url	http://localhost:8983/solr/musicCatalog/update	

using	content-type	application/json..

POSTing	file	sampleMusic.json

1	files	indexed.

COMMITting	Solr	index	changes	to	

http://localhost:8983/solr/musicCatalog/update.

.

Time	spent:	0:00:00.150

Note	that	we’re	assuming	that	you	have	set	the	SOLR_HOME	path	to	the	Solr	installation
directory.

After	we	have	executed	this	command,	we	can	go	to	the	query	browser	window	from	the
Solr	admin	UI	console	and	see	that	the	data	gets	indexed	in	our	musicCatalogue	example.
We’ve	added	a	song	with	the	songName	attribute	set	to	"Yo	(Excuse	Me	Miss)"	and	the
artistName	attribute	set	to	Chris	Brown.	We	can	execute	the	following	query	to	see	the
newly	inserted	data:

q	=	songName:Yo*

The	following	screenshot	shows	the	data	that	is	returned	after	we	perform	the	query:

As	we	can	see	from	the	preceding	screenshot,	the	Solr	query	browser	has	returned	us	a
document	that	was	indexed	after	running	the	post.jar	utility	tool.

The	next	important	topic	in	indexing	data	in	Solr	is	the	use	of	request	handlers	that	come
with	Solr.	Request	handlers	in	Solr	provide	us	with	a	way	to	add,	delete,	update,	and

search	for	documents	in	the	Solr	Index.

Solr	comes	with	a	lot	of	plugins	that	can	be	used	to	import	documents	from	a	large
number	of	sources.	Documents	can	be	indexed	using	Apache	Tika—you	can	index
documents	such	as	MS	Word	documents,	Excel	spreadsheets,	PDF	documents,	and	many
more	file	formats.

Also,	Solr	provides	us	with	a	way	to	import	data	from	relational	databases	or	structured
data	types	using	the	data	import	handler.	We’ll	see	how	we	can	use	the	data	import	handler
in	Chapter	5,	Index	Data	Using	Structured	Datasources	Using	DIH,	where	we’ll	cover	this
in	detail.

By	default,	Solr	provides	a	way	to	index	structured	documents	in	XML,	CSV,	and	JSON
documents.	In	the	following	section,	we’ll	see	how	we	can	use	the	request	handlers
provided	by	Solr	to	import	these	documents.

Request	handlers	can	be	mapped	in	the	following	two	ways:

Path-based	names,	which	can	be	specified	in	the	URL
Using	the	qt	(query-type)	parameter

A	request	handler	can	be	used	to	support	different	data	types	using	the	content-type
parameter.

Configuring	UpdateRequestHandler
In	Chapter	3,	Indexing	Data,	we	created	a	Solr	configuration	file,	and	we’ll	be	reusing	it	to
add	a	request	handler.

In	solrconfig.xml,	we’ve	added	the	following	line	to	add	a	request	handler	of	the
solr.UpdateRequestHandler	type,	which	will	be	mapped	to	the	/update	url	path.	This
handler	will	tell	Solr	that	/update	will	be	used	to	receive	commands/documents	that	will
be	used	by	UpdateRequestHandler:

<requestHandler	name="/update"	class="solr.UpdateRequestHandler"	/>

Indexing	documents	using	XML
In	Solr,	we	can	index	XML	messages	to	the	update	handler	using	the	content-type	tag:
for	example	application/xml	or	text/xml.	In	the	following	subsections,	we’ll	see	how
we	can	perform	add,	update,	or	delete	commands.

Adding	and	updating	documents
Solr	provides	an	easy-to-use	XML	schema;	this	schema	can	be	used	to	index	data	in	Solr.
The	XML	schema	mainly	contains	the	following	elements:

<add>:	This	element	is	the	parent	element,	and	it	tells	Solr	that	we’re	adding	a
document	for	indexing
<doc>:	This	element	contains	all	the	fields	that	are	going	to	be	indexed
<field>:	This	element	contains	the	content,	name,	and	value	of	the	field	that	is	going
to	be	indexed

For	example,	the	sample	XML	document	looks	like	the	following	code:

<add>

		<doc>

				<field	name="songId">100000010</field>

				<field	name="songName">(Oh	No)	What	You	Got</field>

				<field	name="artistName">Justin	Timberlake</field>

				<field	name="albumArtist">Various</field>

				<field	name="albumName">Justified</field>

				<field	name="songDuration">4.31</field>

				<field	name="composer"></field>

				<field	name="rating"></field>

				<field	name="year">2002</field>

				<field	name="genre">Pop,	Teen	Pop</field>

		</doc>

</add>

Every	element	contains	optional	attributes,	which	can	be	used	to	further	optimize	the
indexing	process.	The	following	is	an	example	of	such	an	optional	attribute	that	can	be
used:

<add	overwrite="false">

		<doc	boost="1.5">

				<field	name="songId">100000010</field>

				<field	name="songName">(Oh	No)	What	You	Got</field>

				<field	name="artistName">Justin	Timberlake</field>

				/*	More	fields	*/

		</doc>

</add>

In	the	preceding	example,	we	can	see	that	the	<add>	element	accepts	an	optional	attribute
named	overwrite,	which	is	set	to	true	by	default.	This	element	will	overwrite	the	indexed
data	if	the	unique	key	of	the	document	is	already	indexed	in	Solr.

The	boost	attribute,	on	the	other	hand,	provides	a	unique	way	of	increasing	the	score	of	a
document.	This	attribute	can	be	applied	to	both	<doc>	and	<field>	elements.	In	addition
to	the	boost	attribute,	the	<field>	element	also	contains	an	attribute	named	update,
which	we’ll	discuss	in	Chapter	8,	Commits,	Real-time	Index	Optimizations,	and	Atomic
Updates.

Deleting	a	document
An	indexed	document	in	Solr	can	be	deleted	by	sending	an	XML	message	to	the	/update
handler.	Documents	can	be	deleted	from	Solr	in	the	following	two	ways:

By	ID:	Documents	can	be	deleted	from	Solr	by	unique	ID,	which	can	be	used	only	if
the	uniqueID	field	is	present	in	the	schema:

				<delete>

		<id>100000010</id>

				</delete>

By	query:	Documents	can	also	be	deleted	from	Solr	by	using	a	query	to	delete	a
range	of	documents:

				<delete>

		<query>albumName:Justified</query>

				</delete>

The	following	is	an	example	of	combining	both	an	ID	and	a	query	in	a	<delete>	XML
message:

<delete>

<id>100000010</id>

<query>albumName:Justified</query>

</delete>

We	can	use	the	POST.jar	tool	or	post.sh	to	send	delete	XML	messages	to	Solr.	Here	is	an
example	of	using	the	POST.jar	tool:

$	java	-Ddata=args

-Durl="http://localhost:8983/solr/musicCatalog/update"		

-jar	%SOLR_HOME%/post.jar	"<delete><id>100000010</id>

<query>albumName:Justified</query></delete>"

We	can	also	send	XML	messages	to	the	Solr	server	using	cURL.	We	can	use	the	data-
binary	option	to	append	XML	messages	while	making	a	HTTP	POST	request	to	Solr:

Note
Note	that	Windows	users	can	also	download	cURL	for	Windows	from	http://curl.haxx.se/,
or	install	it	in	Cygwin.

$	curl	http://localhost:8983/solr/musicCatalog/update	-H	"Content-Type:	

text/xml"	--data-binary	'<add>

		<doc>

				<field	name="songId">100000010</field>

				<field	name="songName">(Oh	No)	What	You	Got</field>

				<field	name="artistName">Justin	Timberlake</field>

				<field	name="albumArtist">Various</field>

				<field	name="albumName">Justified</field>

				<field	name="songDuration">4.31</field>

				<field	name="composer"></field>

				<field	name="rating">3.4</field>

				<field	name="year">2002</field>

http://curl.haxx.se/

				<field	name="genre">Pop</field>

		</doc>

</add>'

We	can	also	send	the	contents	of	an	XML	file	to	Solr	using	the	following	cURL	command:

$	curl	http://localhost:8983/solr/musicCatalog/update	-H	"Content-Type:	

text/xml"	--data-binary	@sampleData.xml

If	all	goes	well,	the	Solr	server	will	return	an	XML	response	to	us.	The	following	is	what
we	can	expect	from	Solr	if	all	goes	well:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

		<lst	name="responseHeader">

				<int	name="status">0</int>

				<int	name="QTime">0</int>

		</lst>

</response>

The	Solr	response	element	consists	of	a	child	element,	which	contains	responseHeader.
The	responseHeader	element	itself	contains	two	child	elements;	they	contain	the	status
and	the	QTime	element.	The	default	status	is	set	to	0	in	Solr,	and	QTime	tells	the	processing
time	of	a	request	to	the	server	in	milliseconds.

Indexing	documents	using	JSON
In	the	previous	section,	we	saw	how	we	can	add,	update,	and	delete	documents	using
XML.	In	this	section,	we’ll	see	how	we	can	perform	the	same	operations	using	JSON	data
types.

We	can	send	the	JSON-formatted	update	request	using	Solr’s	update	handler,	by	setting
Content-type:	application/json	or	text/json.	There	are	three	basic	types	of	JSON
documents	that	can	be	sent	to	Solr.	They	are:

A	single	document
A	list	of	documents—an	array	of	documents
A	sequence	of	updated	documents—a	map	type	object	that	contains	multiple
commands

Adding	a	single	document
We	can	add	a	single	JSON	document	to	Solr	by	posting	the	data	to	the
/update/json/docs	handler	path.	The	following	is	an	example	of	indexing	JSON	data	in
Solr:

$	curl	'http://localhost:8983/solr/musicCatalog/update/json/docs'	-H	

'Content-Type:	application/json'		--data-binary	'

{

				"songId":100000006,

				"songName":"Fester	Skank	(feat.	Diztortion)",

				"artistName":"Lethal	Bizzle",

				"albumArtist":"",

				"albumName":"The	Official	UK	Top	10	Singles",

				"songDuration":2.25,

				"composer":"",

				"rating":4,

				"year":2015,

				"genre":"Hip-Hop,Rap"

}'

Adding	multiple	JSON	documents
Similar	to	adding	a	single	JSON	document,	we	can	add	multiple	JSON	documents	using	a
JSON	array	type	structure	that	consists	of	JSON	objects.	Here	is	an	example	of	sending
multiple	JSON	documents	to	Solr	for	indexing:

$	curl	-X	POST	-H	'Content-Type:	application/json'	

'http://localhost:8983/solr/musicCatalog/update'	--data-binary	'

	[

		{

				"songId":100000006,

				"songName":"Fester	Skank	(feat.	Diztortion)",

				"artistName":"Lethal	Bizzle",

				"albumArtist":"",

				"albumName":"The	Official	UK	Top	10	Singles",

				"songDuration":2.25,

				"composer":"",

				"rating":4,

				"year":2015,

				"genre":"Hip-Hop,Rap"

		},

		{

				"songId":100000007,

				"songName":"Yo	(Excuse	Me	Miss)",

				"artistName":"Chris	Brown",

				"albumArtist":"",

				"albumName":"The	Official	UK	Top	10	Singles",

				"songDuration":3.49,

				"composer":"",

				"rating":4.5,

				"year":2006,

				"genre":"R&B,Soul"

		}

]'

A	sample	JSON	file	is	provided	at	$SOLR_EXAMPLES/Chapter-4/sampleMusic.json,	and	it
contains	an	array	of	objects	that	we	can	add	to	the	Solr	musicCatalog	example:

$	curl	'http://localhost:8983/solr/musicCatalog/update?commit=true'	--data-

binary	@sampleMusic.json	-H	'Content-type:application/json'

Sequential	JSON	update	commands
We	can	also	send	multiple	JSON	update	commands,	such	as	add,	delete,	and	commit,
within	a	single	JSON	document	to	Solr	for	indexing.	The	JSON	update	command	is	able
to	support	multiple	commands	at	once.	The	following	is	an	example	of	sending	multiple
JSON	commands:

curl	-X	POST	-H	'Content-Type:	application/json'	

'http://localhost:8983/solr/musicCatalog/update'	--data-binary	'

{

		"add":	{

				"doc":	{

				"songId":100000006,

				"songName":"Fester	Skank	(feat.	Diztortion)",

				"artistName":"Lethal	Bizzle",

				"albumArtist":"",

				"albumName":"The	Official	UK	Top	10	Singles",

				"songDuration":2.25,

				"composer":"",

				"rating":4,

				"year":2015,

				"genre":"Hip-Hop,Rap"

				}

		},

		"commit":	{},		

		"delete":	{	"query":"albumName:Justified"	},		

		"delete":	{	"id":"100000006"	}				

}'

As	seen	from	this	example,	we’re	passing	multiple	commands—add,	commit,	and	delete
—within	a	single	JSON	document.	The	delete	command	can	accept	both	the	query	and	the
ID	to	remove	data	from	Solr.	Here	is	an	example	of	deleting	multiple	IDs	from	Solr:

{	"delete":"id1"	}

Another	one	is	as	follows:

{"delete":["id1","id2"]	}

Indexing	updates	using	CSV
At	last,	we’ll	now	see	how	we	can	index	CSV	data	in	Solr	using	Content-Type:	text/csv.	A
sample	CSV	file	has	been	provided	at	%SOLR_EXAMPLES/Chapter-
4/sampleMusicCatalog.csv,	and	we	can	use	it	to	add	documents	to	our	musicCatalgoue
example.

The	following	is	an	example	of	indexing	data	using	the	curl	command:

curl	'http://localhost:8983/solr/musicCatalog/update'	--data-binary	

@sampleMusicCatalog.csv	-H	'Content-type:application/csv'

In	the	preceding	command,	we’re	telling	CSVUpdateHandler	to	use	the	first	line	of	the
CSV	as	the	header	row,	which	will	contain	the	field	name.	If	the	CSV	does	not	have	a
header	row,	we	can	use	the	header=false	parameter,	which	will	tell	UpdateHandler	that
there	is	no	header	row	present.	We	can	specify	the	field	names	in	the	CSV	using	another
parameter	named	fieldnames,	which	accepts	a	comma-separated	list	of	field	names	for	the
CSV	file.	There	are	a	lot	of	optional	configurations	that	can	be	set	on	the	update	handler.
More	information	is	available	at	https://wiki.apache.org/solr/UpdateCSV.

We	can	also	index	tab-delimited	files	in	Solr	by	setting	the	separator	parameter	to	tab
(%09)	and	escape	parameter	to	backslash	(%5C)	in	the	URL.	Here	is	an	example	of
indexing	tab-del	imited	files	in	Solr:

$	curl	'http://localhost:8983/solr/update/csv?

commit=true&separator=%09&escape=%5c'	--data-binary	

@tabSeparatedMusicCatalog.csv

https://wiki.apache.org/solr/UpdateCSV

Summary
In	this	chapter,	we	saw	how	we	can	use	the	different	index	handlers.	With	these,	we	can
index	data	using	XML,	JSON,	and	CSV	data	to	Solr.	We	also	saw	how	we	can	use	tools
such	as	post.jar	and	post.sh,	which	come	with	the	default	Solr	installation,	to	send
documents	to	Solr	for	adding,	updating,	and	deleting	documents	from	the	Solr	index.

In	the	next	chapter,	we’ll	see	how	we	can	use	the	data	import	handler	provided	by	Solr	to
import	data	from	relational	databases	and	feed	it	into	Solr.

Chapter	5.	Indexing	Data	with	the	Help	of
Structured	Datasources	–	Using	DIH
In	the	previous	chapter,	we	saw	how	we	can	index	data	using	the	XML,	JSON,	and	CSV
update	handlers	provided	by	Solr.	In	this	chapter,	we’ll	see	how	we	can	import	data	from	a
data	store	(for	example,	a	database,	XML	that	uses	XPath,	and	many	more)	using	the
inbuilt	functionalities	of	Solr.	We’ll	cover	the	following	topics:

Configuring	a	custom	datasource	for	our	data	import	handler
The	various	datasources	available	in	Solr
Customization	of	the	data	import	handler

Indexing	data	from	MySQL
In	this	section,	we’ll	see	how	we	can	set	up	a	MySQL	database	in	Solr	to	index	our	data
from	the	database	to	Solr	directly.	To	do	this,	we’ll	use	the	musicCatalog	schema,	which
we	developed	in	previous	chapters,	and	we	will	create	a	similar	table	to	hold	the	data	in
the	MySQL	database.

Configuring	datasource
We’re	assuming	that	you	already	have	a	MySQL	database	running	on	your	machine.	In	the
MySQL	database,	we’ll	need	to	create	the	following	table	to	hold	the	musicCatalogue
data.

Let’s	go	ahead	and	create	a	database	called	solrIndexingExample	in	MySQL.	We	can	use
the	following	SQL	to	create	a	new	database:

create	database	solrIndexingExample;

use	solrIndexingExample;

After	we	have	created	the	database,	we’ll	need	to	create	a	table	that	will	hold	our	data	for
musicCatalog.	We	can	use	this	SQL	query	to	create	a	table:

CREATE	TABLE	musiccatalog	(

		songId	int(11)	NOT	NULL	AUTO_INCREMENT,

		songName	varchar(250)	DEFAULT	NULL,

		artistName	varchar(250)	DEFAULT	NULL,

		albumArtist	varchar(150)	DEFAULT	NULL,

		albumName	varchar(150)	DEFAULT	NULL,

		songDuration	double	DEFAULT	NULL,

		composer	varchar(50)	DEFAULT	NULL,

		rating	float	DEFAULT	NULL,

		year	int(11)	DEFAULT	NULL,

		genre	varchar(100)	DEFAULT	NULL,

		PRIMARY	KEY	(songId)

)

The	SQL	script	for	creating	the	table	and	inserting	sample	data	is	available	in	the	Chapter
5	code	provided	with	this	book.

After	setting	up	the	table	with	some	sample	data,	we	can	move	on	to	setting	the	Solr
configuration,	which	will	communicate	with	to	the	MySQL	database.

We’ll	need	to	perform	the	following	steps	to	set	up	MySQL	for	our	Solr	instance:

1.	 Download	and	copy	the	MySQL	JDBC	driver	from	the
https://dev.mysql.com/downloads/connector/j/	into	$SOLR_HOME/dist	folder.

2.	 Create	a	new	core	named	musicCatalogue-DIH	in	%SOLR_HOME/examples/	with	the
following	directory	structure	type.	Alternatively,	we	can	copy	the	core	from	the
Chapter	5	code	provided	with	this	book:

musicCatalog-DIH

				|--	conf

				|--	schema.xml

				|--	db-data-config.xml

				|--	solrconfig.xml

3.	 Add	solr-datamporthandler.jar	and	the	MySQL	driver	using	the	lib	tag	in
solrconfig.xml:

<!--	Solr	DataImportHandler	-->

				<lib	dir="../../../dist/"	regex="solr-dataimporthandler-.*\.jar"/>

				<lib	dir="../../../dist/"	regex="solr-dataimporthandler-extras-

\d.*\.jar"/>

							<!--	MySQL	Driver	-->

		<lib	dir="../../../dist/"	regex="mysql-connector-java-\d.*\.jar"/>

Add	the	request	handler	(solr.DataImportHandler)

				<requestHandler	name="/dataimport"	class="solr.DataImportHandler">

						<lst	name="defaults">

									<str	name="config">db-data-config.xml</str>

						</lst>

				</requestHandler>

4.	 Next,	add	db-data-config.xml	to	the	conf	folder	which	is	in	the	musicCatalogue-
DIH	core	folder:

<dataConfig>

		<dataSource	name="mysqlDS"	

						driver="com.mysql.jdbc.Driver"	

						url="jdbc:mysql://localhost:3306/	solrIndexingExample"	

						user="<username>"	

						password="<password>"/>

		<document>

				<entity	name="musicCatalog"	query="select	*	from	musicCatalog">

						<field	column="songId"	name="songId"/>

						<field	column="songName"	name="songName"/>

						<field	column="aristName"	name="artistName"/>

						<field	column="albumArtist"	name="albumArtist"/>

						<field	column="albumName"	name="albumName"/>

						<field	column="songDuration"	name="songDuration"/>

						<field	column="composer"	name="composer"/>

						<field	column="rating"	name="rating"/>

						<field	column="year"	name="year"/>

						<field	column="genre"	name="genre"/>

						</entity>

		</document>

</dataConfig>

As	of	now,	we’ve	configured	our	core	to	communicate	with	to	the	MySQL	database.	Let’s
go	into	the	details	of	what	we’ve	configured	so	far.	The	db-data-config.xml	file	contains
the	datasource	element	that	we’ve	configured	for	the	MySQL	database,	and	it	also
contains	the	user	credentials	and	the	jdbc	URL	for	connecting	Solr	to	the	MySQL
database.	The	default	datasource	type,	if	not	specified,	is	JDBCDataSource,	which	is
needed	in	our	scenario.	This	is	because	we’re	using	the	MySQL	JDBC	driver	for	the
connection.	Here	is	an	example	of	the	datasource	config:

<dataSource	name="mysqlDS"	

						driver="com.mysql.jdbc.Driver"	

						url="jdbc:mysql://localhost:3306/solrIndexingExample"	

						user="<username>"	

						password="<password>"/>

After	configuring	the	datasource	element,	we	have	to	create	a	document	element	that	will
hold	the	entity	element	and	field	elements,	which	are	going	to	map	with	the	database
entity.	In	db-data-config.xml,	we	specify	the	following	entity	for	musicCatalog:

<entity	name="musicCatalog"	query="select	*	from	musicCatalog">

By	default,	SQLEntityProcessor	is	used	by	JDBCDataSource.	Database	columns	can	be
mapped	to	Solr	fields	using	the	field	element,	like	this	for	example:

<field	column="songId"	name="songId"	/>

The	column	attribute	holds	the	database	column	name	and	the	name	attribute	holds	the
relevant	Solr	field	name.

After	completing	the	setup,	we	can	navigate	to	our	newly	added	musicCatalogue-DIH
core	from	http://localhost:8983/solr/,	and	click	on	the	DataImport	tab.	As	we’ve
added	a	request	handler	in	our	solrconfig.xml	configuration	file,	the	DataImport	tab
that	was	previously	disabled	gets	automatically	enabled	by	Solr.

As	we	can	see	from	the	following	screenshot,	we	can	perform	various	operations	on	our
new	data	import	handler.

DIH	commands
Let’s	run	some	commands	over	our	newly	created	datasource	and	see	what	functionalities
Solr	provides	for	us:

Delta	import:	This	command	is	used	to	import	incremental	or	new	changes	from	the
data	store	to	Solr.	Here	is	an	example:
http://localhost:8983/solr/musicCatalog-DIH/dataimport?command=delta-

import.
Full	import:	This	command	is	used	to	index	all	the	rows	of	a	table	in	the	database
into	Solr.	The	following	is	an	example:
http://localhost:8983/solr/musicCatalog-DIH/dataimport?command=full-

import.
Reloading	configuration:	This	command	is	used	to	reload	the	db-data-config.xml
file	if	there	are	changes	made	to	it	after	Solr	has	been	started.	This	is	an	example:
http://localhost:8983/solr/musicCatalog-DIH/dataimport?command=reload-

config.
Checking	status:	This	command	is	used	to	check	the	status	of	an	import	that	we’ve
performed,	for	example:	http://localhost:8983/solr/musicCatalog-
DIH/dataimport?command=status.
Aborting	the	current	import:	The	abort	command	is	used	to	cancel	the	current
import,	which	is	being	done	on	the	core,	for	example:
http://localhost:8983/solr/musicCatalog-DIH/dataimport?command=abort.

The	preceding	commands,	which	we’ve	just	discussed,	will	result	in	the	following	XML
response	from	Solr:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

				<lst	name="responseHeader">

						<int	name="status">0</int>

						<int	name="QTime">20</int>

				</lst>

				<lst	name="initArgs">

						<lst	name="defaults">

									<str	name="config">db-data-config.xml</str>

						</lst>

				</lst>

				<str	name="command">full-import</str>

				<str	name="status">idle</str>

				<str	name="importResponse"/>

				<lst	name="statusMessages">

						<str	name="Total	Requests	made	to	DataSource">1</str>

						<str	name="Total	Rows	Fetched">1</str>

						<str	name="Total	Documents	Skipped">0</str>

						<str	name="Full	Dump	Started">2015-08-12	08:48:25</str>

						<str	name="">Indexing	completed.	Added/Updated:	1	documents.	Deleted	

0	documents.</str>

						<str	name="Committed">2015-08-12	08:48:25</str>

						<str	name="Total	Documents	Processed">1</str>

						<str	name="Time	taken">0:0:0.274</str>

				</lst>

				<str	name="WARNING">This	response	format	is	experimental.		It	is	likely	

to	change	in	the	future.</str>

</response>

There	are	also	some	optional	attributes	that	we	can	use	with	the	preceding	commands.	We
won’t	be	covering	them	in	this	chapter,	but	they	can	be	checked	out	in	the	Solr
documentation	at	https://wiki.apache.org/solr/DataImportHandler#Commands.

So	now,	we’ve	seen	how	we	can	import	data	into	Solr	from	a	MySQL	database.	Next,	let’s
see	how	we	can	use	other	datasources	(for	example,	FileDataSource,	URLDataSource,
and	many	more).

https://wiki.apache.org/solr/DataImportHandler#Commands

Indexing	data	using	XPath
For	simplicity,	we’ll	use	FileDataSource.	With	it,	we	can	import	data	into	Solr	from
XML	files	using	XPathEntityProcessor	to	retrieve	the	data.

Let’s	go	ahead	and	create	a	new	core	named	MusicCatalogue-DIH-XPath	in	Solr.	We	can
create	the	configuration	files	similarly	to	the	ones	we	previously	created	for
JDBCDataSource.

In	solrconfig.xml,	we’ll	use	the	following	content:

		<requestHandler	name="/dataimport"	class="solr.DataImportHandler">

				<lst	name="defaults">

						<str	name="config">xpath-data-config.xml</str>

				</lst>

		</requestHandler>

We’ll	create	a	new	file	called	xpath-data-config.xml,	which	will	contain
FileDataSource	and	XPathEntityProcessor:

<dataConfig>

		<!--	File	Data	Source	-->

		<dataSource	type="FileDataSource"	encoding="UTF-8"	/>

		

		<document>

				<entity	

						processor="XPathEntityProcessor"

						name="musicCatalog"

						pk="songId"

						url="/path/to/SolrIndexingExamples/Chapter-5/sampleData.xml"

						forEach="/musicCatalog/albums/album/"

						transformer="RegexTransformer">

						<field	column="songId"	xpath="/musicCatalog/albums/album/songId"/>

						<field	column="songName"	

xpath="/musicCatalog/albums/album/songName"/>

						<field	column="artistName"	

xpath="/musicCatalog/albums/album/artistName"/>

						<field	column="albumArtist"	

xpath="/musicCatalog/albums/album/albumArtist"/>

						<field	column="albumName"	

xpath="/musicCatalog/albums/album/albumName"/>

						<field	column="songDuration"	

xpath="/musicCatalog/albums/album/songDuration"/>

						<field	column="composer"	

xpath="/musicCatalog/albums/album/composer"/>

						<field	column="rating"	xpath="/musicCatalog/albums/album/rating"/>

						<field	column="year"	xpath="/musicCatalog/albums/album/year"/>

						<field	column="genre"	xpath="/musicCatalog/albums/album/genre"/>

				</entity>

		</document>

</dataConfig>

In	the	preceding	<dataConfig>	element,	we’re	just	using	a	single	XML	file;	we	need	to

get	this	file	indexed	for	our	example.	We	can	also	use	the	following	configuration	to	index
a	list	of	XML	files:

<dataConfig>

		<dataSource	type="FileDataSource"	encoding="UTF-8"/>

		<document>

				<entity

						name="document"

						processor="FileListEntityProcessor"

						baseDir="/path/to/xml-files"

						fileName=".*\.xml$"

						recursive="false"

						rootEntity="false"

						dataSource="null">

						<entity	

						processor="XPathEntityProcessor"

						name="musicCatalog"

						pk="songId"

						url="${document.fileAbsolutePath}"

						forEach="/musicCatalog/albums/album/"

						transformer="RegexTransformer">

						<!--	Definition	of	Fields	as	per	the	previous	example	-->

				</entity>

				</entity>

		</document>

</dataConfig>

A	sample	XML	file	that	contains	the	sample	album	data	has	been	provided	in	the	code	that
is	available	with	this	book.

The	contents	of	the	sample	XML	file	look	like	the	following:

<musicCatalog>

		<albums>

				<album>

						<songId>100000010</songId>

						<songName>(Oh	No)	What	You	Got</songName>

						<artistName>Justin	Timberlake</artistName>

						<albumArtist>Various</albumArtist>

						<albumName>Justified</albumName>

						<songDuration>4.31</songDuration>

						<composer/>

						<rating>3.5</rating>

						<year>2002</year>

						<genre>Pop,	Electronic,	Dance,	Adult	Contemporary,	Teen	Pop</genre>

				</album>

		</albums>

</musicCatalog>

As	we	can	see	from	xpath-data-config.xml,	we	are	using	FileDataSource	to	read	the
contents	of	the	file.	Then,	using	XPathEntityProcessor,	we	fetch	the	values	of	the	field.
For	example,	we	retrieve	artistName	using	the	following	code:

		<field	column="artistName"	

xpath="/musicCatalog/albums/album/artistName"/>

The	xpath	attribute	is	used	to	pass	an	XPath	expression	to	the	field	element,	which	is	used
by	XPathEntityProcessor	to	retrieve	the	artistName	value	from	the	XML	document	and
is	then	fed	into	Solr	for	indexing.

Let’s	test	our	newly	created	core	in	Solr.	To	do	this,	we’ll	start	our	Solr	instance	and
navigate	to	the	Solr	Admin	UI	(http://localhost:8983/solr/#/musicCatalog-DIH-
XPath/).

Let’s	import	the	XML	data	using	the	DataImport	tab.	To	do	this,	click	on	the	Dataimport
tab,	select	the	full-import	option,	and	click	on	Execute,	as	shown	in	this	screenshot:

As	we	can	see	from	the	preceding	screenshot,	after	we	click	on	the	Execute	button,	the
data	import	handler	indexes	the	data	from	the	XML	file	into	Solr.	Solr	gives	the	following
output,	which	tells	the	user	how	many	documents	were	added/updated	or	deleted:

After	running	the	import,	we	can	query	the	Solr	index	to	retrieve	our	indexed	document.
To	do	this,	we	can	use	the	query	browser	in	the	Solr	Admin	UI,	or	we	can	directly	go	to
this	URL:
http://localhost:8983/solr/musicCatalog-DIH-XPath/select?

q=*%3A*&wt=json&indent=true

The	following	result	is	expected	if	the	data	import	is	successful:

{

				"responseHeader":{

						"status":0,

						"QTime":0

				},

				"response":{

						"numFound":1,

						"start":0,

						"docs":[

									{

												"genre":"Pop,	Electronic,	Dance,	Adult	Contemporary,	Teen	Pop",

												"composer":"",

												"albumArtist":"Various",

												"tmpField":[

															"Various",

															"100000010",

															"Justin	Timberlake"

],

												"albumName":"Justified",

												"songDuration":4.31,

												"year":2002,

												"songName":"(Oh	No)	What	You	Got",

												"rating":3.5,

												"songId":"100000010",

												"artistName":"Justin	Timberlake"

									}

]

				}

}

The	preceding	result	shows	us	how	we	can	use	the	data	import	handler	to	index	XML
documents	into	Solr.

Summary
In	this	chapter,	we	saw	how	we	can	use	the	data	import	handler	provided	by	Solr	to	import
data	from	various	datasources.	There	are	a	lot	of	things	that	we	did	not	cover	in	this
chapter,	and	they	are	beyond	the	scope	of	this	book,	such	as	entity	processors,
transformers,	and	many	more.	You	can	read	more	about	this	advanced	feature	on	the	Solr
Data	Import	Handler	wiki	(https://wiki.apache.org/solr/DataImportHandler).

In	the	next	chapter,	we’ll	see	how	we	can	extract	data	from	various	file	formats,	such	as
.doc,	.ppt,	.xls,	and	many	more,	and	index	it	in	Solr	using	Apache	Tika.

https://wiki.apache.org/solr/DataImportHandler

Chapter	6.	Indexing	Data	Using	Apache
Tika
In	previous	chapters,	we	saw	how	we	can	use	the	data	import	handler	provided	by	Solr	to
index	data	using	various	datasources	(JDBC	and	file	datasource).	In	this	chapter,	we’ll	see
how	we	can	index	data	for	various	file	formats,	such	as	MS	Word,	Excel,	PDF	and	many
more.	We’ll	cover	the	following	topics:

Introducing	Apache	Tika
Configuring	Apache	Tika	in	Solr
Indexing	PDF	and	Word	documents

Introducing	Apache	Tika
Apache	Tika	is	an	open	source	library	that	is	used	for	document	type	detection	and	content
extraction	from	various	file	formats.	It	uses	various	existing	document	parsers	and
document	type	detection	techniques	to	detect	and	extract	data.	Using	Tika,	we	can	develop
a	universal	type	detector	and	content	extractor	to	extract	both	structured	text	as	well	as
metadata	from	different	types	of	documents	such	as	spreadsheets,	text	documents,	images,
PDFs,	and	even	multimedia	input	formats.	Apache	Tika	provides	a	single	API	for	parsing
different	file	formats.	The	existing	parser	libraries	are	encapsulated	under	a	single
interface,	called	the	parser	interface.

Configuring	Apache	Tika	in	Solr
Let’s	go	ahead	and	create	a	new	core	called	tika-example	in	our	Solr	instance.	To	make
things	easier,	you	can	copy	the	core	from	the	Chapter	6	folder	of	the	ZIP	file	that	comes
with	this	book.	After	creating	the	core,	we’ll	need	to	configure	solrconfig.xml.

We	need	to	add	the	extraction	libraries	that	are	available	in	the
%SOLR_HOME/contrib/extraction/lib	folder,	and	also	the	solr-cell	library	in
solrconfig.xml:

<lib	dir="${solr.install.dir:../../..}/contrib/extraction/lib"	

regex=".*\.jar"/>

<lib	dir="${solr.install.dir:../../..}/dist/"	regex="solr-cell-\d.*\.jar"/>

We	can	then	configure	ExtractingRequestHandler	in	solrconfig.xml:

<requestHandler	name="/update/extract"	

class="solr.extraction.ExtractingRequestHandler">

		<lst	name="defaults">

				<str	name="fmap.content">content</str>

				<str	name="lowernames">true</str>

				<str	name="uprefix">attr_</str>

				<str	name="captureAttr">false</str>

		</lst>

</requestHandler>

We	can	override	the	default	values	used	by	ExtractingRequestHandler	by	passing	it	in
the	defaults	list.	ExtractingRequestHandler	will,	by	default,	put	the	content	of	the
extracted	file	into	the	text	field.	But	we	can	override	that	using	fmap.content	key.	Also,
captureAttr	will	tell	ExtractingRequestHandler	to	get	all	the	metadata	information
from	the	document.	To	keep	this	example	simple,	we’ll	set	captureAttr	to	false.

The	solrconfig.xml	configuration	file	will	look	as	follows:

<?xml	version="1.0"	encoding="UTF-8"	?>

<config>

		<luceneMatchVersion>4.10.1</luceneMatchVersion>

		<lib	dir="../../../contrib/dataimporthandler/lib/"	regex=".*\.jar"/>

		<lib	dir="../../../dist/"	regex="solr-dataimporthandler-.*\.jar"	/>

		<lib	dir="../../../contrib/extraction/lib"	regex=".*\.jar"/>

		<lib	dir="../../../dist/"	regex="solr-cell-\d.*\.jar"/>

		<dataDir>${solr.data.dir:}</dataDir>

		<requestDispatcher	handleSelect="false">

				<httpCaching	never304="true"/>

		</requestDispatcher>

		<requestHandler	name="/select"	class="solr.SearchHandler"/>

		<requestHandler	name="/update"	class="solr.UpdateRequestHandler"	/>

		<requestHandler	name="/admin"	class="solr.admin.AdminHandlers"	/>

		<requestHandler	name="/analysis/field"	

class="solr.FieldAnalysisRequestHandler"	startup="lazy"/>

		<requestHandler	name="/update/extract"	

class="solr.extraction.ExtractingRequestHandler">

				<lst	name="defaults">

						<str	name="fmap.content">content</str>

						<str	name="lowernames">true</str>

						<str	name="uprefix">attr_</str>

						<str	name="captureAttr">false</str>

				</lst>

		</requestHandler>

</config>

After	making	the	configuration	changes,	let’s	go	ahead	and	index	some	documents	in	Solr.

Indexing	PDF	and	Word	documents
We’ll	create	a	new	schema	that	will	hold	the	metadata	information	for	our	indexed	files.
Apache	Tika	will	extract	the	metadata	information	from	the	file	that	we	pass	to	it.	The
schema.xml	configuration,	which	we’ll	use,	looks	like	the	following:

<?xml	version="1.0"	encoding="UTF-8"	?>

<schema	name="tika-example"	version="1.5">

		<field	name="title"	type="text_general"	indexed="true"	stored="true"	

multiValued="true"/>

		<field	name="author"	type="text_general"	indexed="true"	stored="true"/>

		<field	name="content"	type="text_general"	indexed="true"	stored="true"	

multiValued="true"/>

		<dynamicField	name="attr_*"	type="text_general"	indexed="true"	

				stored="false"	multiValued="true"/>

		<fieldType	name="text_general"	class="solr.TextField"	

positionIncrementGap="100">

				<analyzer>

						<charFilter	class="solr.PatternReplaceCharFilterFactory"	pattern="

([\\n])"	replacement=""/>

						<tokenizer	class="solr.StandardTokenizerFactory"/>

						<filter	class="solr.LowerCaseFilterFactory"/>

				</analyzer>

		</fieldType>

</schema>

Let’s	now	send	a	Word	document	to	Solr	for	indexing.	All	the	relevant	code	examples	and
sample	files	can	be	found	in	$SOLR_INDEXING_BOOK/Chapter06/tika-example.

We’ll	use	the	post.jar	tool	to	index	a	Word	document	(.doc)	to	the	Solr	server:

$	java	-Durl=http://localhost:8983/solr/tika-example/update/extract?

commit=true	-Dtype=application/msword	-jar	post.jar	

%SOLR_EXAMPLES/Chapter06/test-tika.docx

As	we	can	see	from	the	command,	we’re	specifying	the	content-type	of	the	file	that	we’re
indexing	through	–Dtype=application/msword.	As	we’re	sending	a	PDF	file,	we	can	use
application/pdf	as	the	content	type.

After	running	the	command,	we	will	see	the	following	output:

SimplePostTool	version	1.5

Posting	files	to	base	url	http://localhost:8983/solr/tika-

example/update/extract

		using	content-type	application/msword..

POSTing	file	test-tika.docx

1	files	indexed.

COMMITting	Solr	index	changes	to	http://localhost:8983/solr/tika-

example/update/

extract..

Time	spent:	0:00:01.499

After	we’ve	indexed	the	sample	Word	document	in	index,	we	can	use	the	Solr	query
browser	to	see	how	the	document	has	been	indexed	in	Solr.	As	we	can	see	from	the
preceding	screenshot,	the	Solr	query	returns	the	following	indexed	document,	and	the
content	inside	the	Word	document	is	stored	in	the	content	field.

The	metadata	attributes	are	currently	not	stored	in	Solr	while	indexing	the	document.
However,	we	can	enable	indexing	for	the	metadata	attribute	by	changing	the	dynamic
attribute	field	in	schema.xml	to	the	following:

		<dynamicField	name="attr_*"	type="text_general"	indexed="true"	

stored="true"	multiValued="true"/>

Summary
In	this	chapter,	we	saw	how	we	can	index	files	such	as	PDF,	Word	documents,	and
spreadsheets	in	Solr	using	the	powerful	features	of	Apache	Tika.	There	are	many	more
features	available	for	use,	but	they	are	beyond	the	scope	of	this	book.	However,	you	can
get	a	clear	picture	here	on	how	easy	it	is	to	set	up	Apache	Tika	with	Solr	in	order	to
retrieve	information	from	a	document.	In	the	next	chapter,	we’ll	see	how	we	can	use
Apache	Nutch	to	crawl	web	pages	and	index	the	information	received	by	the	crawler	in
Solr.

Chapter	7.	Apache	Nutch
In	the	previous	chapter,	we	saw	how	we	can	index	documents	using	Apache	Tika	into
Solr.	In	this	chapter,	we’ll	see	how	we	can	use	Apache	Nutch	to	index	web	content	into
Solr	and	index	them	in	Solr.	This	chapter	will	cover	the	following	topics:

Introducing	to	Apache	Nutch
Installing	Apache	Nutch
Configuring	Solr	with	Nutch

Introducing	Apache	Nutch
Apache	Nutch	is	an	open	source	web	crawler	that	can	be	used	to	retrieve	data	from
websites	and	get	data	from	it.	It	is	an	extensible	and	scalable	crawler	that	gives	us	the
freedom	to	use	it	as	we	like	by	using	plugins.	Apache	Nutch	is	written	in	Java,	just	like
Apache	Solr,	and	both	tools	make	a	perfect	combination	for	creating	a	search	engine	of
our	own	if	they	are	combined.

Apache	Nutch	can	be	used	on	a	single	node	or	can	be	run	in	a	distributed	way	with
multiple	nodes.	Let’s	see	how	we	can	combine	Apache	Solr	and	Apache	Nutch	to	crawl	a
web	page	and	index	it.	To	do	this,	let’s	start	by	installing	Apache	Nutch.

Installing	Apache	Nutch
Apache	Nutch	comes	in	two	versions	(1.x	and	2.x).	For	this	example,	we’ll	be	using
version	1.x,	as	it	contains	a	binary	that	will	help	reduce	the	time	taken	to	build	version	2.x
from	scratch.	The	latest	stable	version	of	Apache	Nutch	(v1.10),	which	also	contains	a
binary	at	the	time	of	writing	this	book,	can	be	installed	by	following	these	steps:

1.	 Download	and	unzip	Apache	Nutch	(apache-nutch-1.10-bin.tar.gz)	from
http://nutch.apache.org/downloads.html.

2.	 Extract	the	archive	file	into	a	folder	of	your	choice.	We’ll	use	%NUTCH_HOME%	as	the
folder	where	the	ZIP	file	is	to	be	extracted.

Note
On	Windows,	we	can	install	Cygwin	by	going	to	the	installation	link	at
http://cygwin.com/install.html.

Let’s	verify	the	downloaded	archive	by	going	to	%NUTCH_HOME%/bin.	It	will	contain	the
Nutch	script,	which	we	can	execute.	We	run	the	following	command	to	get	a	list	of
available	options	that	we	can	use:

$	cd	%NUTCH_HOME%/bin

$./nutch

We	should	get	the	following	output	from	the	command:

Usage:	nutch	COMMAND

where	COMMAND	is	one	of:

inject									inject	new	urls	into	the	database

hostinject					creates	or	updates	an	existing	host	table	from	a	text	file

generate							generate	new	batches	to	fetch	from	crawl	db

fetch										fetch	URLs	marked	during	generate

parse										parse	URLs	marked	during	fetch

updatedb							update	web	table	after	parsing

updatehostdb			update	host	table	after	parsing

readdb									read/dump	records	from	page	database

http://nutch.apache.org/downloads.html
http://cygwin.com/install.html

readhostdb					display	entries	from	the	hostDB

index										run	the	plugin-based	indexer	on	parsed	batches

elasticindex			run	the	elasticsearch	indexer	-	DEPRECATED	use	the	index	

command	instead

solrindex						run	the	solr	indexer	on	parsed	batches	-	DEPRECATED	use	the	

index	command	instead

solrdedup						remove	duplicates	from	solr

solrclean						remove	HTTP	301	and	404	documents	from	solr	-	DEPRECATED	use	

the	clean	command	instead

clean										remove	HTTP	301	and	404	documents	and	duplicates	from	

indexing	backends	configured	via	plugins

parsechecker			check	the	parser	for	a	given	url

indexchecker			check	the	indexing	filters	for	a	given	url

plugin									load	a	plugin	and	run	one	of	its	classes	main()

nutchserver				run	a	(local)	Nutch	server	on	a	user	defined	port

webapp									run	a	local	Nutch	web	application

junit										runs	the	given	JUnit	test

or

CLASSNAME						run	the	class	named	CLASSNAME

Most	commands	print	help	when	invoked	without	parameters.

After	running	the	preceding	command	successfully,	let’s	go	ahead	and	set	Apache	Nutch
to	crawl	a	website.	To	crawl	a	website,	we’ll	follow	these	steps:

1.	 Go	to	%NUTCH_HOME%/conf	and	edit	nutch-site.xml.	We’ll	add	a	custom
configuration	that	will	contain	a	custom	property	with	a	name	element	which	contain
the	text	http.agent.name	and	a	value	element	which	contains
SolrIndexingBookCrawler:

<?xml	version="1.0"?>

<?xml-stylesheet	type="text/xsl"	href="configuration.xsl"?>

<configuration>

				<configuration>

						<property>

								<name>http.agent.name</name>

										<value>SolrIndexingBookCrawler</value>

						</property>

				</configuration>

</configuration>

2.	 We’ll	create	a	directory	to	hold	the	list	of	URLs	to	crawl.	To	create	this	directory,
we’ll	go	to	%NUTCH_HOME%/	and	execute	the	following	command:

$	mkdir	urls

3.	 After	creating	the	directory,	let’s	create	a	file	called	seed.txt.	This	file	will	store	the
list	of	URLs	that	will	be	used	by	Apache	Nutch	to	crawl.	It	will	contain	the
following:

http://nutch.apache.org/

4.	 After	creating	seed.txt,	let’s	edit	regex-urlfilter.txt,	which	is	located	in	the
%NUTCH_HOME%/conf	folder.	This	regex	will	be	used	by	Apache	Nutch	to	filter	the
URLs	that	are	going	to	be	crawled.	For	this	example,	we’re	only	going	to	crawl	the

URLs	that	match	the	following	regex:

+^http://([a-z0-9]*\.)*nutch.apache.org/

Consider	this	line	in	regex-urlfilter.txt:

#	accept	anything	else

+.

Replace	it	with	the	following	line:

+^http://([a-z0-9]*\.)*nutch.apache.org/

After	we	have	made	the	changes	to	regex-urlfilter.txt,	let’s	see	how	we	can	integrate
Solr	with	Nutch.

Configuring	Solr	with	Nutch
Apache	Solr	can	easily	be	configured	for	use	with	Nutch.	We	can	perform	the	following
steps	to	integrate	Apache	Nutch	with	Solr:

1.	 Create	a	new	core	(nutch-example)	in	Solr	by	copying	the	nutch-example	folder
from	the	Chapter	7	code	that	comes	with	this	book.

2.	 After	creating	the	new	core,	we	just	need	to	restart	the	Solr	instance.
3.	 After	we	have	restarted	the	Solr	instance,	let’s	crawl	some	data	using	Nutch	and

index	it	into	Solr.	To	do	this,	we’ll	navigate	to	the	%NUTCH_HOME%	folder	and	execute
the	following	command:

$	bin/crawl

After	executing	the	command,	we’ll	see	the	following	output:

Usage:	crawl	[-i|--index]	[-D	"key=value"]	<Seed	Dir>	<Crawl	Dir>	<Num	

Rounds>

								-i|--index						Indexes	crawl	results	into	a	configured	indexer

								-D														A	Java	property	to	pass	to	Nutch	calls

								Seed	Dir								Directory	in	which	to	look	for	a	seeds	file

								Crawl	Dir							Directory	where	the	crawl/link/segments	dirs	

are	saved

								Num	Rounds						The	number	of	rounds	to	run	this	crawl	for

The	preceding	command	shows	us	the	syntax	for	the	crawl	command,	which	we’re	going
to	use	for	our	next	example.	The	crawl	script	is	used	to	simplify	the	process	involved	in
crawling	data	with	Apache	Nutch.	It	chains	a	number	of	events,	which	on	the	other	hand
have	to	be	executed	manually	in	a	sequence.

To	keep	things	simple,	we’ll	use	the	following	command:

$	bin/crawl	urls	crawl/	1

We’ve	used	these	parameters	with	the	crawl	script:

urls:	This	is	the	directory	that	contains	seed.txt	(the	list	of	URLs	to	crawl)
crawl:	This	is	the	directory	in	which	Apache	Nutch	stores	the	metadata	which	it
receives	after	crawling	the	webpages.
numOfRounds:	We’re	using	only	one	round	to	run	this	crawler	for	this	specific
example

After	executing	the	crawl	command,	we	expect	Apache	Nutch	to	run	a	sequence	of	nutch
commands	that	will	fetch	the	data	from	the	given	URL	(seed.txt)	as	per	the	given	regex.

We’ll	see	the	following	output:

Injecting	seed	URLs

/cygdrive/c/apache-nutch-1.10/bin/nutch	inject	crawl//crawldb	urls

Injector:	starting	at	2015-09-10	00:11:10

Injector:	crawlDb:	crawl/crawldb

Injector:	urlDir:	urls

Injector:	Converting	injected	urls	to	crawl	db	entries.

...

...

After	executing	the	crawl	command,	we	can	index	the	crawl	data	into	Solr	using	the
following	command:

$	bin/nutch	solrindex	http://localhost:8983/solr/nutch-example	

crawl/crawldb/	crawl/segments/*

You	will	get	the	following	output:

After	you	have	executed	this	command,	Apache	Nutch	will	index	the	crawl	data	into	Solr.
The	indexed	data	in	Solr	can	be	seen	by	going	to	the	Solr	Admin	UI	and	then	going	to	the
nutch-example	core.

Next,	we	can	navigate	to	the	query	browser	and	perform	a	search	using	the	(*:*)	query,
which	will	return	all	indexed	documents.	The	following	screenshot	shows	us	the	index
URLs	that	are	crawled	by	Apache	Nutch	and	are	indexed	into	Solr:

Now	let’s	perform	a	search	operation	on	the	indexed	data.	Let’s	search	for	a	string	within
the	content	tag	of	the	indexed	data.

We	can	see	a	JSON	response	after	navigating	to	the	following	URL,	which	will	search	for
the	Amsterdam	string	in	the	content	field:
http://localhost:8983/solr/nutch-example/select?

q=content%3AAmsterdam&wt=json&indent=true

After	we	have	executed	the	query,	Solr	will	search	the	indexed	content	field	and	return	the
result	that	contains	the	word	Amsterdam	in	it.

We	expect	Solr	to	return	a	similar	JSON	response	that	will	contain	the	string	that	was
searched	for	with	the	select	query:

{

responseHeader:	{

status:	0,

QTime:	1,

params:	{

indent:	"true",

q:	"content:Amsterdam",

wt:	"json"

}

},

response:	{

numFound:	2,

start:	0,

docs:	[

{

content:	"Apache	Nutch™	-	Downloads	Community	Board…...",

id:	"http://nutch.apache.org/",

title:	"Apache	Nutch™	-",

segment:	"20150910001249",

boost:	1.1978241,

digest:	"f3e7a25e138b701c64bfda898b4f82f9",

tstamp:	"2015-09-09T23:13:03.082Z",

url:	"http://nutch.apache.org/",

version:	1511879509276622800

},

{

content:	"Apache	Nutch™	-	Downloads	Community	Board…...",

id:	"http://nutch.apache.org/index.html",

title:	"Apache	Nutch™	-",

segment:	"20150909233727",

boost:	0.3172186,

digest:	"f3e7a25e138b701c64bfda898b4f82f9",

tstamp:	"2015-09-09T22:37:49.811Z",

url:	"http://nutch.apache.org/index.html",

version:	1511878007359275000

}

]

}

}

As	we’ve	seen	how	we	can	use	the	/bin/nutch	command	to	index	data	in	Solr,	we	can
also	use	the	cleanup	functionality,	which	is	available	within	nutch,	to	keep	a	fresh	record
of	the	indexed	data	in	Solr.	We	can	remove	404	(Page	not	found)	links	that	are	within
Solr	by	executing	the	following	command:

$	bin/nutch	solrclean	crawl/crawldb/	http://localhost:8983/solr/nutch-

example

Thus,	we’ve	seen	so	far	how	we	can	easily	create	a	simple	search	engine	by	combining
Apache	Nutch	and	Apache	Solr.

There	are	quite	a	lot	of	configurations	that	we	can	use	to	optimize/tweak	Apache	Nutch,
but	that’s	beyond	the	scope	of	this	book.	You	can	find	more	information	on	optimization
and	tweaking	on	the	Apache	Nutch	Wiki	(http://wiki.apache.org/nutch/).

http://wiki.apache.org/nutch/

Summary
In	this	chapter,	we	saw	how	we	can	use	Apache	Nutch	with	Solr	and	combine	them	to
create	a	simple	search	engine	that	will	crawl	the	website.	We	also	indexed	the	crawl	data
that	we	obtained	from	Nutch	into	Solr	using	the	commands	provided	by	Apache	Nutch.

In	the	next	chapter,	we’ll	see	how	we	can	use	index	data	in	real	time	using	the	inbuilt
features	of	Solr.

Chapter	8.	Commits,	Real-Time	Index
Optimizations,	and	Atomic	Updates
In	the	previous	chapter,	we	saw	how	we	can	use	Apache	Nutch	to	crawl	websites	and
index	them	in	Solr.	In	this	chapter,	we’ll	see	how	we	can	index	data	in	real-time	using	the
features	available	from	Solr	4.	By	using	these	features,	the	indexed	data	will	be	available
in	real-time	for	the	user	to	see.

This	chapter	will	cover	the	following	topics:

Understanding	soft	commit,	optimize,	and	hard	commit
Using	atomic	updates	to	update	fields
Using	RealTime	Get

Understanding	soft	commit,	optimize,	and
hard	commit
Solr	provides	us	a	Near-Real-Time	(NRT)	search,	which	makes	documents	available	for
searching	just	after	they	have	been	indexed	in	Solr.	Additions	or	updates	to	documents	are
seen	nearly	in	real-time	after	we	index	them	in	Solr.	This	near-real-time	search	can	be
done	by	using	a	soft	commit	(available	in	Solr	4.0+),	which	avoids	the	high	cost	of	calling
fsync,	and	it	will	flush	the	index	data	into	a	stable	storage	so	that	it	can	be	retrieved	in	the
event	of	a	JVM	crash.

An	optimize,	on	the	other	hand,	will	cause	all	index	segments	to	be	merged	into	a	single
segment	first	and	then	reindex	them.	It’s	just	like	the	defragmentation	that	we	do	on	an
HDD,	which	reindexes	and	frees	up	space.	Normally,	index	segments	are	merged	over
time	as	specified	in	the	merge	policy,	but	this	happens	immediately	when	forced	using	the
optimize	command.

Let’s	see	how	we	can	use	soft	commit	and	optimize	in	Solr.	We’ll	use	our	musicCatalog
example	and	create	a	new	core	based	on	it.	We’ll	call	our	new	core	musicCatalog	commit,
which	will	contain	the	updated	solrconfig.xml.	The	code	for	this	core	can	be	found	in
the	Chapter	8	code	that	comes	with	this	book.

Let’s	index	into	Solr	an	XML	file	(sampleAlbumData.xml)	that	is	available	in	the	Chapter
8	code	examples	provided	with	this	book.	We’ll	use	the	following	command	to	do	a	soft
commit	in	Solr	and	check	out	how	it	will	be	readily	available	for	us	to	see	from	the	Solr
query	browser.

Let’s	run	the	following	command:

$	cd	%BOOK_EXAMPLES%/Chapter-8/example-files

$	curl	http://localhost:8983/solr/musicCatalog-commit/update?

softCommit=true	-H	"Content-Type:	text/xml"	--data-binary	

@sampleAlbumData.xml

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">44</int></lst>

</response>

Now	let’s	index	two	more	files	into	Solr:

$	curl	http://localhost:8983/solr/musicCatalog-commit/update?

softCommit=true	-H	"Content-Type:	text/xml"	--data-binary	

@sampleAlbumData2.xml

$	curl	http://localhost:8983/solr/musicCatalog-commit/update?

softCommit=true	-H	"Content-Type:	text/xml"	--data-binary	

@sampleAlbumData3.xml

After	executing	this	command,	we	can	navigate	to	the	Solr	query	browser	by	going	to
http://localhost:8983/solr/#/musicCatalog-commit/query,	where	we	can	see	the

index	data.	At	this	time,	softCommit	has	just	made	the	index	data	available	for	view,	but
there	is	not	100%	reliability	that	the	index	data	is	committed	into	the	persistence	storage.

In	Solr,	we	can	also	configure	softCommit	using	the	autoSoftCommit	element	in
solrconfig.xml.

In	solrconfig.xml,	we’ll	add	the	following	configuration:

<updateHandler	class="solr.DirectUpdateHandler2">

				<updateLog	class="solr.FSUpdateLog">

						<str	name="dir">${solr.ulog.dir:}</str>

				</updateLog>

				<autoSoftCommit>

						<maxTime>10000</maxTime>

				</autoSoftCommit>

		</updateHandler>

The	autoSoftCommit	element	accepts	the	following	config	elements:

maxTime:	The	amount	of	time	to	wait	before	indexing	the	documents	(in
milliseconds)
maxDocs:	The	number	of	documents	to	queue	before	indexing	them	in	Solr

In	the	precedingexample,	maxTime	is	set	to	10	seconds,	which	tells	Solr	to	perform	a	soft
commit	after	10	seconds.	To	test	this,	we	can	easily	change	maxTime	to	a	higher	value	and
then	use	the	curl	command	to	send	the	document	to	Solr.	We’ll	see	that	the	document
won’t	be	available	in	the	Solr	query	browser	until	maxTime	has	elapsed.

Now	we’ll	see	how	we	can	configure	the	autoCommit	feature,	which	is	available	in
solr.DirectUpdateHandler2.	Here	is	an	example	of	autoCommit	that	is	available	in	Solr:

<autoCommit>

		<!--	maximum	number	of	documents	before	an	autocommit	is	triggered	-->

		<maxDocs>2</maxDocs>

		<!--	maximum	time	(in	MS)	after	adding	a	doc	before	an	autocommit	is	

triggered	-->

		<maxTime>15000</maxTime>

		<openSearcher>false</openSearcher>

</autoCommit>

Note
For	more	information	on	using	autoCommit,	visit
http://wiki.apache.org/solr/UpdateXmlMessages#A.22commit.22_and_.22optimize.22.

Now	let’s	see	how	we	can	update	specific	fields	of	an	indexed	document	using	atomic
updates	in	Solr.

http://wiki.apache.org/solr/UpdateXmlMessages#A.22commit.22_and_.22optimize.22

Using	atomic	updates	in	Solr
Atomic	updates	in	Solr	support	the	following	sets	of	modifiers:

set:	This	modifier	sets	or	replaces	a	particular	indexed	field	value
add:	This	modifier	inserts	an	additional	value	into	the	multi-valued	fields
inc:	This	modifier	increments	a	numeric	value

Let’s	see	how	we	can	update	our	index	documents	using	atomic	updates.	To	do	this,	we’ll
use	the	musicCatalog	commit	core	that	we’ve	created	in	this	chapter.

Let’s	index	a	new	music	album	with	some	wrong	values,	which	we	will	later	update	using
the	atomic	update	feature:

$	curl	http://localhost:8983/solr/musicCatalog-commit/update	-H	"Content-

Type:	text/xml"	--data-binary	@sampleAlbumData4.xml

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">134</int></lst>

</response>

We	can	navigate	to	the	Solr	query	browser	and	search	for	the	indexed	data.	The	following
figure	shows	the	indexed	data	data	which	we’ve	done	by	running	the	preceding	command:

After	indexing	the	music	album,	let’s	update	its	field	values	by	sending	individual	update
fields.	Previously,	we	indexed	an	entire	document	that	contained	all	the	fields	populated.
So,	to	make	updates,	we	have	to	create	the	following	document,	which	we’ll	be	sending	to
Solr:

<add>

		<doc>

				<field	name="songId">100000004</field>

				<field	name="artistName"	update="set">Demi	Lovato</field>

				<field	name="albumName"	update="set">Cool	for	the	Summer	-	

Single</field>

		</doc>

</add>

Let’s	send	this	to	Solr	to	update	songId	with	the	value	100000004.	To	do	so,	we’ll	use	this
command:

$	curl	http://localhost:8983/solr/musicCatalog-commit/update	-H	"Content-

Type:	text/xml"	--data-binary	@sampleAlbumData4-update.xml

After	executing	this	command,	we’ll	receive	the	following	response	from	the	Solr
instance:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">8</int></lst>

</response>

After	we	send	the	document,	we	can	again	use	the	query	browser	to	see	whether	the	fields
have	been	updated	or	not.	The	following	screenshot	shows	the	query	browser	window:

As	we	can	see	from	the	preceding	screenshot,	the	albumName	and	artistName	fields	have
been	updated	as	per	the	XML	document	we	sent	to	Solr.

Now	let’s	see	how	we	can	use	the	inc	modifier	to	update	the	rating	field.	We’ll	send	this
XML	to	update	the	rating	field:

<add>

		<doc>

				<field	name="songId">100000004</field>

				<field	name="rating"	update="inc">4</field>

		</doc>

</add>

Then	we’ll	use	the	following	command	to	send	the	XML	to	Solr	to	update	the	rating	field:

$	curl	http://localhost:8983/solr/musicCatalog-commit/update	-H	"Content-

Type:	text/xml"	--data-binary	@sampleAlbumData4-update2.xml

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">28</int></lst>

</response>

We	can	see	the	updated	field	value	after	using	the	Solr	query	browser.	This	has	shown	us
how	we	can	use	the	update	modifier	to	perform	atomic	updates	in	Solr,	which	help	us
update	specific	fields	of	a	document	rather	than	sending	the	entire	document	again	for
indexing.

Using	RealTime	Get
Solr	also	provides	us	with	a	way	to	see	documents	that	are	sent	to	it	for	indexing	but	are
not	indexed	or	have	a	commit/soft	commit	time	in	the	future.	This	feature	also	makes	Solr
behave	like	a	NoSQL	data	store,	wherein	we	can	fetch	a	document	by	unique	key.

Let’s	see	how	we	can	use	this	feature	in	Solr	by	performing	the	following	steps:

1.	 Let’s	add	the	RealTime	Get	(/get)	request	handler	to	solr-config.xml,	as	follows:

		<requestHandler	name="/get"	class="solr.RealTimeGetHandler">

				<lst	name="defaults">

						<str	name="omitHeader">true</str>

						<str	name="wt">json</str>

						<str	name="indent">true</str>

				</lst>

		</requestHandler>

2.	 After	adding	requestHandler,	we’ll	need	to	change	updateLog	in	updateHandler.
This	is	because	RealTime	Get	uses	the	updateLog	feature	to	work.	The	updateLog
element	or	transaction	log	is	a	feature	in	Solr	wherein	data	is	written	to	a	transaction
log	file	before	indexing.	During	startup,	the	transaction	log	file	is	read,	so	in	the
event	of	a	failure,	there	won’t	be	any	data	loss.	More	information	can	be	found	at
https://cwiki.apache.org/confluence/display/solr/RealTime+Get:

<updateLog	class="solr.FSUpdateLog">

						<str	name="dir">${solr.data.dir:}</str>

				</updateLog>

3.	 Once	we	have	updated	the	updateLog	element,	we’ll	restart	our	Solr	instance.	After
restarting	our	Solr	instance,	let’s	send	some	JSON	data	with	a	commitWithin
parameter	in	the	URL.	The	commitWithin	parameter	will	tell	Solr	to	wait	for	a
specific	duration	of	time	before	indexing	the	document	in	Solr:

$	curl	http://localhost:8983/solr/musicCatalog-commit/update?

commitWithin=10000000	-H	"Content-type:application/json"	--data-binary	

@sampleAlbum5.json

This	will	result	in	the	following	response	from	the	Solr	instance:

{"responseHeader":{"status":0,"QTime":41}}

4.	 When	we	navigate	to	the	Solr	query	browser,	we	see	that	the	document	is	not
returning	with	the	Solr	query	browser,	as	it’s	not	indexed	until	the	commitWithin
element	time	lapses:	http://localhost:8983/solr/musicCatalog-commit/select?
q=songId:100000008

We’ll	get	the	following	response	from	the	Solr	instance:

<response>

		<lst	name="responseHeader">

				<int	name="status">0</int>

				<int	name="QTime">1</int>

		</lst>

https://cwiki.apache.org/confluence/display/solr/RealTime+Get

		<result	name="response"	numFound="0"	start="0"/>

</response>

As	there	is	no	index	document	with	songId:	100000008,	Solr	will	not	return	any
documents.

5.	 At	this	point,	we	can	use	the	RealTime	Get	handler	to	retrieve	the	document.	We	can
use	the	following	command	to	retrieve	the	document	that	was	sent	to	Solr	for
indexing:	http://localhost:8983/solr/musicCatalog-commit/get?id=100000008

After	running	this	command	in	the	browser,	we’ll	see	the	document	that	was	sent	to
Solr	for	indexing:

{

doc:	{

songId:	"100000008",

songName:	"Drag	Me	Down",

artistName:	"One	Direction",

albumArtist:	"",

albumName:	"Drag	Me	Down	-	Single",

songDuration:	3.12,

composer:	"",

rating:	0,

year:	2015,

genre:	"Pop,	Music,	Rock",

version:	1512962668868141000

}

}

This	shows	us	how	we	can	use	RealTime	Get	to	use,	for	example,	a	NoSQL	data	store.	In
it,	we	can	use	the	/get	request	handler	to	get	documents	that	were	sent	for	indexing,	even
if	they	are	not	indexed	in	Solr.

Summary
In	this	chapter,	we	saw	how	we	can	perform	atomic	updates,	soft	commit,	and	optimize	in
Solr,	which	will	help	us	to	get	indexed	data	faster	and	also	to	perform	field	updates	on
indexed	documents.	Then	we	saw	how	we	can	use	new	features	in	Solr	(4.0	onwards)	to
get	better	search	results	based	on	real-time	indexing	data.

In	the	next	chapter,	we	will	cover	advanced	topics	such	as	multilanguage	indexing,
deduplication,	and	UIMA	support	in	Solr.

Chapter	9.	Advanced	Topics	–
Multilanguage,	Deduplication,	and	Others
In	the	previous	chapter,	we	saw	how	we	can	use	Solr	to	retrieve	documents	that	are
indexed	into	it	in	real	time.	In	this	chapter,	we’ll	cover	some	advanced	topics	that	will	help
us	use	the	full	potential	of	Solr.

Specifically,	we’ll	cover	the	following	topics	in	this	chapter:

Indexing	a	document	in	multiple	languages
Detecting	duplicate	documents	(deduplication)
Streaming	of	documents	in	Solr	(content	streaming)
UIMA	integration	with	Solr

Multilanguage	indexing
Solr	provides	us	with	a	way	to	index	multilanguage	documents	in	it.	In	this	section,	we’ll
cover	how	to	easily	index	multilanguage	documents	in	Solr	and	also	how	to	auto-detect	a
document	language.

Let’s	create	a	new	core	called	languages-example.	It	will	contain	the	following	fields	in
schema.xml,	which	we’re	going	to	use	for	our	example:

<fields>

		<field	name="id"	type="string"	indexed="true"	stored="true"	

required="true"/>

		<field	name="content"	type="text_general"	indexed="true"	stored="true"	/>

		<field	name="text"	type="text_general"	multiValued="true"	indexed="true"	

stored="false"	/>

		<copyField	source="content"	dest="text"	/>

		<field	name="language"	type="string"	stored="true"	indexed="true"	/>

		<dynamicField	name="*_en"	type="text_en"	stored="true"	indexed="true"	/>

		<dynamicField	name="*_ru"	type="text_ru"	stored="true"	indexed="true"	/>

		<dynamicField	name="*_fr"	type="text_fr"	stored="true"	indexed="true"	/>

</fields>

After	we	have	added	the	fields,	we’ll	modify	our	solrconfig.xml	configuration	file	to
add	the	language	detection	feature,	which	is	provided	by	LangDetect
(http://code.google.com/p/language-detection/):

<lib	dir="${user.dir}/../contrib/analysis-extras/lucene-libs/"	/>

<lib	dir="${user.dir}/../contrib/analysis-extras/lib/"	/>

<lib	dir="${user.dir}/../dist/"	regex="solr-langid-.*\.jar"	/>

<lib	dir="${user.dir}/../contrib/langid/lib/"	/>

Next,	after	adding	the	libraries,	we’ll	add	an	UpdateRequestProcessorChain	element,
which	will	contain	the	language	detection	processor:

<updateRequestProcessorChain	name="languages">

		<processor	

class="solr.LangDetectLanguageIdentifierUpdateProcessorFactory">

		<lst	name="invariants">

				<str	name="langid.fl">content</str>

				<str	name="langid.whitelist">en,fr,ru</str>

				<str	name="langid.fallback">en</str>

				<str	name="langid.langField">language</str>

				<bool	name="langid.map">true</bool>

				<bool	name="langid.map.keepOrig">false</bool>

		</lst>

		</processor>

<processor	class="solr.RunUpdateProcessorFactory"	/>

</updateRequestProcessorChain>

We’ve	added	the	solr.LangDetectLanguageIdentifierUpdateProcessorFactory	class
in	UpdateRequestProcessor,	which	will	automatically	detect	the	language	from	the
document	and	will	store	it	in	the	language	field.

http://code.google.com/p/language-detection/

Alternatively,	we	can	use	solr.TikaLanguageIdentifierUpdateProcessorFactory	to
detect	the	language	of	the	document.

Note
More	information	on	using	the	processor	factory	is	available	at
https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing.

We’ll	be	indexing	the	following	XML	file	(multilang-doc.xml),	which	will	contain	three
separate	documents	in	English,	Russian,	and	French:

<add>

		<!--	English	-->

		<doc>

				<field	name="id">doc1</field>

				<field	name="content">

						<![CDATA[Hello,	This	is	an	example	for	the	Solr	Indexing	book.]]>

				</field>

		</doc>

		<!--	Russian	-->

		<doc>

				<field	name="id">doc2</field>

				<field	name="content">

						<![CDATA[Привет	,	это	пример	для	индексации	книги	Solr.]]>

				</field>

		</doc>

		<!--	French	-->

		<doc>

				<field	name="id">doc3</field>

				<field	name="content">

						<![CDATA[Bonjour,	Ceci	est	un	exemple	pour	le	livre	d'indexation	

Solr.]]>

				</field>

		</doc>

</add>

Let’s	go	ahead	and	index	the	document	in	our	newly	created	core.	To	do	this,	we’ll	start	up
Solr	and	run	the	following	command:

$	curl	'http://localhost:8983/solr/languages-example/update?commit=true'	-H	

"Content-Type:	text/xml"	--data-binary	@multilang-doc.xml

After	we	execute	the	command,	we’ll	see	the	following	output	from	Solr,	which	confirms
that	it	has	been	successful	in	sending	the	document	to	Solr:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">513</int></lst>

</response>

After	indexing,	let’s	go	ahead	and	query	the	indexed	data	in	Solr.	So,	open	up	the	Solr
Query	browser	or	go	to	http://localhost:8983/solr/languages-example/select?

https://cwiki.apache.org/confluence/display/solr/Detecting+Languages+During+Indexing

q=*%3A*&wt=json&indent=true.

We	can	see	the	following	response	from	the	server:

{

		responseHeader	:	{

				status	:	0,

				QTime	:	2

		},

		response	:	{

				numFound	:	3,

				start	:	0,

				docs	:	[{

						id	:	"doc1",

						language	:	"en",

						content_en	:	"	Hello,	This	is	an	example	for	the	Solr	Indexing	book.	

"

				},	{

						id	:	"doc2",

						language	:	"ru",

						content_ru	:	"	Привет	,	это	пример	для	индексации	книги	Solr.	"

				},	{

						id	:	"doc3",

						language	:	"fr",

						content_fr	:	"	Bonjour,	Ceci	est	un	exemple	pour	le	livre	

d'indexation	Solr.	"

				}

]

		}

}

As	we	can	see	from	the	preceding	response—the	language	field	has	been	auto-populated
by	solr.LangDetectLanguageIdentifierUpdateProcessorFactory—we	can	realize	how
easy	it	is	to	index	multilanguage	documents	in	Solr.

We	can	also	create	separate	search	handlers	based	on	the	language.	An	example	of	using
various	language	handlers	has	been	provided	in	solrconfig.xml,	which	is	available	in	the
code	examples.

The	following	is	an	example	of	a	sample	search	handler	(/selectRU)	that	we	can	use	to
search	for	documents	whose	language	is	set	to	Russian	(ru):

<requestHandler	name="/selectRU"	class="solr.SearchHandler"	>

		<lst	name="invariants">

				<str	name="fq">language:ru</str>

		</lst>

</requestHandler>

In	the	Solr	Query	browser,	we	can	search	for	all	documents	whose	language	is	Russian
using	the	/selectRU	search	handler.	Here	is	a	screenshot	that	shows	the	use	of	this
handler:

Now	let’s	move	on	to	a	different	topic,	which	will	help	us	remove	duplicate	documents
from	our	index.	In	the	next	section,	we’ll	see	how	we	can	use
SignatureUpdateProcessorFactory	to	remove/overwrite	duplicate	elements.

Removing	duplicate	documents
(deduplication)
Solr	provides	us	with	a	way	to	prevent	duplicate	or	nearly	duplicate	elements	to	get
indexed	using	a	signature/fingerprint	field.	It	natively	provides	a	deduplication	technique
of	this	type	via	the	signature	class,	and	this	can	further	be	used	to	implement	new	hash	and
signature	implementations.

Let’s	see	how	we	can	implement	deduplication	in	Solr.	We’ll	use	our	musicCatalog	core,
which	we	used	in	the	previous	chapter	as	well,	and	will	modify	it:

1.	 Copy	the	musicCatalog	core	and	create	a	new	core	called	musicCatalog-dedupe
from	it.	After	we	have	created	the	new	core,	we’ll	change	schema.xml	to	add	a
signature	field	that	will	contain	the	document	signature/fingerprint:

<!--	Field	to	store	the	fingerprint/signature	-->

<field	name="signature"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"	/>

2.	 After	adding	the	field,	we’ll	add	a	new	UpdateRequestProcessor	element	to
solrconfig.xml	configuration	file,	which	will	detect	and	overwrite	duplicate
documents:

<updateRequestProcessorChain	name="dedupe">

		<processor	

class="org.apache.solr.update.processor.SignatureUpdateProcessorFactory

">

				<bool	name="enabled">true</bool>

				<bool	name="overwriteDupes">true</bool>

				<str	name="signatureField">signature</str>

				<str	

name="fields">songId,songName,artistName,albumArtist,albumName,songDura

tion,composer,rating,year,genre</str>

				<str	

name="signatureClass">org.apache.solr.update.processor.TextProfileSigna

ture</str>

		</processor>

		<processor	class="solr.LogUpdateProcessorFactory"	/>

		<processor	class="solr.RunUpdateProcessorFactory"	/>

</updateRequestProcessorChain>

We’ve	used	the	SignatureUpdateProcessorFactory	class	that	comes	with	Solr,
which	we	can	use	to	detect/overwrite	duplicate	documents.	The	following	properties
can	be	set	up	in	SignatureUpdateProcessorFactory:

signatureClass:	This	is	an	implementation	of	the
org.apache.solr.update.processor.Signature	abstract	class,	for	example,
org.apache.solr.update.processor.Lookup3Signature	or
solr.processor.Lookup3Signature.
fields:	These	are	the	names	of	the	fields	that	are	used	to	generate	the	hash.	By

default,	all	fields	of	the	document	will	be	used	to	generate	the	hash.
signatureField:	This	is	the	name	of	the	field	that	will	hold	the	hash.	This
should	be	defined	in	schema.xml.
enabled:	This	is	used	to	enable/disable	deduplication.
overwriteDupes:	If	this	is	set	to	true,	the	matching	document	will	be
overwritten.

3.	 After	we	add	the	UpdateRequestHandler,	we’ll	use	the	following	XML	document
(duplicateAlbumData.xml),	which	contains	two	duplicate	documents,	and	will	send
it	to	Solr	for	indexing:

<add>

		<doc>

				<field	name="songId">100000001</field>

				<field	name="songName">Cool	for	the	Summer</field>

				<field	name="artistName">Dem	Lovato</field>

				<field	name="albumArtist">Demi	Lovato</field>

				<field	name="albumName">Cool	for	the	Summer</field>

				<field	name="songDuration">3.24</field>

				<field	name="composer"/>

				<field	name="rating">3.5</field>

				<field	name="year">2015</field>

				<field	name="genre">Pop,	Music,	Rock,	Dance,	Electronic</field>

		</doc>

		<doc>

				<field	name="songId">100000001</field>

				<field	name="songName">Cool	for	the	Summer</field>

				<field	name="artistName">Dem	Lovato</field>

				<field	name="albumArtist">Demi	Lovato</field>

				<field	name="albumName">Cool	for	the	Summer</field>

				<field	name="songDuration">3.24</field>

				<field	name="composer"/>

				<field	name="rating">3.5</field>

				<field	name="year">2015</field>

				<field	name="genre">Pop,	Music,	Rock,	Dance,	Electronic</field>

		</doc>

</add>

We	can	use	the	following	command	to	send	the	XML	file	that	contains	these	two	duplicate
documents	for	indexing:

$	curl	'http://localhost:8983/solr/musicCatalog-dedupe/update?

update.chain=dedupe&commit=true'	-H	"Content-Type:	text/xml"	--data-binary	

@duplicateAlbumData.xml

After	executing	this	command,	we’ll	get	the	following	response	from	Solr:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">383</int></lst>

</response>

After	we	execute	this	query,	we	can	use	the	q=*:*	query	to	view	the	data	that	was	indexed

into	Solr.

Open	up	the	Solr	Query	browser	or	using	the	following	url
http://localhost:8983/solr/musicCatalog-dedupe/select?

q=*%3A*&wt=json&indent=true.

We’ll	receive	the	following	response	from	Solr:

{

		responseHeader	:	{

		status	:	0,

		QTime	:	3

		},

		response	:	{

				numFound	:	1,

				start	:	0,

				docs	:	[{

						songId	:	"100000001",

						songName	:	"Cool	for	the	Summer",

						artistName	:	"Dem	Lovato",

						albumArtist	:	"Demi	Lovato",

						albumName	:	"Cool	for	the	Summer",

						songDuration	:	3.24,

						composer	:	"",

						rating	:	3.5,

						year	:	2015,

						genre	:	"Pop,	Music,	Rock,	Dance,	Electronic",

						signature	:	"c105d2c9b431932e0e662b513f328aaa"

				}

]

		}

}

As	we	can	see	from	this	response,	the	original	document	has	been	overwritten	and	we’re
seeing	only	one	document	getting	indexed	in	Solr.

Content	streaming
In	Solr,	we	can	index	remote	or	local	files	by	enabling	remote	streaming	in
solrconfig.xml.	Let’s	see	how	we	can	use	this	feature	in	Solr,	we’ll	follow	the	steps
given	here	to	enable	the	remote	streaming	feature.

Let’s	use	our	newly	created	languages-example	core	and	modify	solrconfig.xml.	We’ll
replace	the	requestDispatcher	config	in	our	solrconfig.xml	file	with	the	following
lines:

		<requestDispatcher	handleSelect="false"	>	

				<requestParsers	enableRemoteStreaming="true"	

						multipartUploadLimitInKB="2048000"

						formdataUploadLimitInKB="2048"

						addHttpRequestToContext="false"/>	

		</requestDispatcher>

The	enableRemoteStreaming="true"	property	will	enable	the	remote	streaming	feature.
This	will	enable	us	to	index	remote	or	local	files.	Let’s	go	ahead	and	index	a	remote	file	in
our	Solr	index:

$	curl	http://localhost:8983/solr/languages-example/update?commit=true	-F	

stream.url=https://raw.githubusercontent.com/sachin-

handiekar/SolrIndexingBook/master/Chapter-9/files/multilang-remote.xml

We’ll	get	the	following	response	from	Solr:

<?xml	version="1.0"	encoding="UTF-8"?>

<response>

<lst	name="responseHeader"><int	name="status">0</int><int	

name="QTime">968</int></lst>

</response>

We	can	see	the	indexed	document	in	Solr	after	navigating	to	the	query	browser.	We’ll	get
this	output:

{

		responseHeader	:	{

				status	:	0,

				QTime	:	8

		},

		response	:	{

				numFound	:	3,

				start	:	0,

				docs	:	[{

						id	:	"doc4",

						language	:	"en",

						content_en	:	"	Hello,	This	is	a	remote	file	which	is	waiting	to	get	

indexed	in	Solr.	"

				},	{

						id	:	"doc5",

						language	:	"ru",

						content_ru	:	"	Привет	,	это	удаленный	файл,	который	ждет,	чтобы	

получить	индексируются	в	Solr	.	"

				},	{

						id	:	"doc6",

						language	:	"fr",

						content_fr	:	"	Bonjour,	ceci	est	un	fichier	distant	qui	est	en	

attente	pour	obtenir	indexé	dans	Solr.	"

				}

]

		}

}

As	we	can	see	from	the	preceding	response,	the	original	document	has	been	overwritten
and	we’re	just	seeing	one	document	getting	indexed	in	Solr.

We	can	also	use	DumpRequestHandler	to	debug	the	requests	that	are	made	by	adding	the
following	request	handler	in	solrconfig.xml:

<requestHandler	name="/debug/dump"	class="solr.DumpRequestHandler"	/>

For	example,	let’s	see	the	contents	of	the	remote	file	that	we	recently	indexed	into	Solr.
When	we	navigate	to	the	following	URL,	we’ll	see	the	XML	response	from	the
/debug/dump	request	handler;	it	will	contain	the	stream	response:
http://localhost:8983/solr/languages-example/debug/dump?

stream.url=https://raw.githubusercontent.com/sachin-

handiekar/SolrIndexingBook/master/Chapter-9/files/multilang-remote.xml

This	URL	will	return	the	following	XML	response,	which	will	contain	the	data	of	the
remote	file:

The	use	of	the	/debug/dump	request	handler	should	be	disabled	in	production,	as	anyone
can	see	the	contents	of	the	remote/local	file,	which	creates	a	security	risk.

UIMA	integration	with	Solr
Solr	can	also	be	integrated	with	Apache	UIMA	(short	for	Unstructured	Information
Management	Architecture),	which	can	be	used	to	define	a	custom	pipeline	to	add
metadata	to	documents.

Note
More	information	about	Solr	UIMA	integration	can	be	found	at
https://wiki.apache.org/solr/SolrUIMA.

In	Solr,	UIMA	can	be	configured	by	following	these	steps:

1.	 In	solrconfig.xml,	we	can	add	the	following	libraries:

<lib	dir="../../contrib/uima/lib"	/>

<lib	dir="../../dist/"	regex="solr-uima-\d.*\.jar"	/>

2.	 After	adding	the	libraries,	we	can	add	the	following	fields	to	schema.xml,	which	will
contain	the	language,	concept,	and	sentence	fields:

<field	name="language"	type="string"	indexed="true"	stored="true"	

required="false"/>

<field	name="concept"	type="string"	indexed="true"	stored="true"	

multiValued="true"	required="false"/>

<field	name="sentence"	type="text"	indexed="true"	stored="true"	

multiValued="true"	required="false"	/>

3.	 After	adding	these	fields,	we’ll	add	the
org.apache.solr.uima.processor.UIMAUpdateRequestProcessorFactory	class	to
UpdateRequestProcessorChain,	which	will	contain	the	connection	details	and	more
configuration-related	settings	for	UIMA:

<updateRequestProcessorChain	name="uima">

		<processor	

class="org.apache.solr.uima.processor.UIMAUpdateRequestProcessorFactory

">

				<lst	name="uimaConfig">

				<lst	name="runtimeParameters">

						<str	name="keyword_apikey">VALID_ALCHEMYAPI_KEY</str>

						<str	name="concept_apikey">VALID_ALCHEMYAPI_KEY</str>

						<str	name="lang_apikey">VALID_ALCHEMYAPI_KEY</str>

								<str	name="cat_apikey">VALID_ALCHEMYAPI_KEY</str>

								<str	name="entities_apikey">VALID_ALCHEMYAPI_KEY</str>

								<str	name="oc_licenseID">VALID_OPENCALAIS_KEY</str>

						</lst>

						<str	

name="analysisEngine">/org/apache/uima/desc/OverridingParamsExtServices

AE.xml</str>

						<!--	Set	to	true	if	you	want	to	continue	indexing	even	if	text	

processing	fails.

						Default	is	false.	That	is,	Solr	throws	RuntimeException	and

						never	indexed	documents	entirely	in	your	session.	-->

						<bool	name="ignoreErrors">true</bool>

https://wiki.apache.org/solr/SolrUIMA

						<!--	This	is	optional.	It	is	used	for	logging	when	text	

processing	fails.

						If	logField	is	not	specified,	uniqueKey	will	be	used	as	logField.

						<str	name="logField">id</str>

						-->

						<lst	name="analyzeFields">

								<bool	name="merge">false</bool>

								<arr	name="fields">

										<str>text</str>

								</arr>

						</lst>

						<lst	name="fieldMappings">

								<lst	name="type">

										<str	

name="name">org.apache.uima.alchemy.ts.concept.ConceptFS</str>

										<lst	name="mapping">

												<str	name="feature">text</str>

												<str	name="field">concept</str>

										</lst>

								</lst>

								<lst	name="type">

										<str	

name="name">org.apache.uima.alchemy.ts.language.LanguageFS</str>

										<lst	name="mapping">

												<str	name="feature">language</str>

												<str	name="field">language</str>

										</lst>

								</lst>

								<lst	name="type">

										<str	name="name">org.apache.uima.SentenceAnnotation</str>

										<lst	name="mapping">

												<str	name="feature">coveredText</str>

												<str	name="field">sentence</str>

										</lst>

								</lst>

						</lst>

				</lst>

		</processor>

		<processor	class="solr.LogUpdateProcessorFactory"	/>

		<processor	class="solr.RunUpdateProcessorFactory"	/>

</updateRequestProcessorChain>

4.	 Finally	in	solrconfig.xml,	we’ll	use	the	following	UpdateRequestHandler,	which
will	contain	uima	as	the	default	update	processor:

<requestHandler	name="/update"	class="solr.XmlUpdateRequestHandler">

		<lst	name="defaults">

				<str	name="update.processor">uima</str>

		</lst>

</requestHandler>

The	preceding	settings	can	be	used	to	integrate	Solr	with	UIMA,	which	can	be	used	to
enrich	our	indexed	documents	with	metadata	received	from	UIMA.

Note

More	information	about	UIMA	can	be	found	at
http://cwiki.apache.org/confluence/display/UIMA/.

http://cwiki.apache.org/confluence/display/UIMA/

Summary
In	this	chapter,	we	saw	how	Solr	can	be	used	to	index	multilanguage	documents	with
some	easy	configuration,	and	also	language	detection,	which	can	be	used	to	automatically
detect	the	language	of	a	document.	Plus,	we	covered	the	deduplication	technique,	which
Solr	supports	natively.	It	can	be	used	to	overwrite/remove	documents	from	Solr	using	the
hashing/fingerprint	technique.	We	also	covered	in	brief	content	streaming	and	the
integration	of	Apache	UIMA	with	Solr.

In	the	next	chapter,	we’ll	cover	how	we	can	easily	set	up	a	cluster	of	Solr	servers.

Chapter	10.	Distributed	Indexing
In	the	previous	chapter,	we	covered	advanced	topics	in	Solr,	such	as	multilanguage
support,	deduplication,	content	streaming,	and	so	on.	In	this	chapter,	we’ll	see	how	we	can
set	up	a	cluster	of	Solr	servers	that	will	provide	a	fault-tolerant	and	high-availability
scenario.	We’ll	cover	the	following	topics:

Setting	up	SolrCloud
Using	the	collections	API
Distributed	indexing	and	searching

Setting	up	SolrCloud
In	this	section,	we	will	see	how	we	can	set	up	multiple	nodes	of	Solr	servers	on	a	single
physical	machine.	We’ll	clone	the	example	folder	that	comes	with	the	default	Solr
installation	to	create	multiple	shards.

Let’s	go	ahead	and	set	up	a	two-node	Solr	instance.	We’ll	navigate	to	our	Solr	instance
and	execute	the	following	command:

$	cd	$SOLR_HOME

$	cp	-r	example	shard1

$	cp	–r	example	shard2

After	running	the	preceding	commands,	we’ll	see	that	there	are	two	folders	(shard1	and
shard2)	that	are	now	ready.

Let’s	go	ahead	and	start	the	two	solr	nodes	that	we	just	created.	To	do	this,	we’ll	navigate
to	$SOLR_HOME/bin	folder:

shard1:

$./solr	start	-cloud	-d	../shard1	-p	8983

shard2:

$./solr	start	-cloud	-d	../shard2	-p	8987	-z	localhost:9983

After	running	the	two	nodes,	we	can	navigate	to	http://localhost:8983/solr	and	can
see	a	Cloud	tab	activated.	This	example	was	performed	on	a	fresh	installation	of	Solr,	so
the	results	will	be	different	if	we	don’t	use	a	fresh	installation.	The	following	screenshot
shows	us	the	Graph	view	of	the	SolrCloud:

As	we	can	see	from	the	Solr	Cloud	tab,	the	default	configuration	contains	two	nodes,
which	contain	a	shard,	one	of	them	being	the	shard	leader	and	the	other	being	a	replica.

Let’s	create	a	new	collection	using	the	collections	API	and	assign	to	it	two	shards	and	two

replicas	that	we	can	use.

But	before	we	do	this,	we’ll	create	a	default	configuration	for	the	collection	and	upload	it
to	ZooKeeper.	The	configuration	stored	in	ZooKeeper	is	shared	between	the	nodes	that	are
running	in	SolrCloud.	Any	changes	made	in	the	configuration	can	then	be	made	available
on	all	the	instances	within	the	SolrCloud	that	are	using	that	configuration:

$	$SOLR_HOME/example/scripts/cloud-scripts/zkcli.sh	-zkhost	localhost:9983	

-cmd	upconfig	-confdir	$SOLR_HOME/example/solr/collection1/conf	-confname	

default

Note	that	Windows	users	can	use	the	zkcli.bat	version	of	the	script	or	the	following	Java
command:

$	java	-classpath	"example\solr-webapp\webapp\WEB-

INF\lib*;example\lib\ext*"	org.apache.solr.cloud.ZkCLI	-cmd	upconfig	-

zkhost	localhost:9983	-confdir	$SOLR_HOME/example/solr/collection1/conf	-

confname	default

After	uploading	the	collection	configuration	to	ZooKeeper,	we’ll	create	a	collection	named
musicCatalogue-solrcloud:

curl	"http://localhost:8983/solr/admin/collections?

action=CREATE&name=musicCatalogue-

solrcloud&replicationFactor=2&numShards=2&collection.configName=default&max

ShardsPerNode=2&wt=json&indent=2"

We’ll	get	the	following	response	from	the	Solr	instance:

{

		"responseHeader":{

				"status":0,

				"QTime":8549},

		"success":{

				"":{

						"responseHeader":{

								"status":0,

								"QTime":7582},

						"core":"musicCatalogue-solrcloud_shard1_replica2"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":7641},

						"core":"musicCatalogue-solrcloud_shard2_replica2"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":7912},

						"core":"musicCatalogue-solrcloud_shard2_replica1"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":7982},

						"core":"musicCatalogue-solrcloud_shard1_replica

}

After	we	have	done	this,	we	can	navigate	to	the	Solr	Cloud	tab.	The	following	screenshot
shows	us	the	two	different	shards	which	were	created:

Now	let’s	just	test	our	new	collection	by	indexing	some	data	in	it.	We’ll	use	the	following
command	to	index	the	data	in	Solr:

$	curl	'http://localhost:8983/solr/musicCatalogue-solrcloud/json?

commit=true'	-H	'Content-type:application/json'	-d	'

[

	{"id"	:	"1",	"title"	:	"Apache	Solr	Indexing	Data"},

	{"id"	:	"2",	"title"	:	"Apache	Solr	Cookbook"}

]'

After	running	the	command,	we	should	get	the	following	response	from	Solr,	telling	us
that	the	documents	were	indexed	successfully:

{"responseHeader":{"status":0,"QTime":237}}

The	collections	API
The	collections	API	supports	the	following	operations,	which	can	be	used	to	create,
remove,	or	reload	collections:

CREATE:	Creates	a	collection
RELOAD:	Reloads	a	collection
SPLITSHARD:	Splits	a	shard	into	two	new	shards
CREATESHARD:	Creates	a	new	shard
DELETESHARD:	Deletes	an	inactive	shard

There	are	more	operations	available,	and	they	can	be	found	on	the	Solr	Wiki.	In	this
chapter,	we’ll	just	see	how	we	can	use	the	collections	API	to	manage	a	Solr	configuration.

Let’s	go	ahead	and	create	a	new	collection	with	the	number	of	shards	as	2.	To	do	this,
we’ll	execute	the	following	command:

curl	"http://localhost:8983/solr/admin/collections?

action=CREATE&name=sampleCatalog&replicationFactor=2&numShards=2&collection

.configName=default&maxShardsPerNode=2&wt=json&indent=2"

We’ll	get	the	output	as	follows	after	running	this	command:

{

		"responseHeader":{

				"status":0,

				"QTime":10346},

		"success":{

				"":{

						"responseHeader":{

								"status":0,

								"QTime":9381},

						"core":"sampleCatalog_shard1_replica1"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":9565},

						"core":"sampleCatalog_shard1_replica2"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":9689},

						"core":"sampleCatalog_shard2_replica1"},

				"":{

						"responseHeader":{

								"status":0,

								"QTime":9774},

						"core":"sampleCatalog_shard2_replica2"}}}

After	creating	the	new	catalog,	we	can	navigate	to	the	Cloud	tab	in	Solr	Admin	UI.	We
can	see	that	our	new	core	has	been	created.

Now,	let’s	use	the	collections	API	to	delete	the	newly	created	collection.	We’ll	use	the
following	command	to	delete	it:

curl	"http://localhost:8983/solr/admin/collections?

action=DELETE&name=sampleCatalog&wt=json&indent=2"

We’ll	get	this	response	after	running	the	preceding	command:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	1272

		},

		"success":	{

				"192.168.56.1:8983_solr":	{

						"responseHeader":	{

								"status":	0,

								"QTime":	182

						}

				},

				"192.168.56.1:8983_solr":	{

						"responseHeader":	{

								"status":	0,

								"QTime":	209

						}

				},

				"192.168.56.1:8987_solr":	{

						"responseHeader":	{

								"status":	0,

								"QTime":	200

						}

				},

				"192.168.56.1:8987_solr":	{

						"responseHeader":	{

								"status":	0,

								"QTime":	216

						}

				}

		}

}

After	we	have	run	the	delete	query,	we	can	run	the	list	command	to	get	the	current	list
of	collections.

To	do	this,	we	use	the	following	command:

curl	"http://localhost:8983/solr/admin/collections?

action=LIST&wt=json&indent=2"

We’ll	get	this	response:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	283

		},

		"collections":	[

				"collection1",

				"musicCatalogue-solrcloud"

]

}

We’ve	seen	how	we	can	create	and	delete	collections.	Now	let’s	see	one	more	feature	of
the	collections	API.	We	can	create	an	alias	using	this	API.

Let’s	create	an	alias	for	our	collection	using	this	command:

curl	"http://localhost:8983/solr/admin/collections?

action=CREATEALIAS&name=musicCatalogue-alias&collections=musicCatalogue-

solrcloud&wt=json&indent=2"

After	running	it,	we	should	get	the	following	response:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	282

		}

}

Now,	let’s	use	the	alias	we’ve	just	created	and	run	a	query	against	it:

curl	"http://localhost:8983/solr/musicCatalogue-alias/select?

q=*%3A*&wt=json&indent=true"

We’ll	get	this	response:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	32,

				"params":	{

						"q":	"*:*",

						"indent":	"true",

						"wt":	"json"

				}

		},

		"response":	{

				"numFound":	3,

				"start":	0,

				"maxScore":	1.0,

				"docs":	[

						{

								"id":	"1",

								"title":	[

										"Apache	Solr	Indexing	Data"

],

								"_version_":	1516224129180631040

						},

						{

								"id":	"2",

								"title":	[

										"Apache	Solr	Cookbook"

],

								"_version_":	1516224138192093184

						}

]

		}

}

This	shows	us	how	we	can	create	an	alias	for	a	collection	using	the	Collections	API.	One
of	the	main	benefits	of	using	an	alias	is	that	it	hides	the	main	collection	from	the	search
client	application.	For	example,	we	can	have	an	alias	named	onlineArticles;	when
queried,	it	can	return	documents	from	magazines	and	blogs	collections.

An	alias	can	also	be	deleted	using	the	following	command:

curl	"http://localhost:8983/solr/admin/collections?

action=DELETEALIAS&name=musicCatalogue-alias&wt=json&indent=2"

Note
More	information	about	the	Collections	API	can	be	found	at
https://cwiki.apache.org/confluence/display/solr/Collections+API.

https://cwiki.apache.org/confluence/display/solr/Collections+API

Updating	configuration	files
There	is	always	a	need	to	update	configuration	files	in	Solr.	In	Solr,	while	using
SolrCloud,	we	can	always	maintain	the	configuration	files	in	SVN,	Git,	or	any	other
version	control	tool.	Any	changes	in	the	configuration	file	can	be	pushed	to	the	ZooKeeper
instance	that	will	keep	all	the	Solr	instances	in	sync	with	the	latest	version	of	the
configuration.

Let’s	now	see	how	we	can	update	an	instance	of	a	file	in	ZooKeeper.	To	do	this,	we’ll
create	a	new	file	in	the	conf	directory,	which	we’ll	then	push	to	Zookeeper	using	the
zkcli	script.

We	create	a	new	file	called	updateMe.conf	in
%SOLR_HOME%/example/solr/collection1/conf.	After	this	we	run	the	following
command,	which	will	push	the	file:

$	$SOLR_HOME/example/scripts/cloud-scripts/zkcli.sh	-zkhost	localhost:9983	

-cmd	upconfig	-confdir	%SOLR_HOME%/example/solr/collection1/conf	-confname	

default

After	running	this	command,	we	can	navigate	to	the	Cloud	tab	and	then	click	on	the	Tree
button,	which	will	show	us	the	files	that	are	available	in	the	Zookeeper	instance.	We	can
see	in	the	following	screenshot	that	our	newly	created	file	is	present	in	the
/configs/default	location:

After	updating	the	collection,	we	should	always	reload	it,	which	will	load	up	any	changes
made	in	the	configuration	files.	We	can	reload	a	collection	using	the	Collections	API,	like
this:

curl	"http://localhost:8983/solr/admin/collections?

action=RELOAD&name=musicCatalogue-solrcloud&wt=json&indent=2"

We’ve	discussed	new	terms	in	this	chapter	such	as	sharding	and	replication.	Let’s	see
what	these	terms	mean	in	SolrCloud:

Sharding:	In	Solr,	sharding	allows	us	to	break	down	a	large	index	into	multiple
smaller	indexes	that	can	fit	on	one	server	and	can	help	us	parallelize	complex	query
execution	and	index	operations.
Replication:	In	Solr,	replicas	can	help	us	create	additional	copies	of	a	Solr	index
across	multiple	servers	to	add	redundancy/failover	scenarios.	Replication	also	helps
us	increase	the	number	of	queries	that	an	index	can	execute	concurrently.

The	Solr	Cloud	view	also	shows	the	configuration	that	was	sent	to	ZooKeeper.	The
following	screenshot	shows	the	Solr	Cloud	view:

The	Cloud	tab	contains	the	graph	(radial)	view,	which	can	be	used	to	see	the	shards	and
replicas	currently	being	used	in	a	graphical	way.	This	screenshot	shows	our	collection	in	a
radial	view:

Distributed	indexing	and	searching
In	SolrCloud,	the	main	goal	behind	distributed	indexing	is	to	send	a	document	to	any
node	in	the	cluster	and	have	that	document	indexed	in	the	shard.

Solr	uses	a	document	router	to	assign	a	document	to	a	shard.	There	are	two	basic
document	routing	strategies:

compositeId	(default)
Implicit

In	compositeId	(default),	when	we	send	documents	to	Solr	for	indexing,	Solr	uses	the
hash	of	the	document	to	distribute	the	load	to	multiple	Solr	instances.	Previously	in	this
chapter,	we	added	a	few	documents	to	the	index.	Now	let’s	see	how	Solr	distributes	the
load	to	multiple	Solr	instances.

As	we’re	running	two	instances	of	Solr	locally	(shard1	on	8983	and	shard2	on	8987),
we’ll	run	the	following	two	queries	with	the	distrib	flag	set	to	false.	The	flag	will	tell
Solr	to	run	the	query	in	a	non-distributed	way,	which	means	the	result	that	we	will	get	will
be	only	for	the	shard	on	which	the	query	is	running:

shard1:

curl	"http://localhost:8983/solr/musicCatalogue-solrcloud/select?

q=*%3A*&distrib=false&rows=0&wt=json&indent=true"

shard2:

curl	"http://localhost:8987/solr/musicCatalogue-solrcloud/select?

q=*%3A*&distrib=false&rows=0&wt=json&indent=true"

After	running	it,	we’ll	get	this	response	on	each	of	the	shards:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	1,

				"params":	{

						"q":	"*:*",

						"distrib":	"false",

						"indent":	"true",

						"rows":	"0",

						"wt":	"json"

				}

		},

		"response":	{

				"numFound":	1,

				"start":	0,

				"docs":	[]

		}

}

As	we	can	see	from	the	preceding	response,	two	documents	that	we’ve	indexed	previously
have	gone	to	two	different	instances.	Now	let’s	run	the	query	one	more	time,	this	time

with	the	distributed	request	flag	set	to	true	(default),	and	we	return	the	id	and	shard	using
the	fl	flag:

curl	"http://localhost:8983/solr/musicCatalogue-solrcloud/select?

q=*%3A*&wt=json&indent=true&fl=id,[shard]"

We’ll	get	the	following	response	from	Solr:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	29,

				"params":	{

						"q":	"*:*",

						"indent":	"true",

						"fl":	"id,[shard]",

						"wt":	"json"

				}

		},

		"response":	{

				"numFound":	2,

				"start":	0,

				"maxScore":	1.0,

				"docs":	[

						{

								"id":	"1",

								"[shard]":	"http://192.168.56.1:8983/solr/musicCatalogue-

solrcloud_shard1_replica1/|http://192.168.56.1:8987/solr/musicCatalogue-

solrcloud_shard1_replica2/"

						},							

						{

								"id":	"2",

								"[shard]":	"http://192.168.56.1:8983/solr/musicCatalogue-

solrcloud_shard2_replica1/|http://192.168.56.1:8987/solr/musicCatalogue-

solrcloud_shard2_replica2/"

						}

]

		}

}

As	we	can	see,	both	the	documents	have	gone	to	two	different	shards,	which	are
musicCatalogue-solrcloud_shard1_replica2	and	musicCatalogue-
solrcloud_shard2_replica2.

We’ve	thus	seen	how	Solr	automatically	distributes	documents	to	different	Solr	shards.	In
Solr,	we	can	also	stop	this	feature	using	the
solr.NoOpDistributingUpdateProcessorFactory	processor,	which	will	help	us	send
documents	to	just	one	node	and	not	distribute	the	load	among	shards.	We	might	have	a
requirement	where	we	want	to	use	only	one	of	the	nodes	to	store	a	specific	type	of
document.	For	this	specific	scenario,	we	can	use	the
solr.NoOpDistributingUpdateProcessorFactory	processor.

Let’s	see	how	we	can	use	this	processor	in	Solr	and	stop	the	automatic	distribution	of
documents	to	shards:

1.	 We’ll	update	solrconfig.xml,	which	available	at
%SOLR_HOME%/example/solr/collection1/conf,	with	the	following	lines:

		<updateRequestProcessorChain>

				<processor	class="solr.NoOpDistributingUpdateProcessorFactory"/>

				<processor	class="solr.LogUpdateProcessorFactory"/>

				<processor	class="solr.RunUpdateProcessorFactory"/>

		</updateRequestProcessorChain>

2.	 After	making	the	change,	we’ll	upload	the	configuration	to	Zookeeper	using	this	line:

$	$SOLR_HOME/example/scripts/cloud-scripts/zkcli.sh	-zkhost	

localhost:9983	-cmd	upconfig	-confdir	

%SOLR_HOME%/example/solr/collection1/conf	-confname	default

3.	 We’ll	then	reload	the	collection	using	the	following	command:

$	curl	"http://localhost:8983/solr/admin/collections?

action=RELOAD&name=musicCatalogue-solrcloud&wt=json&indent=2"

4.	 After	reloading	the	configuration,	we’ll	post	some	data	to	one	of	the	shards	and	see
whether	the	automatic	distribution	of	documents	has	been	stopped	or	not.

Let’s	send	some	data	to	the	Shard	1	(Port	8983)	instance	using	the	following
command:

$	curl	-X	POST	-H	'Content-Type:	application/json'	

'http://localhost:8983/solr/musicCatalogue-solrcloud/update'	--data-

binary	'

	[

			{

					"id":	"3",

					"title":	"I	should	go	in	Shard	1"

			},

			{

					"id":	"4",

					"title":	"I	should	also	go	in	Shard	1"

			}

]'

After	running	this	query,	we’ll	get	the	following	response	if	everything	goes
successfully:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	0

		}

}

Now	let’s	run	a	query	against	Shard	1	to	check	whether	the	documents	that	we’ve	indexed
go	to	Shard	1	or	not:

wget	http://localhost:8983/solr/musicCatalogue-solrcloud/select?

q=*%3A*&wt=json&indent=true&distrib=false

After	running	this	query,	we	can	see	the	following	output:

{

		"responseHeader":	{

				"status":	0,

				"QTime":	0,

				"params":	{

						"q":	"*:*",

						"distrib":	"false",

						"indent":	"true",

						"wt":	"json"

				}

		},

		"response":	{

				"numFound":	3,

				"start":	0,

				"docs":	[

						{

								"id":	"2",

								"title":	[

										"Apache	Solr	Cookbook"

],

								"_version_":	1516224138192093184

						},

						{

								"id":	"3",

								"title":	[

										"I	should	go	in	Shard	1"

]

						},

						{

								"id":	"4",

								"title":	[

										"I	should	also	go	in	Shard	1"

]

						}

]

		}

}

We’ve	seen	from	the	preceding	example	how	we	can	easily	stop	the	automatic	distribution
of	indexed	documents	to	other	shards	in	the	cluster.

Previously,	we	saw	how	we	can	use	the	distrib	flag	in	Solr	to	query	individual	shards.
Solr	also	provides	us	with	a	shards	flag,	which	we	can	use	to	query	an	individual	shard	or
a	group	of	shards	for	documents.	Let’s	see	how	we	can	use	this	flag	in	Solr:

Single	shard:

curl	"http://localhost:8983/solr/musicCatalogue-solrcloud/select?

q=*:*&shards=localhost:8987/solr"

Group	of	shards:

curl	"http://localhost:8983/solr/musicCatalogue/select?

q=*:*&shards=localhost:8987/solr,localhost:8983/solr"

Summary
In	this	chapter,	we	saw	how	we	can	use	SolrCloud	to	easily	create	a	cluster	of	Solr	servers,
which	can	be	used	to	scale	our	Solr	instances.	We	also	saw	how	we	can	easily	use	the
Collections	API	provided	by	Solr	to	manage	shards	or	replicas.

In	the	next	chapter,	we’ll	cover	a	case	study	of	how	Solr	is	used	in	e-commerce	websites
to	enhance	the	user	experience	while	searching	for	products	or	a	catalogue.

Chapter	11.	Case	Study	of	Using	Solr	in	E-
Commerce
In	the	previous	chapter,	we	saw	how	we	can	use	SolrCloud	to	set	up	a	cluster	of	Solr
servers,	which	can	be	used	to	provide	a	fault-tolerant	and	high	availability	environment.
Now	let’s	see	how	we	can	use	Solr	in	e-commerce	websites	to	improve	user	experience
while	searching	for	a	relevant	product.	Providing	the	best	user	experience	is	the	main
concern	for	e-commerce	websites	these	day,	and	we	can	use	Solr’s	inbuilt	features	to
provide	a	much	better	search	experience	for	the	user.

In	this	chapter,	we’ll	cover	the	following	topics:

Creating	an	AutoSuggest	feature
Result	grouping	and	facet	search
Search	filtering	and	sorting
Relevancy	boosting

Creating	an	AutoSuggest	feature
One	of	the	most	common	features	that	we	can	see	in	today’s	e-commerce	websites	is	an
AutoSuggest	feature,	which	provides	users	with	a	list	of	available	content.	Let’s	see	how
we	can	create	this	feature	using	Solr.Todo	this,	we’ll	use	the	following	steps.

Let’s	create	a	new	core	in	Solr	and	call	it	musicStore.	After	we	have	created	the	core,
we’ll	create	a	new	schema.xml.	It	will	contain	the	following	fields:

<!--	Unique	Id	-->

<field	name="id"	type="string"	indexed="true"	stored="true"	required="true"	

multiValued="false"/>

<!--	Song	name	-->

<field	name="songName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

<!--	Artist	name	-->

<field	name="artistName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

<!--	Album	Artist	-->

<field	name="albumArtist"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Album	name	-->

<field	name="albumName"	type="string"	indexed="true"	stored="true"	

required="true"	multiValued="false"/>

<!--	Duration	of	the	Song	-->

<field	name="songDuration"	type="double"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Duration	of	the	Song	-->

<field	name="composer"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Song	rating	-->

<field	name="rating"	type="float"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Year	which	the	song	has	been	published	-->

<field	name="year"	type="int"	indexed="true"	stored="true"	required="false"	

multiValued="false"/>

<!--	Genre	of	the	song	(e.g.	rock,	pop,	indie,	etc)-->

<field	name="genre"	type="string"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Price	-->

<field	name="price"	type="float"	indexed="true"	stored="true"	

required="false"	multiValued="false"/>

<!--	Sale	-->

<field	name="sale"	type="boolean"	indexed="true"	stored="true"	

required="false"	default="false"	multiValued="false"/>

<!--Suggestions	field	-->

<field	name="txtSuggestions"	type="suggestType"	indexed="true"	

stored="true"	multiValued="true"/>

We’ll	also	create	a	new	fieldType	in	schema.xml;	it	will	hold	the	tokenized	values	of
songName.	This	will	use	WhitespaceTokenizerFactory	to	create	tokens	of	the	indexed
value:

<!--Suggestion	FieldType	-->

		<fieldType	name="suggestType"	class="solr.TextField"	

positionIncrementGap="100">

				<analyzer>

						<charFilter	class="solr.PatternReplaceCharFilterFactory"	pattern="

[^a-zA-Z0-9]"	replacement="	"/>

						<tokenizer	class="solr.WhitespaceTokenizerFactory"/>

						<filter	class="solr.StandardFilterFactory"/>

						<filter	class="solr.LowerCaseFilterFactory"/>

						<filter	class="solr.RemoveDuplicatesTokenFilterFactory"/>

				</analyzer>

		</fieldType>

In	the	suggestType	field	type,	we’ve	used	filters	to	tokenize	the	words	that	are	getting
indexed	into	Solr	and	make	sure	that	we’re	not	indexing	any	duplicate	data	in	them.	More
information	about	the	filters	used	can	be	found	on	the	Solr	Wiki	at
https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters.

After	making	the	changes	in	schema.xml,	we’ll	add	a	searchComponent	of	the
solr.SuggestComponent	type	in	solrconfig.xml.	The	searchComponent	will	provide	us
with	suggestions	depending	on	the	field	that	we	specify.	In	this	case,	we’re	using	the
txtSuggestions	field,	which	will	contain	the	song	name	that	has	been	tokenized	during
indexing:

<!--SearchComponent	-->

		<searchComponent	name="suggestComponent"	class="solr.SuggestComponent">

				<lst	name="suggester">

						<str	name="name">customSuggester</str>

						<str	name="lookupImpl">BlendedInfixLookupFactory</str>

						<str	name="suggestAnalyzerFieldType">suggestType</str>

						<str	name="blenderType">linear</str>

						<str	name="minPrefixChars">1</str>

						<str	name="doHighlight">false</str>

						<str	name="weightField">score</str>

						<str	name="dictionaryImpl">DocumentDictionaryFactory</str>

						<str	name="field">txtSuggestions</str>

						<str	name="buildOnStartup">true</str>

						<str	name="buildOnCommit">true</str>

				</lst>

		</searchComponent>

Once	we	have	added	the	searchComponent,	we’ll	add	a	search	handler	with	the	path	as
/suggest,	which	we	can	use	to	suggest	the	song	name:

		<!--Suggest	Request	Handler	-->

		<requestHandler	class="solr.SearchHandler"	name="/suggest"	startup="lazy"	

>

https://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

				<lst	name="defaults">

						<str	name="suggest">true</str>

						<str	name="suggest.count">10</str>

						<str	name="suggest.dictionary">customSuggester</str>

				</lst>

				<arr	name="components">

						<str>suggestComponent</str>

				</arr>

		</requestHandler>

In	this	searchHandler,	we’re	referencing	the	suggestComponent	that	we	added	in	the
previous	step.	The	following	attributes	are	set	in	the	custom	search	handler:

suggest:	If	this	is	set	to	true,	it	will	use	suggestComponent.
suggest.count:	This	is	the	maximum	number	of	suggestions	that	the	handler	should
return.
suggest.dictionary:	This	is	the	name	of	the	dictionary	to	use.	In	our	case,	it’s
customSuggester,	which	we’ve	specified	in	searchComponent.

Note
More	information	about	the	attributes	can	be	found	at
https://cwiki.apache.org/confluence/display/solr/Suggester.

After	setting	up	schema.xml	and	solrconfig.xml,	we	can	index	some	data	into	the	core.
We	can	use	the	sampleMusicStoreData.csv	included	in	the	Chapter	11	code	ZIP	file	by
executing	the	following	command:

curl	'http://localhost:8983/solr/musicStore/update?commit=true'	--data-

binary	@sampleMusicStoreData.csv	-H	'Content-type:application/csv'

After	indexing	the	documents,	we	can	navigate	to	the	following	URL,	which	will	suggest
song	names	that	start	with	"A":
http://localhost:8983/solr/musicStore/suggest?q=A&wt=json

We’ll	get	this	response	from	the	Solr	server:

{

	"responseHeader":{

						"status":?0,

						"QTime":?0

			},

			"suggest":{

						"analyzing":{

									"A":{

												"numFound":?2,

												"suggestions":[

															{

																		"term":"All	I	Want	For	Christmas	Is	You",

																		"weight":?0,

																		"payload":""

															},

															{

																		"term":"A	Thousand	Years",

																		"weight":?0,

https://cwiki.apache.org/confluence/display/solr/Suggester

																		"payload":""

															}

]

									}

						}

			}

}

We	can	see	from	the	response	that	the	component	has	returned	two	suggestions	that	start
with	"A".

Facet	navigation
We’ve	seen	previously	how	Solr	provides	a	facet,	by	using	which	we	can	put	indexed	data
into	groups	depending	on	the	fields.	Let’s	see	how	we	can	improve	user	experience	while
selecting	the	type	of	music	by	grouping	music	into	genres.

We	can	use	facet=true	to	enable	faceting	of	fields,	and	then	use	facet.field=genre	to
return	the	number	of	songs	that	are	in	each	category.	The	search	query	will	return	only	the
facet	data	and	will	look	like	this:
http://localhost:8983/solr/musicStore/select?

q=*%3A*&start=0&rows=0&wt=json&indent=true&facet=true&facet.field=genre

As	we’re	interested	in	the	facet	data	only,	we’ve	specified	rows=0.	This	URL	will	return	us
the	following	data:

{

			"responseHeader":{			},

			"response":{			},

			"facet_counts":{

						"facet_queries":{	},

						"facet_fields":{

									"genre":[

												"Pop",	3,

												"Dance/Electronic",	2

]

						},

						"facet_dates":{},

						"facet_ranges":{},

						"facet_intervals":{}

			}

}

As	the	user	can	be	presented	with	the	number	of	songs	available	under	each	genre,	he/she
can	then	click	on	the	genre	to	further	his/her	search	for	the	song	that	he/she	is	looking	for.
In	the	next	section,	we’ll	see	how	we	can	use	the	filters	available	in	the	search	handler	to
further	refine	search	results.

Another	way	in	which	we	can	group	data	is	by	using	the	group	parameter.	Grouping
provides	us	with	a	way	to	return	the	top	N	documents	(the	default	value	is	1)	by	field.
Let’s	see	how	we	can	use	this	feature:
http://localhost:8983/solr/musicStore/select?

q=*%3A*&wt=json&indent=true&fl=id,songName,genre&group=true&group.field=genre&group.limit=10

The	URL	will	return	the	following	response;	we	have	currently	used	the	fl	parameter,
which	tells	Solr	to	return	a	set	of	fields	from	the	index:

{

			"responseHeader":{

						"status":0,

						"QTime":1

			},

			"grouped":{

						"genre":{

									"matches":5,

									"groups":[

												{

															"groupValue":"Pop",

															"doclist":{

																		"numFound":3,

																		"start":0,

																		"docs":[

																					{

																								"id":"1001",

																								"songName":"Don't	Stop	the	Party",

																								"genre":"Pop"

																					},

																					{

																								"id":"1002",

																								"songName":"All	I	Want	For	Christmas	Is	You",

																								"genre":"Pop"

																					},

																					{

																								"id":"1003",

																								"songName":"A	Thousand	Years",

																								"genre":"Pop"

																					}

]

															}

												},

												{

															"groupValue":"Dance/Electronic",

															"doclist":{

																		"numFound":2,

																		"start":0,

																		"docs":[

																					{

																								"id":"1004",

																								"songName":"Killing	the	Light",

																								"genre":"Dance/Electronic"

																					},

																					{

																								"id":"1005",

																								"songName":"Not	Giving	In	(Radio	Edit)",

																								"genre":"Dance/Electronic"

																					}

]

															}

												}

]

						}

			}

}

From	the	result,	we	can	see	that	the	group.field	parameter	has	grouped	the	genre	into
two	categories:Pop	and	Dance/Electronic.	Also,	group.limit=10	tells	the	search
handler	to	return	the	top	10	results	for	each	category.

Search	filtering	and	sorting
In	the	previous	section,	we	saw	how	we	can	use	the	facet	feature	to	group	data	together
and	seethe	number	of	results	in	each	genre.	We	can	use	the	fq	parameter	to	further	limit
the	search.	Let’s	now	see	how	we	can	use	the	fq	parameter	to	return	only	those	songs
whose	genre	is	Pop:
http://localhost:8983/solr/musicStore/select?

q=*%3A*&wt=json&indent=true&fq=genre:Pop&fl=id,songName,genre

This	URL	will	result	in	the	following	output:

{

			"responseHeader":{

						"status":0,

						"QTime":2

			},

			"response":{

						"numFound":3,

						"start":0,

						"docs":[

									{

												"id":"1001",

												"songName":"Don't	Stop	the	Party",

												"genre":"Pop"

									},

									{

												"id":"1002",

												"songName":"All	I	Want	For	Christmas	Is	You",

												"genre":"Pop"

									},

									{

												"id":"1003",

												"songName":"A	Thousand	Years",

												"genre":"Pop"

									}

]

			}

}

As	we	can	see	from	the	preceding	output,	the	results	are	limited	to	those	songs	whose
genre	is	Pop.	This	example	shows	us	how	we	can	apply	filters	to	results.

We	can	also	sort	the	data	using	the	sort	parameter,	which	we	can	specify.	Let’s	see	how
we	can	sort	the	songName	in	ascending	order:
http://localhost:8983/solr/musicStore/select?

q=*%3A*&wt=json&indent=true&fq=genre:Pop&fl=id,songName,genre&sort=songName%20asc

The	preceding	URL	gives	the	following	result:

{

			"responseHeader":{

						"status":0,

						"QTime":0

			},

			"response":{

						"numFound":3,

						"start":0,

						"docs":[

									{

												"id":"1003",

												"songName":"A	Thousand	Years",

												"genre":"Pop"

									},

									{

												"id":"1002",

												"songName":"All	I	Want	For	Christmas	Is	You",

												"genre":"Pop"

									},

									{

												"id":"1001",

												"songName":"Don't	Stop	the	Party",

												"genre":"Pop"

									}

]

			}

}

Relevancy	boosting
Let’s	see	how	we	can	boost	some	documents	in	Solr.	Relevancy	boosting	can	be	very
helpful	in	e-commerce	websites	to	promote	some	products.	In	our	musicStore	core,	we’ve
specified	a	Boolean	field	called	sale,	which	will	tell	whether	the	song	is	available	for	sale
or	not.	While	showing	the	results	to	the	user,	we	can	boost	the	documents	that	have
sale=true	in	them.

We’ll	need	to	index	the	sampleMusicStoreData2.csvfile	to	Solr,	as	it	contains	more	data
about	songs,	which	is	needed	for	this	example.	We	can	use	the	following	command	to
index	the	file:

curl	'http://localhost:8983/solr/musicStore/update?commit=true'	--data-

binary	@sampleMusicStoreData2.csv	-H	'Content-type:application/csv'

We	can	now	use	the	following	URL	to	see	the	indexed	documents	that	are	available	for
sale	and	whose	artistName	matches	Rihanna:
http://localhost:8983/solr/musicStore/select?q=

{!boost%20b=sale}artistName:Rihanna&wt=json&indent=true&fl=id,songName,sale&rows=100

From	the	preceding	output,	we	can	see	that	it	returns	those	documents	whose	sale	field	is
set	to	true	first,	and	then	it	returns	those	documents	whose	sale	field	is	set	to	false.

Note
More	information	about	boosting	of	documents	can	be	found	at
https://wiki.apache.org/solr/SolrRelevancyFAQ.

https://wiki.apache.org/solr/SolrRelevancyFAQ

Summary
In	this	chapter,	we	covered	the	various	features	of	Solr	that	can	be	used	in	an	e-commerce
website	to	provide	a	better	user	experience	while	searching	results.	Solr	being	open	source
provides	an	easy	way	to	plug	new	features	into	it.

This	chapter	covered	mostly	the	common	features	that	are	used	in	e-commerce	and	how	to
recreate	those	features	in	Solr.

This	is	the	last	chapter	of	the	book,	and	we’ve	now	covered	the	various	ways	in	which	we
can	index	data	in	Solr.	This	should	give	us	enough	skills	to	use	this	indexing	feature	of
Solr	in	some	real-life	projects	(for	example,	web	crawlers,	e-commerce	websites,
extracting	data	from	word	documents,	and	so	on).	Also,	there	are	lots	of	books	and	online
resources	that	will	be	useful	for	you	all	to	get	a	deeper	understanding	of	the	features	that
have	been	discussed	in	this	book.

Index
A

analyzers
about	/	Introducing	analyzers
phases	/	Analysis	phases
running	/	Running	your	analyzer

Apache	Nutch
about	/	Introducing	Apache	Nutch
installing	/	Installing	Apache	Nutch
URL	/	Installing	Apache	Nutch
used,	for	Solr	configuration	/	Configuring	Solr	with	Nutch

Apache	Tika
about	/	Introducing	Apache	Tika
configuring,	in	Solr	/	Configuring	Apache	Tika	in	Solr

architecture,	Solr	/	The	Solr	architecture	and	directory	structure,	Solr	directory
structure
atomic	updates

using,	in	Solr	/	Using	atomic	updates	in	Solr
attributes,	custom	search	handler

suggest	/	Creating	an	AutoSuggest	feature
suggest.count	/	Creating	an	AutoSuggest	feature
suggest.dictionary	/	Creating	an	AutoSuggest	feature
URL	/	Creating	an	AutoSuggest	feature

attributes,	fieldType	element
name	/	Introducing	field	types
class	/	Introducing	field	types

autoCommit
reference	link	/	Understanding	soft	commit,	optimize,	and	hard	commit

autoSoftCommit
config	elements	/	Understanding	soft	commit,	optimize,	and	hard	commit

AutoSuggest	feature
creating	/	Creating	an	AutoSuggest	feature

C
collections	API,	SolrCloud

supported	operations	/	The	collections	API
about	/	The	collections	API
URL	/	The	collections	API

configuration	files,	SolrCloud
updating	/	Updating	configuration	files

content	streaming	/	Content	streaming
copy	fields	/	Copy	fields	and	dynamic	fields
cores,	Solr

managing	/	Cores	in	Solr	(Multicore	Solr)
URL	/	Cores	in	Solr	(Multicore	Solr)

CSV
used,	for	indexing	updates	/	Indexing	updates	using	CSV
URL	/	Indexing	updates	using	CSV

CSV	file
URL	/	Building	our	musicCatalogue	example

cURL
URL	/	Deleting	a	document

Cygwin
URL	/	Installing	Apache	Nutch

D
data

inserting,	into	Solr	/	Inserting	data	into	Solr
indexing,	with	XPath	/	Indexing	data	using	XPath

data,	indexing	from	MySQL
about	/	Indexing	data	from	MySQL
datasource,	configuring	/	Configuring	datasource
DIH	commands,	running	/	DIH	commands

data,	indexing	in	Solr
about	/	Indexing	data	in	Solr
field	types	/	Introducing	field	types
fields,	defining	/	Defining	fields
unique	key,	defining	/	Defining	an	unique	key
dynamic	fields	/	Copy	fields	and	dynamic	fields
copy	field	/	Copy	fields	and	dynamic	fields

datasource
configuring	/	Configuring	datasource

DIH	commands
about	/	DIH	commands
delta	import	/	DIH	commands
URL	/	DIH	commands
full	import	/	DIH	commands
for	reloading	configuration	/	DIH	commands
for	checking	status	/	DIH	commands
for	aborting	current	import	/	DIH	commands

directory	structure,	Solr
about	/	Solr	directory	structure

distributed	indexing	/	Distributed	indexing	and	searching
document	/	Solr	directory	structure
documents

indexing,	with	XML	/	Indexing	documents	using	XML
adding	/	Adding	and	updating	documents
updating	/	Adding	and	updating	documents
deleting	/	Deleting	a	document
deleting,	by	ID	/	Deleting	a	document
deleting,	by	query	/	Deleting	a	document
indexing,	with	JSON	/	Indexing	documents	using	JSON
single	JSON	document,	adding	/	Adding	a	single	document
multiple	JSON	documents,	adding	/	Adding	multiple	JSON	documents
sequential	JSON	update	commands,	sending	/	Sequential	JSON	update
commands

duplicate	documents	(deduplication)
removing	/	Removing	duplicate	documents	(deduplication)

F
facet

searching	/	Facet	searching
navigation	/	Facet	navigation
navigation,	URLs	/	Facet	navigation

fields
defining	/	Defining	fields

fields,	attributes
name	/	Defining	fields
required	/	Defining	fields
multivalued	/	Defining	fields
default	/	Defining	fields
stored	/	Defining	fields

fieldType	property	/	Indexing	data	in	Solr
field	types

about	/	Introducing	field	types
URL	/	Introducing	field	types

filters
about	/	Introducing	analyzers,	Filters,	Porter	stem	filter
configuring	/	Filters
lowercase	filter	/	Lowercase	filter
synonym	filter	/	Synonym	filter
porter	stem	filter	/	Porter	stem	filter
URL	/	Creating	an	AutoSuggest	feature

floating-point	numbers
URL	/	Indexing	data	in	Solr

H
hard	commit	/	Understanding	soft	commit,	optimize,	and	hard	commit
Homebrew

URL	/	Installing	Solr	in	OS	X	(Mac)

I
installation

Solr	/	Overview	and	installation	of	Solr
Apache	Nutch	/	Installing	Apache	Nutch

J
Java	JDK

installing,	URL	/	Installing	Solr	in	Windows
Java	Runtime	Environment	(JRE)	/	Installing	Solr	on	Linux
Jetty

URL	/	Installing	Solr	in	Windows
JSON

used,	for	indexing	documents	/	Indexing	documents	using	JSON
JSON	response

URL	/	Configuring	Solr	with	Nutch

K
keyword	tokenizer

URL	/	Keyword	tokenizer
about	/	Keyword	tokenizer

L
LangDetect

URL	/	Multilanguage	indexing
language	detection	feature

URL	/	Multilanguage	indexing
Linux

Solr,	installing	/	Installing	Solr	on	Linux
lowercase	filter	/	Lowercase	filter
lowercase	tokenizer

about	/	Lowercase	tokenizer
example	/	Lowercase	tokenizer

M
multilanguage	indexing

about	/	Multilanguage	indexing
multiple	JSON	documents

adding	/	Adding	multiple	JSON	documents
musicCatalogue-DIH	core

URL	/	Configuring	datasource
musicCatalogue	example

building	/	Building	our	musicCatalogue	example
Solr	Admin	UI,	using	/	Using	the	Solr	Admin	UI

MySQL
data,	indexing	/	Indexing	data	from	MySQL

N
n-gram	tokenizer

about	/	N-gram	tokenizer
example	/	N-gram	tokenizer

Near-Real-Time	(NRT)	/	Understanding	soft	commit,	optimize,	and	hard	commit
NSSM

URL	/	Installing	Solr	in	Windows

O
onlineArticles	/	The	collections	API
optimize	/	Understanding	soft	commit,	optimize,	and	hard	commit
OS	X	(Mac)

Solr,	installing	/	Installing	Solr	in	OS	X	(Mac)

P
parser	interface	/	Introducing	Apache	Tika
PDF

indexing	/	Indexing	PDF	and	Word	documents
porter	stem	filter	/	Porter	stem	filter
processor	factory

URL	/	Multilanguage	indexing
products

searching	/	Distributed	indexing	and	searching

Q
Query

URL	/	Using	the	Solr	Admin	UI

R
RealTime	get

using	/	Using	RealTime	Get
reference	link	/	Using	RealTime	Get

relevancy	boosting	/	Relevancy	boosting
URL	/	Relevancy	boosting

replication,	SolrCloud	/	Updating	configuration	files
request	handlers

about	/	Inserting	data	into	Solr
mapping,	ways	/	Inserting	data	into	Solr

S
search	filtering	/	Search	filtering	and	sorting
sharding,	SolrCloud	/	Updating	configuration	files
SignatureUpdateProcessorFactor

signatureClass	/	Removing	duplicate	documents	(deduplication)
fields	/	Removing	duplicate	documents	(deduplication)
signatureField	/	Removing	duplicate	documents	(deduplication)
enabled	/	Removing	duplicate	documents	(deduplication)
overwriteDupes	/	Removing	duplicate	documents	(deduplication)

single	JSON	document
adding	/	Adding	a	single	document

soft	commit	/	Understanding	soft	commit,	optimize,	and	hard	commit
Solr

overview	/	Overview	and	installation	of	Solr
installation	/	Overview	and	installation	of	Solr
URL	/	Overview	and	installation	of	Solr,	Running	Solr,	Installing	Solr	on	Linux
about	/	Overview	and	installation	of	Solr
installing,	in	OS	X	(Mac)	/	Installing	Solr	in	OS	X	(Mac)
running	/	Running	Solr
installing,	in	Windows	/	Installing	Solr	in	Windows
dashboard,	URL	/	Installing	Solr	in	Windows
installing,	in	Linux	/	Installing	Solr	on	Linux
installation,	URL	/	Installing	Solr	on	Linux
architecture	/	The	Solr	architecture	and	directory	structure
directory	structure	/	The	Solr	architecture	and	directory	structure
cores	/	Cores	in	Solr	(Multicore	Solr)
text	fields,	analyzing	/	Introducing	analyzers
data,	indexing	/	Indexing	data	in	Solr
Admin	UI,	URL	/	Building	our	musicCatalogue	example,	Indexing	data	using
XPath
data,	inserting	/	Inserting	data	into	Solr
UpdateRequestHandler,	configuring	/	Configuring	UpdateRequestHandler
Apache	Tika,	configuring	/	Configuring	Apache	Tika	in	Solr,	Indexing	PDF	and
Word	documents
configuring,	with	Apache	Nutch	/	Configuring	Solr	with	Nutch
atomic	updates,	using	in	/	Using	atomic	updates	in	Solr
UIMA,	integrating	with	/	UIMA	integration	with	Solr
single	shard	/	Distributed	indexing	and	searching
group	of	shards	/	Distributed	indexing	and	searching

Solr	Admin	UI
using	/	Using	the	Solr	Admin	UI

SolrCloud
setting	up	/	Setting	up	SolrCloud

collections	API	/	The	collections	API
configuration	files,	updating	/	Updating	configuration	files

Solr	query	browser
reference	link	/	Understanding	soft	commit,	optimize,	and	hard	commit

Solr	release
installing,	URL	/	Installing	Solr	in	Windows

Solr	Wiki
URL	/	Inserting	data	into	Solr

songName
sorting,	URL	/	Search	filtering	and	sorting

sorting	/	Search	filtering	and	sorting
standard	tokenizer

about	/	Standard	tokenizer
example	/	Standard	tokenizer

supported	operations,	collections	API
CREATE	/	The	collections	API
RELOAD	/	The	collections	API
SPLITSHARD	/	The	collections	API
CREATESHARD	/	The	collections	API
DELETESHARD	/	The	collections	API

synonym	filter	/	Synonym	filter

T
tika-example	/	Configuring	Apache	Tika	in	Solr
tokenizers

about	/	Introducing	analyzers,	Tokenizers,	N-gram	tokenizer
standard	tokenizer	/	Standard	tokenizer
keyword	tokenizer	/	Keyword	tokenizer
lowercase	tokenizer	/	Lowercase	tokenizer
N-gram	tokenizer	/	N-gram	tokenizer

U
UIMA

about	/	UIMA	integration	with	Solr
integrating,	with	Solr	/	UIMA	integration	with	Solr
URL	/	UIMA	integration	with	Solr

unique	key
defining	/	Defining	an	unique	key

UpdateRequestHandler
configuring	/	Configuring	UpdateRequestHandler

updates
indexing,	with	CSV	/	Indexing	updates	using	CSV

W
Windows

Solr,	installing	/	Installing	Solr	in	Windows
Word	documents

indexing	/	Indexing	PDF	and	Word	documents

X
XML

used,	for	indexing	documents	/	Indexing	documents	using	XML
<add>	element	/	Adding	and	updating	documents
<doc>	element	/	Adding	and	updating	documents
<field>	element	/	Adding	and	updating	documents

XPath
used,	for	indexing	data	/	Indexing	data	using	XPath

	Apache Solr for Indexing Data
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started
	Overview and installation of Solr
	Installing Solr in OS X (Mac)
	Running Solr
	Installing Solr in Windows
	Installing Solr on Linux
	The Solr architecture and directory structure
	Solr directory structure
	Cores in Solr (Multicore Solr)
	Summary
	2. Understanding Analyzers, Tokenizers, and Filters
	Introducing analyzers
	Analysis phases
	Tokenizers
	Standard tokenizer
	Keyword tokenizer
	Lowercase tokenizer
	N-gram tokenizer
	Filters
	Lowercase filter
	Synonym filter
	Porter stem filter
	Running your analyzer
	Summary
	3. Indexing Data
	Indexing data in Solr
	Introducing field types
	Defining fields
	Defining an unique key
	Copy fields and dynamic fields
	Building our musicCatalogue example
	Using the Solr Admin UI
	Facet searching
	Summary
	4. Indexing Data – The Basic Technique and Using Index Handlers
	Inserting data into Solr
	Configuring UpdateRequestHandler
	Indexing documents using XML
	Adding and updating documents
	Deleting a document
	Indexing documents using JSON
	Adding a single document
	Adding multiple JSON documents
	Sequential JSON update commands
	Indexing updates using CSV
	Summary
	5. Indexing Data with the Help of Structured Datasources – Using DIH
	Indexing data from MySQL
	Configuring datasource
	DIH commands
	Indexing data using XPath
	Summary
	6. Indexing Data Using Apache Tika
	Introducing Apache Tika
	Configuring Apache Tika in Solr
	Indexing PDF and Word documents
	Summary
	7. Apache Nutch
	Introducing Apache Nutch
	Installing Apache Nutch
	Configuring Solr with Nutch
	Summary
	8. Commits, Real-Time Index Optimizations, and Atomic Updates
	Understanding soft commit, optimize, and hard commit
	Using atomic updates in Solr
	Using RealTime Get
	Summary
	9. Advanced Topics – Multilanguage, Deduplication, and Others
	Multilanguage indexing
	Removing duplicate documents (deduplication)
	Content streaming
	UIMA integration with Solr
	Summary
	10. Distributed Indexing
	Setting up SolrCloud
	The collections API
	Updating configuration files
	Distributed indexing and searching
	Summary
	11. Case Study of Using Solr in E-Commerce
	Creating an AutoSuggest feature
	Facet navigation
	Search filtering and sorting
	Relevancy boosting
	Summary
	Index

