

Machine Learning in Java

Design, build, and deploy your own machine learning
applications by leveraging key Java machine learning
libraries

Boštjan Kaluža

BIRMINGHAM - MUMBAI

Machine Learning in Java

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1260416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-658-9

www.packtpub.com

www.packtpub.com

Credits

Author
Boštjan Kaluža

Reviewers
Abhik Banerjee

Wei Di

Manjunath Narayana

Ravi Sharma

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Aaron Lazar

Content Development Editor
Rohit Singh

Technical Editor
Suwarna Patil

Copy Editor
Vibha Shukla

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Boštjan Kaluža, PhD, is a researcher in artificial intelligence and machine learning.
Boštjan is the chief data scientist at Evolven, a leading IT operations analytics
company, focusing on configuration and change management. He works with
machine learning, predictive analytics, pattern mining, and anomaly detection to
turn data into understandable relevant information and actionable insight.

Prior to Evolven, Boštjan served as a senior researcher in the department of intelligent
systems at the Jozef Stefan Institute, a leading Slovenian scientific research institution,
and led research projects involving pattern and anomaly detection, ubiquitous
computing, and multi-agent systems. Boštjan was also a visiting researcher at the
University of Southern California, where he studied suspicious and anomalous agent
behavior in the context of security applications. Boštjan has extensive experience in
Java and Python, and he also lectures on Weka in the classroom.

Focusing on machine learning and data science, Boštjan has published numerous
articles in professional journals, delivered conference papers, and authored or
contributed to a number of patents. In 2013, Boštjan published his first book on data
science, Instant Weka How-to, Packt Publishing, exploring how to leverage machine
learning using Weka. Learn more about him at http://bostjankaluza.net.

http://bostjankaluza.net

About the Reviewers

Abhik Banerjee has been a great data science leader, leading teams comprising
of data scientists and engineers. He completed his masters from the University of
Cincinnati, where his research focused on various data mining techniques related
to itemset mining and biclustering techniques applied to biomedical informatics
datasets. He has been working in the areas of machine learning and data mining in the
industry for the past 7-8 years, solving various problems related to supervised learning
(classification and regression techniques, such as SVM, Bayes net, GBM, GLM, neural
networks, deep nets, and so on), unsupervised learning (clustering, blustering, LDA,
and so on), and various NLP techniques. He had been working on how these various
techniques can be applied to e-mail, biomedical informatics, and retail domains in
order to understand the customer better and improve their experience.

Abhik has a strong acumen of problem solving skills, spanning various technological
solutions and architectures, such as Hadoop, MapReduce, Spark, Java, Python,
machine learning, data mining, NLP, and so on.

Wei Di is a data scientist. She is passionate about creating smart and scalable
analytics and data mining solutions that can impact millions of individuals and
empower successful business.

Her interests cover wide areas, including artificial intelligence, machine learning,
and computer vision. She was previously associated with eBay Human Language
Technology team and eBay Research Labs, with a focus on image understanding for
large-scale applications and joint learning from both visual and text information.
Prior to this, she was with Ancestry.com, working on large-scale data mining
and machine learning models in the areas of record linkage, search relevance, and
ranking. She received her PhD from Purdue University in 2011, focusing on data
mining and image classification.

Ancestry.com

Manjunath Narayana received his PhD in computer science from the University
of Massachusetts, Amherst, in 2014. He obtained his MS degree in computer
engineering from the University of Kansas in 2007 and his BE degree in electronics
and communications engineering from B. M. S. College of Engineering, Bangalore,
India, in 2004. He is currently a robotics scientist at iRobot Corporation, USA,
developing algorithms for consumer robots. Prior to iRobot, he was a research
engineer at metaio, Inc., working on computer vision research for augmented reality
applications and 3D reconstruction. He has worked in the Computer Vision Systems
Toolbox group in The MathWorks, Inc., developing object detection algorithms.
His research interests include machine learning, robotics, computer vision, deep
learning, and augmented reality. His research has been published at top conferences
such as CVPR, ICCV, and BMVC.

Ravi Sharma is a lead data scientist and has expertise in both artificial intelligence
and natural language processing. He is currently leading the data science research
team at Msg.ai Inc., his commercial applications of data science include developing
artificial chat bots for CPG brands, health care industry and entertainment industry.
He has designed data collection systems and other strategies that optimize statistical
efficiency and data quality. He has implemented a corporate big data-based
data warehouse systems and distributed algorithms for high traffic. His areas of
interest comprises the big data management platform, feature engineering, model
building and tuning, exploratory data analysis, pattern analysis, outlier detection,
collaborative filtering algorithms to provide recommendations and text analysis
using NLP.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface ix
Chapter 1: Applied Machine Learning Quick Start 1

Machine learning and data science 1
What kind of problems can machine learning solve? 2
Applied machine learning workflow 3

Data and problem definition 4
Measurement scales 5

Data collection 6
Find or observe data 7
Generate data 8
Sampling traps 9

Data pre-processing 9
Data cleaning 9
Fill missing values 10
Remove outliers 11
Data transformation 11
Data reduction 12

Unsupervised learning 13
Find similar items 13

Euclidean distances 13
Non-Euclidean distances 14
The curse of dimensionality 15

Clustering 16
Supervised learning 17

Classification 17
Decision tree learning 18
Probabilistic classifiers 18
Kernel methods 18
Artificial neural networks 18
Ensemble learning 19

Table of Contents

[ii]

Evaluating classification 19
Regression 21

Linear regression 22
Evaluating regression 22

Generalization and evaluation 24
Underfitting and overfitting 24

Train and test sets 26
Cross-validation 26
Leave-one-out validation 26
Stratification 27

Summary 27
Chapter 2: Java Libraries and Platforms for Machine Learning 29

The need for Java 30
Machine learning libraries 30

Weka 30
Java machine learning 34
Apache Mahout 35
Apache Spark 36
Deeplearning4j 38
MALLET 39
Comparing libraries 41

Building a machine learning application 42
Traditional machine learning architecture 42
Dealing with big data 43

Big data application architecture 43
Summary 44

Chapter 3: Basic Algorithms – Classification, Regression,
and Clustering 45

Before you start 46
Classification 46

Data 47
Loading data 48
Feature selection 49
Learning algorithms 50
Classify new data 53
Evaluation and prediction error metrics 54
Confusion matrix 54
Choosing a classification algorithm 55

Regression 56
Loading the data 56
Analyzing attributes 58

Table of Contents

[iii]

Building and evaluating regression model 59
Linear regression 59
Regression trees 60

Tips to avoid common regression problems 63
Clustering 63

Clustering algorithms 64
Evaluation 66

Summary 66
Chapter 4: Customer Relationship Prediction with Ensembles 67

Customer relationship database 68
Challenge 68
Dataset 69
Evaluation 71

Basic naive Bayes classifier baseline 71
Getting the data 72
Loading the data 73

Basic modeling 75
Evaluating models 75
Implementing naive Bayes baseline 76

Advanced modeling with ensembles 77
Before we start 78
Data pre-processing 79
Attribute selection 80
Model selection 81
Performance evaluation 85

Summary 86
Chapter 5: Affinity Analysis 87

Market basket analysis 87
Affinity analysis 89

Association rule learning 90
Basic concepts 90

Database of transactions 90
Itemset and rule 91
Support 92
Confidence 92

Apriori algorithm 92
FP-growth algorithm 93

The supermarket dataset 94
Discover patterns 94

Apriori 94
FP-growth 96

Table of Contents

[iv]

Other applications in various areas 97
Medical diagnosis 97
Protein sequences 97
Census data 98
Customer relationship management 98
IT Operations Analytics 99

Summary 99
Chapter 6: Recommendation Engine with Apache Mahout 101

Basic concepts 101
Key concepts 102
User-based and item-based analysis 103
Approaches to calculate similarity 103

Collaborative filtering 103
Content-based filtering 104
Hybrid approach 104

Exploitation versus exploration 105
Getting Apache Mahout 105

Configuring Mahout in Eclipse with the Maven plugin 106
Building a recommendation engine 108

Book ratings dataset 108
Loading the data 109

Loading data from file 109
Loading data from database 112
In-memory database 113

Collaborative filtering 114
User-based filtering 115
Item-based filtering 118
Adding custom rules to recommendations 119
Evaluation 120
Online learning engine 121

Content-based filtering 123
Summary 124

Chapter 7: Fraud and Anomaly Detection 125
Suspicious and anomalous behavior detection 126

Unknown-unknowns 126
Suspicious pattern detection 127
Anomalous pattern detection 128

Analysis types 128
Pattern analysis 128

Transaction analysis 129
Plan recognition 129

Table of Contents

[v]

Fraud detection of insurance claims 129
Dataset 130
Modeling suspicious patterns 132

Vanilla approach 133
Dataset rebalancing 134

Anomaly detection in website traffic 137
Dataset 137
Anomaly detection in time series data 138

Histogram-based anomaly detection 138
Loading the data 140
Creating histograms 141
Density based k-nearest neighbors 142

Summary 144
Chapter 8: Image Recognition with Deeplearning4j 145

Introducing image recognition 145
Neural networks 147

Perceptron 147
Feedforward neural networks 148
Autoencoder 149
Restricted Boltzmann machine 150
Deep convolutional networks 151

Image classification 153
Deeplearning4j 153

Getting DL4J 153
MNIST dataset 154
Loading the data 154
Building models 155

Building a single-layer regression model 156
Building a deep belief network 158
Build a Multilayer Convolutional Network 160

Summary 163
Chapter 9: Activity Recognition with Mobile Phone Sensors 165

Introducing activity recognition 166
Mobile phone sensors 166
Activity recognition pipeline 168
The plan 169

Collecting data from a mobile phone 170
Installing Android Studio 170
Loading the data collector 172

Feature extraction 174
Collecting training data 175

Table of Contents

[vi]

Building a classifier 178
Reducing spurious transitions 180
Plugging the classifier into a mobile app 182

Summary 184
Chapter 10: Text Mining with Mallet – Topic Modeling and
Spam Detection 185

Introducing text mining 185
Topic modeling 186
Text classification 187

Installing Mallet 188
Working with text data 190

Importing data 192
Importing from directory 192
Importing from file 193

Pre-processing text data 194
Topic modeling for BBC news 196

BBC dataset 196
Modeling 197
Evaluating a model 200
Reusing a model 202

Saving a model 202
Restoring a model 203

E-mail spam detection 203
E-mail spam dataset 204
Feature generation 205
Training and testing 206

Model performance 207
Summary 208

Chapter 11: What is Next? 209
Machine learning in real life 209

Noisy data 210
Class unbalance 210
Feature selection is hard 210
Model chaining 211
Importance of evaluation 211
Getting models into production 212
Model maintenance 212

Standards and markup languages 213
CRISP-DM 213
SEMMA methodology 214
Predictive Model Markup Language 215

Table of Contents

[vii]

Machine learning in the cloud 215
Machine learning as a service 216

Web resources and competitions 217
Datasets 217
Online courses 218
Competitions 219
Websites and blogs 219
Venues and conferences 220

Summary 220
Appendix: References 221
Index 225

[ix]

Preface
Machine learning is a subfield of artificial intelligence. It helps computers to learn
and act like human beings with the help of algorithms and data. With a given
set of data, an ML algorithm learns different properties of the data and infers the
properties of the data that it may encounter in future.

This book will teach the readers how to create and implement machine learning
algorithms in Java by providing fundamental concepts as well as practical examples.
In this process, it will also talk about some machine learning libraries that are
frequently used, such as Weka, Apache Mahout, Mallet, and so on. This book
will help the user to select appropriate approaches for particular problems and
compare and evaluate the results of different techniques. This book will also cover
performance improvement techniques, including input preprocessing and combining
output from different methods.

Without shying away from the technical details, you will explore machine learning
with Java libraries using clear and practical examples. You will also explore how
to prepare data for analysis, choose a machine learning method, and measure the
success of the process.

What this book covers
Chapter 1, Applied Machine Learning Quick Start, introduces the basics of machine
learning, laying down the common concepts, machine learning principles, and
applied machine learning workflow.

Chapter 2, Java Libraries and Platforms for Machine Learning, reviews the various Java
libraries and platforms dedicated to machine learning, what each library brings to
the table, and what kind of problems it is able to solve. The review includes Weka,
Java-ML, Apache Mahout, Apache Spark, deeplearning4j, and Mallet.

Preface

[x]

Chapter 3, Basic Algorithms – Classification, Regression, and Clustering, starts with basic
machine learning tasks, introducing the key algorithms for classification, regression,
and clustering, using small, easy-to-understand datasets.

Chapter 4, Customer Relationship Prediction with Ensembles, dives into a real-world
marketing database, where the task is to predict the customer that will churn, upsell,
and cross-sell. The problem is attacked with ensemble methods, following the steps
of KDD Cup-winning solution.

Chapter 5, Affinity Analysis, discusses how to analyze co-occurrence relationships
using association rule mining. We will look into market basket analysis to
understand the purchasing behavior of customers and discuss applications of the
approach to other domains.

Chapter 6, Recommendation Engine with Apache Mahout, explains the basic concepts
required to understand recommendation engine principles, followed by two
applications leveraging Apache Mahout to build content-based filtering and
collaborative recommender.

Chapter 7, Fraud and Anomaly Detection, introduces the background to anomalous and
suspicious pattern detection, followed by two practical applications on detecting
frauds in insurance claims and detecting anomalies in website traffic.

Chapter 8, Image Recognition with Deeplearning4j, introduces image recognition and
reviews fundamental neural network architectures. We will then discuss how
to implement various deep learning architectures with deeplearning4j library to
recognize handwritten digits.

Chapter 9, Activity Recognition with Mobile Phone Sensors, tackles the problem
of recognizing patterns from sensor data. This chapter introduces the activity
recognition process, explains how to collect data with an Android device, and
presents a classification model to recognize activities of daily living.

Chapter 10, Text Mining with Mallet – Topic Modeling and Spam Detection, explains the
basics of text mining, introduces the text processing pipeline, and shows how to
apply this to two real-world problems: topic modeling and document classification.

Chapter 11, What is Next?, concludes the book with practical advice about how
to deploy models and gives you further pointers about where to find additional
resources, materials, venues, and technologies to dive deeper into machine learning.

Preface

[xi]

What you need for this book
To follow the examples throughout the book, you'll need a personal computer
with the JDK installed. All the examples and source code that you can download
assume Eclipse IDE with support for Maven, a dependency management and build
automation tool; and Git, a version control system. Examples in the chapters rely
on various libraries, including Weka, deeplearning4j, Mallet, and Apache Mahout.
Instructions on how to get and install the libraries are provided in the chapter where
the library will be first used.

Who this book is for
The book is intended for those who want to learn how to use Java's machine
learning libraries to gain insights from your data. Perhaps you already know a bit
about machine learning, but have never used Java; or perhaps you know a little
Java, but are new to machine learning. In either case, this book will get you up and
running quickly, providing you with the skills that you need to successfully create,
customize, and deploy machine learning applications in real life. It would be helpful
to be a little familiar with basic programming and data mining concepts, but no prior
experience with data mining packages is necessary.

Supporting materials
The book has a dedicated web site, http://machine-learning-in-java.com,
where you can find all the example code, errata, and additional materials that will
help you to get started.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For example, Bob has attributes named height, eye color, and hobbies with
values 185cm, blue, climbing, and sky diving, respectively."

http://machine-learning-in-java.com

Preface

[xii]

A block of code is set as follows:

Bob = {
height: 185cm,
eye color: blue,
hobbies: climbing, sky diving
}

Any command-line input or output is written as follows:

12,3,7,2,0,1,8,9,13,4,11,5,15,10,6,14,16

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Right-click
on the project properties, select Java Build Path, click on the Libraries tab, and select
Add External JARs."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xiii]

Downloading the example code
You can download the example code files from the supplementary web page
http://machine-learning-in-java.com. Navigate to the Downloads section and
follow the link to a Git repository.

Optionally, you can also download the example code from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Applied Machine Learning
Quick Start

This chapter introduces the basics of machine learning, laying down the common
themes and concepts and making it easy to follow the logic and familiarize yourself
with the topic. The goal is to quickly learn the step-by-step process of applied
machine learning and grasp the main machine learning principles. In this chapter,
we will cover the following topics:

• Introducing machine learning and its relation to data science
• Discussing the basic steps in applied machine learning
• Discussing the kind of data we are dealing with and its importance
• Discussing approaches of collecting and preprocessing the data
• Making sense of data using machine learning
• Using machine learning to extract insights from data and build predictors

If you are already familiar with machine learning and are eager to start coding,
then quickly jump to the following chapters. However, if you need to refresh your
memory or clarify some concepts, then it is strongly recommend to revisit the topics
presented in this chapter.

Machine learning and data science
Nowadays, everyone talks about machine learning and data science. So, what
exactly is machine learning anyway? How does it relate to data science? These two
terms are commonly confused, as they often employ the same methods and overlap
significantly. Therefore, let's first clarify what they are.

Applied Machine Learning Quick Start

[2]

Josh Wills tweeted:

"Data scientist is a person who is better at statistics than any software engineer
and better at software engineering than any statistician".

 – (Josh Wills)

More specifically, data science encompasses the entire process of obtaining knowledge
from data by integrating methods from statistics, computer science, and other fields
to gain insight from data. In practice, data science encompasses an iterative process of
data harvesting, cleaning, analysis and visualization, and deployment.

Machine learning, on the other hand, is mainly concerned with fairly generic
algorithms and techniques that are used in analysis and modeling phases of data
science process. Arthur Samuel proposed the following definition back in 1995:

"Machine Learning relates with the study, design and development of the algorithms
that give computers the capability to learn without being explicitly programmed."

 – Arthur Samuel

What kind of problems can machine
learning solve?
Among the different machine learning approaches, there are three main ways of
learning, as shown in the following list:

• Supervised learning
• Unsupervised learning
• Reinforcement learning

Given a set of example inputs, X, and their outcomes, Y, supervised learning aims to
learn a general mapping function, f, that transforms inputs to outputs, as f: X Y

An example of supervised learning is credit card fraud detection, where the learning
algorithm is presented with credit card transactions (matrix X) marked as normal or
suspicious. (vector Y). The learning algorithm produces a decision model that marks
unseen transactions as normal or suspicious (that is the f function).

Chapter 1

[3]

In contrast, unsupervised learning algorithms do not assume given outcome labels,
Y as they focus on learning the structure of the data, such as grouping similar inputs
into clusters. Unsupervised learning can, hence, discover hidden patterns in the data.
An example of unsupervised learning is an item-based recommendation system,
where the learning algorithm discovers similar items bought together, for example,
people who bought book A also bought book B.

Reinforcement learning addresses the learning process from a completely different
angle. It assumes that an agent, which can be a robot, bot, or computer program,
interacts with a dynamic environment to achieve a specific goal. The environment is
described with a set of states and the agent can take different actions to move from
one state to another. Some states are marked as goal states and if the agent achieves
this state, it receives a large reward. In other states, the reward is smaller, non-
existing, or even negative. The goal of reinforcement learning is to find an optimal
policy, that is, a mapping function that specifies the action to take in each of the states
without a teacher explicitly telling whether this leads to the goal state or not. An
example of reinforcement learning is a program for driving a vehicle, where the states
correspond to the driving conditions—for example, current speed, road segment
information, surrounding traffic, speed limits, and obstacles on the road—and the
actions can be driving maneuvers such as turn left or right, stop, accelerate, and
continue. The learning algorithm produces a policy that specifies the action that is to
be taken in specific configuration of driving conditions.

In this book, we will focus on supervised and unsupervised learning only, as they share
many concepts. If reinforcement learning sparked your interest, a good book to start
with is Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew Barto.

Applied machine learning workflow
This book's emphasis is on applied machine learning. We want to provide you with the
practical skills needed to get learning algorithms to work in different settings. Instead of
math and theory of machine learning, we will spend more time on the practical, hands-
on skills (and dirty tricks) to get this stuff to work well on an application. We will focus
on supervised and unsupervised machine learning and cover the essential steps from
data science to build the applied machine learning workflow.

A typical workflow in applied machine learning applications consists of answering a
series of questions that can be summarized in the following five steps:

1. Data and problem definition: The first step is to ask interesting questions.
What is the problem you are trying solve? Why is it important? Which format
of result answers your question? Is this a simple yes/no answer? Do you
need to pick one of the available questions?

Applied Machine Learning Quick Start

[4]

2. Data collection: Once you have a problem to tackle, you will need the data.
Ask yourself what kind of data will help you answer the question. Can you
get the data from the available sources? Will you have to combine multiple
sources? Do you have to generate the data? Are there any sampling biases?
How much data will be required?

3. Data preprocessing: The first data preprocessing task is data cleaning. For
example, filling missing values, smoothing noisy data, removing outliers, and
resolving consistencies. This is usually followed by integration of multiple
data sources and data transformation to a specific range (normalization), to
value bins (discretized intervals), and to reduce the number of dimensions.

4. Data analysis and modeling with unsupervised and supervised learning:
Data analysis and modeling includes unsupervised and supervised machine
learning, statistical inference, and prediction. A wide variety of machine
learning algorithms are available, including k-nearest neighbors, naïve Bayes,
decision trees, support vector machines, logistic regression, k-means, and so
on. The choice of method to be deployed depends on the problem definition
discussed in the first step and the type of collected data. The final product of
this step is a model inferred from the data.

5. Evaluation: The last step is devoted to model assessment. The main issue
models built with machine learning face is how well they model the
underlying data—if a model is too specific, that is, it overfits to the data used
for training, it is quite possible that it will not perform well on a new data.
The model can be too generic, meaning that it underfits the training data. For
example, when asked how the weather is in California, it always answers
sunny, which is indeed correct most of the time. However, such a model
is not really useful for making valid predictions. The goal of this step is to
correctly evaluate the model and make sure it will work on new data as well.
Evaluation methods include separate test and train set, cross-validation, and
leave-one-out validation.

In the following sections, we will take a closer look at each of the steps. We will try
to understand the type of questions we must answer during the applied machine
learning workflow and also look at the accompanying concepts of data analysis
and evaluation.

Data and problem definition
Data is simply a collection of measurements in the form of numbers, words,
measurements, observations, descriptions of things, images, and so on.

Chapter 1

[5]

Measurement scales
The most common way to represent the data is using a set of attribute-value pairs.
Consider the following example:

Bob = {
height: 185cm,
eye color: blue,
hobbies: climbing, sky diving
}

For example, Bob has attributes named height, eye color, and hobbies with values
185cm, blue, climbing, sky diving, respectively.

A set of data can be simply presented as a table, where columns correspond to
attributes or features and rows correspond to particular data examples or instances.
In supervised machine learning, the attribute whose value we want to predict the
outcome, Y, from the values of the other attributes, X, is denoted as class or the target
variable, as follows:

Name Height [cm] Eye color Hobbies
Bob 185.0 Blue Climbing, sky diving
Anna 163.0 Brown Reading
… … … …

The first thing we notice is how varying the attribute values are. For instance, height
is a number, eye color is text, and hobbies are a list. To gain a better understanding of
the value types, let's take a closer look at the different types of data or measurement
scales. Stevens (1946) defined the following four scales with increasingly more
expressive properties:

• Nominal data are mutually exclusive, but not ordered. Their examples
include eye color, martial status, type of car owned, and so on.

• Ordinal data correspond to categories where order matters, but not the
difference between the values, such as pain level, student letter grade, service
quality rating, IMDB movie rating, and so on.

• Interval data where the difference between two values is meaningful,
but there is no concept of zero. For instance, standardized exam score,
temperature in Fahrenheit, and so on.

Applied Machine Learning Quick Start

[6]

• Ratio data has all the properties of an interval variable and also a clear
definition of zero; when the variable equals to zero, there is none of this
variable. Variables such as height, age, stock price, and weekly food
spending are ratio variables.

Why should we care about measurement scales? Well, machine learning heavily
depends on the statistical properties of the data; hence, we should be aware of the
limitations each data type possesses. Some machine learning algorithms can only be
applied to a subset of measurement scales.

The following table summarizes the main operations and statistics properties for
each of the measurement types:

Property Nominal Ordinal Interval Ratio
Frequency of distribution

Mode and median

Order of values is known

Can quantify difference between each value

Can add or subtract values

Can multiply and divide values

Has true zero

Furthermore, nominal and ordinal data correspond to discrete values, while interval
and ratio data can correspond to continuous values as well. In supervised learning,
the measurement scale of the attribute values that we want to predict dictates the
kind of machine algorithm that can be used. For instance, predicting discrete values
from a limited list is called classification and can be achieved using decision trees;
while predicting continuous values is called regression, which can be achieved using
model trees.

Data collection
So, where does the data come from? We have two choices: observe the data from
existing sources or generate the data via surveys, simulations, and experiments.
Let's take a closer look at both the approaches.

Chapter 1

[7]

Find or observe data
Data can be found or observed at many places. An obvious data source is the
Internet. Intel (2013) presented the following iconographic, showing the massive
amount of data collected by different Internet services. In 2013, digital devices
created four zettabytes (1021 = billion terabytes) of data. In 2017, it is expected that the
number of connected devices will reach three times the number of people on earth;
hence, the amount of data generated and collected will increase even further:

Applied Machine Learning Quick Start

[8]

To get the data from the Internet, there are multiple options, as shown in the
following:

• Bulk downloads from websites such as Wikipedia, IMDb, and Million
Song database.

• Accessing the data through API (NY Times, Twitter, Facebook, Foursquare).
• Web scraping—It is OK to scrape public, non-sensitive, and anonymized

data. Be sure to check terms of conditions and to fully reference information.

The main drawbacks of found data are that it takes time and space to accumulate
the data; they cover only what happened, for instance, intentions, motivations, or
internal motivations are not collected. Finally, such data might be noisy, incomplete,
inconsistent, and may even change over time.

Another option is to collect measurements from sensors such as inertial and location
sensors in mobile devices, environmental sensors, and software agents monitoring
key performance indicators.

Generate data
An alternative approach is to generate the data by yourself, for example, with a
survey. In survey design, we have to pay attention to data sampling, that is, who are
the respondents answering the survey. We only get data from the respondents who
are accessible and willing to respond. Also, respondents can provide answers that
are in line with their self-image and researcher's expectations.

Next, the data can be collected with simulations, where a domain expert specifies
behavior model of users at a micro level. For instance, crowd simulation requires
specifying how different types of users will behave in crowd, for example, following
the crowd, looking for an escape, and so on. The simulation can be then run
under different conditions to see what happens (Tsai et al. 2011). Simulations are
appropriate for studying macro phenomena and emergent behavior; however, they
are typically hard to validate empirically.

Furthermore, you can design experiments to thoroughly cover all the possible
outcomes, where you keep all the variables constant and only manipulate one
variable at a time. This is the most costly approach, but usually provides the best
quality of data.

Chapter 1

[9]

Sampling traps
Data collection may involve many traps. To demonstrate one, let me share a story.
There is supposed to be a global, unwritten rule for sending regular mail between
students for free. If you write student to student to the place where the stamp should
be, the mail is delivered to the recipient for free. Now, suppose Jacob sends a set of
postcards to Emma, and given that Emma indeed receives some of the postcards, she
concludes that all the postcards are delivered and that the rule indeed holds true.
Emma reasons that as she received the postcards, all the postcards are delivered.
However, she does not possess the information about the postcards that were sent by
Jacob, but were undelivered; hence, she is unable to account this into her inference.
What Emma experienced is survivorship bias, that is, she drew the conclusion based
on the survived data only. For your information, the postcards that are being sent with
student to student stamp get a circled black letter T stamp on them, which means postage
is due and that receiver should pay it, including a small fine. However, mail services
often have higher costs on applying such fee and hence do not do it (Magalhães, 2010).

Another example is a study, which found that the profession with the lowest average
age of death was student. Being a student does not cause you to die at an early age,
being a student means you are young. This is what makes the average of those that
die so low (Gelman and Nolan, 2002).

Furthermore, a study that found that only 1.5% of drivers in accidents reported
they were using a cell phone, whereas 10.9% reported another occupant in the car
distracted them. Can we conclude that using a cell phone is safer than speaking
with another occupant (Uts, 2003)? To answer this question, we need to know the
prevalence of the cell phone use. It is likely that a higher number of people talked to
another occupant in the car while driving than talking on the cell during the period
when the data was collected.

Data pre-processing
The goal of data pre-processing tasks is to prepare the data for a machine learning
algorithm in the best possible way as not all algorithms are capable of addressing
issues with missing data, extra attributes, or denormalized values.

Data cleaning
Data cleaning, also known as data cleansing or data scrubbing, is the process of the
following:

• Identifying inaccurate, incomplete, irrelevant, or corrupted data to remove it
from further processing

Applied Machine Learning Quick Start

[10]

• Parsing data, extracting information of interest, or validating whether a
string of data is in an acceptable format

• Transforming data into a common encoding format, for example, utf-8 or
int32, time scale, or normalized range

• Transforming data into a common data schema, for instance, if we collect
temperature measurements from different types of sensors, we might want
them to have the same structure

Now, let's look at some more concrete pre-processing steps.

Fill missing values
Machine learning algorithms generally do not work well with missing values.
Rare exceptions include decision trees, naïve Bayes classifier, and some rule-based
learners. It is very important to understand why a value is missing. It can be missing
due to many reasons such as random error, systematic error, and sensor noise. Once
we identified the reason, there are multiple ways to deal with the missing values, as
shown in the following list:

• Remove the instance: If there is enough data, and only a couple of
non-relevant instances have some missing values, then it is safe to remove
these instances.

• Remove the attribute: Removing an attribute makes sense when most of the
values are missing, values are constant, or attribute is strongly correlated
with another attribute.

• Assign a special value N/A: Sometimes a value is missing due to valid
reasons such as the value is out of scope discrete attribute value is not
defined, or it is not possible to obtain or measure the value, which can be an
indicator as well. For example, a person never rates a movie, so his rating on
this movie is nonexistent.

• Take the average attribute value: In case we have a limited number of
instances, we might not be able to afford removing instances or attributes. In
that case, we can estimate the missing values, for example, by assigning the
average attribute value or the average value over similar instances.

• Predict the value from other attributes: Predict the value from the previous
entries if the attribute possesses time dependencies.

As we have seen, the value can be missing for many reasons, and hence, it is
important to understand why the value is missing, absent, or corrupted.

Chapter 1

[11]

Remove outliers
Outliers in data are values that are unlike any other values in the series and affect all
learning methods to various degrees. These can be extreme values, which could be
detected with confidence intervals and removed by threshold. The best approach is to
visualize the data and inspect the visualization to detect irregularities. An example is
shown in the following diagram. Visualization applies to low-dimensional data only:

Data transformation
Data transformation techniques tame the dataset to a format that a machine learning
algorithm expects as an input, and may even help the algorithm to learn faster and
achieve better performance. Standardization, for instance, assumes that data follows
Gaussian distribution and transforms the values in such a way that the mean value is
zero and the deviation is 1, as follows:

()
.

X mean X
X

st dev
−

=

Normalization, on the other hand, scales the values of attributes to a small, specified
range, usually between 0 and 1:

X minX
max min

−
=

−

Many machine learning toolboxes automatically normalize and standardize the data
for you.

Applied Machine Learning Quick Start

[12]

The last transformation technique is discretization, which divides the range of a
continuous attribute into intervals. Why should we care? Some algorithms, such as
decision trees and naïve Bayes prefer discrete attributes. The most common ways to
select the intervals are shown in the following:

• Equal width: The interval of continuous variable is divided into k equal-
width intervals

• Equal frequency: Suppose there are N instances, each of the k intervals
contains approximately N/k instances

• Min entropy: The approach recursively splits the intervals until the entropy,
which measures disorder, decreases more than the entropy increase,
introduced by the interval split (Fayyad and Irani, 1993)

The first two methods require us to specify the number of intervals, while the last
method sets the number of intervals automatically; however, it requires the class
variable, which means, it won't work for unsupervised machine learning tasks.

Data reduction
Data reduction deals with abundant attributes and instances. The number of
attributes corresponds to the number of dimensions in our dataset. Dimensions with
low prediction power do not only contribute very little to the overall model, but
also cause a lot of harm. For instance, an attribute with random values can introduce
some random patterns that will be picked up by a machine learning algorithm.

To deal with this problem, the first set of techniques removes such attributes, or
in other words, selects the most promising ones. This process is knows as feature
selection or attribute selection and includes methods such as ReliefF, information
gain, and Gini index. These methods are mainly focused on discrete attributes.

Another set of tools, focused on continuous attributes, transforms the dataset from the
original dimensions into a lower-dimensional space. For example, if we have a set of
points in three-dimensional space, we can make a projection into a two-dimensional
space. Some information is lost, but in case the third dimension is irrelevant, we don't
lose much as the data structure and relationships are almost perfectly preserved. This
can be performed by the following methods:

• Singular value decomposition (SVD)
• Principal Component Analysis (PCA)
• Neural nets auto encoders

Chapter 1

[13]

The second problem in data reduction is related to too many instances; for example,
they can be duplicates or coming from a very frequent data stream. The main idea is
to select a subset of instances in such a way that distribution of the selected data still
resembles the original data distribution, and more importantly, the observed process.
Techniques to reduce the number of instances involve random data sampling,
stratification, and others. Once the data is prepared, we can start with the data
analysis and modeling.

Unsupervised learning
Unsupervised learning is about analyzing the data and discovering hidden
structures in unlabeled data. As no notion of the right labels is given, there is also
no error measure to evaluate a learned model; however, unsupervised learning is an
extremely powerful tool. Have you ever wondered how Amazon can predict what
books you'll like? How Netflix knows what you want to watch before you do? The
answer can be found in unsupervised learning. The following is one such example.

Find similar items
Many problems can be formulated as finding similar sets of elements, for example,
customers who purchased similar products, web pages with similar content, images
with similar objects, users who visited similar websites, and so on.

Two items are considered similar if they are a small distance apart. The main
questions are how each item is represented and how is the distance between the
items defined. There are two main classes of distance measures: Euclidean distances
and non-Euclidean distances.

Euclidean distances
In the Euclidean space, with the n dimension, the distance between two elements is
based on the locations of the elements in such a space, which is expressed as p-norm
distance. Two commonly used distance measures are L2 and L1 norm distances.

L2 norm, also known as Euclidean distance, is the most frequently applied distance
measure that measures how far apart two items in a two-dimensional space are. It
is calculated as a square root of the sum of the squares of the differences between
elements a and b in each dimension, as follows:

() ()22 1
, n

i ii
L norm d a b a b

=
= −∑

Applied Machine Learning Quick Start

[14]

L1 norm, also known as Manhattan distance, city block distance, and taxicab norm,
simply sums the absolute differences in each dimension, as follows:

()1 1
, n

i ii
L norm d a b a b

=
= −∑

Non-Euclidean distances
A non-Euclidean distance is based on the properties of the elements, but not on their
location in space. Some well-known distances are Jaccard distance, cosine distance,
edit distance, and Hamming distance.

Jaccard distance is used to compute the distance between two sets. First, we compute
the Jaccard similarity of two sets as the size of their intersection divided by the size
of their union, as follows:

(), A Bsim A B
A B
∩

=
∪

The Jaccard distance is then defined as 1 minus Jaccard similarity, as shown in
the following:

() (), 1 , 1 A Bd A B sim A B
A B
∩

= − = −
∪

Cosine distance between two vectors focuses on the orientation and not magnitude,
therefore, two vectors with the same orientation have cosine similarity 1, while
two perpendicular vectors have cosine similarity 0. Suppose we have two
multidimensional points, think of a point as a vector from origin (0,0, …, 0) to
its location. Two vectors make an angle, whose cosine distance is a normalized
dot-product of the vectors, as follows:

(), Ax Bd A B arcos
A B

=

Cosine distance is commonly used in a high-dimensional feature space; for
instance, in text mining, where a text document represents an instance, features that
correspond to different words, and their values corresponds to the number of times
the word appears in the document. By computing cosine similarity, we can measure
how likely two documents match in describing similar content.

Chapter 1

[15]

Edit distance makes sense when we compare two strings. The distance between
the a=a1a2a3…an and b=b1b2b3…bn strings is the smallest number of the insert/delete
operation of single characters required to convert the string from a to b. For example,
a = abcd and b = abbd. To convert a to b, we have to delete the second b and insert c in
its place. No smallest number of operations would convert a to b, thus the distance
is d(a, b)=2.

Hamming distance compares two vectors of the same size and counts the number
of dimensions in which they differ. In other words, it measures the number of
substitutions required to convert one vector into another.

There are many distance measures focusing on various properties, for instance,
correlation measures the linear relationship between two elements: Mahalanobis
distance that measures the distance between a point and distribution of other points
and SimRank, which is based on graph theory, measures similarity of the structure
in which elements occur, and so on. As you can already imagine selecting and
designing the right similarity measure for your problem is more than half of the
battle. An impressive overview and evaluation of similarity measures is collected
in Chapter 2, Similarity and Dissimilarity Measures in the book Image Registration:
Principles, Tools and Methods by A. A. Goshtasby (2012).

The curse of dimensionality
The curse of dimensionality refers to a situation where we have a large number
of features, often hundreds or thousands, which lead to an extremely large space
with sparse data and, consequently, to distance anomalies. For instance, in high
dimensions, almost all pairs of points are equally distant from each other; in
fact, almost all the pairs have distance close to the average distance. Another
manifestation of the curse is that any two vectors are almost orthogonal, which
means all the angles are close to 90 degrees. This practically makes any distance
measure useless.

A cure for the curse of dimensionality might be found in one of the data reduction
techniques, where we want to reduce the number of features; for instance, we can
run a feature selection algorithm such as ReliefF or feature extraction/reduction
algorithm such as PCA.

Applied Machine Learning Quick Start

[16]

Clustering
Clustering is a technique for grouping similar instances into clusters according to
some distance measure. The main idea is to put instances that are similar (that is,
close to each other) into the same cluster, while keeping the dissimilar points (that
is, the ones further apart from each other) in different clusters. An example of how
clusters might look is shown in the following diagram:

The clustering algorithms follow two fundamentally different approaches. The first
is a hierarchical or agglomerative approach that first considers each point as its
own cluster, and then iteratively merges the most similar clusters together. It stops
when further merging reaches a predefined number of clusters or if the clusters to be
merged are spread over a large region.

The other approach is based on point assignment. First, initial cluster centers
(that is, centroids) are estimated—for instance, randomly—and then, each point is
assigned to the closest cluster, until all the points are assigned. The most well-known
algorithm in this group is k-means clustering.

Chapter 1

[17]

The k-means clustering picks initial cluster centers either as points that are as far as
possible from one another or (hierarchically) clusters a sample of data and picks a
point that is the closest to the center of each of the k clusters.

Supervised learning
Supervised learning is the key concept behind amazing things such as voice
recognition, e-mail spam filtering, face recognition in photos, and detecting credit
card frauds. More formally, given a set D of learning examples described with
features, X, the goal of supervised learning is to find a function that predicts a target
variable, Y. The function f that describes the relation between features X and class Y
is called a model:

()f X Y→

The general structure of supervised learning algorithms is defined by the following
decisions (Hand et al., 2001):

1. Define the task.
2. Decide on the machine learning algorithm, which introduces specific

inductive bias, that is, apriori assumptions that it makes regarding the target
concept.

3. Decide on the score or cost function, for instance, information gain, root
mean square error, and so on.

4. Decide on the optimization/search method to optimize the score function.
5. Find a function that describes the relation between X and Y.

Many decisions are already made for us by the type of the task and dataset that we
have. In the following sections, we will take a closer look at the classification and
regression methods and the corresponding score functions.

Classification
Classification can be applied when we deal with a discrete class, and the goal is
to predict one of the mutually-exclusive values in the target variable. An example
would be credit scoring, where the final prediction is whether the person is credit
liable or not. The most popular algorithms include decision tree, naïve Bayes
classifier, support vector machines, neural networks, and ensemble methods.

Applied Machine Learning Quick Start

[18]

Decision tree learning
Decision tree learning builds a classification tree, where each node corresponds
to one of the attributes, edges correspond to a possible value (or intervals) of the
attribute from which the node originates, and each leaf corresponds to a class label.
A decision tree can be used to visually and explicitly represent the prediction model,
which makes it a very transparent (white box) classifier. Notable algorithms are
ID3 and C4.5, although many alternative implementations and improvements (for
example, J48 in Weka) exist.

Probabilistic classifiers
Given a set of attribute values, a probabilistic classifier is able to predict a distribution
over a set of classes, rather than an exact class. This can be used as a degree of
certainty, that is, how sure the classifier is in its prediction. The most basic classifier is
naïve Bayes, which happens to be the optimal classifier if, and only if, the attributes are
conditionally independent. Unfortunately, this is extremely rare in practice.

There is really an enormous subfield denoted as probabilistic graphical models,
comprising of hundreds of algorithms; for example, Bayesian network, dynamic
Bayesian networks, hidden Markov models, and conditional random fields that
can handle not only specific relationships between attributes, but also temporal
dependencies. Karkera (2014) wrote an excellent introductory book on this topic,
Building Probabilistic Graphical Models with Python, while Koller and Friedman (2009)
published a comprehensive theory bible, Probabilistic Graphical Models.

Kernel methods
Any linear model can be turned into a non-linear model by applying the kernel trick
to the model—replacing its features (predictors) by a kernel function. In other words,
the kernel implicitly transforms our dataset into higher dimensions. The kernel trick
leverages the fact that it is often easier to separate the instances in more dimensions.
Algorithms capable of operating with kernels include the kernel perceptron, Support
Vector Machines (SVM), Gaussian processes, PCA, canonical correlation analysis,
ridge regression, spectral clustering, linear adaptive filters, and many others.

Artificial neural networks
Artificial neural networks are inspired by the structure of biological neural networks
and are capable of machine learning, as well as pattern recognition. They are
commonly used for both regression and classification problems, comprising a wide
variety of algorithms and variations for all manner of problem types. Some popular
classification methods are perceptron, restricted Boltzmann machine (RBM), and
deep belief networks.

Chapter 1

[19]

Ensemble learning
Ensemble methods compose of a set of diverse weaker models to obtain better
predictive performance. The individual models are trained separately and their
predictions are then combined in some way to make the overall prediction.
Ensembles, hence, contain multiple ways of modeling the data, which hopefully
leads to better results. This is a very powerful class of techniques, and as such, it is
very popular; for instance, boosting, bagging, AdaBoost, and Random Forest. The
main differences among them are the type of weak learners that are to be combined
and the ways in which to combine them.

Evaluating classification
Is our classifier doing well? Is this better than the other one? In classification, we
count how many times we classify something right and wrong. Suppose there
are two possible classification labels—yes and no—then there are four possible
outcomes, as shown in the next figure:

• True positive—hit: This indicates a yes instance correctly predicted as yes
• True negative—correct rejection: This indicates a no instance correctly

predicted as no
• False positive—false alarm: This indicates a no instance predicted as yes
• False negative—miss: This indicates a yes instance predicted as no

Predicted as positive?

Yes No

Re
al

ly

po
si

tiv
e?

Yes
TP—true positive FN—false negative

No
FP—false positive TN—true negative

The basic two performance measures of a classifier are classification error and
accuracy, as shown in the following image:

errors FP FNClassification error
totals FP FN TP FN

+
= =

+ + +

1 correct TP TNClassification accuracy error
totals FP FN TP FN

+
= − = =

+ + +

Applied Machine Learning Quick Start

[20]

The main problem with these two measures is that they cannot handle unbalanced
classes. Classifying whether a credit card transaction is an abuse or not is an example
of a problem with unbalanced classes, there are 99.99% normal transactions and just
a tiny percentage of abuses. Classifier that says that every transaction is a normal
one is 99.99% accurate, but we are mainly interested in those few classifications that
occur very rarely.

Precision and recall
The solution is to use measures that don't involve TN (correct rejections). Two such
measures are as follows:

• Precision: This is the proportion of positive examples correctly predicted as
positive (TP) out of all examples predicted as positive (TP + FP):

TPPrecision
TP FP

=
+

• Recall: This is the proportion of positives examples correctly predicted as
positive (TP) out of all positive examples (TP + FN):

TPRecall
TP FN

=
+

It is common to combine the two and report the F-measure, which considers both
precision and recall to calculate the score as a weighted average, where the score
reaches its best value at 1 and worst at 0, as follows:

2 Precision RecallF measure
Precision Recall
∗ ∗

− =
+

Roc curves
Most classification algorithms return a classification confidence denoted as f(X),
which is, in turn, used to calculate the prediction. Following the credit card abuse
example, a rule might look similar to the following:

() (),
,

abuse if f X threshold
F X

not abuse else
 >

=

Chapter 1

[21]

The threshold determines the error rate and the true positive rate. The outcomes
for all the possible threshold values can be plotted as a Receiver Operating
Characteristics (ROC) as shown in the following diagram:

A random predictor is plotted with a red dashed line and a perfect predictor is
plotted with a green dashed line. To compare whether the A classifier is better than
C, we compare the area under the curve.

Most of the toolboxes provide all of the previous measures out-of-the-box.

Regression
Regression deals with continuous target variable, unlike classification, which
works with a discrete target variable. For example, in order to forecast the outside
temperature of the following few days, we will use regression; while classification
will be used to predict whether it will rain or not. Generally speaking, regression is a
process that estimates the relationship among features, that is, how varying a feature
changes the target variable.

Applied Machine Learning Quick Start

[22]

Linear regression
The most basic regression model assumes linear dependency between features and
target variable. The model is often fitted using least squares approach, that is, the
best model minimizes the squares of the errors. In many cases, linear regression is
not able to model complex relations, for example, the next figure shows four different
sets of points having the same linear regression line: the upper-left model captures
the general trend and can be considered as a proper model, the bottom-left model
fits points much better, except an outlier—this should be carefully checked—and the
upper and lower-right side linear models completely miss the underlying structure of
the data and cannot be considered as proper models.

Evaluating regression
In regression, we predict numbers Y from inputs X and the predictions are usually
wrong and not exact. The main question that we ask is by how much? In other
words, we want to measure the distance between the predicted and true values.

Chapter 1

[23]

Mean squared error
Mean squared error is an average of the squared difference between the predicted
and true values, as follows:

() ()()2
1

1,
n

i i
i

MSE X Y f X Y
n =

= −∑

The measure is very sensitive to the outliers, for example, 99 exact predictions and
one predicton off by 10 is scored the same as all predictions wrong by 1. Moreover, the
measure is sensitive to the mean. Therefore, relative squared error, which compares
the MSE of our predictor to the MSE of the mean predictor (which always predicts
the mean value) is often used instead.

Mean absolute error
Mean absolute error is an average of the absolute difference between the predicted
and the true values, as follows:

() ()
1

1,
n

i i
i

MAS X Y f X Y
n =

= −∑

The MAS is less sensitive to the outliers, but it is also sensitive to the mean and scale.

Correlation coefficient
Correlation coefficient compares the average of prediction relative to the mean
multiplied by training values relative to the mean. If the number is negative, it
means weak correlation, positive number means strong correlation, and zero
means no correlation. The correlation between true values X and predictions Y is
defined as follows:

()()
() ()

1
2 2

1 1

n
i ii

XY n n
i ii i

X X Y Y
CC

X X Y Y
=

= =

− −
=

− −

∑
∑ ∑

The CC measure is completely insensitive to the mean and scale, and less sensitive to
the outliers. It is able to capture the relative ordering, which makes it useful to rank
the tasks such as document relevance and gene expression.

Applied Machine Learning Quick Start

[24]

Generalization and evaluation
Once the model is built, how do we know it will perform on new data? Is this model
any good? To answer these questions, we'll first look into the model generalization
and then, see how to get an estimate of the model performance on new data.

Underfitting and overfitting
Predictor training can lead to models that are too complex or too simple. The model
with low complexity (the leftmost models) can be as simple as predicting the most
frequent or mean class value, while the model with high complexity (the rightmost
models) can represent the training instances. Too rigid modes, which are shown
on the left-hand side, cannot capture complex patterns; while too flexible models,
shown on the right-hand side, fit to the noise in the training data. The main challenge
is to select the appropriate learning algorithm and its parameters, so that the learned
model will perform well on the new data (for example, the middle column):

Chapter 1

[25]

The following figure shows how the error in the training set decreases with the
model complexity. Simple rigid models underfit the data and have large errors. As
model complexity increases, it describes the underlying structure of the training
data better, and consequentially, the error decreases. If the model is too complex, it
overfits the training data and its prediction error increases again:

Depending on the task complexity and data availability, we want to tune our
classifiers towards less or more complex structures. Most learning algorithms allow
such tuning, as follows:

• Regression: This is the order of the polynomial
• Naive Bayes: This is the number of the attributes
• Decision trees: This is the number of nodes in the tree, pruning confidence
• k-nearest neighbors: This is the number of neighbors, distance-based

neighbor weights
• SVM: This is the kernel type, cost parameter
• Neural network: This is the number of neurons and hidden layers

With tuning, we want to minimize the generalization error, that is, how well
the classifier performs on future data. Unfortunately, we can never compute the
true generalization error; however, we can estimate it. Nevertheless, if the model
performs well on the training data, but performance is much worse on the test data,
the model most likely overfits.

Applied Machine Learning Quick Start

[26]

Train and test sets
To estimate the generalization error, we split our data into two parts: training data
and testing data. A general rule of thumb is to split them in the training:testing ratio,
that is, 70:30. We first train the predictor on the training data, then predict the values
for the test data, and finally, compute the error—the difference between the predicted
and the true values. This gives us an estimate of the true generalization error.

The estimation is based on the following two assumptions: first, we assume
that the test set is an unbiased sample from our dataset; and second, we assume
that the actual new data will reassemble the distribution as our training and
testing examples. The first assumption can be mitigated by cross-validation and
stratification. Also, if it is scarce one can't afford to leave out a considerable amount
of data for separate test set as learning algorithms do not perform well if they don't
receive enough data. In such cases, cross-validation is used instead.

Cross-validation
Cross-validation splits the dataset into k sets of approximately the same size, for
example, to five sets as shown in the following figure. First, we use the 2-5 sets for
learning and set 1 for training. We then repeat the procedure five times, leaving out
one set at a time for testing, and average the error over the five repetitions.

This way, we used all the data for learning and testing as well, while we avoided
using the same data to train and test a model.

Leave-one-out validation
An extreme example of cross-validation is the leave-one-out validation. In this case, the
number of folds is equal to the number of instances; we learn on all but one instance,
and then test the model on the omitted instance. We repeat this for all instances, so that
each instance is used exactly once for the validation. This approach is recommended
when we have a limited set of learning examples, for example, less than 50.

Chapter 1

[27]

Stratification
Stratification is a procedure to select a subset of instances in such a way that
each fold roughly contains the same proportion of class values. When a class is
continuous, the folds are selected so that the mean response value is approximately
equal in all the folds. Stratification can be applied along with cross-validation or
separate training and test sets.

Summary
In this chapter, we refreshed the machine learning basics. We revisited the workflow
of applied machine learning and clarified the main tasks, methods, and algorithms.
In the next chapter, we will review the kind of Java libraries that are available and
the kind of tasks they can perform.

[29]

Java Libraries and Platforms
for Machine Learning

Implementing machine learning algorithms by yourself is probably the best way
to learn machine learning, but you can progress much faster if you step on the
shoulders of the giants and leverage one of the existing open source libraries.

This chapter reviews various libraries and platforms for machine learning in Java.
The goal is to understand what each library brings to the table and what kind of
problems is it able to solve?

In this chapter, we will cover the following topics:

• The requirement of Java to implement a machine learning app
• Weka, a general purpose machine learning platform
• Java machine learning library, a collection of machine learning algorithms
• Apache Mahout, a scalable machine learning platform
• Apache Spark, a distributed machine learning library
• Deeplearning4j, a deep learning library
• MALLET, a text mining library

We'll also discuss how to architect the complete machine learning app stack for both
single-machine and big data apps using these libraries with other components.

Java Libraries and Platforms for Machine Learning

[30]

The need for Java
New machine learning algorithms are often first scripted at university labs, gluing
together several languages such as shell scripting, Python, R, MATLAB Java,
Scala, or C++ to prove a new concept and theoretically analyze its properties. An
algorithm might then take a long path of refactoring before it lands in a library with
standardized input/output and interfaces. While Python, R, and MATLAB are quite
popular, they are mainly used for scripting, research, and experimenting. Java, on
the other hand, is the de-facto enterprise language, which could be attributed to
static typing, robust IDE support, good maintainability, as well as decent threading
model, and high-performance concurrent data structure libraries. Moreover, there
are already many Java libraries available for machine learning, which make it really
convenient to interface them in existing Java applications and leverage powerful
machine learning capabilities.

Machine learning libraries
There are over 70 Java-based open source machine learning projects listed on the
MLOSS.org website and probably many more unlisted projects live at university
servers, GitHub, or Bitbucket. In this section, we will review the major libraries and
platforms, the kind of problems they can solve, the algorithms they support, and the
kind of data they can work with.

Weka
Weka, which is short for Waikato Environment for Knowledge Analysis, is a
machine learning library developed at the University of Waikato, New Zealand,
and is probably the most well-known Java library. It is a general-purpose library
that is able to solve a wide variety of machine learning tasks, such as classification,
regression, and clustering. It features a rich graphical user interface, command-
line interface, and Java API. You can check out Weka at http://www.cs.waikato.
ac.nz/ml/weka/.

MLOSS.org
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

Chapter 2

[31]

At the time of writing this book, Weka contains 267 algorithms in total: data pre-
processing (82), attribute selection (33), classification and regression (133), clustering
(12), and association rules mining (7). Graphical interfaces are well-suited for
exploring your data, while Java API allows you to develop new machine learning
schemes and use the algorithms in your applications.

Weka is distributed under GNU General Public License (GNU GPL), which means
that you can copy, distribute, and modify it as long as you track changes in source
files and keep it under GNU GPL. You can even distribute it commercially, but you
must disclose the source code or obtain a commercial license.

In addition to several supported file formats, Weka features its own default data
format, ARFF, to describe data by attribute-data pairs. It consists of two parts. The
first part contains header, which specifies all the attributes (that is, features) and
their type; for instance, nominal, numeric, date, and string. The second part contains
data, where each line corresponds to an instance. The last attribute in the header is
implicitly considered as the target variable, missing data are marked with a question
mark. For example, returning to the example from Chapter 1, Applied Machine Learning
Quick Start, the Bob instance written in an ARFF file format would be as follows:

@RELATION person_dataset

@ATTRIBUTE `Name` STRING
@ATTRIBUTE `Height` NUMERIC
@ATTRIBUTE `Eye color`{blue, brown, green}
@ATTRIBUTE `Hobbies` STRING

@DATA
'Bob', 185.0, blue, 'climbing, sky diving'
'Anna', 163.0, brown, 'reading'
'Jane', 168.0, ?, ?

Java Libraries and Platforms for Machine Learning

[32]

The file consists of three sections. The first section starts with the @RELATION <String>
keyword, specifying the dataset name. The next section starts with the @ATTRIBUTE
keyword, followed by the attribute name and type. The available types are STRING,
NUMERIC, DATE, and a set of categorical values. The last attribute is implicitly assumed
to be the target variable that we want to predict. The last section starts with the @DATA
keyword, followed by one instance per line. Instance values are separated by comma
and must follow the same order as attributes in the second section.

More Weka examples will be demonstrated in Chapter 3, Basic Algorithms – Classification,
Regression, and Clustering, and Chapter 4, Customer Relationship Prediction with Ensembles.

To learn more about Weka, pick up a quick-start book,
Weka How-to by Kaluza (Packt Publishing) to start coding or
look into Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations by Witten and Frank
(Morgan Kaufmann Publishers) for theoretical background
and in-depth explanations.

Weka's Java API is organized in the following top-level packages:

• weka.associations: These are data structures and algorithms for
association rules learning, including Apriori, predictive apriori,
FilteredAssociator, FP-Growth, Generalized Sequential Patterns (GSP),
Hotspot, and Tertius.

• weka.classifiers: These are supervised learning algorithms, evaluators, and
data structures. The package is further split into the following components:

 ° weka.classifiers.bayes: This implements Bayesian methods,
including naive Bayes, Bayes net, Bayesian logistic regression,
and so on

 ° weka.classifiers.evaluation: These are supervised evaluation
algorithms for nominal and numerical prediction, such as evaluation
statistics, confusion matrix, ROC curve, and so on

 ° weka.classifiers.functions: These are regression algorithms,
including linear regression, isotonic regression, Gaussian processes,
support vector machine, multilayer perceptron, voted perceptron,
and others

 ° weka.classifiers.lazy: These are instance-based algorithms such
as k-nearest neighbors, K*, and lazy Bayesian rules

Chapter 2

[33]

 ° weka.classifiers.meta: These are supervised learning
meta-algorithms, including AdaBoost, bagging, additive regression,
random committee, and so on

 ° weka.classifiers.mi: These are multiple-instance learning
algorithms, such as citation k-nn, diverse density, MI AdaBoost,
and others

 ° weka.classifiers.rules: These are decision tables and decision
rules based on the separate-and-conquer approach, Ripper, Part,
Prism, and so on

 ° weka.classifiers.trees: These are various decision trees
algorithms, including ID3, C4.5, M5, functional tree, logistic tree,
random forest, and so on

• weka.clusterers: These are clustering algorithms, including k-means,
Clope, Cobweb, DBSCAN hierarchical clustering, and farthest.

• weka.core: These are various utility classes, data presentations,
configuration files, and so on.

• weka.datagenerators: These are data generators for classification,
regression, and clustering algorithms.

• weka.estimators: These are various data distribution estimators for
discrete/nominal domains, conditional probability estimations, and so on.

• weka.experiment: These are a set of classes supporting necessary
configuration, datasets, model setups, and statistics to run experiments.

• weka.filters: These are attribute-based and instance-based selection
algorithms for both supervised and unsupervised data preprocessing.

• weka.gui: These are graphical interface implementing explorer,
experimenter, and knowledge flow applications. Explorer allows you to
investigate dataset, algorithms, as well as their parameters, and visualize
dataset with scatter plots and other visualizations. Experimenter is used to
design batches of experiment, but it can only be used for classification and
regression problems. Knowledge flows implements a visual drag-and-drop
user interface to build data flows, for example, load data, apply filter, build
classifier, and evaluate.

Java Libraries and Platforms for Machine Learning

[34]

Java machine learning
Java machine learning library, or Java-ML, is a collection of machine learning
algorithms with a common interface for algorithms of the same type. It only features
Java API, therefore, it is primarily aimed at software engineers and programmers.
Java-ML contains algorithms for data preprocessing, feature selection, classification,
and clustering. In addition, it features several Weka bridges to access Weka's
algorithms directly through the Java-ML API. It can be downloaded from
http://java-ml.sourceforge.net; where, the latest release was in 2012
(at the time of writing this book).

Java-ML is also a general-purpose machine learning library. Compared to Weka, it
offers more consistent interfaces and implementations of recent algorithms that are
not present in other packages, such as an extensive set of state-of-the-art similarity
measures and feature-selection techniques, for example, dynamic time warping,
random forest attribute evaluation, and so on. Java-ML is also available under the
GNU GPL license.

Java-ML supports any type of file as long as it contains one data sample per line and
the features are separated by a symbol such as comma, semi-colon, and tab.

The library is organized around the following top-level packages:

• net.sf.javaml.classification: These are classification algorithms,
including naive Bayes, random forests, bagging, self-organizing maps,
k-nearest neighbors, and so on

• net.sf.javaml.clustering: These are clustering algorithms such as
k-means, self-organizing maps, spatial clustering, Cobweb, AQBC, and others

• net.sf.javaml.core: These are classes representing instances and datasets
• net.sf.javaml.distance: These are algorithms that measure instance

distance and similarity, for example, Chebyshev distance, cosine distance/
similarity, Euclidian distance, Jaccard distance/similarity, Mahalanobis
distance, Manhattan distance, Minkowski distance, Pearson correlation
coefficient, Spearman's footrule distance, dynamic time wrapping (DTW),
and so on

http://java-ml.sourceforge.net

Chapter 2

[35]

• net.sf.javaml.featureselection: These are algorithms for feature
evaluation, scoring, selection, and ranking, for instance, gain ratio, ReliefF,
Kullback-Liebler divergence, symmetrical uncertainty, and so on

• net.sf.javaml.filter: These are methods for manipulating instances by
filtering, removing attributes, setting classes or attribute values, and so on

• net.sf.javaml.matrix: This implements in-memory or file-based array
• net.sf.javaml.sampling: This implements sampling algorithms to select

a subset of dataset
• net.sf.javaml.tools: These are utility methods on dataset, instance

manipulation, serialization, Weka API interface, and so on
• net.sf.javaml.utils: These are utility methods for algorithms, for

example, statistics, math methods, contingency tables, and others

Apache Mahout
The Apache Mahout project aims to build a scalable machine learning library. It is
built atop scalable, distributed architectures, such as Hadoop, using the MapReduce
paradigm, which is an approach for processing and generating large datasets with a
parallel, distributed algorithm using a cluster of servers.

Mahout features console interface and Java API to scalable algorithms for clustering,
classification, and collaborative filtering. It is able to solve three business problems:
item recommendation, for example, recommending items such as people who liked this
movie also liked…; clustering, for example, of text documents into groups of topically-
related documents; and classification, for example, learning which topic to assign to
an unlabeled document.

Mahout is distributed under a commercially-friendly Apache License, which means
that you can use it as long as you keep the Apache license included and display it in
your program's copyright notice.

Java Libraries and Platforms for Machine Learning

[36]

Mahout features the following libraries:

• org.apache.mahout.cf.taste: These are collaborative filtering algorithms
based on user-based and item-based collaborative filtering and matrix
factorization with ALS

• org.apache.mahout.classifier: These are in-memory and distributed
implementations, including logistic regression, naive Bayes, random forest,
hidden Markov models (HMM), and multilayer perceptron

• org.apache.mahout.clustering: These are clustering algorithms such
as canopy clustering, k-means, fuzzy k-means, streaming k-means, and
spectral clustering

• org.apache.mahout.common: These are utility methods for algorithms,
including distances, MapReduce operations, iterators, and so on

• org.apache.mahout.driver: This implements a general-purpose driver to
run main methods of other classes

• org.apache.mahout.ep: This is the evolutionary optimization using the
recorded-step mutation

• org.apache.mahout.math: These are various math utility methods and
implementations in Hadoop

• org.apache.mahout.vectorizer: These are classes for data presentation,
manipulation, and MapReduce jobs

Apache Spark
Apache Spark, or simply Spark, is a platform for large-scale data processing builds
atop Hadoop, but, in contrast to Mahout, it is not tied to the MapReduce paradigm.
Instead, it uses in-memory caches to extract a working set of data, process it,
and repeat the query. This is reported to be up to ten times as fast as a Mahout
implementation that works directly with disk-stored data. It can be grabbed from
https://spark.apache.org.

There are many modules built atop Spark, for instance, GraphX for graph
processing, Spark Streaming for processing real-time data streams, and MLlib for
machine learning library featuring classification, regression, collaborative filtering,
clustering, dimensionality reduction, and optimization.

https://spark.apache.org

Chapter 2

[37]

Spark's MLlib can use a Hadoop-based data source, for example, Hadoop
Distributed File System (HDFS) or HBase, as well as local files. The supported data
types include the following:

• Local vector is stored on a single machine. Dense vectors are presented as
an array of double-typed values, for example, (2.0, 0.0, 1.0, 0.0); while sparse
vector is presented by the size of the vector, an array of indices, and an array
of values, for example, [4, (0, 2), (2.0, 1.0)].

• Labeled point is used for supervised learning algorithms and consists
of a local vector labeled with a double-typed class values. Label can be
class index, binary outcome, or a list of multiple class indices (multiclass
classification). For example, a labeled dense vector is presented as [1.0, (2.0,
0.0, 1.0, 0.0)].

• Local matrix stores a dense matrix on a single machine. It is defined by matrix
dimensions and a single double-array arranged in a column-major order.

• Distributed matrix operates on data stored in Spark's Resilient Distributed
Dataset (RDD), which represents a collection of elements that can be
operated on in parallel. There are three presentations: row matrix, where
each row is a local vector that can be stored on a single machine, row indices
are meaningless; and indexed row matrix, which is similar to row matrix,
but the row indices are meaningful, that is, rows can be identified and joins
can be executed; and coordinate matrix, which is used when a row cannot be
stored on a single machine and the matrix is very sparse.

Spark's MLlib API library provides interfaces to various learning algorithms and
utilities as outlined in the following list:

• org.apache.spark.mllib.classification: These are binary and
multiclass classification algorithms, including linear SVMs, logistic
regression, decision trees, and naive Bayes

• org.apache.spark.mllib.clustering: These are k-means clustering
• org.apache.spark.mllib.linalg: These are data presentations, including

dense vectors, sparse vectors, and matrices
• org.apache.spark.mllib.optimization: These are the various

optimization algorithms used as low-level primitives in MLlib, including
gradient descent, stochastic gradient descent, update schemes for distributed
SGD, and limited-memory BFGS

• org.apache.spark.mllib.recommendation: These are model-based
collaborative filtering implemented with alternating least squares matrix
factorization

Java Libraries and Platforms for Machine Learning

[38]

• org.apache.spark.mllib.regression: These are regression learning
algorithms, such as linear least squares, decision trees, Lasso, and Ridge
regression

• org.apache.spark.mllib.stat: These are statistical functions for samples
in sparse or dense vector format to compute the mean, variance, minimum,
maximum, counts, and nonzero counts

• org.apache.spark.mllib.tree: This implements classification and
regression decision tree-learning algorithms

• org.apache.spark.mllib.util: These are a collection of methods to load,
save, preprocess, generate, and validate the data

Deeplearning4j
Deeplearning4j, or DL4J, is a deep-learning library written in Java. It features a
distributed as well as a single-machine deep-learning framework that includes and
supports various neural network structures such as feedforward neural networks,
RBM, convolutional neural nets, deep belief networks, autoencoders, and others.
DL4J can solve distinct problems, such as identifying faces, voices, spam or
e-commerce fraud.

Deeplearning4j is also distributed under Apache 2.0 license and can be downloaded
from http://deeplearning4j.org. The library is organized as follows:

• org.deeplearning4j.base: These are loading classes
• org.deeplearning4j.berkeley: These are math utility methods
• org.deeplearning4j.clustering: This is the implementation of

k-means clustering
• org.deeplearning4j.datasets: This is dataset manipulation, including

import, creation, iterating, and so on
• org.deeplearning4j.distributions: These are utility methods for

distributions
• org.deeplearning4j.eval: These are evaluation classes, including the

confusion matrix
• org.deeplearning4j.exceptions: This implements exception handlers
• org.deeplearning4j.models: These are supervised learning algorithms,

including deep belief network, stacked autoencoder, stacked denoising
autoencoder, and RBM

http://deeplearning4j.org

Chapter 2

[39]

• org.deeplearning4j.nn: These are the implementation of components and
algorithms based on neural networks, such as neural network, multi-layer
network, convolutional multi-layer network, and so on

• org.deeplearning4j.optimize: These are neural net optimization
algorithms, including back propagation, multi-layer optimization, output
layer optimization, and so on

• org.deeplearning4j.plot: These are various methods for rendering data
• org.deeplearning4j.rng: This is a random data generator
• org.deeplearning4j.util: These are helper and utility methods

MALLET
Machine Learning for Language Toolkit (MALLET), is a large library of natural
language processing algorithms and utilities. It can be used in a variety of tasks
such as document classification, document clustering, information extraction, and
topic modeling. It features command-line interface as well as Java API for several
algorithms such as naive Bayes, HMM, Latent Dirichlet topic models, logistic
regression, and conditional random fields.

MALLET is available under Common Public License 1.0, which means that you can
even use it in commercial applications. It can be downloaded from http://mallet.
cs.umass.edu. MALLET instance is represented by name, label, data, and source.
However, there are two methods to import data into the MALLET format, as shown
in the following list:

• Instance per file: Each file, that is, document, corresponds to an instance and
MALLET accepts the directory name for the input.

• Instance per line: Each line corresponds to an instance, where the following
format is assumed: the instance_name label token. Data will be a feature
vector, consisting of distinct words that appear as tokens and their
occurrence count.

http://mallet.cs.umass.edu
http://mallet.cs.umass.edu

Java Libraries and Platforms for Machine Learning

[40]

The library comprises the following packages:

• cc.mallet.classify: These are algorithms for training and classifying
instances, including AdaBoost, bagging, C4.5, as well as other decision tree
models, multivariate logistic regression, naive Bayes, and Winnow2.

• cc.mallet.cluster: These are unsupervised clustering algorithms, including
greedy agglomerative, hill climbing, k-best, and k-means clustering.

• cc.mallet.extract: This implements tokenizers, document extractors,
document viewers, cleaners, and so on.

• cc.mallet.fst: This implements sequence models, including conditional
random fields, HMM, maximum entropy Markov models, and corresponding
algorithms and evaluators.

• cc.mallet.grmm: This implements graphical models and factor graphs such
as inference algorithms, learning, and testing. For example, loopy belief
propagation, Gibbs sampling, and so on.

• cc.mallet.optimize: These are optimization algorithms for finding the
maximum of a function, such as gradient ascent, limited-memory BFGS,
stochastic meta ascent, and so on.

• cc.mallet.pipe: These are methods as pipelines to process data into
MALLET instances.

• cc.mallet.topics: These are topics modeling algorithms, such as Latent
Dirichlet allocation, four-level pachinko allocation, hierarchical PAM, DMRT,
and so on.

• cc.mallet.types: This implements fundamental data types such as dataset,
feature vector, instance, and label.

• cc.mallet.util: These are miscellaneous utility functions such as
command-line processing, search, math, test, and so on.

Chapter 2

[41]

Comparing libraries
The following table summarizes all the presented libraries. The table is, by no
means, exhaustive—there are many more libraries covering the specific-problem
domains. This review should serve as an overview of the big names in the Java
machine learning world:

Problem domains License Architecture Algorithms
Weka General purpose GNU

GPL
Single
machine

Decision trees, naive Bayes,
neural network, random
forest, AdaBoost, hierarchical
clustering, and so on

Java-ML General purpose GNU
GPL

Single
machine

k-means clustering,
self-organizing maps, Markov
chain clustering, Cobweb,
random forest, decision trees,
bagging, distance measures,
and so on

Mahout Classification,
recommendation,
and clustering

Apache
2.0
License

Distributed,
single
machine

Logistic regression, naive
Bayes, random forest, HMM,
multilayer perceptron,
k-means clustering, and so on

Spark General purpose Apache
2.0
License

Distributed SVM, logistic regression,
decision trees, naive Bayes,
k-means clustering, linear
least squares, LASSO, ridge
regression, and so on

DL4J Deep learning Apache
2.0
License

Distributed,
single
machine

RBM, deep belief networks,
deep autoencoders, recursive
neural tensor networks,
convolutional neural network,
and stacked denoising
autoencoders

MALLET Text mining Common
Public
License
1.0

Single
machine

Naive Bayes, decision
trees, maximum entropy,
hidden Markov models, and
conditional random fields

Java Libraries and Platforms for Machine Learning

[42]

Building a machine learning application
Machine learning applications, especially those focused on classification, usually
follow the same high-level workflow as shown in the following diagram. The
workflow comprises two phases: training the classifier and classification of new
instances. Both phases share common steps as you can see in the following diagram:

First, we use a set of Training data, select a representative subset as the training
set, preprocess missing data, and extract features. A selected supervised learning
algorithm is used to train a model, which is deployed in the second phase. The
second phase puts a new data instance through the same Pre-processing and Feature
extraction procedure and applies the learned model to obtain the instance label. If you
are able to collect new labeled data, periodically rerun the learning phase to retrain the
model, and replace the old one with the retrained one in the classification phase.

Traditional machine learning architecture
Structured data, such as transactional, customer, analytical, and market data, usually
resides within a local relational database. Given a query language, such as SQL, we
can query the data used for processing, as shown in the workflow in the previous
diagram. Usually, all the data can be stored in the memory and further processed
with a machine learning library such as Weka, Java-ML, or MALLET.

A common practice in the architecture design is to create data pipelines, where
different steps in the workflow are split. For instance, in order to create a client data
record, we might have to scrap the data from different data sources. The record can
be then saved in an intermediate database for further processing.

To understand how the high-level aspects of big data architecture differ, let's first
clarify when is the data considered big?

Chapter 2

[43]

Dealing with big data
Big data existed long before the phrase was invented, for instance, banks and stock
exchanges have been processing billions of transactions daily for years, and airline
companies companies have worldwide real-time infrastructure for operational
management of passenger booking, and so on. So what is big data really? Doug
Laney (2001) suggested that big data is defined by three Vs: volume, velocity, and
variety. Therefore, to answer the question whether your data is big, we can translate
this into the following three subquestions:

• Volume: Can you store your data in memory?
• Velocity: Can you process new incoming data with a single machine?
• Variety: Is your data from a single source?

If you answered all the questions with yes, then your data is probably not big, do not
worry, you have just simplified your application architecture.

If your answer to all the questions was no, then your data is big! However, if you
have mixed answers, then it's complicated. Some may argue that a V is important,
other may say the other Vs. From the machine learning point of view, there is a
fundamental difference in algorithm implementation to process the data in memory
or from distributed storage. Therefore, a rule of thumb is as follows: if you cannot
store your data in the memory, then you should look into a big data machine
learning library.

The exact answer depends on the problem that you are trying to solve. If you're
starting a new project, I'd suggest you start off with a single-machine library and
prototype your algorithm, possibly with a subset of your data if the entire data
does not fit into the memory. Once you've established good initial results, consider
moving to something more heavy duty such as Mahout or Spark.

Big data application architecture
Big data, such as documents, weblogs, social networks, sensor data, and others, are
stored in a NoSQL database, such as MongoDB, or a distributed filesystem, such as
HDFS. In case we deal with structured data, we can deploy database capabilities using
systems such as Cassandra or HBase built atop Hadoop. Data processing follows
the MapReduce paradigm, which breaks data processing problems into smaller
subproblems and distributes tasks across processing nodes. Machine learning models
are finally trained with machine learning libraries such as Mahout and Spark.

Java Libraries and Platforms for Machine Learning

[44]

MongoDB is a NoSQL database, which stores documents in
a JSON-like format. Read more about it at https://www.
mongodb.org.
Hadoop is a framework for distributed processing of large
datasets across a cluster of computers. It includes its own
filesystem format HDFS, job scheduling framework YARD,
and implements the MapReduce approach for parallel data
processing. More about Hadoop is available at http://
hadoop.apache.org/.
Cassandra is a distributed database management system build
to provide fault-tolerant, scalable, and decentralized storage.
More information is available at http://cassandra.
apache.org/.
HBase is another database that focuses on random read/write
access to distributed storage. More information is available at
https://hbase.apache.org/.

Summary
Selecting a machine learning library has an important impact on your application
architecture. The key is to consider your project requirements. What kind of data do
you have? What kind of problem are you trying to solve? Is your data big? Do you
need distributed storage? What kind of algorithm are you planning to use? Once
you figure out what you need to solve your problem, pick a library that best fits
your needs.

In the next chapter, we will cover how to complete basic machine learning tasks such
as classification, regression, and clustering using some of the presented libraries.

https://www.mongodb.org
https://www.mongodb.org
http://hadoop.apache.org/
http://hadoop.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://hbase.apache.org/

[45]

Basic Algorithms –
Classification, Regression,

and Clustering
In the previous chapter, we reviewed the key Java libraries for machine learning
and what they bring to the table. In this chapter, we will finally get our hands dirty.
We will take a closer look at the basic machine learning tasks such as classification,
regression, and clustering. Each of the topics will introduce basic algorithms for
classification, regression, and clustering. The example datasets will be small, simple,
and easy to understand.

The following is the list of topics that will be covered in this chapter:

• Loading data
• Filtering attributes
• Building classification, regression, and clustering models
• Evaluating models

Basic Algorithms – Classification, Regression, and Clustering

[46]

Before you start
Download the latest version of Weka 3.6 from http://www.cs.waikato.ac.nz/ml/
weka/downloading.html.

There are multiple download options available. We'll want to use Weka as a library
in our source code, so make sure you skip the self-extracting executables and pick
the ZIP archive as shown at the following image. Unzip the archive and locate
weka.jar within the extracted archive:

We'll use the Eclipse IDE to show examples, as follows:

1. Start a new Java project.
2. Right-click on the project properties, select Java Build Path, click on the

Libraries tab, and select Add External JARs.
3. Navigate to extract the Weka archive and select the weka.jar file.

That's it, we are ready to implement the basic machine learning techniques!

Classification
We will start with the most commonly used machine learning technique, that is,
classification. As we reviewed in the first chapter, the main idea is to automatically
build a mapping between the input variables and the outcome. In the following
sections, we will look at how to load the data, select features, implement a basic
classifier in Weka, and evaluate the classifier performance.

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.cs.waikato.ac.nz/ml/weka/downloading.html

Chapter 3

[47]

Data
For this task, we will have a look at the ZOO database [ref]. The database contains
101 data entries of the animals described with 18 attributes as shown in the
following table:

animal aquatic fins
hair predator legs
feathers toothed tail
eggs backbone domestic
milk breathes cat size
airborne venomous type

An example entry in the dataset set is a lion with the following attributes:

• animal: lion

• hair: true

• feathers: false

• eggs: false

• milk: true

• airbone: false

• aquatic: false

• predator: true

• toothed: true

• backbone: true

• breaths: true

• venomous: false

• fins: false

• legs: 4

• tail: true

• domestic: false

• catsize: true

• type: mammal

Our task will be to build a model to predict the outcome variable, animal, given all
the other attributes as input.

Basic Algorithms – Classification, Regression, and Clustering

[48]

Loading data
Before we start with the analysis, we will load the data in Weka's ARRF format
and print the total number of loaded instances. Each data sample is held within an
Instances object, while the complete dataset accompanied with meta-information is
handled by the Instances object.

To load the input data, we will use the DataSource object that accepts a variety of
file formats and converts them to Instances:

DataSource source = new DataSource(args[0]);
Instances data = source.getDataSet();
System.out.println(data.numInstances() + " instances loaded.");
// System.out.println(data.toString());

This outputs the number of loaded instances, as follows:

101 instances loaded.

We can also print the complete dataset by calling the data.toString() method.

Our task is to learn a model that is able to predict the animal attribute in the future
examples for which we know the other attributes but do not know the animal label.
Hence, we remove the animal attribute from the training set. We accomplish this by
filtering out the animal attribute using the Remove filter.

First, we set a string table of parameters, specifying that the first attribute must be
removed. The remaining attributes are used as our dataset for training a classifier:

Remove remove = new Remove();
String[] opts = new String[]{ "-R", "1"};

Finally, we call the Filter.useFilter(Instances, Filter) static method to apply
the filter on the selected dataset:

remove.setOptions(opts);
remove.setInputFormat(data);
data = Filter.useFilter(data, remove);

Chapter 3

[49]

Feature selection
As introduced in Chapter 1, Applied Machine Learning Quick Start, one of the
pre-processing steps is focused on feature selection, also known as attribute selection.
The goal is to select a subset of relevant attributes that will be used in a learned
model. Why is feature selection important? A smaller set of attributes simplifies the
models and makes them easier to interpret by users, this usually requires shorter
training and reduces overfitting.

Attribute selection can take into account the class value or not. In the first case, an
attribute selection algorithm evaluates the different subsets of features and calculates
a score that indicates the quality of selected attributes. We can use different searching
algorithms such as exhaustive search, best first search, and different quality scores
such as information gain, Gini index, and so on.

Weka supports this process by an AttributeSelection object, which requires two
additional parameters: evaluator, which computes how informative an attribute is and
a ranker, which sorts the attributes according to the score assigned by the evaluator.

In this example, we will use information gain as an evaluator and rank the features
by their information gain score:

InfoGainAttributeEval eval = new InfoGainAttributeEval();
Ranker search = new Ranker();

Next, we initialize an AttributeSelection object and set the evaluator, ranker,
and data:

AttributeSelection attSelect = new AttributeSelection();
attSelect.setEvaluator(eval);
attSelect.setSearch(search);
attSelect.SelectAttributes(data);

Finally, we can print an order list of attribute indices, as follows:

int[] indices = attSelect.selectedAttributes();
System.out.println(Utils.arrayToString(indices));

The method outputs the following result:

12,3,7,2,0,1,8,9,13,4,11,5,15,10,6,14,16

The top three most informative attributes are 12 (fins), 3 (eggs), 7 (aquatic), 2 (hair),
and so on. Based on this list, we can remove additional, non-informative features in
order to help learning algorithms achieve more accurate and faster learning models.

Basic Algorithms – Classification, Regression, and Clustering

[50]

What would make the final decision about the number of attributes to keep? There's
no rule of thumb related to an exact number—the number of attributes depends on
the data and problem. The purpose of attribute selection is choosing attributes that
serve your model better, so it is better to focus whether the attributes are improving
the model.

Learning algorithms
We have loaded our data, selected the best features, and are ready to learn some
classification models. Let's begin with the basic decision trees.

Decision tree in Weka is implemented within the J48 class, which is a
re-implementation of Quinlan's famous C4.5 decision tree learner [Quinlan, 1993].

First, we initialize a new J48 decision tree learner. We can pass additional
parameters with a string table, for instance, tree pruning that controls the model
complexity (refer to Chapter 1, Applied Machine Learning Quick Start). In our case,
we will build an un-pruned tree, hence we will pass a single U parameter:

J48 tree = new J48();
String[] options = new String[1];
options[0] = "-U";

tree.setOptions(options);

Next, we call the buildClassifier(Instances) method to initialize the learning
process:

tree.buildClassifier(data);

The built model is now stored in a tree object. We can output the entire J48
unpruned tree calling the toString() method:

System.out.println(tree);

The output is as follows:

J48 unpruned tree

feathers = false

| milk = false

| | backbone = false

| | | airborne = false

| | | | predator = false

Chapter 3

[51]

| | | | | legs <= 2: invertebrate (2.0)

| | | | | legs > 2: insect (2.0)

| | | | predator = true: invertebrate (8.0)

| | | airborne = true: insect (6.0)

| | backbone = true

| | | fins = false

| | | | tail = false: amphibian (3.0)

| | | | tail = true: reptile (6.0/1.0)

| | | fins = true: fish (13.0)

| milk = true: mammal (41.0)

feathers = true: bird (20.0)

Number of Leaves : .9

Size of the tree : ..17

The outputted tree has 17 nodes in total, 9 of these are terminal (Leaves).

Another way to present the tree is to leverage the built-in TreeVisualizer tree
viewer, as follows:

TreeVisualizer tv = new TreeVisualizer(null, tree.graph(), new
PlaceNode2());
JFrame frame = new javax.swing.JFrame("Tree Visualizer");
frame.setSize(800, 500);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(tv);
frame.setVisible(true);
tv.fitToScreen();

Basic Algorithms – Classification, Regression, and Clustering

[52]

The code results in the following frame:

The decision process starts at the top node, also known as the root node. The node
label specifies the attribute value that will be checked. In our example, we first check
the value of the feathers attribute. If the feather is present, we follow the right-hand
branch, which leads us to the leaf labeled bird, indicating there are 20 examples
supporting this outcome. If the feather is not present, we follow the left-hand branch,
which leads us to the next milk attribute. We check the value of the attribute again
and follow the branch that matches the attribute value. We repeat the process until
we reach a leaf node.

We can build other classifiers by following the same steps: initialize a
classifier, pass the parameters controlling the model complexity, and call the
buildClassifier(Instances) method.

In the next section, we will learn how to use a trained model to assign a class label to
a new example whose label is unknown.

Chapter 3

[53]

Classify new data
Suppose we record attributes for an animal whose label we do not know, we can
predict its label from the learned classification model:

We first construct a feature vector describing the new specimen, as follows:

double[] vals = new double[data.numAttributes()];
vals[0] = 1.0; //hair {false, true}
vals[1] = 0.0; //feathers {false, true}
vals[2] = 0.0; //eggs {false, true}
vals[3] = 1.0; //milk {false, true}
vals[4] = 0.0; //airborne {false, true}
vals[5] = 0.0; //aquatic {false, true}
vals[6] = 0.0; //predator {false, true}
vals[7] = 1.0; //toothed {false, true}
vals[8] = 1.0; //backbone {false, true}
vals[9] = 1.0; //breathes {false, true}
vals[10] = 1.0; //venomous {false, true}
vals[11] = 0.0; //fins {false, true}
vals[12] = 4.0; //legs INTEGER [0,9]
vals[13] = 1.0; //tail {false, true}
vals[14] = 1.0; //domestic {false, true}
vals[15] = 0.0; //catsize {false, true}
Instance myUnicorn = new Instance(1.0, vals);

Finally, we call the classify(Instance) method on the model to obtain the class
value. The method returns label index, as follows:

double result = tree.classifyInstance(myUnicorn);
System.out.println(data.classAttribute().value((int) result));

This outputs the mammal class label.

Basic Algorithms – Classification, Regression, and Clustering

[54]

Evaluation and prediction error metrics
We built a model, but we do not know if it can be trusted. To estimate its
performance, we can apply a cross-validation technique explained in Chapter 1,
Applied Machine Learning Quick Start.

Weka offers an Evaluation class implementing cross validation. We pass the model,
data, number of folds, and an initial random seed, as follows:

Classifier cl = new J48();
Evaluation eval_roc = new Evaluation(data);
eval_roc.crossValidateModel(cl, data, 10, new Random(1), new
 Object[] {});
System.out.println(eval_roc.toSummaryString());

The evaluation results are stored in the Evaluation object.

A mix of the most common metrics can be invoked by calling the toString()
method. Note that the output does not differentiate between regression and
classification, so pay attention to the metrics that make sense, as follows:

Correctly Classified Instances 93 92.0792 %

Incorrectly Classified Instances 8 7.9208 %

Kappa statistic 0.8955

Mean absolute error 0.0225

Root mean squared error 0.14

Relative absolute error 10.2478 %

Root relative squared error 42.4398 %

Coverage of cases (0.95 level) 96.0396 %

Mean rel. region size (0.95 level) 15.4173 %

Total Number of Instances 101

In the classification, we are interested in the number of correctly/incorrectly
classified instances.

Confusion matrix
Furthermore, we can inspect where a particular misclassification has been made by
examining the confusion matrix. Confusion matrix shows how a specific class value
was predicted:

double[][] confusionMatrix = eval_roc.confusionMatrix();
System.out.println(eval_roc.toMatrixString());

Chapter 3

[55]

The resulting confusion matrix is as follows:

=== Confusion Matrix ===

 a b c d e f g <-- classified as

 41 0 0 0 0 0 0 | a = mammal

 0 20 0 0 0 0 0 | b = bird

 0 0 3 1 0 1 0 | c = reptile

 0 0 0 13 0 0 0 | d = fish

 0 0 1 0 3 0 0 | e = amphibian

 0 0 0 0 0 5 3 | f = insect

 0 0 0 0 0 2 8 | g = invertebrate

The first column names in the first row correspond to labels assigned by the
classification mode. Each additional row then corresponds to an actual true class
value. For instance, the second row corresponds instances with the mammal true
class label. In the column line, we read that all mammals were correctly classified as
mammals. In the fourth row, reptiles, we notice that three were correctly classified
as reptiles, while one was classified as fish and one as an insect. Confusion matrix
hence, gives us an insight into the kind of errors that our classification model makes.

Choosing a classification algorithm
Naive Bayes is one of the most simple, efficient, and effective inductive algorithms in
machine learning. When features are independent, which is rarely true in real world,
it is theoretically optimal, and even with dependent features, its performance is
amazingly competitive (Zhang, 2004). The main disadvantage is that it cannot learn
how features interact with each other, for example, despite the fact that you like your
tea with lemon or milk, you hate a tea having both of them at the same time.

Decision tree's main advantage is a model, that is, a tree, which is easy to interpret
and explain as we studied in our example. It can handle both nominal and numeric
features and you don't have to worry about whether the data is linearly separable.

Some other examples of classification algorithms are as follows:

• weka.classifiers.rules.ZeroR: This predicts the majority class and is
considered as a baseline, that is, if your classifier's performance is worse than
the average value predictor, it is not worth considering it.

• weka.classifiers.trees.RandomTree: This constructs a tree that considers
K randomly chosen attributes at each node.

Basic Algorithms – Classification, Regression, and Clustering

[56]

• weka.classifiers.trees.RandomForest: This constructs a set (that is,
forest) of random trees and uses majority voting to classify a new instance.

• weka.classifiers.lazy.IBk: This is the k-nearest neighbor's classifier that
is able to select an appropriate value of neighbors based on cross-validation.

• weka.classifiers.functions.MultilayerPerceptron: This is a classifier
based on neural networks that use back-propagation to classify instances.
The network can be built by hand, or created by an algorithm, or both.

• weka.classifiers.bayes.NaiveBayes: This is a naive Bayes classifier that
uses estimator classes, where numeric estimator precision values are chosen
based on the analysis of the training data.

• weka.classifiers.meta.AdaBoostM1: This is the class for boosting a
nominal class classifier using the AdaBoost M1 method. Only nominal class
problems can be tackled. This often dramatically improves the performance,
but sometimes it overfits.

• weka.classifiers.meta.Bagging: This is the class for bagging a classifier
to reduce the variance. This can perform classification and regression,
depending on the base learner.

Regression
We will explore basic regression algorithms through analysis of energy efficiency
dataset (Tsanas and Xifara, 2012). We will investigate the heating and cooling load
requirements of the buildings based on their construction characteristics such as
surface, wall and roof area, height, hazing area, and compactness. The researchers
used a simulator to design 12 different house configurations while varying 18
building characteristics. In total, 768 different buildings were simulated.

Our first goal is to systematically analyze the impact each building characterizes has
on the target variable, that is, heating or cooling load. The second goal is to compare
the performance of a classical linear regression model against other methods, such as
SVM regression, random forests, and neural networks. For this task, we will use the
Weka library.

Loading the data
Download the energy efficiency dataset from
https://archive.ics.uci.edu/ml/datasets/Energy+efficiency.

https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

Chapter 3

[57]

The dataset is in Excel's XLSX format, which cannot be read by Weka. We can
convert it to a Comma Separated Value (CSV) format by clicking File | Save As…
and picking CSV in the saving dialog as shown in the following screenshot. Confirm
to save only the active sheet (since all others are empty) and confirm to continue to
lose some formatting features. Now, the file is ready to be loaded by Weka:

Open the file in a text editor and inspect if the file was indeed correctly transformed.
There might be some minor issues that may be potentially causing problems. For
instance, in my export, each line ended with a double semicolon, as follows:

X1;X2;X3;X4;X5;X6;X7;X8;Y1;Y2;;
0,98;514,50;294,00;110,25;7,00;2;0,00;0;15,55;21,33;;
0,98;514,50;294,00;110,25;7,00;3;0,00;0;15,55;21,33;;

To remove the doubled semicolon, we can use the Find and Replace function: find
";;" and replace it with ";".

The second problem was that my file had a long list of empty lines at the end of the
document, which can be simply deleted:

0,62;808,50;367,50;220,50;3,50;5;0,40;5;16,64;16,03;;
;;;;;;;;;;;
;;;;;;;;;;;

Basic Algorithms – Classification, Regression, and Clustering

[58]

Now, we are ready to load the data. Let's open a new file and write a simple data
import function using Weka's converter for reading files in CSV format:

import weka.core.Instances;
import weka.core.converters.CSVLoader;
import java.io.File;
import java.io.IOException;

public class EnergyLoad {

 public static void main(String[] args) throws IOException {

 // load CSV
 CSVLoader loader = new CSVLoader();
 loader.setSource(new File(args[0]));
 Instances data = loader.getDataSet();

 System.out.println(data);
 }
}

The data is loaded. Let's move on.

Analyzing attributes
Before we analyze attributes, let's first try to understand what we are dealing with.
In total, there are eight attributes describing building characteristic and two target
variables, heating and cooling load, as shown in the following table:

Attribute Attribute name
X1 Relative compactness
X2 Surface area
X3 Wall area
X4 Roof area
X5 Overall height
X6 Orientation
X7 Glazing area
X8 Glazing area distribution
Y1 Heating load
Y2 Cooling load

Chapter 3

[59]

Building and evaluating regression model
We will start with learning a model for heating load by setting the class attribute at
the feature position:

data.setClassIndex(data.numAttributes() - 2);

The second target variable—cooling load—can be now removed:

//remove last attribute Y2
Remove remove = new Remove();
remove.setOptions(new String[]{"-R", data.numAttributes()+""});
remove.setInputFormat(data);
data = Filter.useFilter(data, remove);

Linear regression
We will start with a basic linear regression model implemented with the
LinearRegression class. Similarly as in the classification example, we will
initialize a new model instance, pass parameters and data, and invoke the
buildClassifier(Instances) method, as follows:

import weka.classifiers.functions.LinearRegression;
...

data.setClassIndex(data.numAttributes() - 2);
LinearRegression model = new LinearRegression();
model.buildClassifier(data);
System.out.println(model);

The learned model, which is stored in the object, can be outputted by calling the
toString() method, as follows:

Y1 =

 -64.774 * X1 +

 -0.0428 * X2 +

 0.0163 * X3 +

 -0.089 * X4 +

 4.1699 * X5 +

 19.9327 * X7 +

 0.2038 * X8 +

 83.9329

Basic Algorithms – Classification, Regression, and Clustering

[60]

Linear regression model constructed a function that linearly combines the input
variables to estimate the heating load. The number in front of the feature explains
the feature's impact on the target variable: sign corresponds to positive/negative
impact, while magnitude corresponds to its significance. For instance, feature
X1—relative compactness is negatively correlated with heating load, while glazing
area is positively correlated. These two features also significantly impact the final
heating load estimation.

The model performance can be similarly evaluated with cross-validation technique.

The 10-fold cross-validation is as follows:

Evaluation eval = new Evaluation(data);
eval.crossValidateModel(
model, data, 10, new Random(1), new String[]{});
System.out.println(eval.toSummaryString());

We can output the common evaluation metrics including correlation, mean absolute
error, relative absolute error, and so on, as follows:

Correlation coefficient 0.956
Mean absolute error 2.0923
Root mean squared error 2.9569
Relative absolute error 22.8555 %
Root relative squared error 29.282 %
Total Number of Instances 768

Regression trees
Another approach is to construct a set of regression models, each on its own part of
the data. The following diagram shows the main difference between a regression
model and a regression tree. Regression model constructs a single model that best
fits all the data. Regression tree, on the other hand, constructs a set of regression
models, each modeling a part of the data as shown on the right-hand side. Compared
to the regression model, the regression tree can better fit the data, but the function is
a piece-wise linear with jumps between modeled regions:

Chapter 3

[61]

Regression tree in Weka is implemented within the M5 class. Model construction
follows the same paradigm: initialize model, pass parameters and data, and invoke
the buildClassifier(Instances) method.

import weka.classifiers.trees.M5P;
...
M5P md5 = new M5P();
md5.setOptions(new String[]{""});
md5.buildClassifier(data);
System.out.println(md5);

The induced model is a tree with equations in the leaf nodes, as follows:

M5 pruned model tree:

(using smoothed linear models)

X1 <= 0.75 :

| X7 <= 0.175 :

| | X1 <= 0.65 : LM1 (48/12.841%)

| | X1 > 0.65 : LM2 (96/3.201%)

| X7 > 0.175 :

| | X1 <= 0.65 : LM3 (80/3.652%)

| | X1 > 0.65 : LM4 (160/3.502%)

X1 > 0.75 :

| X1 <= 0.805 : LM5 (128/13.302%)

| X1 > 0.805 :

| | X7 <= 0.175 :

| | | X8 <= 1.5 : LM6 (32/20.992%)

| | | X8 > 1.5 :

| | | | X1 <= 0.94 : LM7 (48/5.693%)

| | | | X1 > 0.94 : LM8 (16/1.119%)

| | X7 > 0.175 :

| | | X1 <= 0.84 :

| | | | X7 <= 0.325 : LM9 (20/5.451%)

| | | | X7 > 0.325 : LM10 (20/5.632%)

| | | X1 > 0.84 :

| | | | X7 <= 0.325 : LM11 (60/4.548%)

| | | | X7 > 0.325 :

| | | | | X3 <= 306.25 : LM12 (40/4.504%)

| | | | | X3 > 306.25 : LM13 (20/6.934%)

Basic Algorithms – Classification, Regression, and Clustering

[62]

LM num: 1

Y1 =

 72.2602 * X1

 + 0.0053 * X3

 + 11.1924 * X7

 + 0.429 * X8

 - 36.2224

...

LM num: 13

Y1 =

 5.8829 * X1

 + 0.0761 * X3

 + 9.5464 * X7

 - 0.0805 * X8

 + 2.1492

Number of Rules : 13

The tree has 13 leaves, each corresponding to a linear equation. The preceding
output is visualized in the following diagram:

Chapter 3

[63]

The tree can be read similar to a classification tree. The most important features are
at the top of the tree. The terminal node, leaf, contains a linear regression model
explaining the data that reach this part of the tree.

Evaluation outputs the following results:

Correlation coefficient 0.9943

Mean absolute error 0.7446

Root mean squared error 1.0804

Relative absolute error 8.1342 %

Root relative squared error 10.6995 %

Total Number of Instances 768

Tips to avoid common regression problems
First, use prior studies and domain knowledge to figure out which features to
include in regression. Check literature, reports, and previous studies on what kind
of features work and reasonable variables for modeling your problem. Suppose you
have a large set of features with random data, it is highly likely that several features
will be correlated to the target variable (even though the data is random).

Keep the model simple to avoid overfitting. The Occam's razor principle states that
you should select a model that best explains your data with the fewest assumptions.
In practice, the model can be as simple as 2-4 predictor features.

Clustering
Compared to a supervised classifier, the goal of clustering is to identify intrinsic
groups in a set of unlabeled data. It could be applied in identifying representative
examples of homogeneous groups, finding useful and suitable groupings, or finding
unusual examples, such as outliers.

We'll demonstrate how to implement clustering by analyzing the Bank dataset. The
dataset consist of 11 attributes, describing 600 instances with age, sex, region, income,
marriage status, children, car ownership status, saving activity, current activity,
mortgage status, and PEP. In our analysis, we will try to identify the common groups
of clients by applying the Expectation Maximization (EM) clustering.

Basic Algorithms – Classification, Regression, and Clustering

[64]

EM works as follows: given a set of clusters, EM first assigns each instance with a
probability distribution of belonging to a particular cluster. For example, if we start
with three clusters—A, B, and C—an instance might get the probability distribution
of 0.70, 0.10, and 0.20, belonging to the A, B, and C clusters, respectively. In the
second step, EM re-estimates the parameter vector of the probability distribution of
each class. The algorithm iterates these two steps until the parameters converge or
the maximum number of iterations is reached.

The number of clusters to be used in EM can be set either manually or automatically
by cross validation. Another approach to determining the number of clusters in a
dataset includes the elbow method. The method looks at the percentage of variance
that is explained with a specific number of clusters. The method suggests increasing
the number of clusters until the additional cluster does not add much information,
that is, explains little additional variance.

Clustering algorithms
The process of building a cluster model is quite similar to the process of building a
classification model, that is, load the data and build a model. Clustering algorithms
are implemented in the weka.clusterers package, as follows:

import java.io.BufferedReader;
import java.io.FileReader;

import weka.core.Instances;
import weka.clusterers.EM;

public class Clustering {

 public static void main(String args[]) throws Exception{

 //load data
 Instances data = new Instances(new BufferedReader
 (new FileReader(args[0])));

 // new instance of clusterer
 EM model = new EM();
 // build the clusterer
 model.buildClusterer(data);
 System.out.println(model);

 }
}

Chapter 3

[65]

The model identified the following six clusters:

EM

==

Number of clusters selected by cross validation: 6

 Cluster

Attribute 0 1 2 3 4 5

 (0.1) (0.13) (0.26) (0.25) (0.12) (0.14)

==

age

 0_34 10.0535 51.8472 122.2815 12.6207 3.1023 1.0948

 35_51 38.6282 24.4056 29.6252 89.4447 34.5208 3.3755

 52_max 13.4293 6.693 6.3459 50.8984 37.861 81.7724

 [total] 62.1111 82.9457 158.2526 152.9638 75.4841 86.2428

sex

 FEMALE 27.1812 32.2338 77.9304 83.5129 40.3199 44.8218

 MALE 33.9299 49.7119 79.3222 68.4509 34.1642 40.421

 [total] 61.1111 81.9457 157.2526 151.9638 74.4841 85.2428

region

 INNER_CITY 26.1651 46.7431 73.874 60.1973 33.3759 34.6445

 TOWN 24.6991 13.0716 48.4446 53.1731 21.617

17.9946

...

The table can be read as follows: the first line indicates six clusters, while the first
column shows attributes and their ranges. For example, the attribute age is split into
three ranges: 0-34, 35-51, and 52-max. The columns on the left indicate how many
instances fall into the specific range in each cluster, for example, clients in the 0-34
years age group are mostly in cluster #2 (122 instances).

Basic Algorithms – Classification, Regression, and Clustering

[66]

Evaluation
A clustering algorithm's quality can be estimated using the log likelihood measure,
which measures how consistent the identified clusters are. The dataset is split into
multiple folds and clustering is run with each fold. The motivation here is that if the
clustering algorithm assigns high probability to similar data that wasn't used to fit
parameters, then it has probably done a good job of capturing the data structure.
Weka offers the CluterEvaluation class to estimate it, as follows:

double logLikelihood = ClusterEvaluation.crossValidateModel(model, data,
10, new Random(1));

System.out.println(logLikelihood);

It has the following output:

 -8.773410259774291

Summary
In this chapter, you learned how to implement basic machine learning tasks with
Weka: classification, regression, and clustering. We briefly discussed attribute
selection process, trained models, and evaluated their performance.

The next chapter will focus on how to apply these techniques to solve real-life
problems, such as customer retention.

[67]

Customer Relationship
Prediction with Ensembles

Any type of company offering a service, product, or experience needs a solid
understanding of relationship with their customers; therefore, Customer
Relationship Management (CRM) is a key element of modern marketing strategies.
One of the biggest challenges that businesses face is the need to understand exactly
what causes a customer to buy new products.

In this chapter, we will work on a real-world marketing database provided by
the French telecom company, Orange. The task will be to estimate the following
likelihoods for customer actions:

• Switch provider (churn)
• Buy new products or services (appetency)
• Buy upgrades or add-ons proposed to them to make the sale more profitable

(upselling)

We will tackle the Knowledge Discovery and Data Mining (KDD) Cup 2009
challenge (KDD Cup, 2009) and show the steps to process the data using Weka. First,
we will parse and load the data and implement the basic baseline models. Later, we
will address advanced modeling techniques, including data pre-processing, attribute
selection, model selection, and evaluation.

Customer Relationship Prediction with Ensembles

[68]

KDD Cup is the leading data mining competition in the world.
It is organized annually by ACM Special Interest Group on
Knowledge Discovery and Data Mining. The winners are
announced at the Conference on Knowledge Discovery and
Data Mining, which is usually held in August.
Yearly archives, including all the corresponding datasets, are
available here: http://www.kdd.org/kdd-cup.

Customer relationship database
The most practical way to build knowledge on customer behavior is to produce
scores that explain a target variable such as churn, appetency, or upselling. The
score is computed by a model using input variables describing customers, for
example, current subscription, purchased devices, consumed minutes, and so on.
The scores are then used by the information system, for example, to provide relevant
personalized marketing actions.

In 2009, the conference on KDD organized a machine learning challenge on
customer-relationship prediction (KDD Cup, 2009).

Challenge
Given a large set of customer attributes, the task was to estimate the following three
target variables (KDD Cup, 2009):

• Churn probability, in our context, is the likelihood a customer will
switch providers:

Churn rate is also sometimes called attrition rate. It is one of two
primary factors that determine the steady-state level of customers
a business will support. In its broadest sense, churn rate is a
measure of the number of individuals or items moving into or out of
a collection over a specific period of time. The term is used in many
contexts, but is most widely applied in business with respect to a
contractual customer base. For instance, it is an important factor for
any business with a subscriber-based service model, including
mobile telephone networks and pay TV operators. The term is also
used to refer to participant turnover in peer-to-peer networks.

http://www.kdd.org/kdd-cup

Chapter 4

[69]

• Appetency probability, in our context, is the propensity to buy a service
or product

• Upselling probability is the likelihood that a customer will buy an add-on
or upgrade:

Upselling is a sales technique whereby a salesman attempts to have the
customer purchase more expensive items, upgrades, or other add-ons
in an attempt to make a more profitable sale. Upselling usually
involves marketing more profitable services or products, but upselling
can also be simply exposing the customer to other options he or she
may not have considered previously. Upselling can imply selling
something additional, or selling something that is more profitable or
otherwise preferable for the seller instead of the original sale.

The challenge was to beat the in-house system developed by Orange Labs. This was
an opportunity for the participants to prove that they could handle a large database,
including heterogeneous noisy data and unbalanced class distributions.

Dataset
For the challenge, the company Orange released a large dataset of customer data,
containing about one million customers, described in ten tables with hundreds of
fields. In the first step, they resampled the data to select a less unbalanced subset
containing 100,000 customers. In the second step, they used an automatic feature
construction tool that generated 20,000 features describing customers, which
was then narrowed down to 15,000 features. In the third step, the dataset was
anonymized by randomizing the order of features, discarding attribute names,
replacing nominal variables with randomly generated strings, and multiplying
continuous attributes by a random factor. Finally, all the instances were split
randomly into a train and test dataset.

The KDD Cup provided two sets of data: large set and small set, corresponding
to fast and slow challenge, respectively. They are described at the KDD Cup site
as follows:

Both training and test sets contain 50,000 examples. The data are split similarly
for the small and large versions, but the samples are ordered differently within the
training and within the test sets. Both small and large datasets have numerical and
categorical variables. For the large dataset, the first 14,740 variables are numerical
and the last 260 are categorical. For the small dataset, the first 190 variables are
numerical and the last 40 are categorical.

Customer Relationship Prediction with Ensembles

[70]

In this chapter, we will work with the small dataset consisting of 50,000 instances
described with 230 variables each. Each of the 50,000 rows of data correspond to
a client and are associated with three binary outcomes—one for each of the three
challenges (upsell, churn, and appetency).

To make this clearer, the following image illustrates the dataset in a table format:

The table depicts the first 25 instances, that is, customers, each described with 250
attributes. For this example, only a selected subset of 10 attributes is shown. The
dataset contains many missing values and even empty or constant attributes. The last
three columns of the table correspond to the three distinct class labels corresponding
to the ground truth, that is, if the customer indeed switched the provider (churn),
bought a service (appetency), or bought an upgrade (upsell). However, note that
the labels are provided separately from the data in three distinct files, hence, it is
essential to retain the order of the instances and corresponding class labels to ensure
proper correspondence.

Chapter 4

[71]

Evaluation
The submissions were evaluated according to the arithmetic mean of the area under
the ROC curve (AUC) for the three tasks, that is, churn, appetency, and upselling.
ROC curve shows the performance of model as a curve obtained by plotting
sensitivity against specificity for various threshold values used to determine the
classification result (refer to Chapter 1, Applied Machine Learning Quick Start, section
ROC curves). Now, the AUC is related to the area under this curve, meaning larger
the area, better the classifier. Most toolboxes, including Weka, provide an API to
calculate AUC score.

Basic naive Bayes classifier baseline
As per the rules of the challenge, the participants had to outperform the basic naive
Bayes classifier to qualify for prizes, which makes an assumption that features are
independent (refer to Chapter 1, Applied Machine Learning Quick Start).

The KDD Cup organizers run the vanilla naive Bayes classifier, without any feature
selection or hyperparameter adjustments. For the large dataset, the overall scores of
the naive Bayes on the test set were as follows:

• Churn problem: AUC = 0.6468
• Appetency problem: AUC = 0.6453
• Upselling problem: AUC=0.7211

Note that the baseline results are reported for large dataset only. Moreover, while
both training and test datasets are provided at the KDD Cup site, the actual true
labels for the test set are not provided. Therefore, when we process the data with our
models, there is no way to know how well the models will perform on the test set.
What we will do is use only the training data and evaluate our models with cross
validation. The results will not be directly comparable, but, nevertheless, we have an
idea for what a reasonable magnitude of the AUC score is.

Customer Relationship Prediction with Ensembles

[72]

Getting the data
At the KDD Cup web page (http://kdd.org/kdd-cup/view/kdd-cup-2009/
Data), you should see a page that looks like the following screenshot. First, under
the Small version (230 var.) header, download orange_small_train.data.zip.
Next, download the three sets of true labels associated with this training data. The
following files are found under the Real binary targets (small) header:

• orange_small_train_appentency.labels

• orange_small_train_churn.labels

• orange_small_train_upselling.labels

Save and unzip all the files marked in the red boxes, as shown in the following
screenshot:

http://kdd.org/kdd-cup/view/kdd-cup-2009/Data
http://kdd.org/kdd-cup/view/kdd-cup-2009/Data

Chapter 4

[73]

In the following sections, we will first load the data into Weka and apply basic
modeling with the naive Bayes to obtain our own baseline AUC scores. Later, we
will look into more advanced modeling techniques and tricks.

Loading the data
We will load the data to Weka directly from the .cvs format. For this purpose, we
will write a function that accepts the path to the data file and the true labels file.
The function will load and merge both datasets and remove empty attributes:

public static Instances loadData(String pathData, String
 pathLabeles) throws Exception {

First, we load the data using the CSVLoader() class. Additionally, we specify the
\t tab as a field separator and force the last 40 attributes to be parsed as nominal:

// Load data
CSVLoader loader = new CSVLoader();
loader.setFieldSeparator("\t");
loader.setNominalAttributes("191-last");
loader.setSource(new File(pathData));
Instances data = loader.getDataSet();

The CSVLoader class accepts many additional parameters
specifying column separator, string enclosures, whether
a header row is present or not, and so on. Complete
documentation is available here:
http://weka.sourceforge.net/doc.dev/weka/core/
converters/CSVLoader.html

Next, some of the attributes do not contain a single value and Weka automatically
recognizes them as the String attributes. We actually do not need them, so we can
safely remove them using the RemoveType filter. Additionally, we specify the –T
parameters, which means remove attribute of specific type and the attribute type that
we want to remove:

// remove empty attributes identified as String attribute
RemoveType removeString = new RemoveType();
removeString.setOptions(new String[]{"-T", "string"});
removeString.setInputFormat(data);
Instances filteredData = Filter.useFilter(data, removeString);

Alternatively, we could use the void deleteStringAttributes() method
implemented within the Instances class, which has the same effect, for example,
data.removeStringAttributes().

http://weka.sourceforge.net/doc.dev/weka/core/converters/CSVLoader.html
http://weka.sourceforge.net/doc.dev/weka/core/converters/CSVLoader.html

Customer Relationship Prediction with Ensembles

[74]

Now, we will load and assign class labels to the data. We will again utilize
CVSLoader, where we specify that the file does not have any header line, that is,
setNoHeaderRowPresent(true):

// Load labeles
loader = new CSVLoader();
loader.setFieldSeparator("\t");
loader.setNoHeaderRowPresent(true);
loader.setNominalAttributes("first-last");
loader.setSource(new File(pathLabeles));
Instances labels = loader.getDataSet();

Once we have loaded both files, we can merge them together by calling the Instances.
mergeInstances (Instances, Instances) static method. The method returns a
new dataset that has all the attributes from the first dataset plus the attributes from the
second set. Note that the number of instances in both datasets must be the same:

// Append label as class value
Instances labeledData = Instances.mergeInstances(filteredData,
 labeles);

Finally, we set the last attribute, that is, the label attribute that we have just added, as
a target variable and return the resulting dataset:

// set the label attribute as class
labeledData.setClassIndex(labeledData.numAttributes() - 1);

System.out.println(labeledData.toSummaryString());
return labeledData;
}

The function outputs a summary as shown in the following and returns the
labeled dataset:

Relation Name: orange_small_train.data-weka.filters.unsupervised.
attribute.RemoveType-Tstring_orange_small_train_churn.labels.txt

Num Instances: 50000

Num Attributes: 215

Name Type Nom Int Real Missing Unique Dist

1 Var1 Num 0% 1% 0% 49298 / 99% 8 / 0% 18

2 Var2 Num 0% 2% 0% 48759 / 98% 1 / 0% 2

3 Var3 Num 0% 2% 0% 48760 / 98% 104 / 0% 146

4 Var4 Num 0% 3% 0% 48421 / 97% 1 / 0% 4

...

Chapter 4

[75]

Basic modeling
In this section, we will implement our own baseline model by following the approach
that the KDD Cup organizers took. However, before we go to the model, let's first
implement the evaluation engine that will return AUC on all three problems.

Evaluating models
Now, let's take a closer look at the evaluation function. The evaluation function
accepts an initialized model, cross-validates the model on all three problems, and
reports the results as an area under the ROC curve (AUC), as follows:

public static double[] evaluate(Classifier model)
 throws Exception {

 double results[] = new double[4];

 String[] labelFiles = new String[]{
 "churn", "appetency", "upselling"};

 double overallScore = 0.0;
 for (int i = 0; i < labelFiles.length; i++) {

First, we call the Instance loadData(String, String) function that we
implemented earlier to load the train data and merge it with the selected labels:

 // Load data
 Instances train_data = loadData(
 path + "orange_small_train.data",
 path+"orange_small_train_"+labelFiles[i]+".labels.txt");

Next, we initialize the weka.classifiers.Evaluation class and pass our dataset
(the dataset is used only to extract data properties, the actual data are not considered).
We call the void crossValidateModel(Classifier, Instances, int, Random)
method to begin cross validation and select to create five folds. As validation is done
on random subsets of the data, we need to pass a random seed as well:

 // cross-validate the data
 Evaluation eval = new Evaluation(train_data);
 eval.crossValidateModel(model, train_data, 5,
 new Random(1));

Customer Relationship Prediction with Ensembles

[76]

After the evaluation completes, we read the results by calling the double
areUnderROC(int) method. As the metric depends on the target value that we are
interested in, the method expects a class value index, which can be extracted by
searching the index of the "1" value in the class attribute:

 // Save results
 results[i] = eval.areaUnderROC(
 train_data.classAttribute().indexOfValue("1"));
 overallScore += results[i];
 }

Finally, the results are averaged and returned:

 // Get average results over all three problems
 results[3] = overallScore / 3;
 return results;
}

Implementing naive Bayes baseline
Now, when we have all the ingredients, we can replicate the naive Bayes approach
that we are expected to outperform. This approach will not include any additional
data pre-processing, attribute selection, and model selection. As we do not have true
labels for test data, we will apply the five-fold cross validation to evaluate the model
on a small dataset.

First, we initialize a naive Bayes classifier, as follows:

Classifier baselineNB = new NaiveBayes();

Next, we pass the classifier to our evaluation function, which loads the data and
applies cross validation. The function returns an area under the ROC curve score for
all three problems and overall results:

double resNB[] = evaluate(baselineNB);
System.out.println("Naive Bayes\n" +
"\tchurn: " + resNB[0] + "\n" +
"\tappetency: " + resNB[1] + "\n" +
"\tup-sell: " + resNB[2] + "\n" +
"\toverall: " + resNB[3] + "\n");

In our case, the model achieves the following results:

Naive Bayes

 churn: 0.5897891153549814

 appetency: 0.630778394752436

Chapter 4

[77]

 up-sell: 0.6686116692438094

 overall: 0.6297263931170756

These results will serve as a baseline when we tackle the challenge with more
advanced modeling. If we process the data with significantly more sophisticated,
time-consuming, and complex techniques, we expect the results to be much better.
Otherwise, we are simply wasting the resources. In general, when solving machine
learning problems, it is always a good idea to create a simple baseline classifier that
serves us as an orientation point.

Advanced modeling with ensembles
In the previous section, we implemented an orientation baseline, so let's focus on
heavy machinery. We will follow the approach taken by the KDD Cup 2009 winning
solution developed by the IBM Research team (Niculescu-Mizil and others, 2009).

Their strategy to address the challenge was using the Ensemble Selection algorithm
(Caruana and Niculescu-Mizil, 2004). This is an ensemble method, which means it
constructs a series of models and combines their output in a specific way to provide
the final classification. It has several desirable properties as shown in the following
list that make it a good fit for this challenge:

• It was proven to be robust, yielding excellent performance
• It can be optimized for a specific performance metric, including AUC
• It allows different classifiers to be added to the library
• It is an anytime method, meaning that, if we run out of time, we have a

solution available

In this section, we will loosely follow the steps as described in their report. Note, this
is not an exact implementation of their approach, but rather a solution overview that
will include the necessary steps to dive deeper.

The general overview of steps is as follows:

1. First, we will preprocess the data by removing attributes that clearly do
not bring any value, for example, all the missing or constant values; fixing
missing values in order to help machine learning algorithms, which cannot
deal with them; and converting categorical attributes to numerical.

2. Next, we will run attributes selection algorithm to select only a subset of
attribute that can help in prediction of tasks.

3. In the third step, we will instantiate the Ensemble Selection algorithms with
a wide variety of models, and, finally, evaluate the performance.

Customer Relationship Prediction with Ensembles

[78]

Before we start
For this task, we will need an additional Weka package, ensembleLibrary. Weka
3.7.2 or higher versions support external packages developed mainly by the
academic community. A list of WEKA Packages is available at http://weka.
sourceforge.net/packageMetaData as shown at the following screenshot:

Find and download the latest available version of the ensembleLibrary package
at http://prdownloads.sourceforge.net/weka/ensembleLibrary1.0.5.zip?do
wnload.

After you unzip the package, locate ensembleLibrary.jar and import it to your
code, as follows:

import weka.classifiers.meta.EnsembleSelection;

http://weka.sourceforge.net/packageMetaData
http://weka.sourceforge.net/packageMetaData
http://prdownloads.sourceforge.net/weka/ensembleLibrary1.0.5.zip?download
http://prdownloads.sourceforge.net/weka/ensembleLibrary1.0.5.zip?download

Chapter 4

[79]

Data pre-processing
First, we will utilize Weka's built-in weka.filters.unsupervised.attribute.
RemoveUseless filter, which works exactly as its name suggests. It removes the
attributes that do not vary much, for instance, all constant attributes are removed,
and attributes that vary too much, almost at random. The maximum variance, which
is applied only to nominal attributes, is specified with the –M parameter. The default
parameter is 99%, which means that if more than 99% of all instances have unique
attribute values, the attribute is removed, as follows:

RemoveUseless removeUseless = new RemoveUseless();
removeUseless.setOptions(new String[] { "-M", "99" });// threshold
removeUseless.setInputFormat(data);
data = Filter.useFilter(data, removeUseless);

Next, we will replace all the missing values in the dataset with the modes (nominal
attributes) and means (numeric attributes) from the training data by using the weka.
filters.unsupervised.attribute.ReplaceMissingValues filter. In general,
missing values replacement should be proceeded with caution while taking into
consideration the meaning and context of the attributes:

ReplaceMissingValues fixMissing = new ReplaceMissingValues();
fixMissing.setInputFormat(data);
data = Filter.useFilter(data, fixMissing);

Finally, we will discretize numeric attributes, that is, we transform numeric
attributes into intervals using the weka.filters.unsupervised.attribute.
Discretize filter. With the –B option, we set to split numeric attributes into four
intervals, and the –R option will specify the range of attributes (only numeric
attributes will be discretized):

Discretize discretizeNumeric = new Discretize();
discretizeNumeric.setOptions(new String[] {
 "-B", "4", // no of bins
 "-R", "first-last"}); //range of attributes
fixMissing.setInputFormat(data);
data = Filter.useFilter(data, fixMissing);

Customer Relationship Prediction with Ensembles

[80]

Attribute selection
In the next step, we will select only informative attributes, that is, attributes
that more likely help with prediction. A standard approach to this problem is
to check the information gain carried by each attribute. We will use the weka.
attributeSelection.AttributeSelection filter, which requires two additional
methods: evaluator, that is, how attribute usefulness is calculated, and search
algorithms, that is, how to select a subset of attributes.

In our case, we first initialize weka.attributeSelection.InfoGainAttributeEval
that implements calculation of information gain:

InfoGainAttributeEval eval = new InfoGainAttributeEval();
Ranker search = new Ranker();

To select only top attributes above some threshold, we initialize weka.
attributeSelection.Ranker to rank the attributes with information gain above a
specific threshold. We specify this with the –T parameter, while keeping the value of
the threshold low to keep the attributes with at least some information:

search.setOptions(new String[] { "-T", "0.001" });

The general rule for settings this threshold is to sort the
attributes by information gain and pick the threshold where
the information gain drops to negligible value.

Next, we can initialize the AttributeSelection class, set the evaluator and ranker,
and apply the attribute selection to our dataset:

AttributeSelection attSelect = new AttributeSelection();
attSelect.setEvaluator(eval);
attSelect.setSearch(search);

// apply attribute selection
attSelect.SelectAttributes(data);

Chapter 4

[81]

Finally, we remove the attributes that were not selected in the last run by calling the
reduceDimensionality(Instances) method.

// remove the attributes not selected in the last run
data = attSelect.reduceDimensionality(data);

At the end, we are left with 214 out of 230 attributes.

Model selection
Over the years, practitioners in the field of machine learning have developed a wide
variety of learning algorithms and improvements to the existing ones. There are so
many unique supervised learning methods that it is challenging to keep track of all
of them. As characteristics of the datasets vary, no one method is the best in all the
cases, but different algorithms are able to take advantage of different characteristics
and relationships of a given dataset. The property the Ensemble Selection algorithm
is to try to leverage (Jung, 2005):

Intuitively, the goal of ensemble selection algorithm is to automatically detect and
combine the strengths of these unique algorithms to create a sum that is greater than
the parts. This is accomplished by creating a library that is intended to be as diverse
as possible to capitalize on a large number of unique learning approaches. This
paradigm of overproducing a huge number of models is very different from more
traditional ensemble approaches. Thus far, our results have been very encouraging.

First, we need to create the model library by initializing the weka.classifiers.
EnsembleLibrary class, which will help us define the models:

EnsembleLibrary ensembleLib = new EnsembleLibrary();

Next, we add the models and their parameters as strings to the library as string
values, for example, we can add three decision tree learners with different
parameters, as follows:

ensembleLib.addModel("weka.classifiers.trees.J48 -S -C 0.25 -B -M
 2");
ensembleLib.addModel("weka.classifiers.trees.J48 -S -C 0.25 -B -M
 2 -A");

Customer Relationship Prediction with Ensembles

[82]

If you are familiar with the Weka graphical interface, you can also explore the
algorithms and their configurations there and copy the configuration as shown in
the following screenshot: right-click on the algorithm name and navigate to Edit
configuration | Copy configuration string:

To complete the example, we added the following algorithms and their parameters:

• Naive Bayes that was used as default baseline:
ensembleLib.addModel("weka.classifiers.bayes.NaiveBayes");

• k-nearest neighbors based on lazy models?:
ensembleLib.addModel("weka.classifiers.lazy.IBk");

• Logistic regression as simple logistic with default parameters:
ensembleLib.addModel("weka.classifiers.functions.SimpleLogi
 stic");

• Support vector machines with default parameters:
ensembleLib.addModel("weka.classifiers.functions.SMO");

• AdaBoost, which is an ensemble method itself:
ensembleLib.addModel("weka.classifiers.meta.AdaBoostM1");

Chapter 4

[83]

• LogitBoost, an ensemble method based on logistic regression:
ensembleLib.addModel("weka.classifiers.meta.LogitBoost");

• Decision stump, an ensemble method based on one-level decision trees:

ensembleLib.addModel("classifiers.trees.DecisionStump");

As the EnsembleLibrary implementation is primarily focused on GUI and console
users, we have to save the models into a file by calling the saveLibrary(File,
EnsembleLibrary, JComponent) method, as follows:

EnsembleLibrary.saveLibrary(new
 File(path+"ensembleLib.model.xml"), ensembleLib, null);
System.out.println(ensembleLib.getModels());

Next, we can initialize the Ensemble Selection algorithm by instantiating the weka.
classifiers.meta.EnsembleSelection class. Let's first review the following
method options:

• -L </path/to/modelLibrary>: This specifies the modelLibrary file,
continuing the list of all models.

• -W </path/to/working/directory>: This specifies the working directory,
where all models will be stored.

• -B <numModelBags>: This sets the number of bags, that is, the number of
iterations to run the Ensemble Selection algorithm.

• -E <modelRatio>: This sets the ratio of library models that will be
randomly chosen to populate each bag of models.

• -V <validationRatio>: This sets the ratio of the training data set that will
be reserved for validation.

• -H <hillClimbIterations>: This sets the number of hill climbing
iterations to be performed on each model bag.

• -I <sortInitialization>: This sets the ratio of the ensemble library that
the sort initialization algorithm will be able to choose from, while initializing
the ensemble for each model bag.

• -X <numFolds>: This sets the number of cross validation folds.
• -P <hillclimbMettric>: This specifies the metric that will be used

for model selection during the hill climbing algorithm. Valid metrics are
accuracy, rmse, roc, precision, recall, fscore, and all.

Customer Relationship Prediction with Ensembles

[84]

• -A <algorithm>: This specifies the algorithm to be used for ensemble
selection. Valid algorithms are forward (default) for forward selection,
backward for backward elimination, both for both forward and backward
elimination, best to simply print the top performer from the ensemble library,
and library to only train the models in the ensemble library.

• -R: This flags whether or not the models can be selected more than once for
an ensemble.

• -G: This states whether the sort initialization greedily stops adding models
when the performance degrades.

• -O: This is a flag for verbose output. This prints the performance of all the
selected models.

• -S <num>: This is a random number seed (default 1).
• -D: If set, the classifier is run in the debug mode and may output additional

information to the console.

We initialize the algorithm with the following initial parameters, where we specified
optimizing the ROC metric:

EnsembleSelection ensambleSel = new EnsembleSelection();
ensambleSel.setOptions(new String[]{
 "-L", path+"ensembleLib.model.xml", // </path/to/modelLibrary>
 "-W", path+"esTmp", // </path/to/working/directory> -
"-B", "10", // <numModelBags>
 "-E", "1.0", // <modelRatio>.
 "-V", "0.25", // <validationRatio>
 "-H", "100", // <hillClimbIterations>
"-I", "1.0", // <sortInitialization>
 "-X", "2", // <numFolds>
 "-P", "roc", // <hillclimbMettric>
 "-A", "forward", // <algorithm>
 "-R", "true", // - Flag to be selected more than once
 "-G", "true", // - stops adding models when performance degrades
 "-O", "true", // - verbose output.
 "-S", "1", // <num> - Random number seed.
 "-D", "true" // - run in debug mode
});

Chapter 4

[85]

Performance evaluation
The evaluation is heavy both computationally and memory-wise, so make sure that
you initialize the JVM with extra heap space—for instance, java –Xmx16g—while
the computation can take a couple of hours or days, depending on the number of
algorithms you include in the model library. This example took 4 hours and 22
minutes on 12-core Intel Xeon E5-2420 CPU with 32 GB of memory, utilizing 10%
CPU and 6 GB of memory on average.

We call our evaluation method and output the results, as follows:

double resES[] = evaluate(ensambleSel);
System.out.println("Ensemble Selection\n"
+ "\tchurn: " + resES[0] + "\n"
+ "\tappetency: " + resES[1] + "\n"
+ "\tup-sell: " + resES[2] + "\n"
+ "\toverall: " + resES[3] + "\n");

The specific set of classifiers in the model library achieved the following result:

Ensamble

 churn: 0.7109874158176481

 appetency: 0.786325687118347

 up-sell: 0.8521363243575182

 overall: 0.7831498090978378

Overall, the approach has brought us to a significant improvement of more than 15
percentage points compared to the initial baseline that we designed at the beginning
of the chapter. While it is hard to give a definite answer, the improvement was
mainly due to three factors: data pre-processing and attribute selection, exploration
of a large variety of learning methods, and use of an ensemble-building technique
that is able to take advantage of the variety of base classifiers without overfitting.
However, the improvement requires a significant increase in processing time, as well
as working memory.

Customer Relationship Prediction with Ensembles

[86]

Summary
In this chapter, we tackled the KDD Cup 2009 challenge on customer-relationship
prediction, where we implemented the data pre-processing steps, addressing the
missing values and redundant attributes. We followed the winning KDD Cup
solution, studying how to leverage ensemble methods using a basket of learning
algorithms, which can significantly boost the classification performance.

In the next chapter, we will tackle another problem addressing the customer
behavior, that is, the analysis of purchasing behavior, where you will learn how to
use algorithms that detect frequently occurring patterns.

[87]

Affinity Analysis
Affinity analysis is the heart of Market basket analysis (MBA). It can discover
co-occurrence relationships among activities performed by specific users or groups.
In retail, affinity analysis can help you understand the purchasing behavior of
customers. These insights can drive revenue through smart cross-selling and
upselling strategies and can assist you in developing loyalty programs, sales
promotions, and discount plans.

In this chapter, we will look into the following topics:

• Market basket analysis
• Association rule learning
• Other applications in various domains

First, we will revise the core association rule learning concepts and algorithms,
such as support, lift, Apriori algorithm, and FP-growth algorithm. Next, we will
use Weka to perform our first affinity analysis on supermarket dataset and study
how to interpret the resulting rules. We will conclude the chapter by analyzing how
association rule learning can be applied in other domains, such as IT Operations
Analytics, medicine, and others.

Market basket analysis
Since the introduction of electronic point of sale, retailers have been collecting an
incredible amount of data. To leverage this data in order to produce business value,
they first developed a way to consolidate and aggregate the data to understand the
basics of the business. What are they selling? How many units are moving? What is
the sales amount?

Affinity Analysis

[88]

Recently, the focus shifted to the lowest level of granularity—the market basket
transaction. At this level of detail, the retailers have direct visibility into the market
basket of each customer who shopped at their store, understanding not only the
quantity of the purchased items in that particular basket, but also how these items
were bought in conjunction with each other. This can be used to drive decisions
about how to differentiate store assortment and merchandise, as well as effectively
combine offers of multiple products, within and across categories, to drive higher
sales and profits. These decisions can be implemented across an entire retail chain,
by channel, at the local store level, and even for a specific customer with so-called
personalized marketing, where a unique product offering is made for each customer.

In this shopping basket, the shopper placed a quart

of orange juice, some bananas, dish detergent,

some window cleaner and a six-pack of soda.

Are window cleaning products

purchased when detergent

and orange juice are bought

together?

How to the demographics of

the neighborhood affect

what customers buy?

Is soda typically purchased with

bananas? Does the brand of

soda make a difference?

What should be in the

basket but is not?

Questions in a Shopping Cart

MBA covers a wide variety of analysis:

• Item affinity: This defines the likelihood of two (or more) items being
purchased together

• Identification of driver items: This enables the identification of the items
that drive people to the store and always need to be in stock

• Trip classification: This analyzes the content of the basket and classifies the
shopping trip into a category: weekly grocery trip, special occasion, and so on

Chapter 5

[89]

• Store-to-store comparison: Understanding the number of baskets allows any
metric to be divided by the total number of baskets, effectively creating a
convenient and easy way to compare the stores with different characteristics
(units sold per customer, revenue per transaction, number of items per
basket, and so on)

• Revenue optimization: This helps in determining the magic price points for
this store, increasing the size and value of the market basket

• Marketing: This helps in identifying more profitable advertising and
promotions, targeting offers more precisely in order to improve ROI,
generating better loyalty card promotions with longitudinal analysis, and
attracting more traffic to the store

• Operations optimization: This helps in matching the inventory to the
requirement by customizing the store and assortment to trade area
demographics, optimizing store layout

Predictive models help retailers to direct the right offer to the right customer
segments/profiles, as well as gain understanding of what is valid for which
customer, predict the probability score of customers responding to this offer, and
understand the customer value gain from the offer acceptance.

Affinity analysis
Affinity analysis is used to determine the likelihood that a set of items will be bought
together. In retail, there are natural product affinities, for example, it is very typical
for people who buy hamburger patties to buy hamburger rolls, along with ketchup,
mustard, tomatoes, and other items that make up the burger experience.

While there are some product affinities that might seem trivial, there are some
affinities that are not very obvious. A classic example is toothpaste and tuna. It seems
that people who eat tuna are more prone to brush their teeth right after finishing
their meal. So, why it is important for retailers to get a good grasp of the product
affinities? This information is critical to appropriately plan promotions as reducing
the price for some items may cause a spike on related high-affinity items without the
need to further promote these related items.

In the following section, we'll look into the algorithms for association rule learning:
Apriori and FP-growth.

Affinity Analysis

[90]

Association rule learning
Association rule learning has been a popular approach to discover interesting
relations hips between items in large databases. It is most commonly applied in retail
to reveal regularities between products.

Asociation rule learning approaches find patterns as interesting strong rules in the
database using different measures of interestingness. For example, the following rule
would indicate that if a customer buys onions and potatoes together, they are likely
to also buy hamburger meat: {onions, potatoes} -> {burger}

Another classic story probably told in every machine learning class is the beer and
diaper story. An analysis of supermarket shoppers' behavior showed that customers,
presumably young men, who buy diapers tend also to buy beer. It immediately
became a popular example of how an unexpected association rule might be found
from everyday data; however, there are varying opinions as to how much of the
story is true. Daniel Powers says (DSS News, 2002):

"In 1992, Thomas Blischok, manager of a retail consulting group at Teradata, and
his staff prepared an analysis of 1.2 million market baskets from about 25 Osco
Drug stores. Database queries were developed to identify affinities. The analysis
"did discover that between 5:00 and 7:00 p.m. consumers bought beer and diapers".
Osco managers did NOT exploit the beer and diapers relationship by moving the
products closer together on the shelves."

In addition to the preceding example from MBA, association rules are today
employed in many application areas, including web usage mining, intrusion
detection, continuous production, and bioinformatics. We'll take a closer look at
these areas later in this chapter.

Basic concepts
Before we dive into algorithms, let's first review the basic concepts.

Database of transactions
In association rule mining, the dataset is structured a bit differently than the
approach presented in the first chapter. First, there is no class value, as this is
not required for learning association rules. Next, the dataset is presented as a
transactional table, where each supermarket item corresponds to a binary attribute.
Hence, the feature vector could be extremely large.

Chapter 5

[91]

Consider the following example. Suppose we have four receipts as shown in the
following image. Each receipt corresponds to a purchasing transaction:

To write these receipts in the form of a transactional database, we first identify all the
possible items that appear in the receipts. These items are onions, potatoes, burger,
beer, and dippers. Each purchase, that is, transaction, is presented in a row, and there
is 1 if an item was purchased within the transaction and 0 otherwise, as shown in the
following table:

Transaction ID Onions Potatoes Burger Beer Dippers
1 0 1 1 0 0
2 1 1 1 1 0
3 0 0 0 1 1
4 1 0 1 1 0

This example is really small. In practical applications, the dataset often contains
thousands or millions of transactions, which allow learning algorithm the discovery
of statistically significant patterns.

Itemset and rule
Itemset is simply a set of items, for example, {onions, potatoes, burger}. A rule consists
of two itemsets, X and Y, in the following format X -> Y.

This indicates a pattern that when the X itemset is observed, Y is also observed. To
select interesting rules, various measures of significance can be used.

Affinity Analysis

[92]

Support
Support, for an itemset, is defined as the proportion of transactions that contain the
itemset. The {potatoes, burger} itemset in the previous table has the following support
as it occurs in 50% of transactions (2 out of 4 transactions) supp({potatoes, burger }) =
2/4 = 0.5.

Intuitively, it indicates the share of transactions that support the pattern.

Confidence
Confidence of a rule indicates its accuracy. It is defined as

() () ()/Conf X Y supp X U Y supp X− > = .

For example, the {onions, burger} -> {beer} rule has the confidence 0.5/0.5 = 1.0 in
the previous table, which means that 100% of the times when onions and burger are
bought together, beer is bought as well.

Apriori algorithm
Apriori algorithm is a classic algorithm used for frequent pattern mining and
association rule learning over transactional. By identifying the frequent individual
items in a database and extending them to larger itemsets, Apriori can determine the
association rules, which highlight general trends about a database.

Apriori algorithm constructs a set of itemsets, for example, itemset1= {Item A, Item B},
and calculates support, which counts the number of occurrences in the database.
Apriori then uses a bottom-up approach, where frequent itemsets are extended,
one item at a time, and it works by eliminating the largest sets as candidates by first
looking at the smaller sets and recognizing that a large set cannot be frequent unless
all its subsets are. The algorithm terminates when no further successful extensions
are found.

Although, Apriori algorithm is an important milestone in machine learning, it suffers
from a number of inefficiencies and tradeoffs. In the following section, we'll look into
a more recent FP-growth technique.

Chapter 5

[93]

FP-growth algorithm
FP-growth, where frequent pattern (FP), represents the transaction database as a
prefix tree. First, the algorithm counts the occurrence of items in the dataset. In the
second pass, it builds a prefix tree, an ordered tree data structure commonly used to
store a string. An example of prefix tree based on the previous example is shown in
the following diagram:

If many transactions share most frequent items, prefix tree provides high
compression close to the tree root. Large itemsets are grown directly, instead of
generating candidate items and testing them against the entire database. Growth
starts at the bottom of the tree, by finding all the itemsets matching minimal support
and confidence. Once the recursive process has completed, all large itemsets with
minimum coverage have been found and association rule creation begins.

FP-growth algorithms have several advantages. First, it constructs an FP-tree, which
encodes the original dataset in a substantially compact presentation. Second, it
efficiently builds frequent itemsets, leveraging the FP-tree structure and divide-and-
conquer strategy.

Affinity Analysis

[94]

The supermarket dataset
The supermarket dataset, located in datasets/chap5/supermarket.arff, describes
the shopping habits of supermarket customers. Most of the attributes stand for a
particular item group, for example, diary foods, beef, potatoes; or department, for
example, department 79, department 81, and so on. The following image shows an
excerpt of the database, where the value is t if the customer had bought an item and
missing otherwise. There is one instance per customer. The dataset contains no class
attribute, as this is not required to learn association rules. A sample of data is shown
in the following table:

Discover patterns
To discover shopping patterns, we will use the two algorithms that we have looked
into before, Apriori and FP-growth.

Apriori
We will use the Apriori algorithm as implemented in Weka. It iteratively reduces
the minimum support until it finds the required number of rules with the given
minimum confidence:

import java.io.BufferedReader;
import java.io.FileReader;
import weka.core.Instances;
import weka.associations.Apriori;

Chapter 5

[95]

First, we will load the supermarket dataset:

Instances data = new Instances(
new BufferedReader(
new FileReader("datasets/chap5/supermarket.arff")));

Next, we will initialize an Apriori instance and call the
buildAssociations(Instances) function to start frequent pattern
mining, as follows:

Apriori model = new Apriori();
model.buildAssociations(data);

Finally, we can output the discovered itemsets and rules, as shown in the
following code:

System.out.println(model);

The output is as follows:

Apriori

=======

Minimum support: 0.15 (694 instances)

Minimum metric <confidence>: 0.9

Number of cycles performed: 17

Generated sets of large itemsets:

Size of set of large itemsets L(1): 44

Size of set of large itemsets L(2): 380

Size of set of large itemsets L(3): 910

Size of set of large itemsets L(4): 633

Size of set of large itemsets L(5): 105

Size of set of large itemsets L(6): 1

Best rules found:

 1. biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t
723 <conf:(0.92)> lift:(1.27) lev:(0.03) [155] conv:(3.35)

 2. baking needs=t biscuits=t fruit=t total=high 760 ==> bread and cake=t
696 <conf:(0.92)> lift:(1.27) lev:(0.03) [149] conv:(3.28)

 3. baking needs=t frozen foods=t fruit=t total=high 770 ==> bread and
cake=t 705 <conf:(0.92)> lift:(1.27) lev:(0.03) [150] conv:(3.27)

...

Affinity Analysis

[96]

The algorithm outputs ten best rules according to confidence. Let's look the first rule
and interpret the output, as follows:

biscuits=t frozen foods=t fruit=t total=high 788 ==> bread and cake=t 723
<conf:(0.92)> lift:(1.27) lev:(0.03) [155] conv:(3.35)

It says that when biscuits, frozen foods, and fruits are bought together and the total
purchase price is high, it is also very likely that bread and cake are purchased as
well. The {biscuits, frozen foods, fruit, total high} itemset appears in
788 transactions, while the {bread, cake} itemset appears in 723 transactions. The
confidence of this rule is 0.92, meaning that the rule holds true in 92% of transactions
where the {biscuits, frozen foods, fruit, total high} itemset is present.

The output also reports additional measures such as lift, leverage, and conviction,
which estimate the accuracy against our initial assumptions, for example, the 3.35
conviction value indicates that the rule would be incorrect 3.35 times as often if the
association was purely a random chance. Lift measures the number of times X and
Y occur together than expected if they were statistically independent (lift=1). The
2.16 lift in the X -> Y rule means that the probability of X is 2.16 times greater than
the probability of Y.

FP-growth
Now, let's try to get the same results with more efficient FP-growth algorithm.
FP-growth is also implemented in the weka.associations package:

import weka.associations.FPGrowth;

The FP-growth is initialized similarly as we did earlier:

FPGrowth fpgModel = new FPGrowth();
fpgModel.buildAssociations(data);
System.out.println(fpgModel);

The output reveals that FP-growth discovered 16 rules:

FPGrowth found 16 rules (displaying top 10)

 1. [fruit=t, frozen foods=t, biscuits=t, total=high]: 788 ==> [bread and
cake=t]: 723 <conf:(0.92)> lift:(1.27) lev:(0.03) conv:(3.35)

 2. [fruit=t, baking needs=t, biscuits=t, total=high]: 760 ==> [bread and
cake=t]: 696 <conf:(0.92)> lift:(1.27) lev:(0.03) conv:(3.28)

...

We can observe that FP-growth found the same set of rules as Apriori; however, the
time required to process larger datasets can be significantly shorter.

Chapter 5

[97]

Other applications in various areas
We looked into affinity analysis to demystify shopping behavior patterns in
supermarkets. Although the roots of association rule learning are in analyzing
point-of-sale transactions, they can be applied outside the retail industry to find
relationships among other types of baskets. The notion of a basket can easily be
extended to services and products, for example, to analyze items purchased using
a credit card, such as rental cars and hotel rooms, and to analyze information on
value-added services purchased by telecom customers (call waiting, call forwarding,
DSL, speed call, and so on), which can help the operators determine the ways to
improve their bundling of service packages.

Additionally, we will look into the following examples of potential cross-industry
applications:

• Medical diagnosis
• Protein sequences
• Census data
• Customer relationship management
• IT Operations Analytics

Medical diagnosis
Applying association rules in medical diagnosis can be used to assist physicians
while curing patients. The general problem of the induction of reliable diagnostic
rules is hard as, theoretically, no induction process can guarantee the correctness
of induced hypotheses by itself. Practically, diagnosis is not an easy process as it
involves unreliable diagnosis tests and the presence of noise in training examples.

Nevertheless, association rules can be used to identify likely symptoms appearing
together. A transaction, in this case, corresponds to a medical case, while symptoms
correspond to items. When a patient is treated, a list of symptoms is recorded as one
transaction.

Protein sequences
A lot of research has gone into understanding the composition and nature of
proteins; yet many things remain to be understood satisfactorily. It is now generally
believed that amino-acid sequences of proteins are not random.

Affinity Analysis

[98]

With association rules, it is possible to identify associations between different
amino acids that are present in a protein. A protein is a sequences made up of 20
types of amino acids. Each protein has a unique three-dimensional structure, which
depends on the amino-acid sequence; slight change in the sequence may change
the functioning of protein. To apply association rules, a protein corresponds to a
transaction, while amino acids and their structure corespond to the items.

Such association rules are desirable for enhancing our understanding of protein
composition and hold the potential to give clues regarding the global interactions
amongst some particular sets of amino acids occurring in the proteins. Knowledge
of these association rules or constraints is highly desirable for synthesis of artificial
proteins.

Census data
Censuses make a huge variety of general statistical information about the society
available to both researchers and general public. The information related to population
and economic census can be forecasted in planning public services (education, health,
transport, and funds) as well as in business (for setting up new factories, shopping
malls, or banks and even marketing particular products).

To discover frequent patterns, each statistical area (for example, municipality,
city, and neighborhood) corresponds to a transaction, and the collected indicators
correspond to the items.

Customer relationship management
The customer relationship management (CRM), as we briefly discussed in the
previous chapters, is a rich source of data through which companies hope to identify
the preference of different customer groups, products, and services in order to
enhance the cohesion between their products and services and their customers.

Association rules can reinforce the knowledge management process and allow the
marketing personnel to know their customers well in order to provide better quality
services. For example, association rules can be applied to detect a change of customer
behavior at different time snapshots from customer profiles and sales data. The basic
idea is to discover changes from two datasets and generate rules from each dataset to
carry out rule matching.

Chapter 5

[99]

IT Operations Analytics
Based on records of a large number of transactions, association rule learning is
well-suited to be applied to the data that is routinely collected in day-to-day IT
operations, enabling IT Operations Analytics tools to detect frequent patterns and
identify critical changes. IT specialists need to see the big picture and understand, for
example, how a problem on a database could impact an application server.

For a specific day, IT operations may take in a variety of alerts, presenting them
in a transactional database. Using an association rule learning algorithm, IT
Operations Analytics tools can correlate and detect the frequent patterns of alerts
appearing together. This can lead to a better understanding about how a component
impacts another.

With identified alert patterns, it is possible to apply predictive analytics. For
example, a particular database server hosts a web application and suddenly an alert
about a database is triggered. By looking into frequent patterns identified by an
association rule learning algorithm, this means that the IT staff needs to take action
before the web application is impacted.

Association rule learning can also discover alert events originating from the same
IT event. For example, every time a new user is added, six changes in the Windows
operating system are detected. Next, in the Application Portfolio Management
(APM), IT may face multiple alerts, showing that the transactional time in a database
as high. If all these issues originate from the same source (such as getting hundreds
of alerts about changes that are all due to a Windows update), this frequent pattern
mining can help to quickly cut through a number of alerts, allowing the IT operators
to focus on truly critical changes.

Summary
In this chapter, you learned how to leverage association rule learning on
transactional datasets to gain insight about frequent patterns We performed an
affinity analysis in Weka and learned that the hard work lies in the analysis of
results—careful attention is required when interpreting rules, as association (that is,
correlation) is not the same as causation.

In the next chapter, we'll look at how to take the problem of item recommendation to
the next level using scalable machine learning library, Apache Mahout, which is able
to handle big data.

[101]

Recommendation Engine
with Apache Mahout

Recommendation engines are probably one of the most applied data science approaches
in startups today. There are two principal techniques for building a recommendation
system: content-based filtering and collaborative filtering. The content-based
algorithm uses the properties of the items to find items with similar properties.
Collaborative filtering algorithms take user ratings or other user behavior and make
recommendations based on what users with similar behavior liked or purchased.

This chapter will first explain the basic concepts required to understand
recommendation engine principles and then demonstrate how to utilize Apache
Mahout's implementation of various algorithms to quickly get a scalable
recommendation engine. This chapter will cover the following topics:

• How to build a recommendation engine
• Getting Apache Mahout ready
• Content-based approach
• Collaborative filtering approach

By the end of the chapter, you will learn the kind of recommendation engine that is
appropriate for our problem and how to quickly implement one.

Basic concepts
Recommendation engines aim to show user items of interest. What makes
them different from search engines is that the relevant content usually appears
on a website without requesting it and users don't have to build queries as
recommendation engines observe user's actions and construct query for users
without their knowledge.

Recommendation Engine with Apache Mahout

[102]

Arguably, the most well-known example of recommendation engine is
www.amazon.com, providing personalized recommendation in a number of ways.
The following image shows an example of Customers Who Bought This Item
Also Bought. As we will see later, this is an example of collaborative item-based
recommendation, where items similar to a particular item are recommended:

An example of recommendation engine from www.amazon.com.

In this section, we will introduce key concepts related to understanding and building
recommendation engines.

Key concepts
Recommendation engine requires the following four inputs to make
recommendations:

• Item information described with attributes
• User profile such as age range, gender, location, friends, and so on
• User interactions in form of ratings, browsing, tagging, comparing, saving,

and emailing
• Context where the items will be displayed, for example, item category and

item's geographical location

These inputs are then combined together by the recommendation engine to help us
answer the following questions:

• Users who bought, watched, viewed, or bookmarked this item also bought,
watched, viewed, or bookmarked…

• Items similar to this item…

www.amazon.com

Chapter 6

[103]

• Other users you may know…
• Other users who are similar to you…

Now let's have a closer look at how this combining works.

User-based and item-based analysis
Building a recommendation engine depends on whether the engine searches for
related items or users when trying to recommend a particular item.

In item-based analysis, the engine focuses on identifying items that are similar to a
particular item; while in user-based analysis, users similar to the particular user are
first determined. For example, users with the same profile information (age, gender,
and so on) or actions history (bought, watched, viewed, and so on) are determined
and then the same items are recommended to other similar users.

Both approaches require us to compute a similarity matrix, depending on whether
we're analyzing item attributes or user actions. Let's take a deeper look at how this
is done.

Approaches to calculate similarity
There are three fundamental approaches to calculate similarity, as follows:

• Collaborative filtering algorithms take user ratings or other user behavior
and make recommendations based on what users with similar behavior liked
or purchased

• The content-based algorithm uses the properties of the items to find items
with similar properties

• A hybrid approach combining collaborative and content-based filtering

Let's take a look at each approach in detail.

Collaborative filtering
Collaborative filtering is based solely on user ratings or other user behavior, making
recommendations based on what users with similar behavior liked or purchased.

A key advantage of collaborative filtering is that it does not rely on item content, and
therefore, it is capable of accurately recommending complex items such as movies,
without understanding the item itself. The underlying assumption is that people
who agreed in the past will agree in the future, and that they will like similar kinds
of items as they liked in the past.

Recommendation Engine with Apache Mahout

[104]

A major disadvantage of this approach is the so-called cold start, meaning that if we
want to build an accurate collaborative filtering system, the algorithm often needs
a large amount of user ratings. This usually takes collaborative filtering out of the
first version of the product and it is introduced later when a decent amount of data
is collected.

Content-based filtering
Content-based filtering, on the other hand, is based on a description of items and a
profile of user's preferences combined as follows. First, the items are described with
attributes, and to find similar items, we measure the distance between items using a
distance measure such as cosine distance or Pearson coefficient (more about distance
measures is in Chapter 1, Applied Machine Learning Quick Start). Now, the user profile
enters the equation. Given the feedback about the kind of items the user likes, we can
introduce weights specifying the importance of a specific item attribute. For instance,
Pandora Radio streaming service applies content-based filtering to create stations
using more than 400 attributes. A user initially picks a song with specific attributes,
and by providing feedback, important song attributes are emphasized.

This approach initially needs very little information on user feedback, thus it
effectively avoids the cold-start issue.

Hybrid approach
Now colaborative versus content-based to choose? Collaborative filtering is able
to learn user preferences from user's actions regarding one content source and use
them across other content types. Content-based filtering is limited to recommending
content of the same type that the user is already using. This provides value to
different use cases, for example, recommending news articles based on news
browsing is useful, but it is much more useful if different sources such as books and
movies can be recommended based on news browsing.

Collaborative filtering and content-based filtering are not mutually exclusive; they
can be combined to be more effective in some cases. For example, Netflix uses
collaborative filtering to analyze searching and watching patterns of similar users,
as well as content-based filtering to offer movies that share characteristics with films
that the user has rated highly.

Chapter 6

[105]

There is a wide variety of hybridization techniques such as weighted, switching,
mixed, feature combination, feature augmentation, cascade, meta-level, and so on.
Recommendation systems are an active area in machine learning and data mining
community with special tracks on data science conferences. A good overview of
techniques is summarized in the paper Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions by Adomavicius and
Tuzhilin (2005), where the authors discuss different approaches and underlying
algorithms and provide references to further papers. To get more technical and
understand all the tiny details when a particular approach makes sense, you should
look at the book edited by Ricci et al. (2010) Recommender Systems Handbook
(1st ed.), Springer-Verlag New York.

Exploitation versus exploration
In recommendation system, there is always a tradeoff between recommending items
that fall into the user's sweet spot based on what we already know about the user
(exploitation) and recommending items that don't fall into user's sweet spot with
the aim to expose user to some novelties (exploration). Recommendation systems
with little exploration will only recommend items consistent with the previous
user ratings, preventing showing items outside their current bubble. In practice,
serendipity of getting new items out of user's sweet spot is often desirable, leading to
pleasant surprise and potential discovery of new sweet spots.

In this section, we discussed the essential concepts required to start building
recommendation engines. Now, let's take a look at how to actually build one with
Apache Mahout.

Getting Apache Mahout
Mahout was introduced in Chapter 2, Java Tools and Libraries for Machine Learning,
as a scalable machine learning library. It provides a rich set of components with
which you can construct a customized recommendation system from a selection
of algorithms. The creators of Mahout say it is designed to be enterprise-ready; it's
designed for performance, scalability, and flexibility.

Mahout can be configured to run in two flavors: with or without Hadoop for a single
machine and distributed processing, correspondingly. We will focus on configuring
Mahout without Hadoop. For more advanced configurations and further uses of
Mahout, I would recommend two recent books: Learning Apache Mahout (Tiwary,
2015) and Learning Apache Mahout Classification (Gupta, 2015).

Recommendation Engine with Apache Mahout

[106]

As Apache Mahout's build and release system is based on Maven, we will need to
learn how to install it. We will look at the most convenient approach using Eclipse
with Maven plugin.

Configuring Mahout in Eclipse with the Maven
plugin
We will need a recent version of Eclipse, which can be downloaded from its home
page. We use Eclipse Luna in this book. Open Eclipse and start a new Maven Project
with default settings as shown in the following screenshot:

The New Maven project screen will appear as shown in the following image:

Chapter 6

[107]

Now, we need to tell the project to add Mahout jar and its dependencies to the
project. Locate the pom.xml file and open it with the text editor (left click on Open
With | Text Editor), as shown in the following screenshot:

Recommendation Engine with Apache Mahout

[108]

Locate the line starting with <dependencies> and add the following code in the
next line:

<dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-mr</artifactId>
 <version>0.10.0</version>
</dependency>

That's it, Mahout is added and we are ready to begin now.

Building a recommendation engine
To demonstrate both the content-based filtering and collaborative filtering
approaches, we'll build a book-recommendation engine.

Book ratings dataset
In this chapter, we will work with book ratings dataset (Ziegler et al, 2005) collected
in a four-week crawl. It contains data on 278,858 members of the Book-Crossing
website and 1,157,112 ratings, both implicit and explicit, referring to 271,379 distinct
ISBNs. User data is anonymized, but with demographic information. The dataset is
available at:

http://www2.informatik.uni-freiburg.de/~cziegler/BX/.

The Book-Crossing dataset comprises three files described at their website as follows:

• BX-Users: This contains the users. Note that user IDs (User-ID) have been
anonymized and mapped to integers. Demographic data is provided
(Location and Age) if available. Otherwise, these fields contain NULL-values.

• BX-Books: Books are identified by their respective ISBN. Invalid ISBNs
have already been removed from the dataset. Moreover, some content-based
information is given (Book-Title, Book-Author, Year-Of-Publication, and
Publisher), obtained from Amazon Web Services. Note that in case of several
authors, only the first author is provided. URLs linking to cover images are
also given, appearing in three different flavors (Image-URL-S, Image-URL-M,
and Image-URL-L), that is, small, medium, and large. These URLs point to
the Amazon website.

• BX-Book-Ratings: This contains the book rating information. Ratings
(Book-Rating) are either explicit, expressed on a scale of 1-10 (higher values
denoting higher appreciation), or implicit, expressed by 0.

http://www2.informatik.uni-freiburg.de/~cziegler/BX/

Chapter 6

[109]

Loading the data
There are two approaches for loading the data according to where the data is stored:
file or database. First, we will take a detailed look at how to load the data from the
file, including how to deal with custom formats. At the end, we quickly take a look at
how to load the data from a database.

Loading data from file
Loading data from file can be achieved with the FileDataModel class, expecting
a comma-delimited file, where each line contains a userID, itemID, optional
preference value, and optional timestamp in the same order, as follows:

userID,itemID[,preference[,timestamp]]

Optional preference accommodates applications with binary preference values, that
is, user either expresses a preference for an item or not, without degree of preference,
for example, with like/dislike.

A line that begins with hash, #, or an empty line will be ignored. It is also acceptable
for the lines to contain additional fields, which will be ignored.

The DataModel class assumes the following types:

• userID, itemID can be parsed as long
• preference value can be parsed as double
• timestamp can be parsed as long

If you are able to provide the dataset in the preceding format, you can simply use the
following line to load the data:

DataModel model = new FileDataModel(new File(path));

This class is not intended to be used for very large amounts of data, for example,
tens of millions of rows. For that, a JDBC-backed DataModel and a database are
more appropriate.

In real world, however, we cannot always ensure that the input data supplied to us
contain only integer values for userID and itemID. For example, in our case, itemID
correspond to ISBN book numbers uniquely identifying items, but these are not
integers and the FileDataModel default won't be suitable to process our data.

Recommendation Engine with Apache Mahout

[110]

Now, let's consider how to deal with the case where our itemID is a string. We will
define our custom data model by extending FileDataModel and overriding the long
readItemIDFromString(String) method in order to read itemID as a string and
convert the it into long and return a unique long value. To convert String to unique
long, we'll extend another Mahout AbstractIDMigrator helper class, which is
designed exactly for this task.

Now, let's first look at how FileDataModel is extended:

class StringItemIdFileDataModel extends FileDataModel {

 //initialize migrator to covert String to unique long
 public ItemMemIDMigrator memIdMigtr;

 public StringItemIdFileDataModel(File dataFile, String regex)
 throws IOException {
 super(dataFile, regex);
 }

 @Override
 protected long readItemIDFromString(String value) {

 if (memIdMigtr == null) {
 memIdMigtr = new ItemMemIDMigrator();
 }

 // convert to long
 long retValue = memIdMigtr.toLongID(value);
 //store it to cache
 if (null == memIdMigtr.toStringID(retValue)) {
 try {
 memIdMigtr.singleInit(value);
 } catch (TasteException e) {
 e.printStackTrace();
 }
 }
 return retValue;
 }

 // convert long back to String
 String getItemIDAsString(long itemId) {
 return memIdMigtr.toStringID(itemId);
 }
}

Chapter 6

[111]

Other useful methods that can be overridden are as follows:

• readUserIDFromString(String value) if user IDs are not numeric
• readTimestampFromString(String value) to change how timestamp

is parsed

Now, let's take a look how AbstractIDMIgrator is extended:

class ItemMemIDMigrator extends AbstractIDMigrator {

 private FastByIDMap<String> longToString;

 public ItemMemIDMigrator() {
 this.longToString = new FastByIDMap<String>(10000);
 }

 public void storeMapping(long longID, String stringID) {
 longToString.put(longID, stringID);
 }

 public void singleInit(String stringID) throws TasteException {
 storeMapping(toLongID(stringID), stringID);
 }

 public String toStringID(long longID) {
 return longToString.get(longID);
 }
}

Now, we have everything in place and we can load our dataset with the
following code:

StringItemIdFileDataModel model = new StringItemIdFileDataModel(
 new File("datasets/chap6/BX-Book-Ratings.csv"), ";");
System.out.println(
"Total items: " + model.getNumItems() +
"\nTotal users: " +model.getNumUsers());

This outputs the total number of users and items:

Total items: 340556

Total users: 105283

We are ready to move on and start making recommendations.

Recommendation Engine with Apache Mahout

[112]

Loading data from database
Alternately, we can also load the data from database using one of the JDBC data
models. In this chapter, we will not dive into the detailed instructions about how to set
up database, connection, and so on, but just give a sketch on how this can be done.

Database connectors have been moved to a separate package mahout-integration,
hence we have to first add the package to our dependency list. Open the pom.xml file
and add the following dependency:

<dependency>
 <groupId>org.apache.mahout</groupId>
 <artifactId>mahout-integration</artifactId>
 <version>0.7</version>
</dependency>

Consider that we want to connect a MySQL database. In this case, we will also need
a package that handles database connections. Add the following to the pom.xml file:

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.35</version>
</dependency>

Now, we have all the packages, so we can create a connection. First, let's initialize a
DataSource class with connection details, as follows:

MysqlDataSource dbsource = new MysqlDataSource();
 dbsource.setUser("user");
 dbsource.setPassword("pass");
 dbsource.setServerName("hostname.com");
 dbsource.setDatabaseName("db");

Mahout integration implements JDBCDataModel to various databases that can be
accessed via JDBC. By default, this class assumes that there is DataSource available
under the JNDI name jdbc/taste, which gives access to a database with a
taste_preferences table with the following schema:

CREATE TABLE taste_preferences (
 user_id BIGINT NOT NULL,
 item_id BIGINT NOT NULL,
 preference REAL NOT NULL,
 PRIMARY KEY (user_id, item_id)
)

Chapter 6

[113]

CREATE INDEX taste_preferences_user_id_index ON taste_preferences
 (user_id);
CREATE INDEX taste_preferences_item_id_index ON taste_preferences
 (item_id);

A database-backed data model is initialized as follows. In addition to the DB
connection object, we can also specify the custom table name and table column
names, as follows:

DataModel dataModel = new MySQLJDBCDataModel(dbsource,
 "taste_preferences",
 "user_id", "item_id", "preference", "timestamp");

In-memory database
Last, but not least, the data model can be created on the fly and held in memory.
A database can be created from an array of preferences holding user ratings for a
set of items.

We can proceed as follows. First, we create a FastByIdMap hash map of preference
arrays, PreferenceArray, which stores an array of preferences:

FastByIDMap <PreferenceArray> preferences = new FastByIDMap
 <PreferenceArray> ();

Next, we can create a new preference array for a user that will hold their ratings.
The array must be initialized with a size parameter that reserves that many slots
in memory:

PreferenceArray prefsForUser1 =
 new GenericUserPreferenceArray (10);

Next, we set user ID for current preference at position 0. This will actually set the
user ID for all preferences:

prefsForUser1.setUserID (0, 1L);

Set item ID for current preference at position 0:

prefsForUser1.setItemID (0, 101L);

Set preference value for preference at 0:

prefsForUser1.setValue (0, 3.0f);

Recommendation Engine with Apache Mahout

[114]

Continue for other item ratings:

prefsForUser1.setItemID (1, 102L);
prefsForUser1.setValue (1, 4.5F);

Finally, add user preferences to the hash map:

preferences.put (1L, prefsForUser1); // use userID as the key

The preference hash map can be now used to initialize GenericDataModel:

DataModel dataModel = new GenericDataModel(preferences);

This code demonstrates how to add two preferences for a single user; while in
practical application, you'll want to add multiple preferences for multiple users.

Collaborative filtering
Recommendation engines in Mahout can be built with the
org.apache.mahout.cf.taste package, which was formerly a separate
project called Taste and has continued development in Mahout.

A Mahout-based collaborative filtering engine takes the users' preferences for items
(tastes) and returns the estimated preferences for other items. For example, a site that
sells books or CDs could easily use Mahout to figure out the CDs that a customer
might be interested in listening to with the help of the previous purchase data.

Top-level packages define the Mahout interfaces to the following key abstractions:

• DataModel: This represents a repository of information about users and their
preferences for items

• UserSimilarity: This defines a notion of similarity between two users
• ItemSimilarity: This defines a notion of similarity between two items
• UserNeighborhood: This computes neighborhood users for a given user
• Recommender: This recommends items for user

Chapter 6

[115]

A general structure of the concepts is shown in the following diagram:

User-based filtering
The most basic user-based collaborative filtering can be implemented by initializing
the previously described components as follows.

First, load the data model:

StringItemIdFileDataModel model = new StringItemIdFileDataModel(
 new File("/datasets/chap6/BX-Book-Ratings.csv", ";");

Recommendation Engine with Apache Mahout

[116]

Next, define how to calculate how the users are correlated, for example, using
Pearson correlation:

UserSimilarity similarity =
 new PearsonCorrelationSimilarity(model);

Next, define how to tell which users are similar, that is, users that are close to each
other according to their ratings:

UserNeighborhood neighborhood =
 new ThresholdUserNeighborhood(0.1, similarity, model);

Now, we can initialize a GenericUserBasedRecommender default engine with data
model, neighborhood, and similar objects, as follows:

UserBasedRecommender recommender =
new GenericUserBasedRecommender(model, neighborhood, similarity);

That's it. Our first basic recommendation engine is ready. Let's discuss how to invoke
recommendations. First, let's print the items that the user already rated along with
ten recommendations for this user:

long userID = 80683;
int noItems = 10;

List<RecommendedItem> recommendations = recommender.recommend(
 userID, noItems);

System.out.println("Rated items by user:");
for(Preference preference : model.getPreferencesFromUser(userID)) {
 // convert long itemID back to ISBN
 String itemISBN = model.getItemIDAsString(
 preference.getItemID());
 System.out.println("Item: " + books.get(itemISBN) +
 " | Item id: " + itemISBN +
 " | Value: " + preference.getValue());
}

System.out.println("\nRecommended items:");
for (RecommendedItem item : recommendations) {
 String itemISBN = model.getItemIDAsString(item.getItemID());
 System.out.println("Item: " + books.get(itemISBN) +
 " | Item id: " + itemISBN +
 " | Value: " + item.getValue());
}

Chapter 6

[117]

This outputs the following recommendations along with their scores:

Rated items:

Item: The Handmaid's Tale | Item id: 0395404258 | Value: 0.0

Item: Get Clark Smart : The Ultimate Guide for the Savvy Consumer | Item
id: 1563526298 | Value: 9.0

Item: Plum Island | Item id: 0446605409 | Value: 0.0

Item: Blessings | Item id: 0440206529 | Value: 0.0

Item: Edgar Cayce on the Akashic Records: The Book of Life | Item id:
0876044011 | Value: 0.0

Item: Winter Moon | Item id: 0345386108 | Value: 6.0

Item: Sarah Bishop | Item id: 059032120X | Value: 0.0

Item: Case of Lucy Bending | Item id: 0425060772 | Value: 0.0

Item: A Desert of Pure Feeling (Vintage Contemporaries) | Item id:
0679752714 | Value: 0.0

Item: White Abacus | Item id: 0380796155 | Value: 5.0

Item: The Land of Laughs : A Novel | Item id: 0312873115 | Value: 0.0

Item: Nobody's Son | Item id: 0152022597 | Value: 0.0

Item: Mirror Image | Item id: 0446353957 | Value: 0.0

Item: All I Really Need to Know | Item id: 080410526X | Value: 0.0

Item: Dreamcatcher | Item id: 0743211383 | Value: 7.0

Item: Perplexing Lateral Thinking Puzzles: Scholastic Edition | Item id:
0806917695 | Value: 5.0

Item: Obsidian Butterfly | Item id: 0441007813 | Value: 0.0

Recommended items:

Item: Keeper of the Heart | Item id: 0380774933 | Value: 10.0

Item: Bleachers | Item id: 0385511612 | Value: 10.0

Item: Salem's Lot | Item id: 0451125452 | Value: 10.0

Item: The Girl Who Loved Tom Gordon | Item id: 0671042858 | Value: 10.0

Item: Mind Prey | Item id: 0425152898 | Value: 10.0

Item: It Came From The Far Side | Item id: 0836220730 | Value: 10.0

Item: Faith of the Fallen (Sword of Truth, Book 6) | Item id: 081257639X
| Value: 10.0

Item: The Talisman | Item id: 0345444884 | Value: 9.86375

Item: Hamlet | Item id: 067172262X | Value: 9.708363

Item: Untamed | Item id: 0380769530 | Value: 9.708363

Recommendation Engine with Apache Mahout

[118]

Item-based filtering
The ItemSimilarity is the most important point to discuss here. Item-based
recommenders are useful as they can take advantage of something very fast: they
base their computations on item similarity, not user similarity, and item similarity is
relatively static. It can be precomputed, instead of recomputed in real time.

Thus, it's strongly recommended that you use GenericItemSimilarity
with precomputed similarities if you're going to use this class. You can use
PearsonCorrelationSimilarity too, which computes similarities in real time, but
you will probably find this painfully slow for large amounts of data:

StringItemIdFileDataModel model = new StringItemIdFileDataModel(
 new File("datasets/chap6/BX-Book-Ratings.csv"), ";");

ItemSimilarity itemSimilarity = new
 PearsonCorrelationSimilarity(model);

ItemBasedRecommender recommender = new
 GenericItemBasedRecommender(model, itemSimilarity);

String itemISBN = "0395272238";
long itemID = model.readItemIDFromString(itemISBN);
int noItems = 10;
List<RecommendedItem> recommendations =
 recommender.mostSimilarItems(itemID, noItems);

System.out.println("Recommendations for item:
 "+books.get(itemISBN));

System.out.println("\nMost similar items:");
for (RecommendedItem item : recommendations) {
 itemISBN = model.getItemIDAsString(item.getItemID());
 System.out.println("Item: " + books.get(itemISBN) + " | Item id:
 " + itemISBN + " | Value: " + item.getValue());
}

Recommendations for item: Close to the Bone

Most similar items:

Item: Private Screening | Item id: 0345311396 | Value: 1.0

Item: Heartstone | Item id: 0553569783 | Value: 1.0

Item: Clockers / Movie Tie In | Item id: 0380720817 | Value: 1.0

Item: Rules of Prey | Item id: 0425121631 | Value: 1.0

Item: The Next President | Item id: 0553576666 | Value: 1.0

Item: Orchid Beach (Holly Barker Novels (Paperback)) | Item id:
0061013412 | Value: 1.0

Chapter 6

[119]

Item: Winter Prey | Item id: 0425141233 | Value: 1.0

Item: Night Prey | Item id: 0425146413 | Value: 1.0

Item: Presumed Innocent | Item id: 0446359866 | Value: 1.0

Item: Dirty Work (Stone Barrington Novels (Paperback)) | Item id:
 0451210158 | Value: 1.0

The resulting list returns a set of items similar to particular item that we selected.

Adding custom rules to recommendations
It often happens that some business rules require us to boost the score of the selected
items. In the book dataset, for example, if a book is recent, we want to give it a higher
score. That's possible using the IDRescorer interface implementing, as follows:

• rescore(long, double) that takes itemId and original score as an
argument and returns a modified score

• isFiltered(long) that may return true to exclude a specific item from
recommendation or false otherwise

Our example could be implemented as follows:

class MyRescorer implements IDRescorer {

 public double rescore(long itemId, double originalScore) {
 double newScore = originalScore;
 if(bookIsNew(itemId)){
 originalScore *= 1.3;
 }
 return newScore;
 }

 public boolean isFiltered(long arg0) {
 return false;
 }

}

An instance of IDRescorer is provided when invoking recommender.recommend:

IDRescorer rescorer = new MyRescorer();
List<RecommendedItem> recommendations =
recommender.recommend(userID, noItems, rescorer);

Recommendation Engine with Apache Mahout

[120]

Evaluation
You might wonder how to make sure that the returned recommendations make
any sense? The only way to be really sure about how effective recommendations
are is to use A/B testing in a live system with real users. For example, the A group
receives a random item as a recommendation, while the B group receives an item
recommended by our engine.

As this is neither always possible nor practical, we can get an estimate with offline
statistical evaluation. One way to proceed is to use the k-fold cross validation
introduced in Chapter 1, Applied Machine Learning Quick Start. We partition dataset
into multiple sets, some are used to train our recommendation engine and the rest to
test how well it recommends items to unknown users.

Mahout implements the RecommenderEvaluator class that splits a dataset in two
parts. The first part, 90% by default, is used to produce recommendations, while
the rest of the data is compared against estimated preference values to test the
match. The class does not accept a recommender object directly, you need to build
a class implementing the RecommenderBuilder interface instead, which builds a
recommender object for a given DataModel object that is then used for testing. Let's
take a look at how this is implemented.

First, we create a class that implements the RecommenderBuilder interface. We
need to implement the buildRecommender method, which will return a
recommender, as follows:

public class BookRecommender implements RecommenderBuilder {
 public Recommender buildRecommender(DataModel dataModel) {
 UserSimilarity similarity =
 new PearsonCorrelationSimilarity(model);
 UserNeighborhood neighborhood =
 new ThresholdUserNeighborhood(0.1, similarity, model);
 UserBasedRecommender recommender =
 new GenericUserBasedRecommender(
 model, neighborhood, similarity);
 return recommender;
 }
}

Now that we have class that returns a recommender object, we can initialize a
RecommenderEvaluator instance. Default implementation of this class is the
AverageAbsoluteDifferenceRecommenderEvaluator class, which computes the
average absolute difference between the predicted and actual ratings for users. The
following code shows how to put the pieces together and run a hold-out test.

Chapter 6

[121]

First, load a data model:

DataModel dataModel = new FileDataModel(
 new File("/path/to/dataset.csv"));

Next, initialize an evaluator instance, as follows:

RecommenderEvaluator evaluator =
 new AverageAbsoluteDifferenceRecommenderEvaluator();

Initialize the BookRecommender object, implementing the RecommenderBuilder
interface:

RecommenderBuilder builder = new MyRecommenderBuilder();

Finally, call the evaluate() method, which accepts the following parameters:

• RecommenderBuilder: This is the object implementing RecommenderBuilder
that can build recommender to test

• DataModelBuilder: DataModelBuilder to use, or if null, a default
DataModel implementation will be used

• DataModel: This is the dataset that will be used for testing
• trainingPercentage: This indicates the percentage of each user's

preferences to use to produced recommendations; the rest are compared to
estimated preference values to evaluate the recommender performance

• evaluationPercentage: This is the percentage of users to be used in
evaluation

The method is called as follows:

double result = evaluator.evaluate(builder, null, model, 0.9,
 1.0);
System.out.println(result);

The method returns a double, where 0 presents the best possible evaluation,
meaning that the recommender perfectly matches user preferences. In general, lower
the value, better the match.

Online learning engine
What about the online aspect? The above will work great for existing users; but what
about new users which register in the service? For sure, we want to provide some
reasonable recommendations for them as well. Creating a recommendation instance
is expensive (it definitely takes longer than a usual network request), so we can't just
create a new recommendation each time.

Recommendation Engine with Apache Mahout

[122]

Luckily, Mahout has a possibility of adding temporary users to a data model.
The general set up is as follows:

• Periodically recreate the whole recommendation using current data (for
example, each day or hour, depending on how long it takes)

• When doing a recommendation, check whether the user exists in the system
• If yes, complete the recommendation as always
• If no, create a temporary user, fill in the preferences, and do the

recommendation

The first part (periodically recreating the recommender) may be actually quite
tricky if you are limited on memory: when creating the new recommender, you
need to hold two copies of the data in memory (in order to still be able to server
requests from the old one). However, as this doesn't really have anything to do with
recommendations, I won't go into details here.

As for the temporary users, we can wrap our data model with a
PlusAnonymousConcurrentUserDataModel instance. This class allows us to
obtain a temporary user ID; the ID must be later released so that it can be reused
(there's a limited number of such IDs). After obtaining the ID, we have to fill in the
preferences, and then, we can proceed with the recommendation as always:

class OnlineRecommendation{

 Recommender recommender;
 int concurrentUsers = 100;
 int noItems = 10;

 public OnlineRecommendation() throws IOException {

 DataModel model = new StringItemIdFileDataModel(
 new File /chap6/BX-Book-Ratings.csv"), ";");
 PlusAnonymousConcurrentUserDataModel plusModel = new
 PlusAnonymousConcurrentUserDataModel
 (model, concurrentUsers);
 recommender = ...;

 }

 public List<RecommendedItem> recommend(long userId,
 PreferenceArray preferences){

 if(userExistsInDataModel(userId)){

Chapter 6

[123]

 return recommender.recommend(userId, noItems);
 }

 else{

 PlusAnonymousConcurrentUserDataModel plusModel =
 (PlusAnonymousConcurrentUserDataModel)
 recommender.getDataModel();

 // Take an available anonymous user form the poll
 Long anonymousUserID = plusModel.takeAvailableUser();

 // Set temporary preferences
 PreferenceArray tempPrefs = preferences;
 tempPrefs.setUserID(0, anonymousUserID);
 tempPrefs.setItemID(0, itemID);
 plusModel.setTempPrefs(tempPrefs, anonymousUserID);

 List<RecommendedItem> results =
 recommender.recommend(anonymousUserID, noItems);

 // Release the user back to the poll
 plusModel.releaseUser(anonymousUserID);

 return results;

 }

 }
}

Content-based filtering
Content-based filtering is out of scope in the Mahout framework, mainly because it is
up to you to decide how to define similar items. If we want to do a content-based item-
item similarity, we need to implement our own ItemSimilarity. For instance, in our
book's dataset, we might want to make up the following rule for book similarity:

• If genres are the same, add 0.15 to similarity
• If author is the same, add 0.50 to similarity

Recommendation Engine with Apache Mahout

[124]

We could now implement our own similarity measure as follows:

class MyItemSimilarity implements ItemSimilarity {
 ...
 public double itemSimilarity(long itemID1, long itemID2) {
 MyBook book1 = lookupMyBook (itemID1);
 MyBook book2 = lookupMyBook (itemID2);
 double similarity = 0.0;
 if (book1.getGenre().equals(book2.getGenre())
 similarity += 0.15;
 }
 if (book1.getAuthor().equals(book2. getAuthor ())) {
 similarity += 0.50;
 }
 return similarity;
 }
 ...
}

We then use this ItemSimilarity instead of something like
LogLikelihoodSimilarity or other implementations with a
GenericItemBasedRecommender. That's about it. This is as far as we have to go to
perform content-based recommendation in the Mahout framework.

What we saw here is one of the simplest forms of content-based recommendation.
Another approach could be to create a content-based profile of users, based on a
weighted vector of item features. The weights denote the importance of each feature
to the user and can be computed from individually-rated content vectors.

Summary
In this chapter, you learned the basic concepts of recommendation engines, the
difference between collaborative and content-based filtering, and how to use Apache
Mahout, which is a great basis to create recommenders as it is very configurable and
provides many extension points. We looked at how to pick the right configuration
parameter values, set up rescoring, and evaluate the recommendation results.

With this chapter, we completed data science techniques to analyze customer
behavior that started with customer-relationship prediction in Chapter 4, Customer
Relationship Prediction with Ensembles, and continued with affinity analytics in Chapter
5, Affinity Analysis. In the next chapter, we will move on to other topics, such as fraud
and anomaly detection.

[125]

Fraud and Anomaly Detection
Outlier detection is used to identify exceptions, rare events, or other anomalous
situations. Such anomalies may be hard-to-find needles in a haystack, but their
consequences may nonetheless be quite dramatic, for instance, credit card fraud
detection, identifying network intrusion, faults in a manufacturing processes, clinical
trials, voting activities, and criminal activities in e-commerce. Therefore, discovered
anomalies represent high value when they are found or high costs if they are not
found. Applying machine learning to outlier detection problems brings new insight
and better detection of outlier events. Machine learning can take into account many
disparate sources of data and find correlations that are too obscure for human
analysis to identify.

Take the example of e-commerce fraud detection. With machine learning algorithm
in place, the purchaser's online behavior, that is, website browsing history, becomes
a part of the fraud detection algorithm rather than simply considering the history of
purchases made by the cardholder. This involves analyzing a variety of data sources,
but it is also a far more robust approach to e-commerce fraud detection.

In this chapter, we will cover the following topics:

• Problems and challenges
• Suspicious pattern detection
• Anomalous pattern detection
• Working with unbalanced datasets
• Anomaly detection in time series

Fraud and Anomaly Detection

[126]

Suspicious and anomalous behavior
detection
The problem of learning patterns from sensor data arises in many applications,
including e-commerce, smart environments, video surveillance, network analysis,
human-robot interaction, ambient assisted living, and so on. We focus on detecting
patterns that deviate from regular behaviors and might represent a security risk,
health problem, or any other abnormal behavior contingency.

In other words, deviant behavior is a data pattern that either does not conform to the
expected behavior (anomalous behavior) or matches a previously defined unwanted
behavior (suspicious behavior). Deviant behavior patterns are also referred to
as outliers, exceptions, peculiarities, surprise, misuse, and so on. Such patterns
relatively occur infrequently; however, when they do occur, their consequences can
be quite dramatic, and often negatively so. Typical examples include credit card
fraud detection, cyber-intrusions, and industrial damage. In e-commerce, fraud is
estimated to cost merchants more than $200 billion a year; in healthcare, fraud is
estimated to cost taxpayers $60 billion a year; for banks, the cost is over $12 billion.

Unknown-unknowns
When Donald Rumsfeld, US Secretary of Defense, had a news briefing on February
12, 2002, about the lack of evidence linking the government of Iraq to the supply of
weapons of mass destruction to terrorist groups, it immediately became a subject of
much commentary. Rumsfeld stated (DoD News, 2012):

"Reports that say that something hasn't happened are always interesting to me,
because as we know, there are known knowns; there are things we know we know.
We also know there are known unknowns; that is to say we know there are some
things we do not know. But there are also unknown unknowns—the ones we don't
know we don't know. And if one looks throughout the history of our country and
other free countries, it is the latter category that tend to be the difficult ones."

The statement might seem confusing at first, but the idea of unknown unknowns was
well studied among scholars dealing with risk, NSA, and other intelligence agencies.
What the statement basically says is the following:

• Known-knowns: These are well-known problems or issues we know how to
recognize them and how deal with them

• Known-unknowns: These are expected or foreseeable problems, which can
be reasonably anticipated, but have not occurred before

Chapter 7

[127]

• Unknown-unknowns: These are unexpected and unforeseeable problems,
which pose significant risk as they cannot be anticipated, based on previous
experience

In the following sections, we will look into two fundamental approaches dealing with
the first two types of knowns and unknowns: suspicious pattern detection dealing
with known-knowns and anomalous pattern detection targeting known-unknowns.

Suspicious pattern detection
The first approach assumes a behavior library that encodes negative patterns shown
as red minus signs in the following image, and thus recognizing that observed
behavior corresponds to identifying a match in the library. If a new pattern (blue
circle) can be matched against negative patterns, then it is considered suspicious:

For example, when you visit a doctor, she inspects various health symptoms (body
temperature, pain levels, affected areas, and so on) and matches the symptoms
to a known disease. In machine learning terms, the doctor collects attributes and
performs classifications.

An advantage of this approach is that we immediately know what is wrong; for
example, assuming we know the disease, we can select appropriate treatment
procedure.

A major disadvantage of this approach is that it can detect only suspicious patterns
that are known in advance. If a pattern is not inserted into a negative pattern library,
then we will not be able to recognize it. This approach is, therefore, appropriate for
modeling known-knowns.

Fraud and Anomaly Detection

[128]

Anomalous pattern detection
The second approach uses the pattern library in an inverse fashion, meaning that the
library encodes only positive patterns marked with green plus signs in the following
image. When an observed behavior (blue circle) cannot be matched against the
library, it is considered anomalous:

This approach requires us to model only what we have seen in the past, that is,
normal patterns. If we return to the doctor example, the main reason we visited
the doctor in the first place was because we did not feel fine. Our perceived state of
feelings (for example, headache, sore skin) did not match our usual feelings, therefore,
we decided to seek doctor. We don't know which disease caused this state nor do we
know the treatment, but we were able to observe that it doesn't match the usual state.

A major advantage of this approach is that it does not require us to say anything
about non-normal patterns; hence, it is appropriate for modeling known-unknowns
and unknown-unknowns. On the other hand, it does not tell us what exactly is wrong.

Analysis types
Several approaches have been proposed to tackle the problem either way. We
broadly classify anomalous and suspicious behavior detection in the following
three categories: pattern analysis, transaction analysis, and plan recognition. In the
following sections, we will quickly look into some real-life applications.

Pattern analysis
An active area of anomalous and suspicious behavior detection from patterns is
based on visual modalities such as camera. Zhang et al (2007) proposed a system for
a visual human motion analysis from a video sequence, which recognizes unusual
behavior based on walking trajectories; Lin et al (2009) described a video surveillance
system based on color features, distance features, and a count feature, where
evolutionary techniques are used to measure observation similarity. The system
tracks each person and classifies their behavior by analyzing their trajectory patterns.
The system extracts a set of visual low-level features in different parts of the image,
and performs a classification with SVMs to detect aggressive, cheerful, intoxicated,
nervous, neutral, and tired behavior.

Chapter 7

[129]

Transaction analysis
Transaction analysis assumes discrete states/transactions in contrast to continuous
observations. A major research area is Intrusion Detection (ID) that aims at
detecting attacks against information systems in general. There are two types of ID
systems, signature-based and anomaly-based, that broadly follow the suspicious and
anomalous pattern detection as described in the previous sections. A comprehensive
review of ID approaches was published by Gyanchandani et al (2012).

Furthermore, applications in ambient-assisted living that are based on wearable
sensors also fit to transaction analysis as sensing is typically event-based.
Lymberopoulos et al (2008) proposed a system for automatic extraction of the users'
spatio-temporal patterns encoded as sensor activations from the sensor network
deployed inside their home. The proposed method, based on location, time, and
duration, was able to extract frequent patterns using the Apriori algorithm and
encode the most frequent patterns in the form of a Markov chain. Another area of
related work includes Hidden Markov Models (HMMs) (Rabiner, 1989) that are
widely used in traditional activity recognition for modeling a sequence of actions,
but these topics are already out of scope of this book.

Plan recognition
Plan recognition focuses on a mechanism for recognizing the unobservable state
of an agent, given observations of its interaction with its environment (Avrahami-
Zilberbrand, 2009). Most existing investigations assume discrete observations in the
form of activities. To perform anomalous and suspicious behavior detection, plan
recognition algorithms may use a hybrid approach, a symbolic plan recognizer is
used to filter consistent hypotheses, passing them to an evaluation engine, which
focuses on ranking.

These were advanced approaches applied to various real-life scenarios targeted
at discovering anomalies. In the following sections, we'll dive into more basic
approaches for suspicious and anomalous pattern detection.

Fraud detection of insurance claims
First, we'll take a look at suspicious behavior detection, where the goal is to learn
known patterns of frauds, which correspond to modeling known-knowns.

Fraud and Anomaly Detection

[130]

Dataset
We'll work with a dataset describing insurance transactions publicly available at
Oracle Database Online Documentation (2015), as follows:

http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm

The dataset describes insurance vehicle incident claims for an undisclosed insurance
company. It contains 15,430 claims; each claim comprises 33 attributes describing the
following components:

• Customer demographic details (Age, Sex, MartialStatus, and so on)
• Purchased policy (PolicyType, VehicleCategory, number of supplements,

agent type, and so on)
• Claim circumstances (day/month/week claimed, policy report filed, witness

present, past days between incident-policy report, incident-claim, and so on)
• Other customer data (number of cars, previous claims, DriverRating,

and so on)
• Fraud found (yes and no)

A sample of the database shown in the following screenshot depicts the data loaded
into Weka:

http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm

Chapter 7

[131]

Now the task is to create a model that will be able to identify suspicious claims in
future. The challenging thing about this task is the fact that only 6% of claims are
suspicious. If we create a dummy classifier saying no claim is suspicious, it will
be accurate in 94% cases. Therefore, in this task, we will use different accuracy
measures: precision and recall.

Recall the outcome table from Chapter 1, Applied Machine Learning Quick Start, where
there are four possible outcomes denoted as true positive, false positive, false
negative, and true negative:

Classified as
Actual Fraud No fraud

Fraud TP—true positive FN—false negative
No fraud FP—false positive TN—true negative

Precision and recall are defined as follows:

• Precision is equal to the proportion of correctly raised alarms, as follows:

TPPr
TP+FP

=

• Recall is equal to the proportion of deviant signatures, which are correctly
identified as such:

TPRe
TP+FN

=

• With these measures, our dummy classifier scores Pr= 0 and Re = 0 as it never
marks any instance as fraud (TP=0). In practice, we want to compare classifiers
by both numbers, hence we use F-measure. This is a de-facto measure that
calculates a harmonic mean between precision and recall, as follows:

2 Pr Re
Pr Re

F measure ∗ ∗
− =

+

Now let's move on to designing a real classifier.

Fraud and Anomaly Detection

[132]

Modeling suspicious patterns
To design a classifier, we can follow the standard supervised learning steps as
described in Chapter 1, Applied Machine Learning Quick Start. In this recipe, we will
include some additional steps to handle unbalanced dataset and evaluate classifiers
based on precision and recall. The plan is as follows:

• Load the data in the .csv format
• Assign the class attribute
• Convert all the attributes from numeric to nominal in order to make sure

there are no incorrectly loaded numerical values
• Experiment 1: Evaluate models with k-fold cross validation
• Experiment 2: Rebalance dataset to a more balanced class distribution and

manually perform cross validation
• Compare classifiers by recall, precision, and f-measure

First, let's load the data using the CSVLoader class, as follows:

String filePath = "/Users/bostjan/Dropbox/ML Java Book/book/datasets/
chap07/claims.csv";

CSVLoader loader = new CSVLoader();
loader.setFieldSeparator(",");
loader.setSource(new File(filePath));
Instances data = loader.getDataSet();

Next, we need to make sure all the attributes are nominal. During the data import,
Weka applies some heuristics to guess the most probable attribute type, that is,
numeric, nominal, string, or date. As heuristics cannot always guess the correct type,
we can set types manually, as follows:

NumericToNominal toNominal = new NumericToNominal();
toNominal.setInputFormat(data);
data = Filter.useFilter(data, toNominal);

Before we continue, we need to specify the attribute that we will try to predict. We
can achieve this by calling the setClassIndex(int) function:

int CLASS_INDEX = 15;
data.setClassIndex(CLASS_INDEX);

Chapter 7

[133]

Next, we need to remove an attribute describing the policy number as it has no
predictive value. We simply apply the Remove filter, as follows:

Remove remove = new Remove();
remove.setInputFormat(data);
remove.setOptions(new String[]{"-R", ""+POLICY_INDEX});
data = Filter.useFilter(data, remove);

Now we are ready to start modeling.

Vanilla approach
The vanilla approach is to directly apply the lesson as demonstrated in Chapter 3,
Basic Algorithms – Classification, Regression, Clustering, without any pre-processing
and not taking into account dataset specifics. To demonstrate drawbacks of vanilla
approach, we will simply build a model with default parameters and apply k-fold
cross validation.

First, let's define some classifiers that we want to test:

ArrayList<Classifier>models = new ArrayList<Classifier>();
models.add(new J48());
models.add(new RandomForest());
models.add(new NaiveBayes());
models.add(new AdaBoostM1());
models.add(new Logistic());

Next, we create an Evaluation object and perform k-fold cross validation by calling
the crossValidate(Classifier, Instances, int, Random, String[]) method,
outputting precision, recall, and fMeasure:

int FOLDS = 3;
Evaluation eval = new Evaluation(data);

for(Classifier model : models){
 eval.crossValidateModel(model, data, FOLDS,
 new Random(1), new String[] {});
 System.out.println(model.getClass().getName() + "\n"+
 "\tRecall: "+eval.recall(FRAUD) + "\n"+
 "\tPrecision: "+eval.precision(FRAUD) + "\n"+
 "\tF-measure: "+eval.fMeasure(FRAUD));
}

Fraud and Anomaly Detection

[134]

The evaluation outputs the following scores:

weka.classifiers.trees.J48

 Recall: 0.03358613217768147

 Precision: 0.9117647058823529

 F-measure: 0.06478578892371996

...

weka.classifiers.functions.Logistic

 Recall: 0.037486457204767065

 Precision: 0.2521865889212828

 F-measure: 0.06527070364082249

We can see the results are not very promising. Recall, that is, the share of discovered
frauds among all frauds is only 1-3%, meaning that only 1-3/100 frauds are detected.
On the other hand, precision, that is, the accuracy of alarms is 91%, meaning that in
9/10 cases, when a claim is marked as fraud, the model is correct.

Dataset rebalancing
As the number of negative examples, that is, frauds, is very small, compared to
positive examples, the learning algorithms struggle with induction. We can help
them by giving them a dataset, where the share of positive and negative examples is
comparable. This can be achieved with dataset rebalancing.

Weka has a built-in filter, Resample, which produces a random subsample of a
dataset using either sampling with replacement or without replacement. The filter
can also bias distribution towards a uniform class distribution.

We will proceed by manually implementing k-fold cross validation. First, we
will split the dataset into k equal folds. Fold k will be used for testing, while the
other folds will be used for learning. To split dataset into folds, we'll use the
StratifiedRemoveFolds filter, which maintains the class distribution within the
folds, as follows:

StratifiedRemoveFolds kFold = new StratifiedRemoveFolds();
kFold.setInputFormat(data);

double measures[][] = new double[models.size()][3];

for(int k = 1; k <= FOLDS; k++){

 // Split data to test and train folds
 kFold.setOptions(new String[]{

Chapter 7

[135]

 "-N", ""+FOLDS, "-F", ""+k, "-S", "1"});
 Instances test = Filter.useFilter(data, kFold);

 kFold.setOptions(new String[]{
 "-N", ""+FOLDS, "-F", ""+k, "-S", "1", "-V"});
 // select inverse "-V"
 Instances train = Filter.useFilter(data, kFold);

Next, we can rebalance train dataset, where the–Z parameter specifies the
percentage of dataset to be resampled, and –B bias the class distribution towards
uniform distribution:

Resample resample = new Resample();
resample.setInputFormat(data);
resample.setOptions(new String[]{"-Z", "100", "-B", "1"}); //with
 replacement
Instances balancedTrain = Filter.useFilter(train, resample);

Next, we can build classifiers and perform evaluation:

for(ListIterator<Classifier>it = models.listIterator();
 it.hasNext();){
 Classifier model = it.next();
 model.buildClassifier(balancedTrain);
 eval = new Evaluation(balancedTrain);
 eval.evaluateModel(model, test);

// save results for average
 measures[it.previousIndex()][0] += eval.recall(FRAUD);
 measures[it.previousIndex()][1] += eval.precision(FRAUD);
 measures[it.previousIndex()][2] += eval.fMeasure(FRAUD);
}

Finally, we calculate the average and output the best model:

// calculate average
for(int i = 0; i < models.size(); i++){
 measures[i][0] /= 1.0 * FOLDS;
 measures[i][1] /= 1.0 * FOLDS;
 measures[i][2] /= 1.0 * FOLDS;
}

// output results and select best model
Classifier bestModel = null; double bestScore = -1;
for(ListIterator<Classifier> it = models.listIterator();
 it.hasNext();){

Fraud and Anomaly Detection

[136]

 Classifier model = it.next();
 double fMeasure = measures[it.previousIndex()][2];
 System.out.println(
 model.getClass().getName() + "\n"+
 "\tRecall: "+measures[it.previousIndex()][0] + "\n"+
 "\tPrecision: "+measures[it.previousIndex()][1] + "\n"+
 "\tF-measure: "+fMeasure);
 if(fMeasure > bestScore){
 bestScore = fMeasure;
 bestModel = model;

 }
}
System.out.println("Best model:"+bestModel.getClass().getName());

Now the performance of the models has significantly improved, as follows:

weka.classifiers.trees.J48

 Recall: 0.44204845100610574

 Precision: 0.14570766048577555

 F-measure: 0.21912423640160392

...

weka.classifiers.functions.Logistic

 Recall: 0.7670657247204478

 Precision: 0.13507459756495374

 F-measure: 0.22969038530557626

Best model: weka.classifiers.functions.Logistic

What we can see is that all the models have scored significantly better; for instance,
the best model, Logistic Regression, correctly discovers 76% of frauds, while
producing a reasonable amount of false alarms—only 13% of claims marked as fraud
are indeed fraudulent. If an undetected fraud is significantly more expensive than
investigation of false alarms, then it makes sense to deal with an increased number of
false alarms.

The overall performance has most likely still some room for improvement; we
could perform attribute selection and feature generation and apply more complex
model learning that we discussed in Chapter 3, Basic Algorithms – Classification,
Regression, Clustering.

Chapter 7

[137]

Anomaly detection in website traffic
In the second example, we'll focus on modeling the opposite of the previous
example. Instead of discussing what typical fraud-less cases are, we'll discuss the
normal expected behavior of the system. If something cannot be matched against our
expected model, it will be considered anomalous.

Dataset
We'll work with a publicly available dataset released by Yahoo Labs that is useful for
discussing how to detect anomalies in time series data. For Yahoo, the main use case
is in detecting unusual traffic on Yahoo servers.

Even though Yahoo announced that their data is publicly available, you have to
apply to use it, and it takes about 24 hours before the approval is granted. The
dataset is available here:

http://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

The data set comprises real traffic to Yahoo services, along with some synthetic data.
In total, the dataset contains 367 time series, each of which contain between 741 and
1680 observations, recorded at regular intervals. Each series is written in its own file,
one observation per line. A series is accompanied by a second column indicator with
a one if the observation was an anomaly, and zero otherwise. The anomalies in real
data were determined by human judgment, while those in the synthetic data were
generated algorithmically. A snippet of the synthetic times series data is shown in
the following table:

http://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

Fraud and Anomaly Detection

[138]

In the following section, we'll learn how to transform time series data to attribute
presentation that allows us to apply machine learning algorithms.

Anomaly detection in time series data
Detecting anomalies in raw, streaming time series data requires some data
transformations. The most obvious way is to select a time window and sample time
series with fixed length. In the next step, we want to compare a new time series to
our previously collected set to detect if something is out of the ordinary.

The comparison can be done with various techniques, as follows:

• Forecasting the most probable following value, as well as confidence
intervals (for example, Holt-Winters exponential smoothing). If a new value
is out of forecasted confidence interval, it is considered anomalous.

• Cross correlation compares new sample to library of positive samples, it
looks for exact match. If the match is not found, it is marked as anomalous.

• Dynamic time wrapping is similar to cross correlation, but allows signal
distortion in comparison.

• Discretizing signal to bands, where each band corresponds to a letter. For
example, A=[min, mean/3], B=[mean/3, mean*2/3], and C=[mean*2/3, max]
transforms the signal to a sequence of letters such as aAABAACAABBA….
This approach reduces the storage and allows us to apply text-mining
algorithms that we will discuss in Chapter 10, Text Mining with Mallet – Topic
Modeling and Spam Detection.

• Distribution-based approach estimates distribution of values in a specific
time window. When we observe a new sample, we can compare whether
distribution matches to the previously observed one.

This list is, by no means, exhaustive. Different approaches are focused on detecting
different anomalies (for example, in value, frequency, and distribution). We will
focus on a version of distribution-based approaches.

Histogram-based anomaly detection
In histogram-based anomaly detection, we split signals by some selected time
window as shown in the following image.

For each window, we calculate the histogram, that is, for a selected number of buckets,
we count how many values fall into each bucket. The histogram captures basic
distribution of values in a selected time window as shown at the center of the diagram.

Chapter 7

[139]

Histograms can be then directly presented as instances, where each bin corresponds
to an attribute. Further, we can reduce the number of attributes by applying a
dimensionality-reduction technique such as Principal Component Analysis (PCA),
which allows us to visualize the reduced-dimension histograms in a plot as shown at
the bottom-right of the diagram, where each dot corresponds to a histogram.

In our example, the idea is to observe website traffic for a couple of days and then to
create histograms, for example, four-hour time windows to build a library of positive
behavior. If a new time window histogram cannot be matched against positive
library, we can mark it as an anomaly:

Fraud and Anomaly Detection

[140]

For comparing a new histogram to a set of existing histograms, we will use a
density-based k-nearest neighbor algorithm, Local Outlier Factor (LOF) (Breunig et
al, 2000). The algorithm is able to handle clusters with different densities as shown in
the following image. For example, the upper-right cluster is large and widespread as
compared to the bottom-left cluster, which is smaller and denser:

Let's get started!

Loading the data
In the first step, we'll need to load the data from text files to a Java object. The files
are stored in a folder, each file contains one-time series with values per line. We'll
load them into a list of Double:

String filePath = "chap07/ydata/A1Benchmark/real";
List<List<Double>> rawData = new ArrayList<List<Double>>();

Chapter 7

[141]

We will need the min and max value for histogram normalization, so let's collect them
in this data pass:

double max = Double.MIN_VALUE;
double min = Double.MAX_VALUE;

for(int i = 1; i<= 67; i++){
 List<Double> sample = new ArrayList<Double>();
 BufferedReader reader = new BufferedReader(new
 FileReader(filePath+i+".csv"));

 boolean isAnomaly = false;
 reader.readLine();
 while(reader.ready()){
 String line[] = reader.readLine().split(",");
 double value = Double.parseDouble(line[1]);
 sample.add(value);

 max = Math.max(max, value);
 min = Double.min(min, value);

 if(line[2] == "1")
 isAnomaly = true;

 }
 System.out.println(isAnomaly);
 reader.close();

 rawData.add(sample);
}

The data is loaded, now let's move on to histograms.

Creating histograms
We will create a histogram for a selected time window with the WIN_SIZE width.
The histogram will hold the HIST_BINS value buckets. The histograms consisting of
list of doubles will be stored into an array list:

int WIN_SIZE = 500;
int HIST_BINS = 20;
int current = 0;

List<double[]> dataHist = new ArrayList<double[]>();
for(List<Double> sample : rawData){

Fraud and Anomaly Detection

[142]

 double[] histogram = new double[HIST_BINS];
 for(double value : sample){
 int bin = toBin(normalize(value, min, max), HIST_BINS);
 histogram[bin]++;
 current++;
 if(current == WIN_SIZE){
 current = 0;
 dataHist.add(histogram);
 histogram = new double[HIST_BINS];
 }
 }
 dataHist.add(histogram);
}

Histograms are now completed. The last step is to transform them into Weka's
Instance objects. Each histogram value will correspond to one Weka attribute,
as follows:

ArrayList<Attribute> attributes = new ArrayList<Attribute>();
for(int i = 0; i<HIST_BINS; i++){
 attributes.add(new Attribute("Hist-"+i));
}
Instances dataset = new Instances("My dataset", attributes,
 dataHist.size());
for(double[] histogram: dataHist){
 dataset.add(new Instance(1.0, histogram));
}

The dataset is now loaded and ready to be plugged into an anomaly-detection
algorithm.

Density based k-nearest neighbors
To demonstrate how LOF calculates scores, we'll first split the dataset into training
and testing set using the testCV(int, int) function. The first parameter specifies
the number of folds, while the second parameter specifies which fold to return.

// split data to train and test
Instances trainData = dataset.testCV(2, 0);
Instances testData = dataset.testCV(2, 1);

The LOF algorithm is not a part of the default Weka distribution, but it can be
downloaded through Weka's package manager:

http://weka.sourceforge.net/packageMetaData/localOutlierFactor/index.
html

http://weka.sourceforge.net/packageMetaData/localOutlierFactor/index.html
http://weka.sourceforge.net/packageMetaData/localOutlierFactor/index.html

Chapter 7

[143]

LOF algorithm has two implemented interfaces: as an unsupervised filter that
calculates LOF values (known-unknowns) and as a supervised k-nn classifier
(known-knowns). In our case, we want to calculate the outlier-ness factor, therefore,
we'll use the unsupervised filter interface:

import weka.filters.unsupervised.attribute.LOF;

The filter is initialized the same way as a usual filter. We can specify the k number
of neighbors, for example, k=3, with –min and –max parameters. LOF allows us to
specify two different k parameters, which are used internally as the upper and lower
bound to find the minimal/maximal number lof values:

LOF lof = new LOF();
lof.setInputFormat(trainData);
lof.setOptions(new String[]{"-min", "3", "-max", "3"});

Next, we load training instances into the filter that will serve as a positive example
library. After we complete the loading, we call the batchFinished()method to
initialize internal calculations:

for(Instance inst : trainData){
 lof.input(inst);
}
lof.batchFinished();

Finally, we can apply the filter to test data. Filter will process the instances and
append an additional attribute at the end containing the LOF score. We can simply
output the score on the console:

Instances testDataLofScore = Filter.useFilter(testData, lof);

for(Instance inst : testDataLofScore){
 System.out.println(inst.value(inst.numAttributes()-1));
}

The LOF score of the first couple of test instances is as follows:

1.306740014927325

1.318239332210458

1.0294812291949587

1.1715039094530768

Fraud and Anomaly Detection

[144]

To understand the LOF values, we need some background on the LOF algorithm. It
compares the density of an instance to the density of its nearest neighbors. The two
scores are divided, producing the LOF score. The LOF score around 1 indicates that
the density is approximately equal, while higher LOF values indicate that the density
of the instance is substantially lower than the density of its neighbors. In such cases,
the instance can be marked as anomalous.

Summary
In this chapter, we looked into detecting anomalous and suspicious patterns. We
discussed the two fundamental approaches focusing on library encoding either
positive or negative patterns. Next, we got our hands on two real-life datasets, where
we discussed how to deal with unbalanced class distribution and perform anomaly
detection in time series data.

In the next chapter, we'll dive deeper into patterns and more advanced approaches
to build pattern-based classifier, discussing how to automatically assign labels to
images with deep learning.

[145]

Image Recognition with
Deeplearning4j

Images have become ubiquitous in web services, social networks, and web stores.
In contrast to humans, computers have great difficulty in understanding what
is in the image and what does it represent. In this chapter, we'll first look at the
challenges required to teach computers how to understand images, and then focus
on an approach based on deep learning. We'll look at a high-level theory required to
configure a deep learning model and discuss how to implement a model that is
able to classify images using a Java library, Deeplearning4j.

This chapter will cover the following topics:

• Introducing image recognition
• Discussing deep learning fundamentals
• Building an image recognition model

Introducing image recognition
A typical goal of image recognition is to detect and identify an object in a digital
image. Image recognition is applied in factory automation to monitor product
quality; surveillance systems to identify potentially risky activities, such as moving
persons or vehicles; security applications to provide biometric identification through
fingerprints, iris, or facial features; autonomous vehicles to reconstruct conditions on
the road and environment and so on.

Image Recognition with Deeplearning4j

[146]

Digital images are not presented in a structured way with attribute-based
descriptions; instead, they are encoded as the amount of color in different channels,
for instance, black-white and red-green-blue channels. The learning goal is to then
identify patterns associated with a particular object. The traditional approach
for image recognition consists of transforming an image into different forms, for
instance, identify object corners, edges, same-color blobs, and basic shapes. Such
patterns are then used to train a learner to distinguish between objects. Some notable
examples of tranditional algorithms are:

• Edge detection finds boundaries of objects within an image
• Corner detection identifies intersections of two edges or other interesting

points, such as line endings, curvature maxima/minima, and so on
• Blob detection identifies regions that differ in a property, such as brightness

or color, compared to its surrounding regions
• Ridge detection identifies additional interesting points at the image using

smooth functions
• Scale Invariant Feature Transform (SIFT) is a robust algorithm that can

match objects event if their scale or orientation differs from the representative
samples in database

• Hough transform identifies particular patterns in the image

A more recent approach is based on deep learning. Deep learning is a form of neural
network, which mimics how the brain processes information. The main advantage of
deep learning is that it is possible to design neural networks that can automatically
extract relevant patterns, which in turn, can be used to train a learner. With recent
advances in neural networks, image recognition accuracy was significantly boosted.
For instance, the ImageNet challenge (ImageNet, 2016), where competitors are
provide more than 1.2 million images from 1,000 different object categories, reports
that the error rate of the best algorithm was reduced from 28% in 2010, using SVM, to
only 7% in 2014, using deep neural network.

In this chapter, we'll take a quick look at neural networks, starting from the basic
building block—perceptron—and gradually introducing more complex structures.

Chapter 8

[147]

Neural networks
The first neural networks, introduced in the sixties, are inspired by biological neural
networks. Recent advances in neural networks proved that deep neural networks
fit very well in pattern recognition tasks, as they are able to automatically extract
interesting features and learn the underlying presentation. In this section, we'll
refresh the fundamental structures and components from a single perceptron
to deep networks.

Perceptron
Perceptron is a basic neural network building block and one of the earliest supervised
algorithms. It is defined as a sum of features, multiplied by corresponding weights
and a bias. The function that sums all of this together is called sum transfer function
and it is fed into an activation function. If the binary step activation function reaches
a threshold, the output is 1, otherwise 0, which gives us a binary classifier. A schematic
illustration is shown in the following diagram:

Training perceptrons involves a fairly simple learning algorithm that calculates
the errors between the calculated output values and correct training output values,
and uses this to create an adjustment to the weights; thus implementing a form of
gradient descent. This algorithm is usually called the delta rule.

Single-layer perceptron is not very advanced, and nonlinearly separable functions,
such as XOR, cannot be modeled using it. To address this issue, a structure with
multiple perceptrons was introduced, called multilayer perceptron, also known as
feedforward neural network.

Image Recognition with Deeplearning4j

[148]

Feedforward neural networks
A feedforward neural network is an artificial neural network that consists of several
perceptrons, which are organized by layers, as shown in the following diagram:
input layer, output layer, and one or more hidden layers. Each layer perceptron,
also known as neuron, has direct connections to the perceptrons in the next layer;
whereas, connections between two neurons carry a weight similar to the perceptron
weights. The diagram shows a network with a four-unit Input layer, corresponding
to the size of feature vector of length 4, a four-unit Hidden layer, and a two-unit
Output layer, where each unit corresponds to one class value:

The most popular approach to train multilayer networks is backpropagation. In
backpropagation, the calculated output values are compared with the correct values
in the same way as in delta rule. The error is then fed back through the network by
various techniques, adjusting the weights of each connection in order to reduce the
value of the error. The process is repeated for sufficiently large number of training
cycles, until the error is under a certain threshold.

Feedforward neural network can have more than one hidden layer; whereas, each
additional hidden layer builds a new abstraction atop the previous layers. This often
leads to more accurate models; however, increasing the number of hidden layers
leads to the following two known issues:

• Vanishing gradients problem: With more hidden layers, the training with
backpropagation becomes less and less useful for passing information to the
front layers, causing these layers to train very slowly

• Overfitting: The model fits the training data too well and performs poorly on
real examples

Let's look at some other networks structures that address these issues.

Chapter 8

[149]

Autoencoder
Autoencoder is a feedforward neural network that aims to learn how to compress
the original dataset. Therefore, instead of mapping features to input layer and
labels to output layer, we will map the features to both input and output layers.
The number of units in hidden layers is usually different from the number of units
in input layers, which forces the network to either expand or reduce the number
of original features. This way the network will learn the important features, while
effectively applying dimensionality reduction.

An example network is shown below. The three-unit input layer is first expanded
into a four-unit layer and then compressed into a single-unit layer. The other side of
the network restores the single-layer unit back to the four-unit layer, and then to the
original three-input layer:

Once the network is trained, we can take the left-hand side to extract image features
as we would with traditional image processing.

Image Recognition with Deeplearning4j

[150]

The autoencoders can be also combined into stacked autoencoders, as shown in
the following image. First, we will discuss the hidden layer in a basic autoencoder,
as described previously. Then we will take the learned hidden layer (green circles)
and repeat the procedure, which in effect, learns a more abstract presentation. We
can repeat the procedure multiple times, transforming the original features into
increasingly reduced dimensions. At the end, we will take all the hidden layers
and stack them into a regular feedforward network, as shown at the top-right part
of the diagram:

Restricted Boltzmann machine
Restricted Boltzman machine is an undirected neural network, also denoted as
Generative Stochastic Networks (GSNs), and can learn probability distribution
over its set of inputs. As the name suggests, they originate from Boltzman machine,
a recurrent neural network introduced in the eighties. Restricted means that the
neurons must form two fully connected layers—input layer and hidden layer—as
show in the following diagram:

Unlike feedforward networks, the connections between the visible and hidden layers
are undirected, hence the values can be propagated in both visible-to-hidden and
hidden-to-visible directions.

Chapter 8

[151]

Training Restricted Boltzman machines is based on the Contrastive Divergence
algorithm, which uses a gradient descent procedure, similar to backpropagation, to
update weights, and Gibbs sampling is applied on the Markov chain to estimate the
gradient—the direction on how to change the weights.

Restricted Boltzmann machines can also be stacked to create a class known as Deep
Belief Networks (DBNs). In this case, the hidden layer of RBM acts as a visible layer
for the RBM layer, as shown in the following diagram:

The training, in this case, is incremental; training layer by layer.

Deep convolutional networks
A network structure that recently achieves very good results at image recognition
benchmarks is Convolutional Neural Network (CNN) or ConvNet. CNNs are a
type of feedforward neural network that are structured in such a way that emulates
behavior of the visual cortex, exploiting 2D structures of an input image, that is,
patterns that exhibit spatially local correlation.

A CNN consists of a number of convolutional and subsampling layers, optionally
followed by fully connected layers. An example is shown in the following image. The
input layer reads all the pixels at an image and then we apply multiple filters. In the
following image, four different filters are applied. Each filter is applied to the original
image, for example, one pixel of a 6 x 6 filter is calculated as the weighted sum
of a 6 x 6 square of input pixels and corresponding 6 x 6 weights. This effectively
introduces filters similar to the standard image processing, such as smoothing,
correlation, edge detection, and so on. The resulting image is called feature map. In
the example in the image, we have four feature maps, one for
each filter.

Image Recognition with Deeplearning4j

[152]

The next layer is the subsampling layer, which reduces the size of the input. Each
feature map is subsampled typically with mean or max pooling over a contiguous
region of 2 x 2 (up to 5 x 5 for large images). For example, if the feature map size is
16 x 16 and the subsampling region is 2 x 2, the reduced feature map size is 8 x 8,
where 4 pixels (2 x 2 square) are combined into a single pixel by calculating max,
min, mean, or some other functions:

The network may contain several consecutive convolution and subsampling layers,
as shown in the preceding diagram. A particular feature map is connected to the
next reduced/convoluted feature map, while feature maps at the same layer are
not connected to each other.

After the last subsampling or convolutional layer, there is usually a fully connected
layer, identical to the layers in a standard multilayer neural network, which
represents the target data.

CNN is trained using a modified backpropagation algorithm that takes the
subsampling layers into account and updates the convolutional filter weights
based on all the values where this filter is applied.

Some good CNN designs can be found at the ImageNet
competition results page:
http://www.image-net.org/

An example is AlexNet, described in the ImageNet Classification with
Deep Covolutional Neural Networks paper by A. Krizhevsky et al.

This concludes our review of main neural network structures. In the following
section, we'll move to the actual implementation.

http://www.image-net.org/

Chapter 8

[153]

Image classification
In this section, we will discuss how to implement some of the neural network
structures with the deeplearning4j library. Let's start.

Deeplearning4j
As we discussed in Chapter 2, Java Libraries and Platforms for Machine Learning,
deeplearning4j is an open source, distributed deep learning project in Java and
Scala. Deeplearning4j relies on Spark and Hadoop for MapReduce, trains models in
parallel, and iteratively averages the parameters they produce in a central model.
A detailed library summary is presented in Chapter 2, Java Libraries and Platforms for
Machine Learning.

Getting DL4J
The most convenient way to get deeplearning4j is through the Maven repository:

1. Start a new Eclipse project and pick Maven Project, as shown in the
following screenshot:

Image Recognition with Deeplearning4j

[154]

2. Open the pom.xml file and add the following dependencies under the
<dependencies> section:
<dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>deeplearning4j-nlp</artifactId>
 <version>${dl4j.version}</version>
</dependency>

<dependency>
 <groupId>org.deeplearning4j</groupId>
 <artifactId>deeplearning4j-core</artifactId>
 <version>${dl4j.version}</version>
</dependency>

3. Finally, right-click on Project, select Maven, and pick Update project.

MNIST dataset
One of the most famous datasets is MNIST dataset, which consists of handwritten
digits, as shown in the following image. The dataset comprises 60,000 training and
10,000 testing images:

The dataset is commonly used in image recognition problems to benchmark
algorithms The worst recorded error rate is 12%, with no preprocessing and using a
SVM in one-layer neural network. Currently, as of 2016, the lowest error rate is only
0.21%, using the DropConnect neural network, followed by deep convolutional
network at 0.23%, and deep feedforward network at 0.35%.

Now, let's see how to load the dataset.

Loading the data
Deeplearning4j provides the MNIST dataset loader out of the box. The loader is
initialized as DataSetIterator. Let's first import the DataSetIterator class and all
the supported datasets that are part of the impl package, for example, Iris, MNIST,
and others:

import org.deeplearning4j.datasets.iterator.DataSetIterator;
import org.deeplearning4j.datasets.iterator.impl.*;

Chapter 8

[155]

Next, we'll define some constants, for instance, the images consist of 28 x 28 pixels and
there are 10 target classes and 60,000 samples. Initialize a new MnistDataSetIterator
class that will download the dataset and its labels. The parameters are iteration batch
size, total number of examples, and whether the datasets should be binarized or not:

int numRows = 28;
int numColumns = 28;
int outputNum = 10;
int numSamples = 60000;
int batchSize = 100;
DataSetIterator iter = new MnistDataSetIterator(batchSize,
numSamples,true);

Having an already-implemented data importer is really convenient, but it won't
work on your data. Let's take a quick look at how is it implemented and what needs
to be modified to support your dataset. If you're eager to start implementing neural
networks, you can safely skip the rest of this section and return to it when you need
to import your own data.

To load the custom data, you'll need to implement two classes:
DataSetIterator that holds all the information about the dataset and
BaseDataFetcher that actually pulls the data either from file, database,
or web. Sample implementations are available on GitHub at https://
github.com/deeplearning4j/deeplearning4j/tree/master/
deeplearning4j-core/src/main/java/org/deeplearning4j/
datasets/iterator/impl.
Another option is to use the Canova library, which is developed by the
same authors, at http://deeplearning4j.org/canovadoc/.

Building models
In this section, we'll discuss how to build an actual neural network model. We'll start
with a basic single-layer neural network to establish a benchmark and discuss the
basic operations. Later, we'll improve this initial result with DBN and Multilayer
Convolutional Network.

https://github.com/deeplearning4j/deeplearning4j/tree/master/deeplearning4j-core/src/main/java/org/deeplearning4j/datasets/iterator/impl
https://github.com/deeplearning4j/deeplearning4j/tree/master/deeplearning4j-core/src/main/java/org/deeplearning4j/datasets/iterator/impl
https://github.com/deeplearning4j/deeplearning4j/tree/master/deeplearning4j-core/src/main/java/org/deeplearning4j/datasets/iterator/impl
https://github.com/deeplearning4j/deeplearning4j/tree/master/deeplearning4j-core/src/main/java/org/deeplearning4j/datasets/iterator/impl
http://deeplearning4j.org/canovadoc/

Image Recognition with Deeplearning4j

[156]

Building a single-layer regression model
Let's start by building a single-layer regression model based on the softmax
activation function, as shown in the following diagram. As we have a single layer,
Input to the neural network will be all the figure pixels, that is, 28 x 28 = 748
neurons. The number of Output neurons is 10, one for each digit. The network
layers are fully connected, as shown in the following diagram:

A neural network is defined through a NeuralNetConfiguration Builder object
as follows:

MultiLayerConfiguration conf = new
NeuralNetConfiguration.Builder()

We will define the parameters for gradient search in order to perform iterations
with the conjugate gradient optimization algorithm. The momentum parameter
determines how fast the optimization algorithm converges to an local optimum—the
higher the momentum, the faster the training; but higher speed can lower model's
accuracy, as follows:

.seed(seed)

.gradientNormalization(GradientNormalization.ClipElementWiseAbsolu
 teValue)
 .gradientNormalizationThreshold(1.0)
 .iterations(iterations)
 .momentum(0.5)
 .momentumAfter(Collections.singletonMap(3, 0.9))
 .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)

Chapter 8

[157]

Next, we will specify that the network will have one layer and define the error
function (NEGATIVELOGLIKELIHOOD), internal perceptron activation function
(softmax), and the number of input and output layers that correspond to total
image pixels and the number of target variables:

.list(1)

.layer(0, new
OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD)
.activation("softmax")
.nIn(numRows*numColumns).nOut(outputNum).build())

Finally, we will set the network to pretrain, disable backpropagation, and actually
build the untrained network structure:

 .pretrain(true).backprop(false)
 .build();

Once the network structure is defined, we can use it to initialize a new
MultiLayerNetwork, as follows:

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

Next, we will point the model to the training data by calling the setListeners
method, as follows:

model.setListeners(Collections.singletonList((IterationListener)
 new ScoreIterationListener(listenerFreq)));

We will also call the fit(int) method to trigger an end-to-end network training:

model.fit(iter);

To evaluate the model, we will initialize a new Evaluation object that will store
batch results:

Evaluation eval = new Evaluation(outputNum);

We can then iterate over the dataset in batches in order to keep the memory
consumption at a reasonable rate and store the results in an eval object:

DataSetIterator testIter = new MnistDataSetIterator(100,10000);
while(testIter.hasNext()) {
 DataSet testMnist = testIter.next();
 INDArray predict2 =
 model.output(testMnist.getFeatureMatrix());
 eval.eval(testMnist.getLabels(), predict2);
}

Image Recognition with Deeplearning4j

[158]

Finally, we can get the results by calling the stats() function:

log.info(eval.stats());

A basic one-layer model achieves the following accuracy:

Accuracy: 0.8945

Precision: 0.8985

Recall: 0.8922

F1 Score: 0.8953

Getting 89.22% accuracy, that is, 10.88% error rate, on MNIST dataset is quite bad.
We'll improve that by going from a simple one-layer network to the moderately
sophisticated deep belief network using Restricted Boltzmann machines and
Multilayer Convolutional Network.

Building a deep belief network
In this section, we'll build a deep belief network based on Restricted Boltzmann
machine, as shown in the following diagram. The network consists of four layers:
the first layer recedes the 748 inputs to 500 neurons, then to 250, followed by 200,
and finally to the last 10 target values:

Chapter 8

[159]

As the code is the same as in the previous example, let's take a look at how to
configure such a network:

MultiLayerConfiguration conf = new
 NeuralNetConfiguration.Builder()

We defined the gradient optimization algorithm, as shown in the following code:

 .seed(seed)
 .gradientNormalization(
 GradientNormalization.ClipElementWiseAbsoluteValue)
 .gradientNormalizationThreshold(1.0)
 .iterations(iterations)
 .momentum(0.5)
 .momentumAfter(Collections.singletonMap(3, 0.9))
 .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)

We will also specify that our network will have four layers:

 .list(4)

The input to the first layer will be 748 neurons and the output will be 500 neurons.
We'll use the root mean squared-error cross entropy, Xavier algorithm, to initialize
weights by automatically determining the scale of initialization based on the number
of input and output neurons, as follows:

.layer(0, new RBM.Builder()

.nIn(numRows*numColumns)

.nOut(500)

.weightInit(WeightInit.XAVIER)

.lossFunction(LossFunction.RMSE_XENT)

.visibleUnit(RBM.VisibleUnit.BINARY)

.hiddenUnit(RBM.HiddenUnit.BINARY)

.build())

The next two layers will have the same parameters, except the number of input and
output neurons:

.layer(1, new RBM.Builder()

.nIn(500)

.nOut(250)

.weightInit(WeightInit.XAVIER)

.lossFunction(LossFunction.RMSE_XENT)

.visibleUnit(RBM.VisibleUnit.BINARY)

.hiddenUnit(RBM.HiddenUnit.BINARY)

.build())

Image Recognition with Deeplearning4j

[160]

.layer(2, new RBM.Builder()

.nIn(250)

.nOut(200)

.weightInit(WeightInit.XAVIER)

.lossFunction(LossFunction.RMSE_XENT)

.visibleUnit(RBM.VisibleUnit.BINARY)

.hiddenUnit(RBM.HiddenUnit.BINARY)

.build())

Now the last layer will map the neurons to outputs, where we'll use the softmax
activation function, as follows:

.layer(3, new OutputLayer.Builder()

.nIn(200)

.nOut(outputNum)

.lossFunction(LossFunction.NEGATIVELOGLIKELIHOOD)

.activation("softmax")

.build())

.pretrain(true).backprop(false)

.build();

The rest of the training and evaluation is the same as in the single-layer network
example. Note that training deep network might take significantly more time
compared to a single-layer network. The accuracy should be around 93%.

Now let's take a look at another deep network.

Build a Multilayer Convolutional Network
In the final example, we'll discuss how to build a convolutional network, as shown
in the following diagram. The network will consist of seven layers: first, we'll repeat
two pairs of convolutional and subsampling layers with max pooling. The last
subsampling layer is then connected to a densely connected feedforward neuronal
network, comprising 120 neurons, 84 neurons, and 10 neurons in the last three
layers, respectively. Such a network effectively forms the complete image recognition
pipeline, where the first four layers correspond to feature extraction and the last
three layers correspond to the learning model:

Chapter 8

[161]

Network configuration is initialized as we did earlier:

MultiLayerConfiguration.Builder conf = new
 NeuralNetConfiguration.Builder()

We will specify the gradient descent algorithm and its parameters, as follows:

.seed(seed)

.iterations(iterations)

.activation("sigmoid")

.weightInit(WeightInit.DISTRIBUTION)

.dist(new NormalDistribution(0.0, 0.01))

.learningRate(1e-3)

.learningRateScoreBasedDecayRate(1e-1)

.optimizationAlgo(
OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)

We will also specify the seven network layers, as follows:

.list(7)

The input to the first convolutional layer is the complete image, while the output is
six feature maps. The convolutional layer will apply a 5 x 5 filter, and the result will
be stored in a 1 x 1 cell:

.layer(0, new ConvolutionLayer.Builder(
 new int[]{5, 5}, new int[]{1, 1})
 .name("cnn1")
 .nIn(numRows*numColumns)
 .nOut(6)
 .build())

Image Recognition with Deeplearning4j

[162]

The second layer is a subsampling layer that will take a 2 x 2 region and store the
max result into a 2 x 2 element:

.layer(1, new SubsamplingLayer.Builder(
SubsamplingLayer.PoolingType.MAX,
new int[]{2, 2}, new int[]{2, 2})
.name("maxpool1")
.build())

The next two layers will repeat the the previous two layers:

.layer(2, new ConvolutionLayer.Builder(new int[]{5, 5}, new
 int[]{1, 1})
 .name("cnn2")
 .nOut(16)
 .biasInit(1)
 .build())
.layer(3, new SubsamplingLayer.Builder
 (SubsamplingLayer.PoolingType.MAX, new
 int[]{2, 2}, new int[]{2, 2})
 .name("maxpool2")
 .build())

Now we will wire the output of the subsampling layer into a dense feedforward
network, consisting of 120 neurons, and then through another layer, into 84
neurons, as follows:

.layer(4, new DenseLayer.Builder()
 .name("ffn1")
 .nOut(120)
 .build())
.layer(5, new DenseLayer.Builder()
 .name("ffn2")
 .nOut(84)
 .build())

The final layer connects 84 neurons with 10 output neurons:

.layer(6, new OutputLayer.Builder
 (LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
 .name("output")
 .nOut(outputNum)
 .activation("softmax") // radial basis function required
 .build())
.backprop(true)
.pretrain(false)
.cnnInputSize(numRows,numColumns,1);

Chapter 8

[163]

To train this structure, we can reuse the code that we developed in the previous two
examples. Again, the training might take some time. The network accuracy should be
around 98%.

As model training significantly relies on linear algebra, training
can be significantly sped up by using Graphics Processing
Unit (GPU) for an order of magnitude. As GPU backend is
at the time of writing undergoing a rewrite, please check the
latest documentation at http://deeplearning4j.org/
documentation

As we saw in different examples, increasingly more complex neural networks allow
us to extract relevant features automatically, thus completely avoiding traditional
image processing. However, the price we pay for this is an increased processing
time and a lot of learning examples to make this approach efficient.

Summary
In this chapter, we discussed how to recognize patterns in images in order to
distinguish between different classes by covering fundamental principles of deep
learning and discussing how to implement them with the deeplearning4j library.
We started by refreshing the basic neural network structure and discussed how
to implement them to solve handwritten digit recognition problem.

In the next chapter, we'll look further into patterns; however, instead of patterns
in images, we'll tackle patterns with temporal dependencies that can be found in
sensor data.

http://deeplearning4j.org/documentation
http://deeplearning4j.org/documentation

[165]

Activity Recognition with
Mobile Phone Sensors

While the previous chapter focused on pattern recognition in images, this chapter
is all about recognizing patterns in sensor data, which, in contrast to images, has
temporal dependencies. We will discuss how to recognize granular daily activities
such as walking, sitting, and running using mobile phone inertial sensors. The
chapter also provides references to related research and emphasizes best practices in
the activity recognition community.

The topics covered in this chapter will include the following:

• Introducing activity recognition, covering mobile phone sensors and activity
recognition pipeline

• Collecting sensor data from mobile devices
• Discussing activity classification and model evaluation
• Deploying activity recognition model

Activity Recognition with Mobile Phone Sensors

[166]

Introducing activity recognition
Activity recognition is an underpinning step in behavior analysis, addressing
healthy lifestyle, fitness tracking, remote assistance, security applications, elderly
care, and so on. Activity recognition transforms low-level sensor data from sensors,
such as accelerometer, gyroscope, pressure sensor, and GPS location, to a higher-
level description of behavior primitives. In most cases, these are basic activities,
for example, walking, sitting, lying, jumping, and so on, as shown in the following
image, or they could be more complex behaviors, such as going to work, preparing
breakfast, shopping, and so on:

In this chapter, we will discuss how to add the activity recognition functionality into
a mobile application. We will first look at what does an activity recognition problem
looks like, what kind of data do we need to collect, what are the main challenges are,
and how to address them?

Later, we will follow an example to see how to actually implement activity
recognition in an Android application, including data collection, data transformation,
and building a classifier.

Let's start!

Mobile phone sensors
Let's first review what kinds of mobile phone sensors there are and what they report.
Most smart devices are now equipped with a several built-in sensors that measure the
motion, position, orientation, and conditions of the ambient environment. As sensors
provide measurements with high precision, frequency, and accuracy, it is possible
to reconstruct complex user motions, gestures, and movements. Sensors are often
incorporated in various applications; for example, gyroscope readings are used to steer
an object in a game, GPS data is used to locate the user, and accelerometer data is used to
infer the activity that the user is performing, for example, cycling, running, or walking.

Chapter 9

[167]

The next image shows a couple of examples what kind of interactions the sensors are
able to detect:

Mobile phone sensors can be classified into the following three broad categories:

• Motion sensors measure acceleration and rotational forces along the
three perpendicular axes. Examples of sensors in this category include
accelerometers, gravity sensors, and gyroscopes.

• Environmental sensors measure a variety of environmental parameters,
such as illumination, air temperature, pressure, and humidity. This category
includes barometers, photometers, and thermometers.

• Position sensors measure the physical position of a device. This category
includes orientation sensors and magnetometers.

More detailed descriptions for different mobile platforms are available
at the following links:

• Android sensors framework: http://developer.
android.com/guide/topics/sensors/sensors_
overview.html

• iOS Core Motion framework: https://developer.apple.
com/library/ios/documentation/CoreMotion/
Reference/CoreMotion_Reference/

• Windows Phone: https://msdn.microsoft.com/en-us/
library/windows/apps/hh202968(v=vs.105).aspx

In this chapter, we will work only with Android's sensors framework.

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CoreMotion_Reference/
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CoreMotion_Reference/
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CoreMotion_Reference/
https://msdn.microsoft.com/en-us/library/windows/apps/hh202968(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh202968(v=vs.105).aspx

Activity Recognition with Mobile Phone Sensors

[168]

Activity recognition pipeline
Classifying multidimensional time-series sensor data is inherently more complex
compared to classifying traditional, nominal data as we saw in the previous chapters.
First, each observation is temporally connected to the previous and following
observations, making it very difficult to apply a straightforward classification of a
single set of observations only. Second, the data obtained by sensors at different time
points stochastic, that is unpredictable due to influence of sensor noise, environmental
disturbances, and many other reasons. Moreover, an activity can comprise various
sub-activities executed in different manner and each person performs the activity a
bit differently, which results in high intraclass differences. Finally, all these reasons
make an activity recognition model imprecise, resulting in new data being often
misclassified. One of the highly desirable properties of an activity recognition classifier
is to ensure continuity and consistency in the recognized activity sequence.

To deal with these challenges, activity recognition is applied to a pipeline as shown
in the following:

In the first step, we attenuate as much noise as we can, for example, by reducing
sensor sampling rate, removing outliers, applying high/low-pass filters, and so on.
In the next phase, we construct a feature vector, for instance, we convert sensor data
from time domain to frequency domain by applying Discrete Fourier Transform
(DFT). DFT is a method that takes a list of samples as an input and returns a list of
sinusoid coefficients ordered by their frequencies. They represent a combination of
frequencies that are present in the original list of samples.

An gentle introduction of Fourier transform is written by Pete
Bevelacqua at http://www.thefouriertransform.com/.
If you want to get more technical and theoretical background
on the Fourier transform, take a look at the eighth and ninth
lectures in the class by Robert Gallanger and Lizhong Zheng at
MIT open course:
http://theopenacademy.com/content/principles-
digital-communication

http://www.thefouriertransform.com/
http://theopenacademy.com/content/principles-digital-communication
http://theopenacademy.com/content/principles-digital-communication

Chapter 9

[169]

Next, based on the feature vector and set of training data, we can build an
activity recognition model that assigns an atomic action to each observation.
Therefore, for each new sensor reading, the model will output the most probable
activity label. However, models make mistakes. Hence, the last phase smooths the
transitions between activities by removing transitions that cannot occur in reality,
for example, it is not physically feasible that the transition between activities
lying-standing-lying occurs in less than half a second, hence such transition between
activities is smoothed as lying-lying-lying.

The activity recognition model is constructed with a supervised learning
approach, which consists of training and classification steps. In the training
step, a set of labeled data is provided to train the model. The second step is
used to assign a label to the new unseen data by the trained model. The data
in both phases must be pre-processed with the same set of tools, such as filtering
and feature-vector computation.

The post-processing phase, that is, spurious activity removal, can also be a model
itself and, hence, also requires a learning step. In this case, the pre-processing step
also includes activity recognition, which makes such arrangement of classifiers a
meta-learning problem. To avoid overfitting, it is important that the dataset used
for training the post-processing phase is not the same as that used for training the
activity recognition model.

We will roughly follow a lecture on smartphone programming by professor Andrew
T. Campbell from Dartmouth University and leverage data collection mobile app
that they developed in the class (Campbell, 2011).

The plan
The plan consists of training phase and deployment phase. Training phase shown in
the following image boils down to the following steps:

1. Install Android Studio and import MyRunsDataCollector.zip.
2. Load the application in your Android phone.
3. Collect your data, for example, standing, walking, and running, and

transform the data to a feature vector comprising of FFT transforms. Don't
panic, low-level signal processing functions such as FFT will not be written
from scratch as we will use existing code to do that. The data will be saved
on your phone in a file called features.arff.

4. Create and evaluate an activity recognition classifier using exported data and
implement filter for spurious activity transitions removal.

5. Plug the classifier back into the mobile application.

Activity Recognition with Mobile Phone Sensors

[170]

If you don't have an Android phone, or if you want to skip all the steps related to
mobile application, just grab an already-collected dataset located in data/features.
arff and jump directly to the Building a classifier section.

Collecting data from a mobile phone
This section describes the first three steps from the plan. If you want to directly work
with the data, you can just skip this section and continue to the following Building a
classifier section. There are many open source mobile apps for sensor data collection,
including an app by Prof. Campbell that we will use in this chapter. The application
implements the essentials to collect sensor data for different activity classes, for
example, standing, walking, running, and others.

Let's start by preparing the Android development environment. If you have already
installed it, jump to the Loading the data collector section.

Installing Android Studio
Android Studio is a development environment for Android platform. We will
quickly review installation steps and basic configurations required to start the app
on a mobile phone. For more detailed introduction to Android development, I would
recommend an introductory book, Android 5 Programming by Example by Kyle Mew.

Grab the latest Android Studio for developers at http://developer.android.com/
sdk/installing/index.html?pkg=studio and follow the installation instructions.
The installation will take over 10 minutes, occupying approximately 0.5 GB of space:

http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html

Chapter 9

[171]

Then:

Activity Recognition with Mobile Phone Sensors

[172]

Loading the data collector
First, grab source code of MyRunsDataCollector from http://www.cs.dartmouth.
edu/~campbell/cs65/code/myrunsdatacollector.zip. Once the Android Studio
is installed, choose to open an existing Android Studio project as shown in the
following image and select the MyRunsDataCollector folder. This will import the
project to Android Studio:

After the project import is completed, you should be able to see the project files
structure, as shown in the following image. As shown in the following, the collector
consists of CollectorActivity.java, Globals.java, and SensorsService.java.
The project also shows FFT.java implementing low-level signal processing:

http://www.cs.dartmouth.edu/~campbell/cs65/code/myrunsdatacollector.zip
http://www.cs.dartmouth.edu/~campbell/cs65/code/myrunsdatacollector.zip

Chapter 9

[173]

The main myrunscollector package contains the following classes:

• Globals.java: This defines global constants such as activity labels and IDs,
data filenames, and so on

• CollectorActivity.java: This implements user interface actions, that is,
what happens when specific button is pressed

• SensorsService.java: This implements a service that collects data,
calculates the feature vector as we will discuss in the following sections, and
stores the data into a file on the phone

The next question that we will address is how to design features.

Activity Recognition with Mobile Phone Sensors

[174]

Feature extraction
Finding an appropriate representation of the person's activities is probably the
most challenging part of activity recognition. The behavior needs to be represented
with simple and general features so that the model using these features will also be
general and work well on behaviors different from those in the learning set.

In fact, it is not difficult to design features specific to the captured observations in a
training set; such features would work well on them. However, as the training set
captures only a part of the whole range of human behavior, overly specific features
would likely fail on general behavior:

Chapter 9

[175]

Let's see how it is implemented in MyRunsDataCollector. When the application is
started, a method called onSensorChanged() gets a triple of accelerometer sensor
readings (x, y, and z) with a specific time stamp and calculates the magnitude from
the sensor readings. The methods buffers up to 64 consecutive magnitudes marked
before computing the FFT coefficients (Campbell, 2015):

"As shown in the upper left of the diagram, FFT transforms a time series of
amplitude over time to magnitude (some representation of amplitude) across
frequency; the example shows some oscillating system where the dominant
frequency is between 4-8 cycles/second called Hertz (H) – imagine a ball attached
to an elastic band that this stretched and oscillates for a short period of time, or
your gait while walking, running -- one could look at these systems in the time
and frequency domains. The x,y,z accelerometer readings and the magnitude are
time domain variables. We transform these time domain data into the frequency
domain because the can represent the distribution in a nice compact manner that
the classifier will use to build a decision tree model. For example, the rate of the
amplitude transposed to the frequency domain may look something like the figure
bottom plot -- the top plot is time domain and the bottom plot a transformation of
the time to the frequency domain.

The training phase also stores the maximum (MAX) magnitude of the (m0..m63) and
the user supplied label (e.g., walking) using the collector. The individual features are
computed as magnitudes (f0..f63), the MAX magnitude and the class label."

Now let's move on to the actual data collection.

Collecting training data
We can now use the collector to collect training data for activity recognition. The
collector supports three activities by default: standing, walking, and running, as
shown in the application screenshot in the following figure.

You can select an activity, that is, target class value, and start recording the data by
clicking the START COLLECTING button . Make sure that each activity is recorded
for at least three minutes, for example, if the Walking activity is selected, press
START COLLECTING and walk around for at least three minutes. At the end of the
activity, press stop collecting. Repeat this for each of the activities.

Activity Recognition with Mobile Phone Sensors

[176]

You could also collect different scenarios involving these activities, for example,
walking in the kitchen, walking outside, walking in a line, and so on. By doing so,
you will have more data for each activity class and a better classifier. Makes sense,
right? The more data, the less confused the classifier will be. If you only have a little
data, overfitting will occur and the classifier will confuse classes—standing with
walking, walking with running. However, the more data, the less they get confused.
You might collect less than three minutes per class when you are debugging, but
for your final polished product, the more data, the better it is. Multiple recording
instances will simply be accumulated in the same file.

Note, the delete button removes the data that is stored in a file on the phone. If you
want to start over again, hit delete before starting otherwise, the new collected data
will be appended at the end of the file:

Chapter 9

[177]

The collector implements the diagram as discussed in the previous sections: it
collects accelerometer samples, computes the magnitudes, uses the FFT.java class
to compute the coefficients, and produces the feature vectors. The data is then stored
in a Weka formatted features.arff file. The number of feature vectors will vary as
you will collect a small or large amount of data. The longer you collect the data, the
more feature vectors are accumulated.

Once you stop collecting the training data using the collector tool, we need to grab
the data to carry on the workflow. We can use the file explorer in Android Device
Monitor to upload the features.arff file from the phone and to store it on the
computer. You can access your Android Device Monitor by clicking on the Android
robot icon as shown in the following image:

By selecting your device on the left, your phone storage content will be shown on
the right-hand side. Navigate through mnt/shell/emulated/Android/data/ edu.
dartmouth.cs.myrunscollector/files/features.arff:

Activity Recognition with Mobile Phone Sensors

[178]

To upload this file to your computer, you need to select the file (it is highlighted) and
click Upload.

Now we are ready to build a classifier.

Building a classifier
Once sensor samples are represented as feature vectors having the class assigned,
it is possible to apply standard techniques for supervised classification, including
feature selection, feature discretization, model learning, k-fold cross validation, and
so on. The chapter will not delve into the details of the machine learning algorithms.
Any algorithm that supports numerical features can be applied, including SVMs,
random forest, AdaBoost, decision trees, neural networks, multi-layer perceptrons,
and others.

Therefore, let's start with a basic one, decision trees: load the dataset, build set class
attribute, build a decision tree model, and output the model:

String databasePath = "/Users/bostjan/Dropbox/ML Java Book/book/
datasets/chap9/features.arff";

// Load the data in arff format
Instances data = new Instances(new BufferedReader(new
 FileReader(databasePath)));

// Set class the last attribute as class
data.setClassIndex(data.numAttributes() - 1);

// Build a basic decision tree model
String[] options = new String[]{};
J48 model = new J48();
model.setOptions(options);
model.buildClassifier(data);

// Output decision tree
System.out.println("Decision tree model:\n"+model);

The algorithm first outputs the model, as follows:

Decision tree model:

J48 pruned tree

max <= 10.353474

Chapter 9

[179]

| fft_coef_0000 <= 38.193106: standing (46.0)

| fft_coef_0000 > 38.193106

| | fft_coef_0012 <= 1.817792: walking (77.0/1.0)

| | fft_coef_0012 > 1.817792

| | | max <= 4.573082: running (4.0/1.0)

| | | max > 4.573082: walking (24.0/2.0)

max > 10.353474: running (93.0)

Number of Leaves : 5

Size of the tree : 9

The tree is quite simplistic and seemingly accurate as majority class distributions in
the terminal nodes are quite high. Let's run a basic classifier evaluation to validate
the results:

// Check accuracy of model using 10-fold cross-validation
Evaluation eval = new Evaluation(data);
eval.crossValidateModel(model, data, 10, new Random(1), new
 String[] {});
System.out.println("Model performance:\n"+
 eval.toSummaryString());

This outputs the following model performance:

Correctly Classified Instances 226 92.623 %

Incorrectly Classified Instances 18 7.377 %

Kappa statistic 0.8839

Mean absolute error 0.0421

Root mean squared error 0.1897

Relative absolute error 13.1828 %

Root relative squared error 47.519 %

Coverage of cases (0.95 level) 93.0328 %

Mean rel. region size (0.95 level) 27.8689 %

Total Number of Instances 244

The classification accuracy scores very high, 92.62%, which is an amazing result.
One important reason why the result is so good lies in our evaluation design. What I
mean here is the following: sequential instances are very similar to each other, if we
split them randomly during a 10-fold cross validation, there is a high chance that we
use almost identical instances for both training and testing; hence, straightforward
k-fold cross validation produces an optimistic estimate of model performance.

Activity Recognition with Mobile Phone Sensors

[180]

A better approach is to use folds that correspond to different sets of measurements
or even different people. For example, we can use the application to collect learning
data of five people. Then, it makes sense to run k-person cross validation, where
the model is trained on four people and tested on the fifth person. The procedure is
repeated for each person and the results are averaged. This will give us a much more
realistic estimate of the model performance.

Leaving evaluation comment aside, let's look at how to deal with classifier errors.

Reducing spurious transitions
At the end of the activity recognition pipeline, we want to make sure that the
classifications are not too volatile, that is, we don't want activities to change every
millisecond. A basic approach is to design a filter that ignores quick changes in the
activity sequence.

We build a filter that remembers the last window activities and returns the most
frequent one. If there are multiple activities with the same score, it returns the most
recent one.

First, we create a new SpuriousActivityRemoval class that will hold a list of
activities and the window parameter:

class SpuriousActivityRemoval{

 List<Object> last;
 int window;

 public SpuriousActivityRemoval(int window){
 this.last = new ArrayList<Object>();
 this.window = window;
 }

Next, we create the Object filter(Object) method that will take an activity
and return a filtered activity. The method first checks whether we have enough
observations. If not, it simply stores the observation and returns the same value, as
shown in the following code:

 public Object filter(Object obj){
 if(last.size() < window){
 last.add(obj);
 return obj;
 }

Chapter 9

[181]

If we already collected window observations, we simply return the most frequent
observation, remove the oldest observation, and insert the new observation:

 Object o = getMostFrequentElement(last);
 last.add(obj);
 last.remove(0);
 return o;
 }

What is missing here is a function that returns the most frequent element from a list
of objects. We implement this with a hash map, as follows:

 private Object getMostFrequentElement(List<Object> list){

 HashMap<String, Integer> objectCounts = new HashMap<String,
 Integer>();
 Integer frequntCount = 0;
 Object frequentObject = null;

Now, we iterate over all the elements in the list, insert each unique element into a
hash map, or update its counter if it is already in the hash map. At the end of the
loop, we store the most frequent element that we found so far, as follows:

 for(Object obj : list){
 String key = obj.toString();
 Integer count = objectCounts.get(key);
 if(count == null){
 count = 0;
 }
 objectCounts.put(key, ++count);

 if(count >= frequntCount){
 frequntCount = count;
 frequentObject = obj;
 }
 }

 return frequentObject;
 }

}

Let's run a simple example:

String[] activities = new String[]{"Walk", "Walk", "Walk", "Run",
 "Walk", "Run", "Run", "Sit", "Sit", "Sit"};
SpuriousActivityRemoval dlpFilter = new
 SpuriousActivityRemoval(3);

Activity Recognition with Mobile Phone Sensors

[182]

for(String str : activities){
 System.out.println(str +" -> "+ dlpFilter.filter(str));
}

The example outputs the following activities:

Walk -> Walk

Walk -> Walk

Walk -> Walk

Run -> Walk

Walk -> Walk

Run -> Walk

Run -> Run

Sit -> Run

Sit -> Run

Sit -> Sit

The result is a continuous sequence of activities, that is, we do not have quick
changes. This adds some delay, but unless this is absolutely critical for the
application, it is acceptable.

Activity recognition may be enhanced by appending n previous activities as
recognized by the classifier to the feature vector. The danger of appending previous
activities is that the machine learning algorithm may learn that the current activity
is always the same as the previous one, as this will often be the case. The problem
may be solved by having two classifiers, A and B: the classifier B's attribute vector
contains n previous activities as recognized by the classifier A. The classifier A's
attribute vector does not contain any previous activities. This way, even if B gives a
lot of weight to the previous activities, the previous activities as recognized by A will
change as A is not burdened with B's inertia.

All that remains to do is to embed the classifier and filter into our mobile application.

Plugging the classifier into a mobile app
There are two ways to incorporate a classifier into a mobile application. The first
one involves exporting a model in the Weka format, using the Weka library as a
dependency in our mobile application, loading the model, and so on. The procedure
is identical to the example we saw in Chapter 3, Basic Algorithms – Classification,
Regression, and Clustering. The second approach is more lightweight; we export the
model as a source code, for example, we create a class implementing the decision tree
classifier. Then we can simply copy and paste the source code into our mobile app,
without event importing any Weka dependencies.

Chapter 9

[183]

Fortunately, some Weka models can be easily exported to source code by the
toSource(String) function:

// Output source code implementing the decision tree
System.out.println("Source code:\n" +
 model.toSource("ActivityRecognitionEngine"));

This outputs an ActivityRecognitionEngine class that corresponds to our model.
Now, let's take a closer look at the outputted code:

class ActivityRecognitionEngine {

 public static double classify(Object[] i)
 throws Exception {

 double p = Double.NaN;
 p = ActivityRecognitionEngine.N17a7cec20(i);
 return p;
 }
 static double N17a7cec20(Object []i) {
 double p = Double.NaN;
 if (i[64] == null) {
 p = 1;
 } else if (((Double) i[64]).doubleValue() <= 10.353474) {
 p = ActivityRecognitionEngine.N65b3120a1(i);
 } else if (((Double) i[64]).doubleValue() > 10.353474) {
 p = 2;
 }
 return p;
 }
...

The outputted ActivityRecognitionEngine class implements the decision
tree that we discussed earlier. The machine-generated function names, such as
N17a7cec20(Object []), correspond to decision tree nodes. The classifier can be
called by the classify(Object[]) method, where we should pass a feature vector
obtained by the same procedure as we discussed in the previous sections. As usual, it
returns a double, indicating a class label index.

Activity Recognition with Mobile Phone Sensors

[184]

Summary
In this chapter, we discussed how to implement an activity recognition model for
mobile applications. We looked into the completed process, including data collection,
feature extraction, model building, evaluation, and model deployment.

In the next chapter, we will move on to another Java library targeted at text
analysis—Mallet.

[185]

Text Mining with
Mallet – Topic Modeling

and Spam Detection
In this chapter, we will first discuss what text mining is, what kind of analysis is it
able to offer, and why you might want to use it in your application. We will then
discuss how to work with Mallet, a Java library for natural language processing,
covering data import and text pre-processing. Afterwards, we will look into two
text mining applications: topic modeling, where we will discuss how text mining
can be used to identify topics found in the text documents without reading them
individually; and spam detection, where we will discuss how to automatically
classify text documents into categories.

This chapter will cover the following topics:

• Introducing text mining
• Installing and working with Mallet
• Topic modeling
• Spam detection

Introducing text mining
Text mining, or text analytics, refers to the process of automatically extracting
high-quality information from text documents, most often written in natural
language, where high-quality information is considered to be relevant, novel,
and interesting.

Text Mining with Mallet – Topic Modeling and Spam Detection

[186]

While a typical text-analytics application is to scan a set of documents to generate
a search index, text mining can be used in many other applications, including text
categorization into specific domains; text clustering to automatically organize a set
of documents; sentiment analysis to identify and extract subjective information in
documents; concept/entity extraction that is capable of identifying people, places,
organizations, and other entities from documents; document summarization to
automatically provide the most important points in the original document; and
learning relations between named entities.

The process based on statistical pattern mining usually involves the following steps:

1. Information retrieval and extraction.
2. Transforming unstructured text data into structured; for example, parsing,

removing noisy words, lexical analysis, calculating word frequencies,
deriving linguistic features, and so on.

3. Discovery of patterns from structured data and tagging/annotation.
4. Evaluation and interpretation of the results.

Later in this chapter, we will look at two application areas: topic modeling and text
categorization. Let's examine what they bring to the table.

Topic modeling
Topic modeling is an unsupervised technique and might be useful if you need to
analyze a large archive of text documents and wish to understand what the archive
contains, without necessarily reading every single document by yourself. A text
document can be a blog post, e-mail, tweet, document, book chapter, diary entry,
and so on. Topic modeling looks for patterns in a corpus of text; more precisely, it
identifies topics as lists of words that appear in a statistically meaningful way. The
most well-known algorithm is Latent Dirichlet Allocation (Blei et al, 2003), which
assumes that author composed a piece of text by selecting words from possible
baskets of words, where each basket corresponds to a topic. Using this assumption,
it becomes possible to mathematically decompose text into the most likely baskets
from where the words first came. The algorithm then iterates over this process until it
converges to the most likely distribution of words into baskets, which we call topics.

For example, if we use topic modeling on a series of news articles, the algorithm
would return a list of topics and keywords that most likely comprise of these topics.
Using the example of news articles, the list might look similar to the following:

• Winner, goal, football, score, first place
• Company, stocks, bank, credit, business
• Election, opponent, president, debate, upcoming

Chapter 10

[187]

By looking at the keywords, we can recognize that the news articles were concerned
with sports, business, upcoming election, and so on. Later in this chapter, we will
learn how to implement topic modeling using the news article example.

Text classification
In text classification, or text categorization, the goal is to assign a text document
according to its content to one or more classes or categories, which tend to be a more
general subject area such as vehicles or pets. Such general classes are referred to as
topics, and the classification task is then called text classification, text categorization,
topic classification, or topic spotting. While documents can be categorized according
to other attributes such as document type, author, printing year, and so on, the focus
in this chapter will be on the document content only. Examples of text classification
include the following components:

• Spam detection in e-mail messages, user comments, webpages, and so on
• Detection of sexually-explicit content
• Sentiment detection, which automatically classifies a product/service review

as positive or negative
• E-mail sorting according to e-mail content
• Topic-specific search, where search engines restrict searches to a particular

topic or genre, thus providing more accurate results

These examples show how important text classification is in information retrieval
systems, hence most modern information retrieval systems use some kind of text
classifier. The classification task that we will use as an example in this book is text
classification for detecting e-mail spam.

We continue this chapter with an introduction to Mallet, a Java-based package for
statistical natural language processing, document classification, clustering, topic
modeling, information extraction, and other machine learning applications to text.
We will then cover two text-analytics applications, namely, topics modeling and
spam detection as text classification.

Text Mining with Mallet – Topic Modeling and Spam Detection

[188]

Installing Mallet
Mallet is available for download at UMass Amherst University website at
http://mallet.cs.umass.edu/download.php. Navigate to the Download section
as shown in the following image and select the latest stable release (2.0.8, at the time
of writing this book):

http://mallet.cs.umass.edu/download.php

Chapter 10

[189]

Download the ZIP file and extract the content. In the extracted directory, you should
find a folder named dist with two JAR files: mallet.jar and mallet-deps.jar.
The first one contains all the packaged Mallet classes, while the second one packs all
the dependencies. Include both JARs in your project as referenced libraries, as shown
in the following image:

Text Mining with Mallet – Topic Modeling and Spam Detection

[190]

If you are using Eclipse, right click on Project, select Properties, and pick Java Build
Path. Select the Libraries tab and click Add External JARs. Now, select the two JARs
and confirm, as shown in the following screenshot:

Now we are ready to start using Mallet.

Working with text data
One of the main challenges in text mining is transforming unstructured written
natural language into structured attribute-based instances. The process involves
many steps as shown in the following image:

Chapter 10

[191]

First, we extract some text from the Internet, existing documents, or databases. At
the end of the first step, the text could still be presented in the XML format or some
other proprietary format. The next step is to, therefore, extract the actual text only
and segment it into parts of the document, for example, title, headline, abstract,
body, and so on. The third step is involved with normalizing text encoding to ensure
the characters are presented the same way, for example, documents encoded in
formats such as ASCII, ISO 8859-1, and Windows-1250 are transformed into Unicode
encoding. Next, tokenization splits the document into particular words, while the
following step removes frequent words that usually have low predictive power, for
example, the, a, I, we, and so on.

The part-of-speech (POS) tagging and lemmatization step could be included to
transform each token (that is, word) to its basic form, which is known as lemma, by
removing word endings and modifiers. For example, running becomes run, better
becomes good, and so on. A simplified approach is stemming, which operates on a
single word without any context of how the particular word is used, and therefore,
cannot distinguish between words having different meaning, depending on the part
of speech, for example, axes as plural of axe as well as axis.

The last step transforms tokens into a feature space. Most often feature space is a
bag-of-words (BoW) presentation. In this presentation, a set of all words appearing
in the dataset is created, that is, a bag of words. Each document is then presented as a
vector that counts how many times a particular word appears in the document.

Consider the following example with two sentences:

• Jacob likes table tennis. Emma likes table tennis too.
• Jacob also likes basketball.

The bag of words in this case consists of {Jacob, likes, table, tennis, Emma,
too, also, basketball}, which has eight distinct words. The two sentences could
be now presented as vectors using the indexes of the list, indicating how many times
a word at a particular index appears in the document, as follows:

• [1, 2, 2, 2, 1, 0, 0, 0]

• [1, 1, 0, 0, 0, 0, 1, 1]

Text Mining with Mallet – Topic Modeling and Spam Detection

[192]

Such vectors finally become instances for further learning.

Another very powerful presentation based on the BoW model
is word2vec. Word2vec was introduced in 2013 by a team of
researchers led by Tomas Mikolov at Google. Word2vec is
a neural network that learns distributed representations for
words. An interesting property of this presentation is that words
appear in clusters, such that some word relationships, such
as analogies, can be reproduced using vector math. A famous
example shows that king - man + woman returns queen.
Further details and implementation are available at the
following link:
https://code.google.com/archive/p/word2vec/

Importing data
In this chapter, we will not look into how to scrap a set of documents from a website
or extract them from database. Instead, we will assume that we already collected
them as set of documents and store them in the .txt file format. Now let's look at
two options how to load them. The first option addresses the situation where each
document is stored in its own .txt file. The second option addresses the situation
where all the documents are stored in a single file, one per line.

Importing from directory
Mallet supports reading from directory with the cc.mallet.pipe.iterator.
FileIterator class. File iterator is constructed with the following three parameters:

• A list of File[] directories with text files
• File filter that specifies which files to select within a directory
• A pattern that is applied to a filename to produce a class label

Consider the data structured into folders as shown in the following image. We have
documents organized in five topics by folders (tech, entertainment, politics, and
sport, business). Each folder contains documents on particular topics, as shown in
the following image:

https://code.google.com/archive/p/word2vec/

Chapter 10

[193]

In this case, we initialize iterator as follows:

FileIterator iterator =
 new FileIterator(new File[]{new File("path-to-my-dataset")},
 new TxtFilter(),
 FileIterator.LAST_DIRECTORY);

The first parameter specifies the path to our root folder, the second parameter limits
the iterator to the .txt files only, while the last parameter asks the method to use the
last directory name in the path as class label.

Importing from file
Another option to load the documents is through cc.mallet.pipe.iterator.
CsvIterator.CsvIterator(Reader, Pattern, int, int, int), which assumes
all the documents are in a single file and returns one instance per line extracted by a
regular expression. The class is initialized by the following components:

• Reader: This is the object that specifies how to read from a file
• Pattern: This is a regular expression, extracting three groups: data, target

label, and document name
• int, int, int: These are the indexes of data, target, and name groups as

they appear in a regular expression

Text Mining with Mallet – Topic Modeling and Spam Detection

[194]

Consider a text document in the following format, specifying document name,
category and content:

AP881218 local-news A 16-year-old student at a private
 Baptist...
AP880224 business The Bechtel Group Inc. offered in 1985 to...
AP881017 local-news A gunman took a 74-year-old woman hostage...
AP900117 entertainment Cupid has a new message for lovers
 this...
AP880405 politics The Reagan administration is weighing w...

To parse a line into three groups, we can use the following regular expression:

^(\\S*)[\\s,]*(\\S*)[\\s,]*(.*)$

There are three groups that appear in parenthesis, (), where the third group contains
the data, the second group contains the target class, and the first group contains the
document ID. The iterator is initialized as follows:

CsvIterator iterator = new CsvIterator (
fileReader,
Pattern.compile("^(\\S*)[\\s,]*(\\S*)[\\s,]*(.*)$"),
 3, 2, 1));

Here the regular expression extracts the three groups separated by an empty space
and their order is 3, 2, 1.

Now let's move to data pre-processing pipeline.

Pre-processing text data
Once we initialized an iterator that will go through the data, we need to pass the data
through a sequence of transformations as described at the beginning of this section.
Mallet supports this process through a pipeline and a wide variety of steps that
could be included in a pipeline, which are collected in the cc.mallet.pipe package.
Some examples are as follows:

• Input2CharSequence: This is a pipe that can read from various kinds of text
sources (either URI, File, or Reader) into CharSequence

• CharSequenceRemoveHTML: Thise pipe removes HTML from CharSequence
• MakeAmpersandXMLFriendly: This converts & to & in tokens of a

token sequence
• TokenSequenceLowercase: This converts the text in each token in the token

sequence in the data field to lower case

Chapter 10

[195]

• TokenSequence2FeatureSequence: This converts the token sequence in the
data field of each instance to a feature sequence

• TokenSequenceNGrams: This converts the token sequence in the data field to
a token sequence of ngrams, that is, combination of two or more words

The full list of processing steps is available in the following
Mallet documentation:
http://mallet.cs.umass.edu/api/index.html?cc/
mallet/pipe/iterator/package-tree.html

Now we are ready to build a class that will import our data.

First, let's build a pipeline, where each processing step is denoted as a pipeline
in Mallet. Pipelines can be wired together in a serial fashion with a list of
ArrayList<Pipe> objects:

ArrayList<Pipe> pipeList = new ArrayList<Pipe>();

Begin by reading data from a file object and converting all the characters into
lower case:

pipeList.add(new Input2CharSequence("UTF-8"));
pipeList.add(new CharSequenceLowercase());

Next, tokenize raw strings with a regular expression. The following pattern includes
Unicode letters and numbers and the underscore character:

Pattern tokenPattern =
 Pattern.compile("[\\p{L}\\p{N}_]+");

pipeList.add(new CharSequence2TokenSequence(tokenPattern));

Remove stop words, that is, frequent words with no predictive power, using a
standard English stop list. Two additional parameters indicate whether stop word
removal should be case-sensitive and mark deletions instead of just deleting the
words. We'll set both of them to false:

pipeList.add(new TokenSequenceRemoveStopwords(false, false));

Instead of storing the actual words, we can convert them into integers, indicating a
word index in the bag of words:

pipeList.add(new TokenSequence2FeatureSequence());

http://mallet.cs.umass.edu/api/index.html?cc/mallet/pipe/iterator/package-tree.html
http://mallet.cs.umass.edu/api/index.html?cc/mallet/pipe/iterator/package-tree.html

Text Mining with Mallet – Topic Modeling and Spam Detection

[196]

We'll do the same for the class label; instead of label string, we'll use an integer,
indicating a position of the label in our bag of words:

pipeList.add(new Target2Label());

We could also print the features and the labels by invoking the
PrintInputAndTarget pipe:

pipeList.add(new PrintInputAndTarget());

Finally, we store the list of pipelines in a SerialPipes class that will covert an
instance through a sequence of pipes:

SerialPipes pipeline = new SerialPipes(pipeList);

Now let's take a look at how apply this in a text mining application!

Topic modeling for BBC news
As discussed earlier, the goal of topic modeling is to identify patterns in a text corpus
that correspond to document topics. In this example, we will use a dataset originating
from BBC news. This dataset is one of the standard benchmarks in machine learning
research, and is available for non-commercial and research purposes.

The goal is to build a classifier that is able to assign a topic to an uncategorized
document.

BBC dataset
Greene and Cunningham (2006) collected the BBC dataset to study a particular
document-clustering challenge using support vector machines. The dataset consists
of 2,225 documents from the BBC News website from 2004 to 2005, corresponding to
the stories collected from five topical areas: business, entertainment, politics, sport,
and tech. The dataset can be grabbed from the following website:

http://mlg.ucd.ie/datasets/bbc.html

http://mlg.ucd.ie/datasets/bbc.html

Chapter 10

[197]

Download the raw text files under the Dataset: BBC section. You will also notice
that the website contains already processed dataset, but for this example, we want
to process the dataset by ourselves. The ZIP contains five folders, one per topic.
The actual documents are placed in the corresponding topic folder, as shown in the
following screenshot:

Now, let's build a topic classifier.

Modeling
Start by importing the dataset and processing the text:

import cc.mallet.types.*;
import cc.mallet.pipe.*;
import cc.mallet.pipe.iterator.*;
import cc.mallet.topics.*;

import java.util.*;
import java.util.regex.*;
import java.io.*;

Text Mining with Mallet – Topic Modeling and Spam Detection

[198]

public class TopicModeling {

 public static void main(String[] args) throws Exception {

String dataFolderPath = args[0];
String stopListFilePath = args[1];

Create a default pipeline as previously described:

ArrayList<Pipe> pipeList = new ArrayList<Pipe>();
pipeList.add(new Input2CharSequence("UTF-8"));
Pattern tokenPattern = Pattern.compile("[\\p{L}\\p{N}_]+");
pipeList.add(new CharSequence2TokenSequence(tokenPattern));
pipeList.add(new TokenSequenceLowercase());
pipeList.add(new TokenSequenceRemoveStopwords(new
 File(stopListFilePath), "utf-8", false, false, false));
pipeList.add(new TokenSequence2FeatureSequence());
pipeList.add(new Target2Label());
SerialPipes pipeline = new SerialPipes(pipeList);

Next, initialize folderIterator:

FileIterator folderIterator = new FileIterator(
 new File[] {new File(dataFolderPath)},
 new TxtFilter(),
 FileIterator.LAST_DIRECTORY);

Construct a new instance list with the pipeline that we want to use to process
the text:

InstanceList instances = new InstanceList(pipeline);

Finally, process each instance provided by the iterator:

instances.addThruPipe(folderIterator);

Now let's create a model with five topics using the cc.mallet.topics.
ParallelTopicModel.ParallelTopicModel class that implements a simple
threaded Latent Dirichlet Allocation (LDA) model. LDA is a common method for
topic modeling that uses Dirichlet distribution to estimate the probability that a
selected topic generates a particular document. We will not dive deep into the details
in this chapter; the reader is referred to the original paper by D. Blei et al. (2003).
Note that there is another classification algorithm in machine learning with the same
acronym that refers to Linear Discriminant Analysis (LDA). Beside the common
acronym, it has nothing in common with the LDA model.

Chapter 10

[199]

The class is instantiated with parameters alpha and beta, which can be broadly
interpreted, as follows:

• High alpha value means that each document is likely to contain a mixture of
most of the topics, and not any single topic specifically. A low alpha value puts
less of such constraints on documents, and this means that it is more likely that
a document may contain mixture of just a few, or even only one, of the topics.

• A high beta value means that each topic is likely to contain a mixture of most
of the words, and not any word specifically; while a low value means that a
topic may contain a mixture of just a few of the words.

In our case, we initially keep both parameters low (alpha_t = 0.01, beta_w = 0.01) as
we assume topics in our dataset are not mixed much and there are many words for
each of the topics:

int numTopics = 5;
ParallelTopicModel model =
new ParallelTopicModel(numTopics, 0.01, 0.01);

Next, add instances to the model, and as we are using parallel implementation,
specify the number of threats that will run in parallel, as follows:

model.addInstances(instances);
model.setNumThreads(4);

Run the model for a selected number of iterations. Each iteration is used for better
estimation of internal LDA parameters. For testing, we can use a small number of
iterations, for example, 50; while in real applications, use 1000 or 2000 iterations.
Finally, call the void estimate()method that will actually build an LDA model:

model.setNumIterations(1000);
model.estimate();

The model outputs the following result:

0 0,06654 game england year time win world 6

1 0,0863 year 1 company market growth economy firm

2 0,05981 people technology mobile mr games users music

3 0,05744 film year music show awards award won

4 0,11395 mr government people labour election party blair

[beta: 0,11328]

<1000> LL/token: -8,63377

Total time: 45 seconds

Text Mining with Mallet – Topic Modeling and Spam Detection

[200]

LL/token indicates the model's log-liklihood, divided by the total number of tokens,
indicating how likely the data is given the model. Increasing values mean the model
is improving.

The output also shows the top words describing each topic. The words correspond to
initial topics really well:

• Topic 0: game, England, year, time, win, world, 6 sport
• Topic 1: year, 1, company, market, growth, economy, firm finance
• Topic 2: people, technology, mobile, mr, games, users, music tech
• Topic 3: film, year, music, show, awards, award, won entertainment
• Topic 4: mr, government, people, labor, election, party, blair politics

There are still some words that don't make much sense, for instance, mr, 1, and 6.
We could include them in the stop word list. Also, some words appear twice, for
example, award and awards. This happened because we didn't apply any stemmer
or lemmatization pipe.

In the next section, we'll take a look to check whether the model is of any good.

Evaluating a model
As statistical topic modeling has unsupervised nature, it makes model selection
difficult. For some applications, there may be some extrinsic tasks at hand, such
as information retrieval or document classification, for which performance can be
evaluated. However, in general, we want to estimate the model's ability to generalize
topics regardless of the task.

Wallach et al. (2009) introduced an approach that measures the quality of a model by
computing the log probability of held-out documents under the model. Likelihood
of unseen documents can be used to compare models—higher likelihood implies a
better model.

First, let's split the documents into training and testing set (that is, held-out
documents), where we use 90% for training and 10% for testing:

// Split dataset
InstanceList[] instanceSplit= instances.split(new Randoms(), new
 double[] {0.9, 0.1, 0.0});

Now, let's rebuild our model using only 90% of our documents:

// Use the first 90% for training
model.addInstances(instanceSplit[0]);

Chapter 10

[201]

model.setNumThreads(4);
model.setNumIterations(50);
model.estimate();

Next, initialize an estimator that implements Wallach's log probability of held-out
documents, MarginalProbEstimator:

// Get estimator
MarginalProbEstimator estimator = model.getProbEstimator();

An intuitive description of LDA is summarized by Annalyn Ng
in her blog:
 https://annalyzin.wordpress.com/2015/06/21/
laymans-explanation-of-topic-modeling-with-
lda-2/

To get deeper insight into the LDA algorithm, its components,
and it working, take a look at the original paper LDA by
David Blei et al. (2003) at http://jmlr.csail.mit.edu/
papers/v3/blei03a.html or take a look at the summarized
presentation by D. Santhanam of Brown University at http://
www.cs.brown.edu/courses/csci2950-p/spring2010/
lectures/2010-03-03_santhanam.pdf.

The class implements many estimators that require quite deep theoretical knowledge
of how the LDA method works. We'll pick the left-to-right evaluator, which
is appropriate for a wide range of applications, including text mining, speech
recognition, and others. The left-to-right evaluator is implemented as the double
evaluateLeftToRight method, accepting the following components:

• Instances heldOutDocuments: This test the instances
• int numParticles: This algorithm parameter indicates the number of

left-to-right tokens, where default value is 10
• boolean useResampling: This states whether to resample topics in

left-to-right evaluation; resampling is more accurate, but leads to quadratic
scaling in the length of documents

• PrintStream docProbabilityStream: This is the file or stdout in which
we write the inferred log probabilities per document

Let's run the estimator, as follows:

double loglike = estimator.evaluateLeftToRight(
 instanceSplit[1], 10, false, null););
System.out.println("Total log likelihood: "+loglike);

https://annalyzin.wordpress.com/2015/06/21/laymans-explanation-of-topic-modeling-with-lda-2/
https://annalyzin.wordpress.com/2015/06/21/laymans-explanation-of-topic-modeling-with-lda-2/
https://annalyzin.wordpress.com/2015/06/21/laymans-explanation-of-topic-modeling-with-lda-2/
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://www.cs.brown.edu/courses/csci2950-p/spring2010/lectures/2010-03-03_santhanam.pdf
http://www.cs.brown.edu/courses/csci2950-p/spring2010/lectures/2010-03-03_santhanam.pdf
http://www.cs.brown.edu/courses/csci2950-p/spring2010/lectures/2010-03-03_santhanam.pdf

Text Mining with Mallet – Topic Modeling and Spam Detection

[202]

In our particular case, the estimator outputs the following log likelihood, which
makes sense when it is compared to other models that are either constructed with
different parameters, pipelines, or data—the higher the log likelihood, the better
the model is:

Total time: 3 seconds

Topic Evaluator: 5 topics, 3 topic bits, 111 topic mask

Total log likelihood: -360849.4240795393

Total log likelihood

Now let's take a look at how to make use of this model.

Reusing a model
As we are usually not building models on the fly, it often makes sense to train a
model once and use it repeatedly to classify new data.

Note that if you'd like to classify new documents, they need go through the same
pipeline as other documents—the pipe needs to be the same for both training and
classification. During training, the pipe's data alphabet is updated with each training
instance. If you create a new pipe with the same steps, you don't produce the same
pipeline as its data alphabet is empty. Therefore, to use the model on new data,
save/load the pipe along with the model and use this pipe to add new instances.

Saving a model
Mallet supports a standard method for saving and restoring objects based on
serialization. We simply create a new instance of ObjectOutputStream class and
write the object into a file as follows:

String modelPath = "myTopicModel";

//Save model
ObjectOutputStream oos = new ObjectOutputStream(
new FileOutputStream (new File(modelPath+".model")));
oos.writeObject(model);
oos.close();

//Save pipeline
oos = new ObjectOutputStream(
new FileOutputStream (new File(modelPath+".pipeline")));
oos.writeObject(pipeline);
oos.close();

Chapter 10

[203]

Restoring a model
Restoring a model saved through serialization is simply an inverse operation using
the ObjectInputStream class:

String modelPath = "myTopicModel";

//Load model
ObjectInputStream ois = new ObjectInputStream(
 new FileInputStream (new File(modelPath+".model")));
ParallelTopicModel model = (ParallelTopicModel) ois.readObject();
ois.close();

// Load pipeline
ois = new ObjectInputStream(
 new FileInputStream (new File(modelPath+".pipeline")));
SerialPipes pipeline = (SerialPipes) ois.readObject();
ois.close();

We discussed how to build an LDA model to automatically classify documents
into topics. In the next example, we'll look into another text mining problem—text
classification.

E-mail spam detection
Spam or electronic spam refers to unsolicited messages, typically carrying
advertising content, infected attachments, links to phishing or malware sites, and
so on. While the most widely recognized form of spam is e-mail spam, spam abuses
appear in other media as well: website comments, instant messaging, Internet
forums, blogs, online ads, and so on.

In this chapter, we will discuss how to build naive Bayesian spam filtering, using
bag-of-words representation to identify spam e-mails. The naive Bayes spam filtering
is one of the basic techniques that was implemented in the first commercial spam
filters; for instance, Mozilla Thunderbird mail client uses native implementation of
such filtering. While the example in this chapter will use e-mail spam, the underlying
methodology can be applied to other type of text-based spam as well.

Text Mining with Mallet – Topic Modeling and Spam Detection

[204]

E-mail spam dataset
Androutsopoulos et al. (2000) collected one of the first e-mail spam datasets to
benchmark spam-filtering algorithms. They studied how the naive Bayes classifier
can be used to detect spam, if additional pipes such as stop list, stemmer, and
lemmatization contribute to better performance. The dataset was reorganized by
Andrew Ng in OpenClassroom's machine learning class, available for download at
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=
MachineLearning&doc=exercises/ex6/ex6.html.

Select and download the second option, ex6DataEmails.zip, as shown in the
following image:

The ZIP contains four folders (Ng, 2015):

• The nonspam-train and spam-train folders contain the pre-processed
e-mails that you will use for training. They have 350 e-mails each.

• The nonspam-test and spam-test folders constitute the test set, containing
130 spam and 130 nonspam e-mails. These are the documents that you will
make predictions on. Notice that even though separate folders tell you the
correct labeling, you should make your predictions on all the test documents
without this knowledge. After you make your predictions, you can use the
correct labeling to check whether your classifications were correct.

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex6/ex6.html
http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex6/ex6.html

Chapter 10

[205]

To leverage Mallet's folder iterator, let's reorganize the folder structure as follows.
Create two folders, train and test, and put the spam/nospam folders under the
corresponding folders. The initial folder structure is as shown in the following image:

The final folder structure will be as shown in the following image:

The next step is to transform e-mail messages to feature vectors.

Feature generation
Create a default pipeline as described previously:

ArrayList<Pipe> pipeList = new ArrayList<Pipe>();
pipeList.add(new Input2CharSequence("UTF-8"));
Pattern tokenPattern = Pattern.compile("[\\p{L}\\p{N}_]+");
pipeList.add(new CharSequence2TokenSequence(tokenPattern));
pipeList.add(new TokenSequenceLowercase());
pipeList.add(new TokenSequenceRemoveStopwords(new
 File(stopListFilePath), "utf-8", false, false, false));
pipeList.add(new TokenSequence2FeatureSequence());
pipeList.add(new FeatureSequence2FeatureVector());
pipeList.add(new Target2Label());
SerialPipes pipeline = new SerialPipes(pipeList);

Text Mining with Mallet – Topic Modeling and Spam Detection

[206]

Note that we added an additional FeatureSequence2FeatureVector pipe that
transforms a feature sequence into a feature vector. When we have data in a
feature vector, we can use any classification algorithm as we saw in the previous
chapters. We'll continue our example in Mallet to demonstrate how to build a
classification model.

Next, initialize a folder iterator to load our examples in the train folder comprising
e-mail examples in the spam and nonspam subfolders, which will be used as
example labels:

FileIterator folderIterator = new FileIterator(
 new File[] {new File(dataFolderPath)},
 new TxtFilter(),
 FileIterator.LAST_DIRECTORY);

Construct a new instance list with the pipeline that we want to use to process
the text:

InstanceList instances = new InstanceList(pipeline);

Finally, process each instance provided by the iterator:

instances.addThruPipe(folderIterator);

We have now loaded the data and transformed it into feature vectors. Let's train
our model on the training set and predict the spam/nonspam classification on the
test set.

Training and testing
Mallet implements a set of classifiers in the cc.mallet.classify package, including
decision trees, naive Bayes, AdaBoost, bagging, boosting, and many others. We'll
start with a basic classifier, that is, a naive Bayes classifier. A classifier is initialized
by the ClassifierTrainer class, which returns a classifier when we invoke its
train(Instances) method:

ClassifierTrainer classifierTrainer = new NaiveBayesTrainer();
Classifier classifier = classifierTrainer.train(instances);

Now let's see how this classier works and evaluate its performance on a
separate dataset.

Chapter 10

[207]

Model performance
To evaluate the classifier on a separate dataset, let's start by importing the e-mails
located in our test folder:

InstanceList testInstances = new
 InstanceList(classifier.getInstancePipe());
folderIterator = new FileIterator(
 new File[] {new File(testFolderPath)},
 new TxtFilter(),
 FileIterator.LAST_DIRECTORY);

We will pass the data through the same pipeline that we initialized during training:

testInstances.addThruPipe(folderIterator);

To evaluate classifier performance, we'll use the cc.mallet.classify.Trial class,
which is initialized with a classifier and set of test instances:

Trial trial = new Trial(classifier, testInstances);

The evaluation is performed immediately at initialization. We can then simply take
out the measures that we care about. In our example, we'd like to check the precision
and recall on classifying spam e-mail messages, or F-measure, which returns a
harmonic mean of both values, as follows:

System.out.println(
 "F1 for class 'spam': " + trial.getF1("spam"));
System.out.println(
 "Precision:" + trial.getPrecision(1));
System.out.println(
 "Recall:" + trial.getRecall(1));

The evaluation object outputs the following results:

F1 for class 'spam': 0.9731800766283524

Precision: 0.9694656488549618

Recall: 0.9769230769230769

The results show that the model correctly discovers 97.69% of spam messages
(recall), and when it marks an e-mail as spam, it is correct in 96.94% cases. In other
words, it misses approximately 2 per 100 spam messages and marks 3 per 100 valid
messages as spam. Not really perfect, but it is more than a good start!

Text Mining with Mallet – Topic Modeling and Spam Detection

[208]

Summary
In this chapter, we discussed how text mining is different from traditional attribute-
based learning, requiring a lot of pre-processing steps in order to transform written
natural language into feature vectors. Further, we discussed how to leverage Mallet,
a Java-based library for natural language processing by applying it to two real life
problems. First, we modeled topics in news corpus using the LDA model to build a
model that is able to assign a topic to new document. We also discussed how to build
a naive Bayesian spam-filtering classifier using the bag-of-words representation.

This chapter concludes the technical demonstrations of how to apply various
libraries to solve machine learning tasks. As we were not able to cover more
interesting applications and give further details at many points, the next chapter
gives some further pointers on how to continue learning and dive deeper into
particular topics.

[209]

What is Next?
This chapter brings us to the end of our journey of reviewing machine learning Java
libraries and discussing how to leverage them to solve real-life problems. However,
this should not be the end of your journey by all means. This chapter will give you
some practical advice on how to start deploying your models in the real world,
what are the catches, and where to go to deepen your knowledge. It also gives you
further pointers about where to find additional resources, materials, venues, and
technologies to dive deeper into machine learning.

This chapter will cover the following topics:

• Important aspects of machine learning in real life
• Standards and markup languages
• Machine learning in the cloud
• Web resources and competitions

Machine learning in real life
Papers, conference presentations, and talks often don't discuss how the models were
actually deployed and maintained in production environment. In this section, we'll
look into some aspects that should be taken into consideration.

What is Next?

[210]

Noisy data
In practice, data typically contains errors and imperfections due to various reasons
such as measurement errors, human mistakes, errors of expert judgment in
classifying training examples, and so on. We refer to all of these as noise. Noise can
also come from the treatment of missing values when an example with unknown
attribute value is replaced by a set of weighted examples corresponding to the
probability distribution of the missing value. The typical consequences of noise in
learning data are low prediction accuracy of learned model in new data and complex
models that are hard to interpret and to understand by the user.

Class unbalance
Class unbalance is a problem we come across in Chapter 7, Fraud and Anomaly
Detection, where the goal was to detect fraudulent insurance claims. The challenge
is that a very large part of the dataset, usually more than 90%, describes normal
activities and only a small fraction of the dataset contains fraudulent examples. In
such a case, if the model always predicts normal, then it is correct 90% of the time.
This problem is extremely common in practice and can be observed in various
applications, including fraud detection, anomaly detection, medical diagnosis, oil
spillage detection, facial recognition, and so on.

Now knowing what the class unbalance problem is and why is it a problem, let's take
a look at how to deal with this problem. The first approach is to focus on measures
other than classification accuracy, such as recall, precision, and f-measure. Such
measures focus on how accurate a model is at predicting minority class (recall)
and what is the share of false alarms (precision). The other approach is based
on resampling, where the main idea is to reduce the number of overrepresented
examples in such way that the new set contains a balanced ratio of both the classes.

Feature selection is hard
Feature selection is arguably the most challenging part of modeling that requires
domain knowledge and good insights into the problem at hand. Nevertheless,
properties of well-behaved features are as follows:

• Reusability: Features should be available for reuse in different models,
applications, and teams

• Transformability: You should be able to transform a feature with an
operation, for example, log(), max(), or combine multiple features together
with a custom calculation

Chapter 11

[211]

• Reliability: Features should be easy to monitor and appropriate unit tests
should exist to minimize bugs/issues

• Interpretability: In order to perform any of the previous actions, you need to
be able to understand the meaning of features and interpret their values

The better you are able to capture the features, the more accurate your results will be.

Model chaining
Some models might produce an output, which is used as the feature in another
model. Moreover, we can use multiple models—ensembles—turning any model into
a feature. This is a great way to get better results, but this can lead to problems too.
Care must be taken that the output of your model is ready to accept dependencies.
Also, try to avoid feedback loops, as they can create dependencies and bottlenecks
in pipeline.

Importance of evaluation
Another important aspect is model evaluation. Unless you apply your models to
actual new data and measure a business objective, you're not doing predictive
analytics. Evaluation techniques, such as cross-validation and separated train/test
set, simply split your test data, which can give only you an estimate of how your
model will perform. Life often doesn't hand you a train dataset with all the cases
defined, so there is a lot of creativity involved in defining these two sets in a real-
world dataset.

At the end of the day, we want to improve a business objective, such as improve ad
conversion rate, get more clicks on recommended items, and so on. To measure the
improvement, execute A/B tests, measure differences in metrics across statistically
identical populations that each experience a different algorithm. Decisions on the
product are always data-driven.

A/B testing is a method for a randomized experiment with
two variants: A, which corresponds to the original version,
controlling the experiment; and B, which corresponds to a
variation. The method can be used to determine whether the
variation outperforms the original version. It can be used to test
everything from website changes to sales e-mails to search ads.
Udacity offers a free course, covering design and analysis of
A/B tests at https://www.udacity.com/course/ab-
testing--ud257.

https://www.udacity.com/course/ab-testing--ud257
https://www.udacity.com/course/ab-testing--ud257

What is Next?

[212]

Getting models into production
The path from building an accurate model in a lab to deploying it in a product
involves collaboration of data science and engineering, as shown in the following
three steps and diagram:

1. Data research and hypothesis building involves modeling the problem and
executing initial evaluation.

2. Solution building and implementation is where your model finds its
way into the product flow by rewriting it into more efficient, stable, and
scalable code.

3. Online evaluation is the last stage where the model is evaluated with live
data using A/B testing on business objectives.

Model maintenance
Another aspect that we need to address is how the model will be maintained. Is
this a model that will not change over time? Is it modeling a dynamic phenomenon
requiring the model to adjust its prediction over time?

The model is usually built in an of offline batch training and then used on live data to
serve predictions as shown in the following figure. If we are able to receive feedback
on model predictions; for instance, whether the stock went up as model predicted,
whether the candidate responded to campaign, and so on, the feedback should be
used to improve the initial model.

Chapter 11

[213]

The feedback could be really useful to improve the initial model, but make sure to
pay attention to the data you are sampling. For instance, if you have a model that
predicts who will respond to a campaign, you will initially use a set of randomly
contacted clients with specific responded/not responded distribution and feature
properties. The model will focus only on a subset of clients that will most likely
respond and your feedback will return you a subset of clients that responded.
By including this data, the model is more accurate in a specific subgroup, but
might completely miss some other group. We call this problem exploration versus
exploitation. Some approaches to address this problem can be found in Osugi et al
(2005) and Bondu et al (2010).

Standards and markup languages
As predictive models become more pervasive, the need for sharing the models and
completing the modeling process leads to formalization of development process and
interchangeable formats. In this section, we'll review two de facto standards, one
covering data science processes and the other specifying an interchangeable format
for sharing models between applications.

CRISP-DM
Cross Industry Standard Process for Data Mining (CRISP-DM) describing a data
mining process commonly used by data scientists in industry. CRISP-DM breaks the
data mining science process into the following six major phases:

• Business understanding
• Data understanding

What is Next?

[214]

• Data preparation
• Modeling
• Evaluation
• Deployment

In the following diagram, the arrows indicate the process flow, which can move back
and forth through the phases. Also, the process doesn't stop with model deployment.
The outer arrow indicates the cyclic nature of data science. Lessons learned during
the process can trigger new questions and repeat the process while improving
previous results:

SEMMA methodology
Another methodology is Sample, Explore, Modify, Model, and Assess (SEMMA).
SEMMA describes the main modeling tasks in data science, while leaving aside
business aspects such as data understanding and deployment. SEMMA was
developed by SAS institute, which is one of the largest vendors of statistical software,
aiming to help the users of their software to carry out core tasks of data mining.

Chapter 11

[215]

Predictive Model Markup Language
Predictive Model Markup Language (PMML) is an XML-based interchange format
that allows machine learning models to be easily shared between applications and
systems. Supported models include logistic regression, neural networks, decision
trees, naïve Bayes, regression models, and many others. A typical PMML file consists
of the following sections:

• Header containing general information
• Data dictionary, describing data types
• Data transformations, specifying steps for normalization, discretization,

aggregations, or custom functions
• Model definition, including parameters
• Mining schema listing attributes used by the model
• Targets allowing post-processing of the predicted results
• Output listing fields to be outputted and other post-processing steps

The generated PMML files can be imported to any PMML-consuming application,
such as Zementis Adaptive Decision and Predictive Analytics (ADAPA) and
Universal PMML Plug-in (UPPI) scoring engines; Weka, which has built-in support
for regression, general regression, neural network, TreeModel, RuleSetModel, and
Support Vector Machine (SVM) model; Spark, which can export k-means clustering,
linear regression, ridge regression, lasso model, binary logistic model, and SVM; and
cascading, which can transform PMML files into an application on Apache Hadoop.

The next generation of PMML is an emerging format called Portable Format for
Analytics (PFA), providing a common interface to deploy the complete workflows
across environments.

Machine learning in the cloud
Setting up a complete machine learning stack that is able to scale with the increasing
amount of data could be challenging. Recent wave of Software as a Service (SaaS)
and Infrastructure as a Service (IaaS) paradigm was spilled over to machine
learning domain as well. The trend today is to move the actual data preprocessing,
modeling, and prediction to cloud environments and focus on modeling task only.

In this section, we'll review some of the promising services offering algorithms,
predictive models already train in specific domain, and environments empowering
collaborative workflows in data science teams.

What is Next?

[216]

Machine learning as a service
The first category is algorithms as a service, where you are provided with an API
or even graphical user interface to connect pre-programmed components of data
science pipeline together:

• Google Prediction API was one of the first companies that introduced
prediction services through its web API. The service is integrated with
Google Cloud Storage serving as data storage. The user can build a model
and call an API to get predictions.

• BigML implements a user-friendly graphical interface, supports many
storage providers (for instance, Amazon S3) and offers a wide variety of data
processing tools, algorithms, and powerful visualizations.

• Microsoft Azure Machine Learning provides a large library of machine
learning algorithms and data processing functions, as well as graphical user
interface, to connect these components to an application. Additionally, it
offers a fully-managed service that you can use to deploy your predictive
models as ready-to-consume web services.

• Amazon Machine Learning entered the market quite late. It's main strength
is seamless integration with other Amazon services, while the number of
algorithms and user interface needs further improvements.

• IBM Watson Analytics focuses on providing models that are already
hand-crafted to a particular domain such as speech recognition, machine
translations, and anomaly detection. It targets a wide range of industries by
solving specific use cases.

• Prediction.IO is a self-hosted open source platform, providing the full
stack from data storage to modeling to serving the predictions. Prediciton.
IO can talk to Apache Spark to leverage its learning algorithms. In addition,
it is shipped with a wide variety of models targeting specific domains, for
instance, recommender system, churn prediction, and others.

Predictive API is an emerging new field, so these are just some of the well-known
examples; KDnuggets compiled a list of 50 machine learning APIs at http://www.
kdnuggets.com/2015/12/machine-learning-data-science-apis.html.

To learn more about it, you can visit PAPI, the International
Conference on Predictive APIs and Apps at http://www.
papi.io or take a look at a book by Louis Dorard, Bootstrapping
Machine Learning (L. Dorard, 2014).

http://www.kdnuggets.com/2015/12/machine-learning-data-science-apis.html
http://www.kdnuggets.com/2015/12/machine-learning-data-science-apis.html
http://www.papi.io
http://www.papi.io

Chapter 11

[217]

Web resources and competitions
In this section, we'll review where to find additional resources for learning,
discussing, presenting, or sharpening our data science skills.

Datasets
One of the most well-known repositories of machine learning datasets is hosted by
the University of California, Irvine. The UCI repository contains over 300 datasets
covering a wide variety of challenges, including poker, movies, wine quality, activity
recognition, stocks, taxi service trajectories, advertisements, and many others. Each
dataset is usually equipped with a research paper where the dataset was used, which
can give you a hint on how to start and what is the prediction baseline.

The UCI machine learning repository can be accessed at https://archive.ics.
uci.edu, as follows:

https://archive.ics.uci.edu
https://archive.ics.uci.edu

What is Next?

[218]

Another well-maintained collection by Xiaming Chen is hosted on GitHub:

https://github.com/caesar0301/awesome-public-datasets

The Awesome Public Datasets repository maintains links to more than 400 data
sources from a variety of domains, ranging from agriculture, biology, economics,
psychology, museums, and transportation. Datasets, specifically targeting machine
learning, are collected under the image processing, machine learning, and data
challenges sections.

Online courses
Learning how to become a data scientist has became much more accessible due to
the availability of online courses. The following is a list of free resources to learn
different skills online:

• Online courses for learning Java:
 ° Udemy: Learn Java Programming From Scratch at https://www.

udemy.com/learn-java-programming-from-scratch

 ° Udemy: Java Tutorial for Complete Beginners at https://www.
udemy.com/java-tutorial

 ° LearnJAvaOnline.org: Interactive Java tutorial at http://www.
learnjavaonline.org/

• Online courses to learn more about machine learning:
 ° Coursera: Machine Learning (Stanford) by Andrew Ng: This teaches

you the math behind many the machine learning algorithms, explains
how they work, and explores why they make sense at https://www.
coursera.org/learn/machine-learning.

 ° Statistics 110 (Harvard) by Joe Biltzstein: This course lets you
discover the probability of related terms that you will hear many
times in your data science journey. Lectures are available on YouTube
at http://projects.iq.harvard.edu/stat110/youtube.

 ° Data Science CS109 (Harvard) by John A. Paulson: This is a hands-
on course where you'll learn about Python libraries for data science,
as well as how to handle machine-learning algorithms at http://
cs109.github.io/2015/.

https://github.com/caesar0301/awesome-public-datasets
https://www.udemy.com/learn-java-programming-from-scratch
https://www.udemy.com/learn-java-programming-from-scratch
https://www.udemy.com/java-tutorial
https://www.udemy.com/java-tutorial
LearnJAvaOnline.org
http://www.learnjavaonline.org/
http://www.learnjavaonline.org/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
http://projects.iq.harvard.edu/stat110/youtube
http://cs109.github.io/2015/
http://cs109.github.io/2015/

Chapter 11

[219]

Competitions
The best way to sharpen your knowledge is to work on real problems; and if you
want to build a proven portfolio of your projects, machine learning competitions are
a viable place to start:

• Kaggle: This is the number one competition platform, hosting a wide variety
of challenges with large prizes, strong data science community, and lots of
helpful resources. You can check it out at https://www.kaggle.com/.

• CrowdANALYTIX: This is a crowdsourced data analytics service that is
focused on the life sciences and financial services industries at https://www.
crowdanalytix.com.

• DrivenData: This hosts data science competitions for social good at
http://www.drivendata.org/.

Websites and blogs
In addition to online courses and competitions, there are numerous websites and
blogs publishing the latest developments in the data science community, their
experience in attacking different problems, or just best practices. Some good starting
points are as follows:

• KDnuggets: This is the de facto portal for data mining, analytics, big data,
and data science, covering the latest news, stories, events, and other relevant
issues at http://www.kdnuggets.com/.

• Machine learning mastery: This is an introductory-level blog with
practical advice and pointers where to start. Check it out at http://
machinelearningmastery.com/.

• Data Science Central: This consists of practical community articles on a
variety of topics, algorithms, caches, and business cases at http://www.
datasciencecentral.com/.

• Data Mining Research by Sandro Saitta at http://www.dataminingblog.com/.
• Data Mining: Text Mining, Visualization and Social Media by Matthew

Hurst, covering interesting text and web mining topics, frequently with
applications to Bing and Microsoft at http://datamining.typepad.com/
data_mining/.

• Geeking with Greg by Greg Linden, inventor of Amazon recommendation
engine and Internet entrepreneur. You can check it out at http://glinden.
blogspot.si/.

• DSGuide: This is a collection of over 150 data science blogs at
http://dsguide.biz/reader/sources.

https://www.kaggle.com/
https://www.crowdanalytix.com
https://www.crowdanalytix.com
http://www.drivendata.org/
http://www.kdnuggets.com/
http://machinelearningmastery.com/
http://machinelearningmastery.com/
http://www.datasciencecentral.com/
http://www.datasciencecentral.com/
http://www.dataminingblog.com/
http://datamining.typepad.com/data_mining/
http://datamining.typepad.com/data_mining/
http://glinden.blogspot.si/
http://glinden.blogspot.si/
http://dsguide.biz/reader/sources

What is Next?

[220]

Venues and conferences
The following are a few top-tier academic conferences with the latest algorithms:

• Knowledge Discovery in Databases (KDD)
• Computer Vision and Pattern Recognition (CVPR)
• Annual Conference on Neural Information Processing Systems (NIPS)
• International Conference on Machine Learning (ICML)
• IEEE International Conference on Data Mining (ICDM)
• International Joint Conference on Pervasive and Ubiquitous Computing

(UbiComp)
• International Joint Conference on Artificial Intelligence (IJCAI)

Some business conferences are as follows:

• O'Reilly Strata Conference
• The Strata + Hadoop World Conferences
• Predictive Analytics World
• MLconf

You can also check local meetup groups.

Summary
In this chapter, we concluded the book by discussing some aspects of model
deployment, we also looked into standards for data science process and
interchangeable predictive model format PMML. We also reviewed online courses,
competitions, web resources, and conferences that could help you in your journey
towards mastering the art of machine learning.

I hope this book inspired you to dive deeper into data science and has motivated you
to get your hands dirty, experiment with various libraries and get a grasp of how
different problems could be attacked. Remember, all the source code and additional
resources are available at the supplementary website http://www.machine-
learning-in-java.com.

http://www.machine-learning-in-java.com
http://www.machine-learning-in-java.com

[221]

References
The following are the references for all the citations throughout the book:

• Adomavicius, G. and Tuzhilin, A.. Toward the next generation of
recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6),
734-749. 2005.

• Bengio, Y.. Learning Deep Architectures for AI. Foundations and Trends
in Machine Learning 2(1), 1-127. 2009. Retrieved from http://www.iro.
umontreal.ca/~bengioy/papers/ftml.pdf.

• Blei, D. M., Ng, A. Y., and Jordan, M. I.. Latent dirichlet allocation. Journal of
Machine Learning Research. 3, 993–1022. 2003. Retrieved from: http://www.
jmlr.org/papers/volume3/blei03a/blei03a.pdf.

• Bondu, A., Lemaire, V., Boulle, M.. Exploration vs. exploitation in active
learning: A Bayesian approach. The 2010 International Joint Conference on
Neural Networks (IJCNN), Barcelona, Spain. 2010.

• Breunig, M. M., Kriegel, H.-P., Ng, R. T., Sander, J.. LOF: Identifying
Density-based Local Outliers (PDF). Proceedings from the 2000 ACM
SIGMOD International Conference on Management of Data, 29(2),
93–104. 2000

• Campbell, A. T. (n.d.). Lecture 21 - Activity Recognition. Retrieved from
http://www.cs.dartmouth.edu/~campbell/cs65/lecture22/lecture22.
html.

• Chandra, N.S. Unraveling the Customer Mind. 2012. Retrieved from
http://www.cognizant.com/InsightsWhitepapers/Unraveling-the-
Customer-Mind.pdf.

http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.iro.umontreal.ca/~bengioy/papers/ftml.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
http://www.cs.dartmouth.edu/~campbell/cs65/lecture22/lecture22.html
http://www.cs.dartmouth.edu/~campbell/cs65/lecture22/lecture22.html
http://www.cognizant.com/InsightsWhitepapers/Unraveling-the-Customer-Mind.pdf
http://www.cognizant.com/InsightsWhitepapers/Unraveling-the-Customer-Mind.pdf

References

[222]

• Dror, G., Boulle ́, M., Guyon, I., Lemaire, V., and Vogel, D.. The 2009
Knowledge Discovery in Data Competition (KDD Cup 2009) Volume 3,
Challenges in Machine Learning, Massachusetts, US. Microtome Publishing.
2009.

• Gelman, A. and Nolan, D.. Teaching Statistics a bag of tricks. Cambridge,
MA. Oxford University Press. 2002.

• Goshtasby, A. A. Image Registration Principles, Tools and Methods. London,
Springer. 2012.

• Greene, D. and Cunningham, P.. Practical Solutions to the Problem of
Diagonal Dominance in Kernel Document Clustering. Proceedings from the
23rd International Conference on Machine Learning, Pittsburgh, PA. 2006.
Retrieved from http://www.autonlab.org/icml_documents/camera-
ready/048_Practical_Solutions.pdf.

• Gupta, A.. Learning Apache Mahout Classification, Birmingham, UK. Packt
Publishing. 2015.

• Gutierrez, N.. Demystifying Market Basket Analysis. 2006.
Retrieved from http://www.information-management.com/
specialreports/20061031/1067598-1.html.

• Hand, D., Manilla, H., and Smith, P.. Principles of Data Mining. USA. MIT
Press. 2001. Retrieved from ftp://gamma.sbin.org/pub/doc/books/
Principles_of_Data_Mining.pdf.

• Intel. What Happens in an Internet Minute?. 2013. Retrieved from http://
www.intel.com/content/www/us/en/communications/internet-minute-
infographic.html.

• Kaluža, B.. Instant Weka How-To. Birmingham. Packt Publishing. 2013.
• Karkera, K. R.. Building Probabilistic Graphical Models with Python.

Birmingham, UK. Packt Publishing. 2014.
• KDD (n.d.). KDD Cup 2009: Customer relationship prediction. Retrieved

from http://www.kdd.org/kdd-cup/view/kdd-cup-2009.
• Koller, D. and Friedman, N.. Probabilistic Graphical Models Principles and

Techniques. Cambridge, Mass. MIT Press. 2012.
• Kurucz, M., Siklósi, D., Bíró, I., Csizsek, P., Fekete, Z., Iwatt, R., Kiss, T., and

Szabó, A.. KDD Cup 2009 @ Budapest: feature partitioning and boosting 61.
JMLR W&CP 7, 65–75. 2009.

• Laptev, N., Amizadeh, S., and Billawala, Y. (n.d.). A Benchmark Dataset
for Time Series Anomaly Detection. Retrieved from http://yahoolabs.
tumblr.com/post/114590420346/a-benchmark-dataset-for-time-
series-anomaly.

http://www.autonlab.org/icml_documents/camera-ready/048_Practical_Solutions.pdf
http://www.autonlab.org/icml_documents/camera-ready/048_Practical_Solutions.pdf
http://www.information-management.com/specialreports/20061031/1067598-1.html
http://www.information-management.com/specialreports/20061031/1067598-1.html
ftp://gamma.sbin.org/pub/doc/books/Principles_of_Data_Mining.pdf
ftp://gamma.sbin.org/pub/doc/books/Principles_of_Data_Mining.pdf
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
http://www.intel.com/content/www/us/en/communications/internet-minute-infographic.html
http://www.kdd.org/kdd-cup/view/kdd-cup-2009
http://yahoolabs.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
http://yahoolabs.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
http://yahoolabs.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

Appendix

[223]

• LKurgan, L.A. and Musilek, P.. A survey of Knowledge Discovery and
Data Mining process models. The Knowledge Engineering Review, 21(1),
1–24. 2006.

• Lo, H.-Y., Chang, K.-W., Chen, S.-T., Chiang, T.-H., Ferng, C.-S., Hsieh, C.-J.,
Ko, Y.-K., Kuo, T.-T., Lai, H.-C., Lin, K.-Y., Wang, C.-H., Yu, H.-F., Lin, C.-J.,
Lin, H.-T., and Lin, S.-de. An Ensemble of Three Classifiers for KDD Cup
2009: Expanded Linear Model, Heterogeneous Boosting, and Selective Naive
Bayes, JMLR W&CP 7, 57–64. 2009.

• Magalhães, P. Incorrect information provided by your website. 2010.
Retrevied from http://www.best.eu.org/aboutBEST/helpdeskRequest.
jsp?req=f5wpxc8&auth=Paulo.

• Mariscal, G., Marban, O., and Fernandez, C.. A survey of data mining and
knowledge discovery process models and methodologies. The Knowledge
Engineering Review, 25(2), 137–166. 2010.

• Mew, K. (2015). Android 5 Programming by Example. Birmingham, UK.
Packt Publishing.

• Miller, H., Clarke, S., Lane, S., Lonie, A., Lazaridis, D., Petrovski, S., and
Jones, O.. Predicting customer behavior: The University of Melbourne's KDD
Cup report, JMLR W&CP 7, 45–55. 2009.

• Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sind- hwani, V., Liu, Y.,
Melville, P., Wang, D., Xiao, J., Hu, J., Singh, M., Shang, W. X., and Zhu, Y.
F.. Winning the KDD Cup Orange Challenge with Ensemble Selection. JMLR
W&CP, 7, 23–34. 2009. Retrieved from http://jmlr.org/proceedings/
papers/v7/niculescu09/niculescu09.pdf.

• Oracle (n.d.). Anomaly Detection. Retrieved from http://docs.oracle.
com/cd/B28359_01/datamine.111/b28129/anomalies.htm.

• Osugi, T., Deng, K., and Scott, S.. Balancing exploration and exploitation:
a new algorithm for active machine learning. Fifth IEEE International
Conference on Data Mining, Houston, Texas. 2005.

• Power, D. J. (ed.). DSS News. DSSResources.com, 3(23). 2002. Retreived from
http://www.dssresources.com/newsletters/66.php.

• Quinlan, J. R. C4.5: Programs for Machine Learning. San Francisco, CA. Morgan
Kaufmann Publishers. 1993.

• Rajak, A.. Association Rule Mining-Applications in Various Areas. 2008.
Retrieved from https://www.researchgate.net/publication/238525379_
Association_rule_mining-_Applications_in_various_areas.

• Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B.. (eds.). Recommender
Systems Handbook. New York, Springer. 2010.

http://www.best.eu.org/aboutBEST/helpdeskRequest.jsp?req=f5wpxc8&auth=Paulo
http://www.best.eu.org/aboutBEST/helpdeskRequest.jsp?req=f5wpxc8&auth=Paulo
http://jmlr.org/proceedings/papers/v7/niculescu09/niculescu09.pdf
http://jmlr.org/proceedings/papers/v7/niculescu09/niculescu09.pdf
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm
http://www.dssresources.com/newsletters/66.php
https://www.researchgate.net/publication/238525379_Association_rule_mining-_Applications_in_various_areas
https://www.researchgate.net/publication/238525379_Association_rule_mining-_Applications_in_various_areas

References

[224]

• Rumsfeld, D. H. and Myers, G.. DoD News Briefing – Secretary Rumsfeld
and Gen. Myers. 2002. Retrieved from http://archive.defense.gov/
transcripts/transcript.aspx?transcriptid=2636.

• Stevens, S. S.. On the Theory of Scales of Measurement. Science, 103 (2684),
677–680. 1946.

• Sutton, R. S. and Barto, A. G.. Reinforcement Learning An Introduction.
Cambridge, MA: MIT Press. 1998.

• Tiwary, C.. Learning Apache Mahout. Birmingham, UK. Packt Publishing. 2015.
• Tsai, J., Kaminka, G., Epstein, S., Zilka, A., Rika, I., Wang, X., Ogden, A.,

Brown, M., Fridman, N., Taylor, M., Bowring, E., Marsella, S., Tambe, M.,
and Sheel, A.. ESCAPES - Evacuation Simulation with Children, Authorities,
Parents, Emotions, and Social comparison. Proceedings from 10th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011) 2 (6), 457–464. 2011. Retrieved from http://www.aamas-
conference.org/Proceedings/aamas2011/papers/D3_G57.pdf.

• Tsanas, A. and Xifara. Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning tools.
Energy and Buildings, 49, 560-567. 2012.

• Utts, J.. What Educated Citizens Should Know About Statistics and
Probability. The American Statistician, 57 (2), 74-79. 2003.

• Wallach, H. M., Murray, I., Salakhutdinov, R., and Mimno, D.. Evaluation
Methods for Topic Models. Proceedings from the 26th International
conference on Machine Learning, Montreal, Canada. 2009. Retrieved from
http://mimno.infosci.cornell.edu/papers/wallach09evaluation.pdf.

• Witten, I. H. and Frank, E.. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. USA. Morgan Kaufmann Publishers. 2000.

• Xie, J., Rojkova, V., Pal, S., and Coggeshall, S.. A Combination of Boosting
and Bagging for KDD Cup 2009. JMLR W&CP, 7, 35–43. 2009.

• Zhang, H.. The Optimality of Naive Bayes. Proceedings from FLAIRS
2004 conference. 2004. Retrieved from http://www.cs.unb.ca/~hzhang/
publications/FLAIRS04ZhangH.pdf.

• Ziegler, C-N., McNee, S. M., Konstan, J. A., and Lausen, G.. Improving
Recommendation Lists Through Topic Diversification. Proceedings from
the 14th International World Wide Web Conference (WWW '05), Chiba,
Japan. 2005. Retrieved from http://www2.informatik.uni-freiburg.
de/~cziegler/papers/WWW-05-CR.pdf.

http://archive.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://archive.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://www.aamas-conference.org/Proceedings/aamas2011/papers/D3_G57.pdf
http://www.aamas-conference.org/Proceedings/aamas2011/papers/D3_G57.pdf
http://mimno.infosci.cornell.edu/papers/wallach09evaluation.pdf
http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf
http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf
http://www2.informatik.uni-freiburg.de/~cziegler/papers/WWW-05-CR.pdf
http://www2.informatik.uni-freiburg.de/~cziegler/papers/WWW-05-CR.pdf

[225]

Index
A
A/B tests

URL 211
activation function 147
activity recognition

about 166
mobile phone sensors 166, 167
pipeline 168, 169
plan 169

AdaBoost M1 method 56
advanced modeling

attribute selection 80
data, pre-processing 79
ensembleLibrary package, using 78
model selection 81-84
performance, evaluation 85
with ensembles 77

affinity analysis
about 87, 89
cross-industry applications 97

agglomerative clustering 16
Amazon Machine Learning 216
analysis types

about 128
pattern analysis 128
transaction analysis 129

Android Device Monitor 177
Android Studio

installing 170, 171
URL 170

anomalous behavior detection
about 126
unknown-unknowns 126

anomalous pattern detection
about 128
analysis types 128
plan recognition 129

anomaly detection, in time series data
about 138
data, loading 140, 141
density based k-nearest neighbors 142-144
histogram-based anomaly

detection 138-140
histograms, creating 141, 142

anomaly detection, in website traffic
about 137
dataset, using 137

Apache Mahout
about 35, 36
configuring 105
configuring, in Eclipse with

Maven plugin 106, 107
Apache Spark

about 36-38
URL 36

Application Portfolio Management
(APM) 99

Applied Machine Learning
about 1
workflow 3, 4

Apriori algorithm
about 87, 92
used, for discovering shopping

patterns 94-96
artificial neural networks 18
association rule learning

about 90
Apriori algorithm 92

[226]

confidence 92
database, of transactions 90, 91
FP-growth algorithm 93
itemset 91
rule 91
support 92

autoencoder 149, 150

B
bag-of-words (BoW) 191
basic modeling

about 75
models, evaluating 75, 76
naive Bayes baseline, implementing 76, 77

basic naive Bayes classifier baseline
about 71
data, loading 73, 74
data, obtaining 72, 73

BBC dataset
URL 196

big data
dealing with 43
variety 43
velocity 43
volume 43

big data application
architecture 43

BigML 216
Book-Crossing dataset

BX-Book-Ratings file 108
BX-Books file 108
BX-Users file 108
URL 108

book-recommendation engine
book ratings dataset, using 108
building 108
collaborative filtering, implementing 114
content-based filtering,

implementing 123, 124
custom rules, adding 119
data, loading 109
data, loading from database 112, 113
data, loading from file 109-111
evaluation 120, 121
in-memory database, creating 113, 114
online learning engine 121, 122

C
Canova library

URL 155
Cassandra

about 44
URL 44

cc.mallet.pipe package
CharSequenceRemoveHTML pipeline 194
Input2CharSequence pipeline 194
MakeAmpersandXMLFriendly

pipeline 194
TokenSequence2FeatureSequence

pipeline 195
TokenSequenceLowercase pipeline 194
TokenSequenceNGrams pipeline 195

Chebyshev distance 34
classification

about 17, 46
artificial neural networks 18
classification algorithm, selecting 55, 56
confusion matrix, examining 54, 55
data, classifying 53
data, loading 48
data, using 47
decision trees learning 18
ensemble learning 19
evaluating 19, 20
evaluation 54
feature selection 49
kernel methods 18
learning algorithms, selecting 50-52
precision 20
prediction error metrics 54
probabilistic classifiers 18
recall 20
Roc curves 20, 21

classification algorithms, examples
weka.classifiers.bayes.NaiveBayes 56
weka.classifiers.functions.Multilayer

Perceptron 56
weka.classifiers.lazy.IBk 56
weka.classifiers.meta.AdaBoostM1 56
weka.classifiers.meta.Bagging 56
weka.classifiers.rules.ZeroR 55
weka.classifiers.trees.RandomForest 56
weka.classifiers.trees.RandomTree 55

[227]

classifier
building 178, 179
plugging, into mobile app 182, 183
spurious transitions, reducing 180-182

class unbalance 210
clustering

about 16, 17, 63, 64
clustering algorithms 64, 65
evaluation 66

collaborative filtering
about 101, 103
implementing, with book-recommendation

engine 114
item-based 118, 119
user-based 115-117

Comma Separated Value (CSV) 57
competitions 219
conjugate gradient optimization algorithm

building 156
content-based filtering

about 101, 104
implementing, with book-recommendation

engine 123, 124
Contrastive Divergence algorithm 151
Convolutional Neural Network (CNN) 151
Core Motion framework, iOS

URL 167
correlation coefficient 23
cosine distance 104
cost function 17
cross-industry applications, of affinity

analysis
about 97
census data 98
customer relationship

management (CRM) 98
IT Operations Analytics 99
medical diagnosis 97
protein sequences 97

Cross Industry Standard Process for Data
Mining (CRISP-DM) 213

cross-validation 26
CrowdANALYTIX

URL 219
CSVLoader class

URL 73

curse of dimensionality 15
customer relationship database

about 68
challenge 68, 69
dataset 69, 70
evaluation 71

Customer Relationship Management
(CRM) 67

D
data and problem definition

about 4
measurement scales 5, 6

data collection
about 6
Android Studio, installing 170, 171
data collector, loading 172, 173
data, generating 8
data, observing 7, 8
data, searching 7, 8
from mobile phone 170
training data, collecting 175-178
traps, sampling 9

data collector
feature extraction 174, 175
loading 172, 173
URL 172

Data Mining Research
URL 219

data pre-processing
about 9
data cleaning 9
data reduction 12, 13
data transformation 11, 12
missing values, filling 10
outliers, removing 11

data science 1, 2
Data Science Central

URL 219
data scientist 2
dataset rebalancing 134-136
datasets 217, 218
Decision and Predictive Analytics

(ADAPA) 215
decision trees 25
decision trees learning 18

[228]

deep belief network
about 18, 151
building 158-160

deep convolutional networks 151-154
deeplearning4j (DL4J)

about 38, 39, 153
obtaining 153, 154
org.deeplearning4j.base 38
org.deeplearning4j.berkeley 38
org.deeplearning4j.clustering 38
org.deeplearning4j.datasets 38
org.deeplearning4j.distributions 38
org.deeplearning4j.eval 38
org.deeplearning4j.exceptions 38
org.deeplearning4j.models 38
org.deeplearning4j.nn 39
org.deeplearning4j.optimize 39
org.deeplearning4j.plot 39
org.deeplearning4j.rng 39
org.deeplearning4j.util 39
URL 38

delta rule 147
directory

text data, importing 192, 193
Discrete Fourier Transform (DFT) 168
distance measures

Euclidean distances 13
non-Euclidean distances 14, 15

double evaluateLeftToRight method
boolean useResampling component 201
Instances heldOutDocuments

component 201
int numParticles component 201
PrintStream docProbabilityStream

component 201
DrivenData 219
DropConnect neural network 154
DSGuide

URL 219
dynamic time wrapping (DTW) 34

E
Eclipse

Apache Mahout, configuring with
Maven plugin 106, 107

Eclipse IDE
using 46

Edit distance 15
elbow method 64
e-mail spam detection

about 203
default pipeline, creating 205, 206
e-mail spam dataset, collecting 204, 205
model performance, evaluating 207
testing 206
training 206

energy efficiency dataset
URL 56

ensambleSel.setOptions () method
-A <algorithm> option 84
-B <numModelBags> option 83
-D option 84
-E <modelRatio> option 83
-G option 84
-H <hillClimbIterations> option 83
-I <sortInitialization> option 83
-L </path/to/modelLibrary> option 83
-O option 84
-P <hillclimbMettric> option 83
-R option 84
-S <num> option 84
-V <validationRatio> option 83
-W </path/to/working/directory>

option 83
-X <numFolds> option 83

ensemble learning 19
ensembleLibrary package

URL 78
using 78

ensembles
used, for advanced modeling 77

Ensemble Selection algorithm 77
environmental sensors 167
Euclidean distances 13
evaluate() method, parameters

DataModel 121
DataModelBuilder 121
evaluationPercentage 121
RecommenderBuilder 121
trainingPercentage 121

evaluation 24

[229]

Expectation Maximization (EM)
clustering 63

exploitation 105
exploration 105

F
Feature extraction 42
feature map 151
feature selection 12
feedforward neural networks 148
file

text data, importing 193, 194
Fourier transform

reference link 168
FP-growth algorithm

about 87, 93
used, for discovering shopping patterns 96

FP-tree structure 93
fraud detection, of insurance claims

about 129
dataset, using 130, 131
suspicious patterns, modeling 132

frequent pattern (FP) 93

G
Geeking with Greg

URL 219
generalization

about 24
cross-validation 26
leave-one-out validation 26
overfitting 24, 25
stratification 27
test set 26
train set 26
underfitting 24, 25

Generalized Sequential Patterns (GSP) 32
Generative Stochastic Networks (GSNs) 150
Gibbs sampling 151
GNU General Public License

(GNU GPL) 31
Google Prediction API 216
Graphics Processing Unit (GPU)

about 163
reference link 163

GraphX 36

H
Hadoop

about 44
URL 44

Hadoop Distributed File System (HDFS) 37
Hamming distance 15
HBase

about 44
URL 44

Hidden layer 148
Hidden Markov Models (HMMs) 36, 129
hierarchical clustering 16
histogram-based anomaly detection 138-140
Hotspot 32
hybrid approach 104

I
IBM Watson Analytics 216
image classification

about 153
data, loading 154, 155
deeplearning4j 153
MNIST dataset 154
models, building 155

ImageNet
about 146
URL 152

image recognition
about 145, 146
neural networks 147

Infrastructure as a Service (IaaS) 215
Input layer 148
insurance claims

fraud detection 129
interval data 5
Intrusion Detection (ID) 129
item-based analysis 103
item-based collaborative filtering 118, 119
IT Operations Analytics 87

J
Jaccard distance 14
Java

need for 30

[230]

Java API packages, Weka
weka.associations 32
weka.classifiers 32
weka.clusterers 33
weka.core 33
weka.datagenerators 33
weka.estimators 33
weka.experiment 33
weka.filters 33
weka.gui 33

Java machine learning (Java-ML)
about 34
URL 34

Java-ML packages
net.sf.javaml.classification 34
net.sf.javaml.clustering 34
net.sf.javaml.core 34
net.sf.javaml.distance 34
net.sf.javaml.featureselection 35
net.sf.javaml.filter 35
net.sf.javaml.matrix 35
net.sf.javaml.sampling 35
net.sf.javaml.tools 35
net.sf.javaml.utils 35

java -Xmx16g 85

K
Kaggle 219
KDD Cup

about 68
URL 68

KDnuggets
about 216
URL 219

kernel methods 18
k-means clustering 16
k-nearest neighbors 25
Knowledge Discovery and Data

Science (KDD) 67
known-knowns 126
known-unknowns 126

L
Latent Dirichlet Allocation (LDA) 186, 198
leave-one-out validation 26

Linear Discriminant Analysis (LDA)
about 198
reference link 201

linear regression 59, 60
Local Outlier Factor (LOF)

about 140
URL 142

M
machine learning

about 1, 2
advantages 2, 3
as service 216
class unbalance 210
evaluation 211
feature selection 210
in cloud 215
in real life 209
model chaining 211
models, in production 212
models, maintaining 212, 213
noisy data 210
online courses 218
reinforcement learning 3
supervised learning 2
unsupervised learning 3
web resources 217-219

machine learning application
big data, dealing with 43
building 42
traditional machine learning 42

Machine Learning for Language Toolkit
(MALLET)

about 39, 40
installing 188-190
reference link 195
URL 39

machine learning libraries
about 30
Apache Mahout 35, 36
Apache Spark 36-38
comparing 41
deeplearning4j 38, 39
Java machine learning (Java-ML) 34
Machine Learning for Language Toolkit

(MALLET) 39, 40

[231]

Waikato Environment for Knowledge
Analysis (Weka) 30-33

Machine learning mastery
URL 219

Mahalanobis distance 15, 34
Mahout interfaces, abstractions

DataModel 114
ItemSimilarity 114
Recommender 114
UserNeighborhood 114
UserSimilarity 114

Mahout libraries
org.apache.mahout.cf.taste 36
org.apache.mahout.classifier 36
org.apache.mahout.clustering 36
org.apache.mahout.common 36
org.apache.mahout.ep 36
org.apache.mahout.math 36
org.apache.mahout.vectorizer 36

MALLET, packages
cc.mallet.classify 40
cc.mallet.cluster 40
cc.mallet.extract 40
cc.mallet.fst 40
cc.mallet.grmm 40
cc.mallet.optimize 40
cc.mallet.pipe 40
cc.mallet.topics 40
cc.mallet.types 40
cc.mallet.util 40

Manhattan distance 34
market basket analysis (MBA)

about 87-89
affinity analysis 89
identification, of driver items 88
item affinity 88
marketing 89
operations optimization 89
revenue optimization 89
store-to-store comparison 89
trip classification 88

Markov chain 151
Maven plugin

Apache Mahout, configuring with 106-108
mean absolute error 23
mean squared error 23

measurement scales
about 5, 6
interval data 5
nominal data 5
ordinal data 5
ratio data 6

Microsoft Azure Machine Learning 216
Minkowski distance 34
missing values

filling 10
MLlib API library

org.apache.spark.mllib.classification 37
org.apache.spark.mllib.clustering 37
org.apache.spark.mllib.linalg 37
org.apache.spark.mllib.optimization 37
org.apache.spark.mllib.recommendation 37
org.apache.spark.mllib.regression 38
org.apache.spark.mllib.stat 38
org.apache.spark.mllib.tree 38
org.apache.spark.mllib.util 38

MNIST dataset 154
mobile app

classifier, plugging into 182, 183
mobile phone

data, collecting 170
mobile phone sensors

about 166
environmental sensors 167
motion sensors 167
position sensors 167
URL, for Android 167
URL, for Windows Phone 167

models
building 155
chaining 211
deep belief network, building 158-160
in production 212
maintenance 212, 213
Multilayer Convolutional Network,

building 160-163
single layer regression model,

building 156-158
MongoDB

about 44
URL 44

motion sensors 167

[232]

Mozilla Thunderbird 203
Multilayer Convolutional Network

about 155
building 160-163

myrunscollector package
CollectorActivity.java class 173
Globals.java class 173
SensorsService.java class 173

N
Naive Bayes 25
naive Bayes baseline

implementing 76, 77
neural networks

about 25, 147
autoencoder 149, 150
deep convolutional networks 151, 152
feedforward neural networks 148
perceptron 147
Restricted Boltzman machine 150, 151

nominal data 5
non-Euclidean distance 14, 15

O
online learning engine 121, 122
Oracle Database Online Documentation

URL 130
ordinal data 5
outliers

removing 11
Output layer 148
overfitting 4, 24, 25

P
PAPI

URL 216
part-of-speech (POS) 191
pattern analysis 128
Pearson coefficient 104
Pearson correlation coefficient 34
perceptron 18, 146, 147
plan recognition 129
p-norm distance 13
Portable Format for Analytics (PFA) 215
position sensors 167

precision 20
Prediction.IO 216
predictive apriori 32
Predictive Model Markup Language

(PMML) 215
Pre-processing phase 42
Principal Component Analysis

(PCA) 12, 18, 139
probabilistic classifiers 18

R
ratio data 6
recall 20
Receiver Operating Characteristics

(ROC) 21
recommendation engine

basic concepts 101, 102
book-recommendation engine,

building 108
exploitation 105
exploration 105
item-based analysis 103
key concepts 102, 103
similarity, calculating 103
user-based analysis 103

regression
about 21, 25, 56
attributes, analyzing 58
correlation coefficient 23
data, loading 56, 58
evaluating 22
linear regression 22
mean absolute error 23
mean squared error 23
regression model, building 59
regression model, evaluating 59
tips 63

regression model
building 59
evaluating 59
linear regression 59, 60
regression trees 60-62

reinforcement learning 3
Resilient Distributed Dataset (RDD) 37
restricted Boltzmann machines

(RBM) 18, 38, 150, 151

[233]

Roc curves 20, 21
RuleSetModel 215

S
Sample, Explore, Modify, Model, and

Assess (SEMMA) 214
Scale Invariant Feature Transform

(SIFT) 146
score function 17
similar items

searching 13
similarity calculation

about 103
collaborative filtering 103
content-based filtering 104
hybrid approach 104

SimRank 15
single layer regression model

building 156-158
Singular value decomposition (SVD) 12
Spark Streaming 36
spatio-temporal patterns 129
Spearman's footrule distance 34
stacked autoencoders 150
standards and markup languages 213
stratification 27
sum transfer function 147
supermarket dataset

about 94
shopping patterns, discovering 94
shopping patterns, discovering with

Apriori algorithm 94, 96
shopping patterns, discovering with

FP-growth algorithm 96
supervised learning

about 2, 17
classification 17
regression 21

Support Vector Machine (SVM) 18, 25, 215
survivorship bias 9
suspicious behavior detection 126
suspicious pattern detection 127
suspicious patterns, modeling

about 132
dataset rebalancing 134-136
vanilla approach 133, 134

T
target variables

appetency probability 69
churn probability 68
upselling probability 69

Tertius 32
test set 26
text classification

about 187
examples 187

text data
extracting 190-192
importing 192
importing, from directory 192
importing, from file 193, 194
pre-processing 194-196

text mining
about 185, 186
text classification 187
topic modeling 186, 187

time series data
anomaly detection 138

topic modeling 186, 187
topic modeling, for BBC news

about 196
BBC dataset, collecting 196, 197
model, evaluating 200, 201
modeling 197-200
model, restoring 203
model, reusing 202
model, saving 202

traditional machine learning
architecture 42

training data
about 42
collecting 175-178

train set 26
transaction analysis 129
TreeModel 215

U
UCI machine learning repository

URL 217
underfitting 24, 25

[234]

Universal PMML Plug-in (UPPI) 215
unknown-unknowns 126, 127
unsupervised learning

about 3, 13
clustering 16, 17
similar items, searching 13

user-based analysis 103
user-based collaborative filtering 115-117

V
vanilla approach 133, 134

W
Waikato Environment for Knowledge

Analysis (Weka)
about 30-33
URL 30

website traffic
anomaly detection 137

Weka 3.6
downloading 46
URL 46

weka.classifiers package
weka.classifiers.bayes 32
weka.classifiers.evaluation 32
weka.classifiers.functions 32
weka.classifiers.lazy 32
weka.classifiers.meta 33
weka.classifiers.mi 33
weka.classifiers.rules 33
weka.classifiers.trees 33

WEKA Packages
URL 78

word2vec
about 192
URL 192

workflow, applied machine learning
data analysis and modeling 4
data and problem definition 3
data collection 4
data preprocessing 4
evaluation 4

X
Xiaming Chen

URL 218

Y
Yahoo traffic dataset

URL 137

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Applied Machine Learning Quick Start
	Machine learning and data science
	What kind of problems can machine
learning solve?
	Applied Machine Learning workflow

	Data and problem definition
	Measurement scales

	Data collection
	Find or observe data
	Generate data
	Sampling traps

	Data pre-processing
	Data cleaning
	Fill missing values
	Remove outliers
	Data transformation
	Data reduction

	Unsupervised learning
	Find similar items
	Euclidean distances
	Non-Euclidean distances
	The curse of dimensionality

	Clustering

	Supervised learning
	Classification
	Decision tree learning
	Probabilistic classifiers
	Kernel methods
	Artificial neural networks
	Ensemble learning
	Evaluating classification

	Regression
	Linear regression
	Evaluating regression

	Generalization and evaluation
	Underfitting and overfitting
	Train and test sets
	Cross-validation
	Leave-one-out validation
	Stratification

	Summary

	Chapter 2: Java Libraries and Platforms for Machine Learning
	The need for Java
	Machine learning libraries
	Weka
	Java machine learning
	Apache Mahout
	Apache Spark
	Deeplearning4j
	MALLET
	Comparing libraries

	Building a machine learning application
	Traditional machine learning architecture
	Dealing with big data
	Big data application architecture

	Summary

	Chapter 3: Basic Algorithms – Classification, Regression,
and Clustering
	Before you start
	Classification
	Data
	Loading data
	Feature selection
	Learning algorithms
	Classify new data
	Evaluation and prediction error metrics
	Confusion matrix
	Choosing a classification algorithm

	Regression
	Loading the data
	Analyzing attributes
	Building and evaluating regression model
	Linear regression
	Regression trees

	Tips to avoid common regression problems

	Clustering
	Clustering algorithms
	Evaluation

	Summary

	Chapter 4: Customer Relationship Prediction with Ensembles
	Customer relationship database
	Challenge
	Dataset
	Evaluation

	Basic naive Bayes classifier baseline
	Getting the data
	Loading the data

	Basic modeling
	Evaluating models
	Implementing naive Bayes baseline

	Advanced modeling with ensembles
	Before we start
	Data pre-processing
	Attribute selection
	Model selection
	Performance evaluation

	Summary

	Chapter 5: Affinity Analysis
	Market basket analysis
	Affinity analysis

	Association rule learning
	Basic concepts
	Database of transactions
	Itemset and rule
	Support
	Confidence

	Apriori algorithm
	FP-growth algorithm

	The supermarket dataset
	Discover patterns
	Apriori
	FP-growth

	Other applications in various areas
	Medical diagnosis
	Protein sequences
	Census data
	Customer relationship management
	IT Operations Analytics

	Summary

	Chapter 6: Recommendation Engine with Apache Mahout
	Basic concepts
	Key concepts
	User-based and item-based analysis
	Approaches to calculate similarity
	Collaborative filtering
	Content-based filtering
	Hybrid approach

	Exploitation versus exploration

	Getting Apache Mahout
	Configuring Mahout in Eclipse with the Maven plugin

	Building a recommendation engine
	Book ratings dataset
	Loading the data
	Loading data from file
	Loading data from database
	In-memory database

	Collaborative filtering
	User-based filtering
	Item-based filtering
	Adding custom rules to recommendations
	Evaluation
	Online learning engine

	Content-based filtering
	Summary

	Chapter 7: Fraud and Anomaly Detection
	Suspicious and anomalous behaviour detection
	Unknown-unknowns

	Suspicious pattern detection
	Anomalous pattern detection
	Analysis types
	Pattern analysis

	Transaction analysis
	Plan recognition

	Fraud detection of insurance claims
	Dataset
	Modeling suspicious patterns
	Vanilla approach
	Dataset rebalancing

	Anomaly detection in website traffic
	Dataset
	Anomaly detection in time series data
	Histogram-based anomaly detection
	Loading the data
	Creating histograms
	Density based k-nearest neighbours

	Summary

	Chapter 8: Image Recognition with Deeplearning4j
	Introducing image recognition
	Neural networks
	Perceptron
	Feedforward neural networks
	Autoencoder
	Restricted Boltzmann machine
	Deep convolutional networks

	Image classification
	Deeplearning4j
	Getting DL4J

	MNIST dataset
	Loading the data
	Building models
	Building a single-layer regression model
	Building a deep belief network
	Build a Multilayer Convolutional Network

	Summary

	Chapter 9: Activity Recognition with Mobile Phone Sensors
	Introducing activity recognition
	Mobile phone sensors
	Activity recognition pipeline
	The plan

	Collecting data from a mobile phone
	Installing Android Studio
	Loading the data collector
	Feature extraction

	Collecting training data

	Building a classifier
	Reducing spurious transitions
	Plugging the classifier into a mobile app

	Summary

	Chapter 10: Text Mining with
Mallet – Topic Modeling
and Spam Detection
	Introducing text mining
	Topic modeling
	Text classification

	Installing Mallet
	Working with text data
	Importing data
	Importing from directory
	Importing from file

	Pre-processing text data

	Topic modeling for BBC news
	BBC dataset
	Modeling
	Evaluating a model
	Reusing a model
	Saving a model
	Restoring a model

	E-mail spam detection
	E-mail spam dataset
	Feature generation
	Training and testing
	Model performance

	Summary

	Chapter 11: What is Next?
	Machine learning in real life
	Noisy data
	Class unbalance
	Feature selection is hard
	Model chaining
	Importance of evaluation
	Getting models into production
	Model maintenance

	Standards and markup languages
	CRISP-DM
	SEMMA methodology
	Predictive Model Markup Language

	Machine learning in the cloud
	Machine learning as a service

	Web resources and competitions
	Datasets
	Online courses
	Competitions
	Websites and blogs
	Venues and conferences

	Summary

	Appendix: References
	Index

