

Solr 1.4 Enterprise
Search Server

Enhance your search with faceted navigation, result
highlighting, fuzzy queries, ranked scoring, and more

David Smiley
Eric Pugh

 BIRMINGHAM - MUMBAI

Solr 1.4 Enterprise Search Server

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2009

Production Reference: 1120809

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-88-3

www.packtpub.com

Cover Image by Harmeet Singh (singharmeet@yahoo.com)

Credits

Authors
David Smiley

Eric Pugh

Reviewers
James Brady

Jerome Eteve

Acquisition Editor
Rashmi Phadnis

Development Editor
Darshana Shinde

Technical Editor
Pallavi Kachare

Copy Editor
Leonard D'Silva

Indexer
Monica Ajmera

Production Editorial Manager
Abhijeet Deobhakta

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Lynda Sliwoski

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Born to code, David Smiley is a senior software developer and loves
programming. He has 10 years of experience in the defense industry at MITRE,
using Java and various web technologies. David is a strong believer in the
opensource development model and has made small contributions to various
projects over the years.

David began using Lucene way back in 2000 during its infancy and was immediately
excited by it and its future potential. He later went on to use the Lucene based
"Compass" library to construct a very basic search server, similar in spirit to Solr.
Since then, David has used Solr in a major search project and was able to contribute
modifications back to the Solr community. Although preferring open source
solutions, David has also been trained on the commercial Endeca search platform
and is currently using that product as well as Solr for different projects.

Most, if not all, authors seem to dedicate their book to someone. As
simply a reader of books, I have thought of this seeming prerequisite
as customary tradition. That was my feeling before I embarked on
writing about Solr, a project that has sapped my previously "free"
time on nights and weekends for a year. I chose this sacrifice and
would not change it, but my wife, family, and friends did not choose
it. I am married to my lovely wife Sylvie who has sacrificed easily
as much as I have to complete this book. She has suffered through
this time with an absentee husband while bearing our first child—
Camille. She was born about a week before the completion of my
first draft and has been the apple of my eye ever since. I officially
dedicate this book to my wife Sylvie and my daughter Camille,
whom I both lovingly adore. I also pledge to read book
dedications with newfound firsthand experience at what
the dedication represents.

I would also like to thank others who helped bring this book to
fruition. Namely, if it were not for Doug Cutting creating Lucene
with an open source license, there would be no Solr. Furthermore,
CNet's decision to open source what was an in-house project, Solr
itself in 2006, deserves praise. Many corporations do not understand
that open source isn't just "free code" you get for free that others
wrote; it is an opportunity to let your code flourish on the outside
instead of it withering inside. Finally, I thank the team at Packt who
were particularly patient with me as a first-time author writing at a
pace that left a lot to be desired.

Last but not least, this book would not have been completed in a
reasonable time were it not for the assistance of my contributing
author, Eric Pugh. His perspectives and experiences have
complemented mine so well that I am absolutely certain the
quality of this book is much better than what I could have
done alone.

Thank you all.

Fascinated by the 'craft' of software development, Eric Pugh has been heavily
involved in the open source world as a developer, committer, and user for the
past five years. He is an emeritus member of the Apache Software Foundation
and lately has been mulling over how we move from the read/write Web to the
read/write/share Web.

In biotech, financial services, and defense IT, he has helped European and
American companies develop coherent strategies for embracing open source
software. As a speaker, he has advocated the advantages of Agile practices in
software development.

Eric became involved with Solr when he submitted the patch SOLR-284 for Parsing
Rich Document types such as PDF and MS Office formats that became the single
most popular patch as measured by votes! The patch was subsequently cleaned
up and enhanced by three other individuals, demonstrating the power of the
open source model to build great code collaboratively. SOLR-284 was eventually
refactored into Solr Cell as part of Solr version 1.4.

He blogs at http://www.opensourceconnections.com/blog/.

Throughout my life I have been helped by so many people, but all
too rarely do I get to explicitly thank them. This book is arguable
one of the high points of my career, and as I wrote it, I thought about
all the people who have provided encouragement, mentoring, and
the occasional push to succeed. First off, I would like to thank Erik
Hatcher, author, entrepreneur, and great family man for introducing
me to the world of open source software. My first hesitant patch
to Ant was made under his tutelage, and later my interest in Solr
was fanned by his advocacy. Thanks to Harry Sleeper for taking
a chance on a first time conference speaker; he moved me from
thinking of myself as a developer improving myself to thinking of
myself as a consultant improving the world (of software!). His team
at MITRE are some of the most passionate developers I have met,
and it was through them I met my co-author David. I owe a huge
debt of gratitude to David Smiley. He has encouraged me, coached
me, and put up with my lack of respect for book deadlines, making
this book project a very positive experience! I look forward to the
next one. With my new son Morgan at home, I could only have done
this project with a generous support of time from my company,
OpenSource Connections. I am incredibly proud of what o19s
is accomplishing!

Lastly, to the all the folks in the Solr/Lucene community who took
the time to review early drafts and provide feedback: Solr is at the
tipping point of becoming the "it" search engine because of your
passion and commitment

I am who I am because of my wife, Kate. Schweetie, real life for me
began when we met. Thank you.

About the Reviewers

James Brady is an entrepreneur and software developer living in San Francisco,
CA. Originally from England, James discovered his passion for computer science and
programming while at Cambridge University. Upon graduation, James worked as a
software engineer at IBM's Hursley Park laboratory—a role which taught him many
things, most importantly, his desire to work in a small company.

In January 2008, James founded WebMynd Corp., which received angel funding
from the Y Combinator fund, and he relocated to San Francisco. WebMynd is one
of the largest installations of Solr, indexing up to two million HTML documents
per day, and making heavy use of Solr's multicore features to enable a partially
active index.

Jerome Eteve holds a BSC in physics, maths and computing and an MSC in IT
and bioinformatics from the University of Lille (France). After starting his career in
the field of bioinformatics, where he worked as a biological data management and
analysis consultant, he's now a senior web developer with interests ranging from
database level issues to user experience online. He's passionate about open source
technologies, search engines, and web application architecture. At present, he is
working since 2006 for Careerjet Ltd, a worldwide job search engine.

Table of Contents
Preface 1
Chapter 1: Quick Starting Solr 7

An introduction to Solr 7
Lucene, the underlying engine 8
Solr, the Server-ization of Lucene 8

Comparison to database technology 9
Getting started 10

The last official release or fresh code from source control 11
Testing and building Solr 12
Solr's installation directory structure 13
Solr's home directory 15
How Solr finds its home 15
Deploying and running Solr 17

A quick tour of Solr! 18
Loading sample data 20
A simple query 22
Some statistics 24

The schema and configuration files 25
Solr resources outside this book 26
Summary 27

Chapter 2: Schema and Text Analysis 29
MusicBrainz.org 30
One combined index or multiple indices 31

Problems with using a single combined index 33
Schema design 34

Step 1: Determine which searches are going to be powered by Solr 35
Step 2: Determine the entities returned from each search 35

Table of Contents

[ii]

Step 3: Denormalize related data 36
Denormalizing—"one-to-one" associated data 36
Denormalizing—"one-to-many" associated data 36

Step 4: (Optional) Omit the inclusion of fields
only used in search results 38

The schema.xml file 39
Field types 40
Field options 40
Field definitions 42

Sorting 44
Dynamic fields 45
Using copyField 46
Remaining schema.xml settings 47

Text analysis 47
Configuration 48
Experimenting with text analysis 50
Tokenization 52
WorkDelimiterFilterFactory 53
Stemming 54
Synonyms 55

Index-time versus Query-time, and to expand or not 57
Stop words 57
Phonetic sounds-like analysis 58
Partial/Substring indexing 60

N-gramming costs 61
Miscellaneous analyzers 62

Summary 63
Chapter 3: Indexing Data 65

Communicating with Solr 65
Direct HTTP or a convenient client API 65
Data streamed remotely or from Solr's filesystem 66
Data formats 66

Using curl to interact with Solr 66
Remote streaming 68
Sending XML to Solr 69

Deleting documents 70
Commit, optimize, and rollback 70

Sending CSV to Solr 72
Configuration options 73

Direct database and XML import 74
Getting started with DIH 75

The DIH development console 76

Table of Contents

[iii]

DIH documents, entities 78
DIH fields and transformers 79

Importing with DIH 80
Indexing documents with Solr Cell 81

Extracting binary content 81
Configuring Solr 83
Extracting karaoke lyrics 83
Indexing richer documents 85

Summary 88
Chapter 4: Basic Searching 89

Your first search, a walk-through 89
Solr's generic XML structured data representation 92
Solr's XML response format 93

Parsing the URL 94
Query parameters 95

Parameters affecting the query 95
Result paging 96
Output related parameters 96
Diagnostic query parameters 98

Query syntax 99
Matching all the documents 99
Mandatory, prohibited, and optional clauses 99

Boolean operators 100
Sub-expressions (aka sub-queries) 101

Limitations of prohibited clauses in sub-expressions 102
Field qualifier 102
Phrase queries and term proximity 103
Wildcard queries 103

Fuzzy queries 105
Range queries 105

Date math 106
Score boosting 107
Existence (and non-existence) queries 107
Escaping special characters 108

Filtering 108
Sorting 109
Request handlers 110
Scoring 112

Query-time and index-time boosting 113
Troubleshooting scoring 113

Summary 115

Table of Contents

[iv]

Chapter 5: Enhanced Searching 117
Function queries 117

An example: Scores influenced by a lookupcount 118
Field references 120
Function reference 120

Mathematical primitives 121
Miscellaneous math 121
ord and rord 122

An example with scale() and lookupcount 123
Using logarithms 123
Using inverse reciprocals 124
Using reciprocals and rord with dates 126

Function query tips 128
Dismax Solr request handler 128

Lucene's DisjunctionMaxQuery 130
Configuring queried fields and boosts 131

Limited query syntax 131
Boosting: Automatic phrase boosting 132

Configuring automatic phrase boosting 133
Phrase slop configuration 134

Boosting: Boost queries 134
Boosting: Boost functions 137
Min-should-match 138

Basic rules 139
Multiple rules 139
What to choose 140

A default search 140
Faceting 141

A quick example: Faceting release types 142
MusicBrainz schema changes 144

Field requirements 146
Types of faceting 146
Faceting text 147
Alphabetic range bucketing (A-C, D-F, and so on) 148
Faceting dates 149

Date facet parameters 151
Faceting on arbitrary queries 152
Excluding filters 153

The solution: Local Params 155
Facet prefixing (term suggest) 156

Summary 158

Table of Contents

[v]

Chapter 6: Search Components 159
About components 159
The highlighting component 161

A highlighting example 161
Highlighting configuration 163

Query elevation 166
Configuration 167

Spell checking 169
Schema configuration 169
Configuration in solrconfig.xml 171

Configuring spellcheckers (dictionaries) 173
Processing of the q parameter 175
Processing of the spellcheck.q parameter 176

Building the dictionary from its source 176
Issuing spellcheck requests 177
Example usage for a mispelled query 178

An alternative approach 180
The more-like-this search component 182

Configuration parameters 183
Parameters specific to the MLT search component 183
Parameters specific to the MLT request handler 184
Common MLT parameters 185

MLT results example 186
Stats component 189

Configuring the stats component 189
Statistics on track durations 190

Field collapsing 191
Configuring field collapsing 192

Other components 193
Terms component 194
termVector component 194
LocalSolr component 194

Summary 195
Chapter 7: Deployment 197

Implementation methodology 197
Questions to ask 198

Installing into a Servlet container 199
Differences between Servlet containers 199

Defining solr.home property 199

Table of Contents

[vi]

Logging 201
HTTP server request access logs 201
Solr application logging 203

Configuring logging output 203
Logging to Log4j 204
Jetty startup integration 205
Managing log levels at runtime 205

A SearchHandler per search interface 207
Solr cores 208

Configuring solr.xml 208
Managing cores 209
Why use multicore 210

JMX 212
Starting Solr with JMX 212

Take a walk on the wild side! Use JRuby to extract JMX information 215
Securing Solr 217

Limiting server access 217
Controlling JMX access 220

Securing index data 220
Controlling document access 221
Other things to look at 221

Summary 222
Chapter 8: Integrating Solr 223

Structure of included examples 223
Inventory of examples 224

SolrJ: Simple Java interface 224
Using Heritrix to download artist pages 226
Indexing HTML in Solr 227
SolrJ client API 230

Indexing POJOs 234
When should I use Embedded Solr 235

In-Process streaming 236
Rich clients 237
Upgrading from legacy Lucene 237

Using JavaScript to integrate Solr 238
Wait, what about security? 239
Building a Solr powered artists autocomplete widget with
jQuery and JSONP 240
SolrJS: JavaScript interface to Solr 245

Accessing Solr from PHP applications 247
solr-php-client 248
Drupal options 250

Apache Solr Search integration module 251

Table of Contents

[vii]

Hosted Solr by Acquia 252
Ruby on Rails integrations 253

acts_as_solr 254
Setting up MyFaves project 255
Populating MyFaves relational database from Solr 256
Build Solr indexes from relational database 258
Complete MyFaves web site 260

Blacklight OPAC 263
Indexing MusicBrainz data 263

Customizing display 267
solr-ruby versus rsolr 269

Summary 270
Chapter 9: Scaling Solr 271

Tuning complex systems 271
Using Amazon EC2 to practice tuning 273

Firing up Solr on Amazon EC2 274
Optimizing a single Solr server (Scale High) 276

JVM configuration 277
HTTP caching 277
Solr caching 280

Tuning caches 281
Schema design considerations 282
Indexing strategies 283

Disable unique document checking 285
Commit/optimize factors 285

Enhancing faceting performance 286
Using term vectors 286
Improving phrase search performance 287

The solution: Shingling 287
Moving to multiple Solr servers (Scale Wide) 289

Script versus Java replication 289
Starting multiple Solr servers 290

Configuring replication 291
Distributing searches across slaves 291

Indexing into the master server 292
Configuring slaves 292

Distributing search queries across slaves 293
Sharding indexes 295

Assigning documents to shards 296
Searching across shards 297

Combining replication and sharding (Scale Deep) 298
Summary 300

Index 301

Preface
Text search has been around for perhaps longer than we all can remember. Just
about all systems, from client installed software to web sites to the web itself, have
search. Yet there is a big difference between the best search experiences and the
mediocre, unmemorable ones. If you want the application you're building to stand
out above the rest, then it's got to have great search features. If you leave this to the
capabilities of a database, then it's near impossible that you're going to get a great
search experience, because it's not going to have features that users come to expect in
a great search. With Solr, the leading open source search server, you'll tap into a host
of features from highlighting search results to spell-checking to faceting.

As you read Solr Enterprise Search Server you'll be guided through all of the aspects
of Solr, from the initial download to eventual deployment and performance
optimization. Nearly all the options of Solr are listed and described here, thus making
this book a resource to turn to as you implement your Solr based solution. The book
contains code examples in several programming languages that explore various
integration options, such as implementing query auto-complete in a web browser
and integrating a web crawler. You'll find these working examples in the online
supplement to the book along with a large, real-world, openly available data set from
MusicBrainz.org. Furthermore, you will also find instructions on accessing a Solr
image readily deployed from within Amazon's Elastic Compute Cloud.

Solr Enterprise Search Server targets the Solr 1.4 version. However, as this book went
to print prior to Solr 1.4's release, two features were not incorporated into the book:
search result clustering and trie-range numeric fields.

Preface

[2]

What this book covers
Chapter 1, Quick Starting Solr introduces Solr to the reader as a middle ground
between database technology and document/web crawlers. The reader is guided
through the Solr distribution including running the sample configuration with
sample data.

Chapter 2, The Schema and Text Analysis is all about Solr's schema. The schema
design is an important first order of business along with the related text
analysis configuration.

Chapter 3, Indexing Data details several methods to import data; most of them can
be used to bring the MusicBrainz data set into the index. A popular Solr extension
called the DataImportHandler is demonstrated too.

Chapter 4, Basic Searching is a thorough reference to Solr's query syntax from the
basics to range queries. Factors influencing Solr's scoring algorithm are explained
here, as well as diagnostic output essential to understanding how the query worked
and how a score is computed.

Chapter 5, Enhanced Searching moves on to more querying topics. Various score
boosting methods are explained from those based on record-level data to those that
match particular fields or those that contain certain words. Next, faceting is a major
subject area of this chapter. Finally, the term auto-complete is demonstrated, which
is implemented by the faceting mechanism.

Chapter 6, Search Components covers a variety of searching extras in the form of
Solr "components", namely, spell-check suggestions, highlighting search results,
computing statistics of numeric fields, editorial alterations to specific user queries,
and finding other records "more like this".

Chapter 7, Deployment transits from running Solr from a developer-centric perspective
to deploying and running Solr as a deployed production enterprise service that is
secure, has robust logging, and can be managed by System Administrators.

Chapter 8, Integrating Solr surveys a plethora of integration options for Solr, from
supported client libraries in Java, JavaScript, and Ruby, to being able to consume Solr
results in XML, JSON, and even PHP syntaxes. We'll look at some best practices and
approaches for integrating Solr into your web application.

Chapter 9, Scaling Solr looks at how to scale Solr up and out to avoid meltdown and
meet performance expectations. This information varies from small changes of
configuration files to architectural options.

Preface

[3]

Who this book is for
This book is for developers who would like to use Solr to implement a search
capability for their applications. You need only to have basic programming skills to
use Solr; extending or modifying Solr itself requires Java programming. Knowledge
of Lucene, the foundation of Solr, is certainly a bonus.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "These are essentially defaults for searches
that are processed by Solr request handlers defined in solrconfig.xml."

A block of code is set as follows:

<uniqueKey>id</uniqueKey>
<!-- <defaultSearchField>text</defaultSearchField>
<solrQueryParser defaultOperator="AND"/> -->
<copyField source="r_name" dest="r_name_sort" />

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 <arr name="id">
 <str>mccm.pdf</str>
 </arr>

Any command-line input or output is written as follows:

>> curl http://localhost:8983/solr/karaoke/update/ -H "Content-Type:
text/xml" --data-binary '<commit waitFlush="false"/>'

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Take for
example the Top Voters section ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5883_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Quick Starting Solr
Welcome to Solr! You've made an excellent choice in picking a technology to power
your searching needs. In this chapter, we're going to cover the following topics:

An overview of what Solr and Lucene are all about
What makes Solr different from other database technologies
How to get Solr, what's included, and what is where
Running Solr and importing sample data
A quick tour of the interface and key configuration files

An introduction to Solr
Solr is an open source enterprise search server. It is a mature product powering
search for public sites like CNet, Zappos, and Netflix, as well as intranet sites. It is
written in Java, and that language is used to further extend/modify Solr. However,
being a server that communicates using standards such as HTTP and XML,
knowledge of Java is very useful but not strictly a requirement. In addition to the
standard ability to return a list of search results for some query, it has numerous
other features such as result highlighting, faceted navigation (for example, the ones
found on most e-commerce sites), query spell correction, auto-suggest queries, and
"more like this" for finding similar documents.

Common Solr Usage

WebDB Data DataSolr

•

•

•

•

•

Quick Starting Solr

[8]

Lucene, the underlying engine
Before describing Solr, it is best to start with Apache Lucene, the core technology
underlying it. Lucene is an open source, high-performance text search engine library.
Lucene was developed and open sourced by Doug Cutting in 2000 and has evolved
and matured since then with a strong online community. Being just a code library,
Lucene is not a server and certainly isn't a web crawler either. This is an important
fact. There aren't even any configuration files. In order to use Lucene directly, one
writes code to store and query an index stored on a disk. The major features found in
Lucene are as follows:

A text-based inverted index persistent storage for efficient retrieval of
documents by indexed terms
A rich set of text analyzers to transform a string of text into a series of terms
(words), which are the fundamental units indexed and searched
A query syntax with a parser and a variety of query types from a simple term
lookup to exotic fuzzy matches
A good scoring algorithm based on sound Information Retrieval (IR)
principles to produce the more likely candidates first, with flexible means
to affect the scoring
A highlighter feature to show words found in context
A query spellchecker based on indexed content

For even more information on the query spellchecker, check out
the Lucene In Action book (LINA for short) by Erik Hatcher
and Otis Gospodnetić.

Solr, the Server-ization of Lucene
With the definition of Lucene behind us, Solr can be described succinctly as the
server-ization of Lucene. However, it is definitely not a thin wrapper around the
Lucene libraries. Most of Solr's features are distinct from Lucene, such as faceting,
but not far into the implementation. The line is often blurred as to what is Solr and
what is Lucene. Without further adieu, here is the major feature-set in Solr:

HTTP request processing for indexing and querying documents.
Several caches for faster query responses.
A web-based administrative interface including:

Runtime performance statistics including cache
hit/miss rates.

•

•

•

•

•

•

•
•
•

°

Chapter 1

[9]

A query form to search the index.
A schema browser with histograms of popular terms along
with some statistics.
Detailed breakdown of scoring mathematics and text
analysis phases.

Configuration files for the schema and the server itself (in XML).
Solr adds to Lucene's text analysis library and makes it
configurable through XML.
Introduces the notion of a field type (this is important yet
surprisingly not in Lucene). Types are present for dates and
special sorting concerns.

The disjunction-max query handler is more usable by end user queries and
applications than Lucene's underlying raw queries.
Faceting of query results.
A spell check plugin used for making alternative query suggestions (that is,
"did you mean ___")
A more like this plugin to list documents that are similar to a
chosen document.
A distributed Solr server model with supporting scripts to support larger
scale deployments.

These features will be covered in more detail in later chapters.

Comparison to database technology
Knowledge of relational databases (often abbreviated RDBMS or just database for
short) is an increasingly common skill that developers possess. A database and a
[Lucene] search index aren't dramatically different conceptually. So let's start off
by assuming that you know database basics, and I'll describe how a search index
is different.

This comparison puts aside the possibility that your database has built-in
text indexing features. The point here is only to help you understand Solr.

°
°

°

•

°

°

•

•
•

•

•

Quick Starting Solr

[10]

This biggest difference is that a Lucene index is like a single-table database without
any support for relational queries (JOINs). Yes, it sounds crazy, but remember that
an index is usually only there to support search and not to be the primary source
of the data. So your database may be in "third normal form" but the index will be
completely de-normalized and contain mostly just the data needed to be searched.
One redeeming aspect of the single table schema is that fields can be multi-valued.

Other notable differences are as follows:

Updates: Entire documents can be deleted and added again but not updated.
Substring Search versus Text Search: Using a database, the poor man's
search would be a substring search such as SELECT * FROM mytable WHERE
name LIKE '%Books%'. That would match "CookBooks" as well as "My
Books". Lucene instead fundamentally searches on terms (words). Depending
on analysis configuration, this can mean that various forms of the word
(example: book, singular) are found too, even phonetic (sounds-like) matches
are possible. Using advanced ngram analysis techniques, it can do partial
words too, although this is uncommon.
Scored Results and Boosting: Much of the power of Lucene is in its ability to
score each matched document according to how well the search matched it.
For example, if multiple words are searched for and are optional (a boolean
OR search), then Lucene scores documents that matched more terms higher
than those that just matched one. There are a variety of other factors too,
and it's possible to adjust weightings of different fields. By comparison, a
database has no concept of this, a record either matched or not. Of course,
Lucene can sort on field values if that is needed.
Slow commits: Solr is highly optimized for search speed, and that speed is
largely attributable to caches. When a commit is done to finalize documents
that were just added, all of the caches need to be rebuilt, which could take
between seconds and a minute, depending on various factors.

Getting started
Solr is a Java based web application, but you don't need to be particularly familiar
with Java in order to use it. With most topics, this book assumes little to no such
knowledge on your part. However, if you wish to extend Solr, then you will
definitely need to know Java. I also assume a basic familiarity with the command
line, whether it is DOS or any Unix shell.

•

•

•

•

Chapter 1

[11]

Before truly getting started with Solr, let's get the prerequisites out of the way. Note
that if you are using Mac OS X, then you should have the needed pieces already
(though you may need the developer tools add-on). If any of the -version test
commands mentioned as follows fail, then you don't have it. URLs are provided
for convenience, but it is up to you to install the software according to instructions
provided at the relevant sites.

A Java Development Kit (JDK) v1.5 or later: You can download the JDK
from http://java.sun.com/javase/. Typing java -version will tell
you which version of Java you are using if any, and you should type
javac -version to ensure that you have the development kit too. You
only need the JRE to run Solr, but you will need the JDK to compile it
from source and to extend it.
Apache Ant: Any recent version should do and is available at http://ant.
apache.org/. If you never modify Solr and just stick to a recent official
release, then you can skip this. Note that the software provided with this
book uses Ant as well. Therefore, you'll want Ant if you wish to follow
along. Typing ant -version should demonstrate that you have it installed.
Subversion or Git for source control of Solr: http://subversion.tigris.
org/getting.html or http://git-scm.com/. This isn't strictly necessary,
but it's recommended for working with Solr's source code. If you choose to
use a command line based distribution of either, then svn -version or
git --version should work. Further instructions in this book are based
on the command line, because it is a universal access method.
Any Java EE servlet engine app-server: This is a Java web server. Solr
includes one already, Jetty, and we'll be using this throughout the book.
In a later chapter, "Solr in the real world", deploying to an alternative
is discussed.

The last official release or fresh code from
source control
Let's finally get started and get Solr running. The official site for Solr is at
http://lucene.apache.org/solr, where you can download the latest official
release. Solr 1.3 was released on September 15th, 2008. Solr 1.4 is expected around
the same time a year later and thus is probably available as you read this. This book
was written in-between these releases and so it contains many but not all of 1.4's
features. An alternative to downloading an official release is getting the latest code
from source control (that is version control). In either case, the directory structure
is conveniently identical and both include the source code. For many open source
projects, the choice is almost always the last official release and not the latest source.

Quick Starting Solr

[12]

However, Solr's committers have made unit and integration testing a priority,
evident by the testing infrastructure and test code-coverage of over 70 percent
(http://hudson.zones.apache.org/hudson/view/Solr/job/Solr-trunk/
clover/), which is very good. Many projects have none at all. As a result, the latest
source release is very stable, and it also makes changes to Solr easier, given that so
many tests are in place to give confidence that Solr is working properly—so far as
the tests test it, of course. And unlike a database, which is almost never modified
to suit the needs of a project, Solr is modified often. Also note that there are a good
many feature additions provided as source code patches within Solr's JIRA (its issue
tracking system). The decision is of course up to you. If you are satisfied with the
feature-set in the latest release and/or you don't think you'll be modifying Solr at all,
then the latest release is fine. One way to gauge what (completed) features are not
yet in the latest official release is to visit Solr's JIRA at http://issues.apache.org/
jira/browse/SOLR, and then click on Roadmap. Also, the Wiki at http://wiki.
apache.org/solr/ should have features that are not yet in the latest release version
marked as such.

Choose to get Solr through source control even if you are going to stick
with the last official release. When/if you make changes to Solr, it will
then be easier to see what those differences are. Switching to a different
release becomes much easier too.

We're going to get the code through a subversion and check out the trunk (a source
control term for the latest code). If you are using an IDE or some GUI tool for
subversion, then feel free to use that. The command line will suffice too. You should
be able to successfully execute the following:

svn co http://svn.apache.org/repos/asf/lucene/solr/trunk/ solr_svn

That will result in Solr being checked out into the solr_svn directory. If you prefer
one of the official releases, then use one of the following URLs, instead of the one
above: http://svn.apache.org/repos/asf/lucene/solr/tags/ (put that into
your web browser to see the choices). So called nightlies are also available if you
don't want to use a subversion but want recent code.

Testing and building Solr
If you prefer a downloadable pre-built Solr, instead of using a subversion, then you
can skip this section.

Chapter 1

[13]

Ant basics
Apache ant is a cross-platform build scripting tool specified with
XML. It is largely Java oriented. An ant script is assumed to be
named build.xml in the root of a project. It contains a set of named
ant targets that you can run. In order to list them while including
description, type ant -p to get a nice report. In order to run a target,
simply supply it to ant as the first argument such as ant compile.
Targets often internally invoke other targets, and you'll see this in
the output. In the end, ant should report BUILD SUCCESSFUL if
successful and BUILD FAILED if not. Note that ant's use of the term
'build' is universal in ant, even if 'build' is not an apt description of
what a target performed.

Testing and building Solr is easy. Before we build Solr, we're going to test it first
to ensure that there are no failing tests. Simply execute the test target in Solr's
installation directory like ant test. That should have executed without any errors.
On my old machine, it took about ten minutes to run. If there were errors (extremely
rare), then you'll have to switch to a different version or wait shortly for it to be fixed.
Now to build a ready-to-install Solr, just type ant dist. This is going to fill the dist
directory with some JAR files and a WAR file. If you are not familiar with Java, these
files are a packaging mechanism for compiled code and related resources. These files
are technically ZIP files but with a different file extension, and so you can use any
ZIP file tools to view their contents. The most important one is the WAR file which
we'll be using next.

Solr's installation directory structure
In this section, we'll orient you to Solr's directory structure. This is not Solr's home
directory, but a different place that we'll mention after this.

build: Only appears after Solr is built to house compiled code before being
packaged. You won't need to look in here.
client: Contains convenient language-specific APIs for talking to Solr
as an alternative to using your own code to send XML over HTTP. As of
this writing, this only contains a couple of Ruby choices. The Java client
called SolrJ is actually in src/solrj. More information on using clients to
communicate with Solr is in Chapter 8.
dist: The built Solr JAR files and WAR file are here, as well as the
dependencies. This directory is created and filled when Solr is built.

•

•

•

Quick Starting Solr

[14]

example: This is an installation of the Jetty servlet engine (a Java web server)
including some sample data and Solr configuration. The interesting child
directories are:

example/etc: Jetty's configuration. Among other things, here
you can change the web port used from the pre-supplied 8983
to 80 (HTTP default).
example/multicore: Houses multiple Solr home directories in
a Solr multicore setup. This will be discussed in Chapter 7.
example/solr: A Solr home directory for the default setup
that we'll be using.
example/webapps: Solr's WAR file is deployed here.

lib: All of Solr's API dependencies. The larger pieces are Lucene, some
Apache commons utilities, and Stax for efficient XML processing.
site: This is for managing what is published on the Solr web site. You won't
need to go in here.
src: Various source code. It's broken down into a few notable directories:

src/java: Solr's source code, written in Java.
src/scripts: Unix bash shell scripts, particularly useful
in larger production deployments employing multiple
Solr servers.
src/solrj: Solr's Java client.
src/test: Solr's test source code and test files.
src/webapp: Solr's web administration interface, including
Java Servlets (source code form) and JSPs. This is mostly what
constitutes the WAR file. The JSPs for the admin interface
are under here in web/admin/, if you care to tweak any to
your needs.

If you are a Java developer, you may have noticed that the Java source in Solr
is not located in one place. It's in src/java for the majority of Solr, src/common
for the parts of Solr that are common to both the server side and Solrj client side,
src/test for the test code, and src/webapp/src for the servlet-specific code.
I am merely pointing this out to help you find code, not to be critical. Solr's files
are well organized.

•

°

°

°

°

•

•

•

°

°

°

°

°

Chapter 1

[15]

Solr's home directory
A Solr home directory contains Solr's configuration and data (a Lucene Index) for a
running Solr instance. Solr includes a sample, one at example/solr, which we'll be
using in-place throughout most of the book. Technically, example/multicore
is also a valid Solr home but for a multi-core setup, which will be discussed much
later. You know you're looking at a Solr home directory when it contains either
a solr.xml file (formerly multicore.xml in Solr 1.3), or if it contains both a
conf and a data directory, though strictly speaking these might not be the
actual requirements.

data might not yet be present because you haven't started Solr yet, which
will create it if it's not present and assuming it's not configured to be
named differently.

Solr's home directory is laid out like this:

bin: Suggested directory to place Solr replication scripts, if you have a more
advanced setup.
conf: Configuration files. The two I mention below are very important, but
it will also contain some other .txt and .xml files, which are referenced by
these two files for different things such as special text analysis steps.
conf/schema.xml: This is the schema for the index including field type
definitions with associated analyzer chains.
conf/solrconfig.xml: This is the primary Solr configuration file.
conf/xslt: This directory contains various XSLT files that can be used to
transform Solr's XML query responses into formats such as Atom/RSS.
data: Contains the actual Lucene index data. It's binary data, so you won't be
doing anything with it except perhaps deleting it occasionally.
lib: Optional placement of extra Java JAR files that Solr will load on startup,
allowing you to externalize plugins from the Solr distribution (the WAR file)
for convenience. If you extend Solr without modifying Solr itself, then those
modifications can be deployed in a JAR file here.

It's really important to know how Solr finds its home directory. This is covered next.

How Solr finds its home
In the next section, you'll start Solr. When Solr starts up, about the first thing it
does is load its configuration from its home directory. Where that is exactly can be
specified in several different ways.

•

•

•

•

•

•

•

Quick Starting Solr

[16]

Solr first checks for a Java system property named solr.solr.home. There are
a few ways to set a Java system property, but a universal one, no matter which
servlet engine you use, is through the command line where Java is invoked. You
could explicitly set Solr's home like so when you start Jetty: java -Dsolr.solr.
home=solr/ -jar start.jar, or you could use Java Naming and Directory
Interface (JNDI) to bind the directory path to java:comp/env/solr/home.
As with Java system properties, there are multiple ways to do this. Some are
app-server dependent, but a universal one is to add the following to the WAR
file's web.xml located in src/web-app/web/WEB-INF (you'll find this there already
but commented out).

<env-entry>
 <env-entry-name>solr/home</env-entry-name>
 <env-entry-value>solr/</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

As this is a change to web.xml, you'll need to re-run ant dist-war to repackage
it, and only then you'll redeploy it. Doing this with Jetty supplied with Solr is
insufficient because JNDI itself isn't set up. I'm not going to get into this further,
because if you know what JNDI is and want to use it, then you'll surely figure out
how to do it for your particular app-server.

Finally, if Solr's home isn't configured as a Java system property or through JNDI,
then it defaults to solr/. In the examples above, I used that particular path too.
We're going to simply stick with this path for the rest of this book, because this
is a development, not production, setting.

In a production environment, you will almost certainly configure Solr's
home rather than let it fall back to the default solr/. You will also
probably use an absolute path instead of a relative one, which wouldn't
work if you accidentally start your app-server from a different directory.

When troubleshooting setting Solr's home, be sure to look at the very first Solr log
messages when Solr starts:

Aug 7, 2008 4:59:35 PM org.apache.solr.core.Config getInstanceDir
INFO: Solr home defaulted to 'null' (could not find system property or JNDI)
Aug 7, 2008 4:59:35 PM org.apache.solr.core.Config setInstanceDir
INFO: Solr home set to 'solr/'

This shows that Solr was left to default to solr/. You'll see this output when you
start Solr, as described in the next section.

Chapter 1

[17]

Deploying and running Solr
The file we're going to deploy is the file ending in .war in the dist directory
(dist/apache-solr-1.4.war). The WAR file in particular is important, because
this single file represents an entire Java web application. It includes Solr's JAR file,
all of Solr's dependencies (which amount to other JAR files), Java Server Pages
(JSPs) (which are rendered to a web browser when the WAR is deployed), and
various configuration files and other web resources. It does not include Solr's
home directory, however.

How one deploys a WAR file to a Java servlet engine depends on that servlet
engine, but it is common for there to be a directory named something like webapps,
which contains WAR files optionally in an expanded form. By expanded, I mean
that the WAR file may be uncompressed and thus a directory by the same name.
This can be a convenient deployed form in order to make changes in-place (such
as to JSP files and static web files) without requiring rebuilding a WAR file and
replacing an existing one. The disadvantage is that changes are not directly tracked
by source control (example: Subversion). Another thing to note about the WAR file
is that by convention, its name (without the .war extension, if present) is the
path portion of the URL where the web server mounts the web application. For
example, if you have an apache-solr-1.4.war file, then you would access it at
http://localhost:8983/apache-solr-1.4/, assuming it's on the local machine
and running at that default port.

We're going to deploy this WAR file into the Jetty servlet engine included with
Solr. If you are using a pre-built downloaded Solr distribution, then Solr is already
deployed into Jetty as solr.war. Solr has an ant target that does this (and some
other things we don't care about) called example, so you can simply run it like
ant example. This target didn't keep the original WAR filename when copying it. It
abbreviated it to simply solr.war. This means that the URL path is just solr. By the
way, because ant targets generally call other necessary ant targets, it was technically
not necessary to run ant dist earlier in order for this step to work. This would not
have run the tests, however.

Now we're going to start up Jetty and finally see Solr running (albeit without any
data to query yet). First go to the example directory, and then run Jetty's start.jar
file by typing the following command:

cd example

java -jar start.jar

You'll see about a page of output including references to Solr. When it is finished,
you should see this output at the very end of the command prompt:

2008-08-07 14:10:50.516::INFO: Started SocketConnector @ 0.0.0.0:8983

Quick Starting Solr

[18]

The 0.0.0.0 means it's listening to connections from any host (not just localhost,
notwithstanding potential firewalls) and 8983 is the port. If Jetty reports this,
then it doesn't necessarily mean that Solr was deployed successfully. You might
see an error such as a stack trace in the output, if something went wrong. Even
if it did go wrong, you should be able to access the web server at this address:
http://localhost:8983. It will show you a list of links to web applications which
will just be Solr for this setup. Solr should have this link: http://localhost:8983/
solr, and if you go there, then you should either see details about an error if Solr
wasn't loaded correctly, or a simple page with a link to Solr's admin page, which
should be http://localhost:8983/solr/admin/. You'll be visiting that link often.

To quit Jetty (and many other command line programs for that
matter), hit Ctrl-C on the keyboard.

A quick tour of Solr!
Start up Jetty if it isn't already up and point your browser to the admin URL:
http://localhost:8983/solr/admin/, so that we can get our bearings on this
interface that is not yet familiar to you. We're not going to discuss any page in any
depth at this point.

This part of Solr is somewhat rough and is subject to change
more than any other part of Solr.

Chapter 1

[19]

The top gray area in the previous screenshot is a header that is on every page.
When you start dealing with multiple Solr instances (development machine versus
production, multicore, Solr clusters), it is important to know where you are. The IP
and port are obvious. The (example) is a reference to the name of the schema. That's
just a simple label at the top of the schema file to name the schema. If you have
multiple schemas for different data sets, then this is a useful differentiator. Next is
the current working directory cwd, and Solr's home.

The block below this is a navigation menu to the different admin screens and
configuration data. The navigation menu is explained as follows:

SCHEMA: This downloads the schema configuration file (XML) directly to
the browser.

Firefox conveniently displays XML data with syntax
highlighting. Safari, on the other hand, tries to render
it and the result is unusable. Your mileage will vary
depending on the browser you use. You can always
use your browser's view source command if needed.

CONFIG: It is similar to the SCHEMA choice, but this is the main
configuration file for Solr.
ANALYSIS: It is used for diagnosing potential query/indexing problems
having to do with the text analysis. This is a somewhat advanced screen and
will be discussed later.
SCHEMA BROWSER: This is a neat view of the schema reflecting various
heuristics of the actual data in the index. We'll return here later.
STATISTICS: Here you will find stats such as timing and cache hit ratios. In
Chapter 9, we will visit this screen to evaluate Solr's performance.
INFO: This lists static versioning information about internal components to
Solr. Frankly, it's not very useful.
DISTRIBUTION: It contains Distributed/Replicated status information,
only applicable for such configurations. More information on this is in
Chapter 9.
PING: Ignore this, although it can be used for a health-check in
distributed mode.
LOGGING: This allows you to adjust the logging levels for different parts of
Solr at runtime. For Jetty as we're running it, this output goes to the console
and nowhere else.

•

•

•

•

•

•

•

•

•

Quick Starting Solr

[20]

Solr uses SLF4j for its logging, which in Solr, is by default configured
to use Java's built-in logging (that is JUL or JDK14 Logging). If you're
more familiar with another framework like Log4J, then you can do this
by simply removing the slf4j-jdk14 JAR file and adding slf4j-log4j12
(not included). If you're using Solr 1.3, then you're stuck with JUL.

JAVA PROPERTIES: It lists Java system properties.
THREAD DUMP: This displays a Java thread dump useful for experienced
Java developers in diagnosing problems.

After the main menu is the Make a Query text box where you can type in a simple
query. There's no data in Solr yet, so there's no point trying that right now.

FULL INTERFACE: As you might guess, it brings you to a form with more
options, especially useful when diagnosing query problems or if you forget
what the URL parameters are for some of the query options. The form is still
very limited, however, and only allows a fraction of the query options that
you can submit to Solr.

Finally, the bottom Assistance area contains useful information for Solr online. The
last section of this chapter has more information on such resources.

Loading sample data
Solr happens to come with some sample data and a loader script, found in the
example/exampledocs directory. We're going to use that, but just for the remainder
of this chapter so that we can explore Solr more without getting into schema decision
making and deeper data loading options. For the rest of the book, we'll base the
examples on the supplemental files, which are provided online.

Firstly, ensure that Solr is running. You should assume that it is always in a
running state throughout this book to follow any example. Now go into the
example/exampledocs directory, and run the following:
exampledocs$ java -jar post.jar *.xml

SimplePostTool: version 1.2

SimplePostTool: WARNING: Make sure your XML documents are encoded in UTF-
8, other encodings are not currently supported

SimplePostTool: POSTing files to http://localhost:8983/solr/update..

SimplePostTool: POSTing file hd.xml

SimplePostTool: POSTing file ipod_other.xml

SimplePostTool: POSTing file ipod_video.xml

SimplePostTool: POSTing file vidcard.xml

SimplePostTool: COMMITting Solr index changes..

•
•

•

Chapter 1

[21]

Or if you are using a Unix-like environment, you have the option of using the
post.sh shell script, which behaves similarly. What this does is it invokes the Java
program embedded in post.jar with each file in the current directory ending in .xml.
post.jar is a simple program that iterates over each argument given (a file reference),
and HTTP posts it to Solr running on the current machine at the example server's
default configuration (being http://localhost:8983/solr/update). I recommend
examining the contents of the post.sh shell script for illustrative purposes. As seen
above, the command will mention the files it is sending. Finally it will send a commit
command, which will cause documents that were posted prior to the last commit to be
saved and visible.

The post.sh and post.jar programs could theoretically be used in a
production scenario, but they are intended just for demonstration of the
technology with the example data.

Let's take a look at one of these documents like monitor.xml:

<add>
 <doc>
 <field name="id">3007WFP</field>
 <field name="name">Dell Widescreen UltraSharp 3007WFP</field>
 <field name="manu">Dell, Inc.</field>
 <field name="cat">electronics</field>
 <field name="cat">monitor</field>
 <field name="features">30" TFT active matrix LCD, 2560 x 1600,
 .25mm dot pitch, 700:1 contrast</field>
 <field name="includes">USB cable</field>
 <field name="weight">401.6</field>
 <field name="price">2199</field>
 <field name="popularity">6</field>
 <field name="inStock">true</field>
 </doc>

</add>

The schema for the XML files that are posted to Solr are very simple. This one here
doesn't demonstrate all of it, but this is most of what matters. Multiple documents
(represented by the <doc> tag) can be present in series within the <add> tag, which is
recommended in bulk data loading scenarios for performance. Remember that Solr
gets a <commit/> tag sent to it in a separate POST. This syntax and command-set
may very well be all that you use. More about these options and other data loading
choices will be discussed in Chapter 3.

Quick Starting Solr

[22]

A simple query
On the main admin page, let's run a simple query searching for monitor.

When using Solr's search form, don't hit the return key. It would be nice
if it submits the form, but it adds a carriage return to the search box
instead. If you leave this carriage return there and hit Search, then you'll
get an error. Perhaps this will be fixed at some point.

Before we go over the XML output, I want to point out the URL and its parameters,
which you will become very familiar with: http://localhost:8983/solr/select/
?q=monitor&version=2.2&start=0&rows=10&indent=on.

The form (whether the basic one or the Full Interface one) simply constructs a
URL with appropriate parameters, and your browser sees the XML results. It is
convenient to use the form at first, but then subsequently make direct modifications
to the URL in the browser instead of returning to the form. The form only controls a
basic subset of all possible parameters. The main benefit to the form is that it applies
the URL escaping for special characters in the query, and for some basic options, you
needn't remember what the parameter names are.

Solr's search results from its web interface are in XML. As suggested earlier, you'll
probably find that using the Firefox web browser provides the best experience due to
the syntax coloring. Internet Explorer displays XML content well too. If you, at some
point, want Solr to return a web page to your liking or an alternative XML structure,
then that will be covered later. Here is the XML response with my comments:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="indent">on</str>
 <str name="rows">10</str>
 <str name="start">0</str>
 <str name="q">monitor</str>
 <str name="version">2.2</str>
 </lst>
</lst>

Chapter 1

[23]

The first section of the response, which precedes the <result> tag that is about to
follow, indicates how long the query took (measured in milliseconds), as well as
listing the parameters that define the query. Solr has some sophisticated caching, and
you will find that your queries will often complete in a millisecond or less, if you've
run the query before. In the params list, q is clearly your query. rows and start have
to do with paging. Clearly you wouldn't want Solr to always return all of the results
at once, unless you really knew what you were doing. indent indents the XML
output, which is convenient for experimentation. version isn't used much, but if you
start building clients that interact with Solr, then you'll want to specify the version
to reduce the possibility of things breaking, if you were to upgrade Solr. These
parameters in the output are convenient for experimentation but can be configured
to be omitted. Next up is the most important part, the results.

<result name="response" numFound="2" start="0">

The numFound number is self explanatory. start is the index into the query results
that are returned in the XML. Often, you'll want to see the score of the documents.
However, the very basic query performed from the front Solr page doesn't include
the score, despite the fact that it's sorted by it (Solr's default). The full interface form
includes the score by default. Queries that include the score will include a maxScore
attribute in the result tag. The maxScore for the query is independent of any paging,
so that no matter which part of the result set you've paged into (by using the start
parameter), the maxScore will be the same. The content of the result tag is a list of
documents that matched the query in a score sorted order. Later, we'll do some
sorting by specified fields.

<doc>
 <arr name="cat"><str>electronics</str><str>monitor</str></arr>
 <arr name="features"><str>30" TFT active matrix LCD, 2560 x 1600,
 .25mm dot pitch, 700:1 contrast</str></arr>
 <str name="id">3007WFP</str>
 <bool name="inStock">true</bool>
 <str name="includes">USB cable</str>
 <str name="manu">Dell, Inc.</str>
 <str name="name">Dell Widescreen UltraSharp 3007WFP</str>
 <int name="popularity">6</int>
 <float name="price">2199.0</float>
 <str name="sku">3007WFP</str>
 <arr name="spell"><str>Dell Widescreen UltraSharp 3007WFP</str>
 </arr>
 <date name="timestamp">2008-08-09T03:56:41.487Z</date>
 <float name="weight">401.6</float>
</doc>
<doc>
...
</doc>
</result>
</response>

Quick Starting Solr

[24]

The document list is pretty straightforward. By default, Solr will list all of the stored
fields, plus the score if you asked for it (we didn't in this case). Remember that not all
of the fields are necessarily stored (that is, you can query on them but not store them
for retrieval—an optimization choice). Notice that basic data types str, bool, date,
int, and float are used. Also note that certain fields are multi-valued, as indicated
by an arr tag.

This was a basic query. As you start adding more query options like faceting,
highlighting, and so on, you will see additional XML following the result tag.

Some statistics
Let's take a look at the statistics page: http://localhost:8983/solr/admin/
stats.jsp. Before we loaded data into Solr, this page reported that numDocs was
0, but now it should be 26. If you're wondering what maxDocs is and the difference,
maxDocs reports a number that is in some situations higher due to documents that
have been deleted but not yet committed. That can happen either due to an explicit
delete posted to Solr or by adding a document that replaces another in order to
enforce a unique primary key. While you're at this page, notice that the query
handler named /update has some stats too:

name /update
class org.apache.solr.handler.XmlUpdateRequestHandler
version $Revision: 679936 $
description Add documents with XML
stats handlerStart: 1218253728453

requests: 19
errors: 4
timeouts: 0
totalTime: 1392
avgTimePerRequest: 73.26316
avgRequestsPerSecond: 2.850955E-4

In my case, as seen above, there are some errors reported because I was fooling
around, posting all of the files in the exampledocs directory, not just the XML ones.
Another Solr handler name you'll want to examine is standard, which has been
processing our queries.

These statistics are as up-to-date as Solr is running, they are not
stored to disk. As such, you cannot use them for long-term statistics.

Chapter 1

[25]

The schema and configuration files
Solr's configuration files are extremely well documented. We're not going to go over
the details here but this should give you a sense of what is where.

The schema (defined in schema.xml) contains field type definitions (defined within
the <types> tag) and lists the fields that make up your schema (within the <fields>
tag), which references a type. The schema contains other information too such as
the primary key (the field that uniquely identifies each document—a constraint that
Solr enforces) and the default search field. The sample schema in Solr uses the field
named text, confusingly, there is a field type named text too. But remember that
the monitor.xml document we reviewed earlier had no field named text, right?
It is common for the schema to call out for certain fields to be copied to other
fields—particularly fields not in input documents. So, even though the input
documents don't have a field named text, there are <copyField> tags in the
schema, which call for the fields named cat, name, manu, features, and includes
to be copied to text. This is a popular technique to speed up queries, so that queries
can search over a small number of fields rather than a long list of them. Such fields
used this way are rarely stored, as they are just needed for querying and so are
indexed. There is a lot more we could talk about in the schema, but we're going to
move on for now.

Solr's solrconfig.xml file contains lots of parameters that can be tweaked. At the
moment, we're just going to take a peak at the request handlers that are defined with
<requestHandler> tags. They make up about half of the file. In our first query, we
didn't specify any request handler, so we got the default one. It's defined here:

<requestHandler name="standard" class="solr.SearchHandler"
 default="true">
<!-- default values for query parameters -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <!--
 <int name="rows">10</int>
 <str name="fl">*</str>
 <str name="version">2.1</str>
 -->
 </lst>
</requestHandler>

Quick Starting Solr

[26]

When you POST commands to Solr (such as to index a document) or query Solr
(HTTP GET), it goes through a particular request handler. Handlers can be registered
against certain URL paths. When we uploaded the documents earlier, it went to the
handler defined like this:

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler" />

The request handlers oriented to querying using the class solr.SearchHandler are
much more interesting.

The important thing to realize about using a request handler is that they
are nearly completely configurable through URL parameters or POST'ed
form parameters. They can also be specified in solrconfig.xml within
either default, appends, or invariants named lst blocks, which
serve to establish defaults. More on this is in Chapter 4. This arrangement
allows you to set up a request handler for a particular application that
will be querying Solr without forcing the application to specify all of its
query options.

The standard request handler defined previously doesn't really define any defaults
other than the parameters that are to be echoed in the response. Remember its
presence at the top of the XML output? By changing explicit to none you can have
it omitted, or use all and you'll potentially see more parameters, if other defaults
happened to be configured in the request handler. This parameter can alternatively
be specified in the URL through echoParams=none. Remember to separate URL
parameters with ampersands.

Solr resources outside this book
The following are some prominent Solr resources that you should be aware of:

Solr's Wiki: http://wiki.apache.org/solr/ has a lot of great
documentation and miscellaneous information. For a Wiki, it's fairly
organized too. In particular, if you are going to use a particular app-server
in production, then there is probably a Wiki page there on specific details.
Within the Solr installation, you will also find that there are README.txt
files in many directories within Solr and that the configuration files are very
well documented.
Solr's mailing lists contain a wealth of information. If you have a few
discriminating keywords then you can find nuggets of information in there
with a search engine. The mailing lists of Solr and other Lucene sub-projects
are best searched at: http://www.lucidimagination.com/search/ or
Nabble.com.

•

•

•

Chapter 1

[27]

It is highly recommended to subscribe to the Solr-users
mailing list. You'll learn a lot and potentially help
others too.

Solr's issue tracker, a JIRA installation at http://issues.apache.org/
jira/browse/SOLR contains information on enhancements and bugs. Some
of the comments for these issues can be extensive and enlightening. JIRA also
uses a Lucene-powered search.

Notation convention: Solr's JIRA issues are referenced
like this: SOLR-64. You'll see such references in this book
and elsewhere. You can easily look these up at Solr's
JIRA. You may also see issues for Lucene that follow the
same convention, for example, LUCENE-1215.

Summary
This completes a quick introduction to Solr. In the ensuing chapters, you're really
going to get familiar with what Solr has to offer. I recommend you proceed in
order from the next chapter through Chapter 6, because these build on each other
and expose nearly all of the capabilities in Solr. These chapters are also useful
as a reference to Solr's features. You can of course skip over sections that are not
interesting to you. Chapter 8, is one you might peruse at any time, as it may have
a section particularly applicable to your Solr usage scenario.

Accompanying the book at PACKT's web site is both source code and data to be
indexed by Solr. In order to try out the same examples used in the book, you will
have to download it and run the provided ant task, which prepares it for you. This
first chapter is the only one that is not based on that supplemental content.

•

Schema and Text Analysis
The foundation of Solr is based on Lucene's index—the subject of this chapter. You
will learn about:

Schema design decisions in which you map your source data to Lucene's
limited structure. In this book we'll consider the data from MusicBrainz.org.
The structure of the schema.xml file wherein the schema definition is
defined. Within this file are both the definition of field types and the fields of
those types that store your data.
Text analysis—the configuration of how text is processed (tokenized and so
on) for indexing. This configuration affects whether or not a particular search
is going to match a particular document.

Observe the following diagram:

INPUT
•XML (Solr)
•CSV
•Rich Documents
•DataImportHandler:
•Databases
•XML

•Queries
•Faceting
•Highlighting:
•Spellcheck
•Formatting

OUTPUT

THE INDEX
•Schema
•Field Types
•Text Analysis

The next chapter will cover importing data into Solr. The later chapters cover all of
the ways in which the data can be queried.

•

•

•

Schema and Text Analysis

[30]

MusicBrainz.org
Instead of continuing to work with the sample data that comes along with Solr, we're
going to use a large database of music metadata from the MusicBrainz project at
http://musicbrainz.org. The data is free and is submitted by a large community
of users. MusicBrainz offers nightly snapshots of this data in an SQL file that can
be imported into a PostgreSQL database. There are instructions on the MusicBrainz
web site on how to do this. Unfortunately, it requires some non-trivial setup and
additional software. In order to make it easier for you to play with this data, this book
comes with pre-queried data in formats that can readily be imported into Solr. See
the files accompanying this book for instructions on how to load it. Alternatively, I
recommend that you work with your data, using this book as a guide..

I chose the MusicBrainz data set because it has a lot of data, is freely
available, and has an innovative approach to collaborative data collection.
The MusicBrainz web site enforces a democratic process in which the
community presides over proposed data additions and changes. This is
in contrast to Wikipedia in which anyone can make an immediate change
without it being approved by anyone else.

The MusicBrainz.org database is highly relational. Therefore, it will serve as an
excellent instructional data set to discuss Solr schema choices. The MusicBrainz
schema is actually quite a complex beast, and it would be a distraction to go over
even half of it (not that I could do it). Instead, I'm going to use a subset of it and
express it in a way that has a more straightforward mapping than the user interface
seen on the web site. Each of these tables depicted below can be easily constructed
through SQL sub-queries or views from the actual MusicBrainz tables.

Artist Track

Release
(album,

albummeta)

Release-Event
(release)

(country)

(albumjoin)

(language)

Chapter 2

[31]

I'll be using some examples here from my favorite band, the Smashing Pumpkins.
This is an artist with a type of "group" (a band). Some artists (groups in particular)
have members who are also other artists of type "person". So this is a self-referential
relationship. The Smashing Pumpkins has Billy Corgan, Jimmy Chamberline, and
others as members. An artist is attributed as the creator of a release. The most
common type of release is an "album" but there are also singles, EPs, compilations,
and others. Furthermore, releases have a "status" property that is either official,
promotional, or bootleg. Associated with a release is some number of "events". The
terminology is confusing, and perhaps a better word is "distribution" (which is
admittedly still vague). Each event contains the date, country, music label, format
(CD or tape), and some other uninteresting details that the release was distributed
as. A popular official album from this band is titled "Siamese Dream". A release is
composed of one or more tracks. Siamese Dream has 13 tracks starting with "Cherub
Rock" and ending with "Luna". Note that a track is part of just one release and so it
is not synonymous with a song. For example, the song "Cherub Rock" is not only a
track on this release but also on a "Greatest Hits" release, as well as quite a few others
in the database. MusicBrainz doesn't really have the notion of a song. However,
one can make reasonable assumptions based on the track's name being unique, at
least among those produced by the same artist. Additionally, there is a track's PUID
(PRONOM Unique Identifier), an audio fingerprinting technology quasi-identifier
based on the actual sound on a track. It's not foolproof as there are collisions, but
they are rare. Another interesting bit of data MusicBrainz stores is the PUID "lookup
count", which is how often it has been requested by their servers—a decent measure
of popularity.

MusicBrainz uses the proprietary "MusicDNS" audio fingerprinting
technology, which was donated to the project by MusicIP. It is not
open source.

One combined index or multiple indices
As mentioned in the first chapter, technically, an index is basically like a
single-table database schema. Imagine a massive spreadsheet, if you will. Inspite
of this limitation, there is nothing to stop you from putting different types of data
(say, artists and tracks from MusicBrainz) into a single index, thereby, in effect
mitigating this limitation. All you have to do is use different fields for the different
document types, and use a field to discriminate between the types. An identifier field
would need to be unique across all documents in this index, no matter the type, so
you could easily do this by concatenating the field type and the entity's identifier.
This may appear really ugly from a relational database design standpoint, but
this isn't a database. More importantly, unlike a database, there is no overhead

Schema and Text Analysis

[32]

whatsoever for a document to have no data in a field. On the other hand, databases
usually set aside space for data in a row whether it is filled or not. This is where
the spreadsheet metaphor can break down, because a blank cell in a spreadsheet
takes up space, but not in an index. Here's a sample schema.xml snippet of a single
combined index approach:

<field name="id" ... /> <!-- example: "artist:534445" -->
<field name="type" ... /> <!-- example: "artist", "track", "release",
... -->
<field name="name" ... /> <!-- common to various types -->
<!-- track fields: -->
<field name="PUID" ... />
<field name="num" ... /> <!-- i.e. the track # on the release -->
<!-- ... -->
<!-- artist fields: -->
<field name="startDate" ... /> <!-- date of first release -->
<field name="endDate" ... /> <!-- date of last release -->
<field name="homeCountry" ... />
<!-- etc. -->

One combined index is often easier to use when compared to using a different index
for each entity type. It's just one configuration to manage. A key deciding factor is if
you need to query across them—an easy task with one index. Solr can search across
multiple indices (a so-called "distributed search") too, however, it is a relatively new
capability that has limitations.

"Distributed search" is mainly used for scaling a large index by breaking it
up. See Chapter 9 for more information. However, large or not, it can also
be used to search across heterogeneous indices.

The approaches can be mixed and matched for different entities if that suits you.

Before complicating your schema index strategy with more than one
index, start with one index. If some of the issues (mentioned next) apply
to you, then expand to multiple indices. In the example configuration
using MusicBrainz, each entity type gets its own index, though one
schema is used to ease configuration.

Chapter 2

[33]

Problems with using a single combined index
Some problems that you may face while using a single combined index are
as follows:

There may be namespace collision problems unless you prefix the field
names by type such as: artist_startDate and track_PUID. In the
example that we just saw, most entity types have a name. Therefore, it's
straightforward for all of them to have this common field. If the type of the
fields were different, then you would be forced to name them differently.
If you share the same field for different things (like the name field in the
example that we have just seen), then there are some problems that can occur
when using that field in a query and while filtering documents by document
type. These caveats do not apply when searching across all documents.

You will get scores that are of lesser quality. The explanation
for this is a little complicated, and you may need to read up
on Lucene scoring to understand it better. One component of a
score is the IDF (Inverse Document Frequency) of a term in
the search. In other words, documents matching rare words
get scored higher. IDF is based on all of the field values in the
index (no matter what type of document it is). For example,
if you put different types of things into the same field, then
what could be a rare word for a track name might not be
for an artist name. Therefore, searching for only tracks or
only artists would not make use of good IDF factors when
computing the score.
Prefix, wildcard, and fuzzy queries will take longer and will
be more likely to reach internal scalability thresholds. These
query types require scanning for all of the indexed terms
used in a field to see if they match the queried term. If you
share a field with different types of documents, then the total
number of terms to search over is going to be larger, which
takes longer to scan over. It will also match more terms than
it would otherwise, while possibly generating a query that
exceeds the maxBooleanClauses threshold (configurable in
solrconfig.xml).

With or without sharing field names, the IDF component of the score
calculation is diluted, because the ratio is based on the total number of
documents indexed, not just those of the type being queried.

•

•

°

°

•

Schema and Text Analysis

[34]

If you do not share field names and instead prefix the field names with a
short type identifier like track_name instead of just name, then you may find
it inconvenient or awkward, if the users are exposed to this.
For a large number of documents, a strategy using multiple indices will
prove to be more scalable. Only testing will indicate what "large" is for your
data and your queries, but less than a million documents will not likely
benefit from multiple indices. Ten million documents have been suggested
as a reasonable maximum number for a single index. There are seven million
tracks in MusicBrainz, so we'll definitely have to put tracks in its own index.
Committing changes to a Solr index invalidates the caches used to speed
up querying. If this happens often, and the changes are usually to one type
of entity in the index, then you will get better query performance by using
separate indices.

We've chosen to highlight four main entities in MusicBrainz: Artists,
Releases, Tracks, and Labels. The web interface offers a search against
the names of each of these entities.

Schema design
A key thing to come to grips with is that a Solr schema strategy is driven by how
it is queried and not by a standard third normal form decomposition of the data.
This isn't to say that all databases are pure third normal form and that they aren't
influenced by queries. But in an index, the queries you need to support completely
drive the schema design. This is necessary, as you can't perform relational queries
on an index. Consequently all the data needed to match a document must be in the
document matched. To satisfy that requirement, data that would otherwise exist in
one place (like an artist's name in MusicBrainz, for example) is inlined into related
entities that need it to support a search. This may feel dirty but I'll just say "get over
it". Besides your data's gold source most likely is not in Solr.

Even if you're not working with a database as your source data, these
concepts still apply. So pay close attention to this important subject in
any case.

•

•

•

Chapter 2

[35]

Step 1: Determine which searches are going
to be powered by Solr
Any text search capability is going to be Solr powered. At the risk of stating the
obvious, I'm referring strictly to those places where a user types in a bit of text and
subsequently gets some search results. On the MusicBrainz web site, the main search
function is accessed through the form that is always present on the left. There is also
a more advanced form that adds a few options but is essentially the same capability,
and I treat it as such from Solr's point of view. We can see the MusicBrainz search
form in the next screenshot:

Once we look through the remaining steps, we may find that Solr should
additionally power some faceted navigation in areas that are not accompanied by a
text search (that is the facets are of the entire data set, not necessarily limited to the
search results of a text query alongside it). An example of this at MusicBrainz is the
"Top Voters" tally, which I'll address soon.

Step 2: Determine the entities returned from
each search
For the MusicBrainz search form, this is easy. The entities are: Artists, Releases,
Tracks, Labels, and Editors. It just so happens that in MusicBrainz, a search will only
return one entity type. However, that needn't be the case. Note that internally, each
result from a search corresponds to a distinct document in the Solr index and so each
entity will have a corresponding document. This entity also probably corresponds to
a particular row in a database table, assuming that's where it's coming from.

Schema and Text Analysis

[36]

Step 3: Denormalize related data
For each entity type, find all of the data in the schema that will be needed across all
searches of it. By "all searches of it," I mean that there might actually be multiple
search forms, as identified in Step 1. Such data includes any data queried for (that
is, criteria to determine whether a document matches or not) and any data that is
displayed in the search results. The end result of denormalization is to have each
document sufficiently self-contained, even if the data is duplicated across the index.
Again, this is because Solr does not support relational joins. Let's see an example.
Consider a search for tracks matching Cherub Rock:

Denormalizing—"one-to-one" associated data
The track's name and duration are definitely in the track table, but the artist and
album names are each in their own tables in the MusicBrainz schema. This is a
relatively simple case, because each track has no more than one artist or album.
Both the artist name and album name would get their own field in Solr's flat schema
for a track. They also happen to be elsewhere in our Solr schema, because artists
and albums were identified in Step 2. Since the artist and album names are not
unambiguous references, it is useful to also add the IDs for these tables into the
track schema to support linking in the user interface, among other things.

Denormalizing—"one-to-many" associated data
One-to-many associations can be easy to handle in the simple case of a field requiring
multiple values. Unfortunately, databases make this harder than it should be if it's
just a simple list. However, Solr's schema directly supports the notion of multiple
values. Remember in the MusicBrainz schema that an artist can have some number
of other artists as members. Although MusicBrainz's current search capability
doesn't leverage this, we'll capture it anyway because it is useful for more interesting
searches. The Solr schema to store this would simply have a member name field that
is multi-valued (the syntax will come later). The member_id field alone would be
insufficient, because denormalization requires that the member's name be inlined
into the artist. This example is a good segue to how things can get a little more

Chapter 2

[37]

complicated. If we only record the name, then it is problematic to do things like have
links in the UI from a band member to that member's detail page. This is because
we don't have that member's artist ID, only their name. This means that we'll need
to have an additional multi-valued field for the member's ID. Multi-valued fields
maintain ordering so that the two fields would have corresponding values at a given
index. Beware, there can be a tricky case when one of the values can be blank, and
you need to come up with a placeholder. The client code would have to know about
this placeholder.

What you should not do is try to shove different types of data into the
same field by putting both the artist IDs and names into one field. It could
introduce text analysis problems, as a field would have to satisfy both
types, and it would require the client to parse out the pieces. The exception
to this is when you are not indexing the data and if you are merely storing
it for display then you can store whatever you want in a field.

What about the track count of the corresponding album for this track? We'll use the
same approach that MusicBrainz' relational schema does—inline this total into the
album information, instead of computing it on the fly. Such an "on the fly" approach
with a relational schema would involve relating in a tracks table and doing an SQL
group by with a count. In Solr, the only way to compute this on the fly would be by
submitting a second query, searching for tracks with album IDs of the first query, and
then faceting on the album ID to get the totals. Faceting is discussed in Chapter 4.

Note that denormalizing in this way may work most of the time, but
there are limitations in the way you query for things, which may lead
you to take further steps. Here's an example. Remember that releases
have multiple "events" (see my description earlier of the schema using
the Smashing Pumpkins as an example). It is impossible to query Solr
for releases that have an event in the UK that were over a year ago. The
issue is that the criteria for this hypothetical search involves multi-valued
fields, where the index of one matching criteria needs to correspond
to the same value in another multi-valued field in the same index. You
can't do that. But let's say that this crazy search example was important
to your application, and you had to support it somehow. In that case,
there is exactly one release for each event, and a query matching an event
shouldn't match any other events for that release. So you could make
event documents in the index, and then searching the events would yield
the releases that interest you. This scenario had a somewhat easy way
out. However, there is no general step-by-step guide. There are scenarios
that will have no solution, and you may have to compromise. Frankly,
Solr (like most technologies) has its limitations. Solr is not a general
replacement for relational databases.

Schema and Text Analysis

[38]

Step 4: (Optional) Omit the inclusion of fields
only used in search results
It's not likely that you will actually do this, but it's important to understand the
concept. If there is any data shown on the search results that is not queryable, not
sorted upon, not faceted on, nor are you using the highlighter feature for, and for
that matter are not using any Solr feature that uses the field except to simply return
it in search results, then it is not necessary to include it in the schema for this entity.
Let's say, for the sake of the argument, that the only information queryable, sortable,
and so on is a track's name, when doing a query for tracks. You can opt not to inline
the artist name, for example, into the track entity. When your application queries Solr
for tracks and needs to render search results with the artist's name, the onus would
be on your application to get this data from somewhere—it won't be in the search
results from Solr. The application might look these up in a database or perhaps even
query Solr in its own artist entity if it's there or somewhere else.

This clearly makes generating a search results screen more difficult, because you
now have to get the data from more than one place. Moreover, to do it efficiently,
you would need to take care to query the needed data in bulk, instead of each row
individually. Additionally, it would be wise to consider a caching strategy to reduce
the queries to the other data source. It will, in all likelihood, slow down the total render
time too. However, the benefit is that you needn't get the data and store it into the
index at indexing time. It might be a lot of data, which would grow your index, or it
might be data that changes often, necessitating frequent index updates.

If you are using distributed search (discussed in Chapter 9), there is some
performance gain in not sending too much data around in the requests. Let's say
that you have the lyrics to the song, it is distributed on 20 machines, and you get 100
results. This could result in 2000 records being sent around the network. Just sending
the IDs around would be much more network efficient, but then this leaves you with
the job of collecting the data elsewhere before display. The only way to know if this
works for you is to test both scenarios. However, I have found that even with the
very little overhead in HTTP transactions, if the record is not too large then it is best
to send the 2000 records around the network, rather than make a second request.

Why not power all data with Solr?

It would be an interesting educational exercise to do so, but it's not a good idea to
do so in practice (presuming your data is in a database too). Remember the "lookup
versus search" point made earlier. Take for example the Top Voters section. The
account names listed are actually editors in MusicBrainz terminology. This piece of
the screen tallies an edit, grouped by the editor that performed the edit. It's the edit
that is the entity in this case. The following screenshot is that of the Top Voters
(aka editors), which is tallied by the number of edits:

Chapter 2

[39]

This data simply doesn't belong in an index, because there's no use case for searching
edits, only lookup when we want to see the edits on some other entity like an artist. If
you insisted on having the voter's tally (seen above) powered by Solr, then you'd have
to put all this data (of which there is a lot!) into an index, just because you wanted a
simple statistical list of top voters. It's just not worth it! One objective guide to help
you decide on whether to put an entity in Solr or not is to ask yourself if users will
ever be doing a text search on that entity—a feature where index technology stands
out from databases. If not, then you probably don't want the entity in your Solr index.

The schema.xml file
Let's get down to business and actually define our Solr schema for MusicBrainz.

We're going to define one index to store artists, releases (example
albums), and labels. The tracks will get their own index, leveraging the
SolrCore feature. This is because they are separate indices, and they
don't necessarily require the same schema file. However, we'll use one
because it's convenient. There's no harm in a schema defining fields
which don't get used.

Before we continue, find a schema.xml file to follow along. This file belongs in the
conf directory in a Solr home directory. In the example code distributed with the book,
available online, I suggest looking at cores/mbtracks/conf/schema.xml. If you are
working off of the Solr distribution, you’ll find it in example/solr/conf/schema.xml.
The example schema.xml is loaded with useful field types, documentation, and field
definitions used for the sample data that comes with Solr. I prefer to begin a Solr index
by copying the example Solr home directory and modifying it as needed, but some
prefer to start with nothing. It's up to you.

At the start of the file is the schema opening tag:

<schema name="musicbrainz" version="1.1">

Schema and Text Analysis

[40]

We've set the name of this schema to musicbrainz, the name of our application.
If we use different schema files, then we should name them differently to
differentiate them.

Field types
The first section of the schema is the definition of the field types. In other words,
these are the data types. This section is enclosed in the <types/> tag and will
consume lots of the file's content. The field types declare the types of fields, such as
booleans, numbers, dates, and various text flavors. They are referenced later by the
field definitions under the <fields/> tag. Here is the field type for a boolean:

<fieldType name="boolean" class="solr.BoolField"
 sortMissingLast="true" omitNorms="true"/>

A field type has a unique name and is implemented by a Java class specified by the
class attribute.

Abbreviated Java class names
A fully qualified classname in Java looks like org.apache.solr.
schema.BoolField. The last piece is the simple name of the class,
and the part preceding it is called the package name. In order to make
configuration files in Solr more concise, the package name can be
abbreviated to just solr for most of Solr's built-in classes. Nearly all of
the other XML attributes in a field type declaration are options, usually
boolean, that are applied to the field that uses this type by default.
However, a few are not overridable by the field. They are not specific
to the field type and/or its class. For example, sortMissingLast and
omitNorms, as seen above, are not BoolField specific configuration
options, they are applicable to every field. Aside from the field options,
there is the text analysis configuration that is only applicable to text fields.
That will be covered later.

Field options
The options of a field specified using XML attributes are defined as follows:

These options are assumed to be boolean (true/false) unless indicated,
otherwise indexed and stored default to true, but the rest default to
false. These options are sometimes specified at the field type definition,
which is inherited sometimes at the field definition. The indented options
defined below, underneath indexed (and stored) imply indexed
(stored) must be true.

Chapter 2

[41]

indexed: Indicates that this data should be searchable or sortable. If it is
not indexed, then stored should be true. Usually fields are indexed, but
sometimes if they are not, then they are included only in search results.

sortMissingLast, sortMissingFirst: Sorting on a field
with one of these set to true indicates on which side of the
search results to put documents that have no data for the
specified field, regardless of the sort direction. The default
behavior for such documents is to appear first for ascending
and last for descending.
omitNorms: (advanced) Basically, if the length of a field does
not affect your scores for the field, and you aren't doing index-
time document boosting, then enable this. Some memory will
be saved. For typical general text fields, you should not set
omitNorms. Enable it if you aren't scoring on a field, or if the
length of the field would be irrelevant if you did so.
termVectors: (advanced) This will tell Lucene to store
information that is used in a few cases to improve
performance. If a field is to be used by the MoreLikeThis
feature, or if you are using it and it's a large field for
highlighting, then enable this.

stored: Indicates that the field is eligible for inclusion in search results. If it
is not stored, then indexed should be true. Usually fields are stored, but
sometimes the special fields that hold copies of other fields are not stored.
This is because they need to be analyzed differently, or they hold multiple
field values so that searches can search only one field instead of many to
improve performance and reduce query complexity.

compressed: You may want to reduce the storage size at
the expense of slowing down indexing and searching by
compressing the field's data. Only the fields with a class of
StrField or TextField are compressible. This is usually only
suitable for fields that have over 200 characters, but it is up to
you. You can set this threshold with the compressThreshold
option in the field type, not the field definition.

multiValued: Enable this if a field can contain more than one value. Order is
maintained from that supplied at index-time.

This is internally implemented by separating each
value with a configurable amount of whitespace—the
positionIncrementGap.

•

°

°

°

•

°

•

Schema and Text Analysis

[42]

positionIncrementGap: (advanced) For a multiValued field, this is the
number of (virtual) spaces between each value to prevent inadvertent
querying across field values. For example, A and B are given as two values
for a field, which prevents A and B from matching.

Field definitions
The definitions of the fields in the schema are located within the <fields/> tag. In
addition to the field options defined above, a field has these attributes:

name: Uniquely identifies the field.
type: A reference to one of the field types defined earlier in the schema.
default: (optional) The default value, if an input document doesn't specify
it. This is commonly used on schemas that record the time of indexing a
document by specifying NOW on a date field.
required: (optional) Set this to true if you want Solr to fail to index a
document that does not have a value for this field.

The default precision of dates is to the millisecond. You can improve the
date query performance and reduce the index size by rounding to a lesser
precision such as NOW/SECOND. Date/time syntax is discussed later.

Solr comes with a predefined schema used by the sample data. Delete the field
definitions as they are not applicable, but leave the field types at the top. Here's a
first cut of our MusicBrainz schema definition. You can see the definition of the name,
type, indexed, and stored attributes in a few pages under the Field options heading.
Note that some of these types aren't in Solr's default type definitions, but we'll define
them soon enough.

In the following code, notice that I chose to prefix the various
document types (a_, r_, l_), because I'd rather not overload the
use of any field across entity types (as explained previously). I also
use this abbreviation when I'm inlining relationships like in
r_a_name (a release's artist's name).

<!-- COMMON TO ALL TYPES: -->
<field name="id" type="string" required="true" />
 <!-- Artist:11650 -->
<field name="type" type="string" required="true" />
 <!-- Artist | Release | Label -->

<!-- ARTIST: -->
<field name="a_name" type="title" /><!-- The Smashing Pumpkins -->

•

•

•

•

•

Chapter 2

[43]

<field name="a_name_sort" type="string" stored="false" />
 <!-- Smashing Pumpkins, The -->
<field name="a_type" type="string" /><!-- group | person -->
<field name="a_begin_date" type="date" />
<field name="a_end_date" type="date" />
<field name="a_member_name" type="title" multiValued="true" />
 <!-- Billy Corgan -->
<field name="a_member_id" type="title" multiValued="true" />
 <!-- 102693 -->

<!-- RELEASE -->
<field name="r_name" type="title" /><!-- Siamese Dream -->
<field name="r_name_sort" type="title_sort" /><!-- Siamese Dream -->
<field name="r_a_name" type="title" /><!-- The Smashing Pumpkins -->
<field name="r_a_id" type="string" /><!-- 11650 -->
<field name="r_type" type="string" />
 <!-- Album | Single | EP |... etc. -->
<field name="r_status" type="string" />
 <!-- Official | Bootleg | Promotional -->
<field name="r_lang" type="string" indexed="false" /><!-- eng /
 latn -->
<field name="r_tracks" type="integer" indexed="false" />
<field name="r_event_country" type="string" multiValued="true" />
 <!-- us -->
<field name="r_event_date" type="date" multiValued="true" />

<!-- LABEL -->
<field name="l_name" type="title" /><!-- Virgin Records America -->
<field name="l_name_sort" type="string" stored="false" />
<field name="l_type" type="string" />
 <!-- Distributor, Orig. Prod., Production -->
<field name="l_begin_date" type="date" />
<field name="l_end_date" type="date" />

<!-- TRACK -->
<field name="t_name" type="title" /><!-- Cherub Rock -->
<field name="t_num" type="integer" indexed="false" /><!-- 1 -->
<field name="t_duration" type="integer" indexed="false"/>
 <!-- 298133 -->
<field name="t_a_name" type="title" /><!-- The Smashing Pumpkins -->
<field name="t_r_type" type="string" />
 <!-- album | single | compilation -->
<field name="t_r_name" type="title" /><!-- Siamese Dream -->
<field name="t_r_tracks" type="integer" indexed="false" /><!-- 13 -->

Put some sample data in your schema comments.
You'll find the sample data helpful and anyone else working on your
project will thank you for it. In the examples above, I sometimes use
actual values and on other occasions I list several possible values
separated by |, if there is a predefined list.

Schema and Text Analysis

[44]

Although it is not required, you should define a unique ID field. A unique ID
allows specific documents to be updated or deleted, and it enables various other
miscellaneous Solr features. If your source data does not have an ID field that you
can propagate, Solr can generate one by simply having a field with a field type and
with a class of solr.UUIDField. At a later point in the schema, we'll tell Solr which
field is our unique field. In our schema, the ID includes the type so that it's unique
across the whole index. Also, note that the only fields that we can mark as required
are those common to all, which are ID and type, because we're doing a combined
index approach. This isn't a big deal though.

One thing I want to point out is that in our schema we're choosing to index most of
the fields, even though MusicBrainz's search doesn't require more than the name of
each entity type. We're doing this so that we can make the schema more interesting
to demonstrate more of Solr's capabilities. As it turns out, some of the other
information in MusicBrainz's query results actually are queryable if one uses the
advanced form, checks use advanced query syntax, and your query uses those fields
(example: artist: "Smashing Pumpkins").

At the time of writing this, MusicBrainz used Lucene for
its text search and so it uses Lucene's query syntax.
http://wiki.musicbrainz.org/TextSearchSyntax.
You'll learn more about the syntax in another chapter.

Sorting
Usually, search results are sorted by their score (how well the document matched
the query), but it is common to need to support the sorting of supplied data too. It
just happens that MusicBrainz already supplies alternative artist and label names
for sorting, which is perhaps unusual, but it makes little difference to us. When
different from the original name, these sortable versions move words like "The" from
the beginning to the end after a comma. The MB search results actually displays this
sort-specific field, which I think is very unusual. Hence, we're not going to do that
(not that it really matters). Ironically, the search results page doesn't let you use it for
sorting either (though I'm sure it's used elsewhere), but we're going to support that.
Therefore, we've marked the sort names as not stored but indexed, instead of the
other way around. Remember that indexed and stored are true by default.

Sorting limitations: A field needs to be indexed, not be multi-valued,
and it should not have multiple tokens (either there is no text analysis or
it yields just one token).

Chapter 2

[45]

Because of the special text analysis restrictions of fields used for sorting, text fields
in your schema that need to be sortable will usually be copied into another field
and analyzed differently (more on text analysis is explained later). The copyField
directive in the schema facilitates this task. For non-text fields, this tends not to
be an issue, but pay attention to the predefined types in Solr's schema and choose
appropriately. Some are explicitly for sorting purposes and are documented as
such. The string type is a type that has no text analysis and so it's perfect for our
MusicBrainz case. As we're getting a sort-specific value from MB, we don't need to
derive something ourselves. However, note that in the MusicBrainz schema there are
no sort-specific release names. We could opt to not support sorting by release name,
but we're going to anyway. One option is to use the string type again. That's fine,
but you may want to lowercase the text, remove punctuation, and collapse multiple
spaces into one (if the data isn't clean). It's up to you. For the sake of variety, we'll be
taking the latter route, and we're using a type title_sort that does these kinds of
things, which is defined later.

By the way, Lucene sorts text by the internal Unicode code point. For most users,
this is just fine. Internalization sensitive users may want a locale specific option.
The latest development in this area is a patch to the latest Lucene in LUCENE-1435.
It can easily be exposed for use by Solr, if the reader has the need and some Java
programming experience.

Dynamic fields
The very notion of the feature about to be described, highlights the flexibility of
Lucene's index, as compared to typical database technology. Not only can you
explicitly name fields in the schema, but you can also have some defined on the fly
based on the name used. Solr's sample schema.xml file contains some examples of
this, such as:

<dynamicField name="*_dt" type="date" indexed="true" stored="true"/>

If at index-time a document contains a field that isn't matched by an explicit field
definition, but does have a name matching this pattern (that is, ends with _dt such as
updated_dt), then it gets processed according to that definition. This also applies to
searching the index. A dynamic field is declared just like a regular field in the same
section. However, the element is named dynamicField, and it has a name attribute
that must start or end with an asterisk (the wildcard). If the name is just *, then it is
the final fallback.

Schema and Text Analysis

[46]

Using dynamic fields is most useful for the * fallback if you decide that
all fields attempted to be stored in the index should succeed, even if you
didn't know about the field when you designed the schema. It's also
useful if you decide that instead of it being an error, such unknown fields
should simply be ignored (that is, not indexed and not stored).

Using copyField
Closely related to the field definitions are copyField directives, which are specified
at some point after the fields element, not within it. A copyField directive looks
like this:

<copyField source="r_name" dest="r_name_sort" />

These are really quite simple. At index-time, each copyField is evaluated for
each input document. If there is a value for the field referenced by the source of
this directive in the input document (r_name in this case), then it is copied to the
destination field referenced (r_name_sort in this case). Perhaps appendField might
have been a more suitable name, because the copied value(s) will be in addition to
any existing values if present. If by any means a field contains more than one value,
be sure to declare it multi-valued since you will get an error at index-time if you
don't. Both fields must be defined, but they may be dynamic fields and so need not
be defined explicitly. You can also use a wildcard in the source such as * to copy
every field to another field. If there is a problem resolving a name, then Solr will
display an error when it starts up.

This directive is useful when a value needs to be stored in additional field(s) to
support different indexing purposes. Sorting is a common scenario since there
are some constraints on the field to sort on it, as well as for faceting. Another is a
common technique in indexing technologies in which many fields are copied to a
common field that is indexed without norms and not stored. This permits searches,
which would otherwise search many fields, to search one instead, thereby drastically
improving performance at the expense of reducing score quality. This technique is
usually complemented by searching some additional fields with higher boosts. The
dismax request handler, which is described in a later chapter, makes this easy.

Finally, note that copying data to additional fields necessitates, that indexing time
will be longer and the index's disk size will be greater. It is a consequence that
is unavoidable.

Chapter 2

[47]

Remaining schema.xml settings
Following the definition of the fields are some more configuration settings. As with
the other parts of the file, you should leave the helpful comments in place. For the
MusicBrainz schema, this is what remains:

<uniqueKey>id</uniqueKey>
<!-- <defaultSearchField>text</defaultSearchField>
<solrQueryParser defaultOperator="AND"/> -->
<copyField source="r_name" dest="r_name_sort" />

The uniqueKey is straightforward and is analogous to a database primary key.
This is optional, but it is likely that you have one. We have discussed the unique
IDs earlier.

The defaultSearchField declares the particular field that will be searched for
queries that don't explicitly reference one. And the solrQueryParser setting
allows one to specify the default search operator here in the schema. These are
essentially defaults for searches that are processed by Solr request handlers defined
in solrconfig.xml. I recommend you explicitly configure these there, instead of
relying on these defaults as they are search-related, especially the default search
operator. These settings are optional here, and I've commented them out.

Text analysis
Text analysis is a topic that covers tokenization, case normalization, stemming,
synonyms, and other miscellaneous text processing used to process raw input text
for a field, both at index-time and query-time. This is an advanced topic, so you may
want to stick with the existing analyzer configuration for the field types in Solr's
default schema. However, there will surely come a time when you are trying to
figure out why a simple query isn't matching a document that you think it should,
and it will quite often come down to your text analysis configuration.

This material is almost completely Lucene-centric and so also applies
to any other software built on top of Lucene. For the most part, Solr
merely offers XML configuration for the code in Lucene that provides
this capability. For information beyond what is covered here, including
writing your own analyzers, read the Lucene In Action book.

Schema and Text Analysis

[48]

The purpose of text analysis is to convert text for a particular field into a sequence
of terms. It is often thought of as an index-time activity, but that is not so. At
index-time, these terms are indexed (that is, recorded onto a disk for subsequent
querying) and at query-time, the analysis is performed on the input query and then
the resulting terms are searched for. A term is the fundamental unit that Lucene
actually stores and queries. If every user's query is always searched for the identical
text that was put into Solr, then there would be no text analysis needed other than
tokenizing on whitespace. But people don't always use the same capitalization, nor
the same identical words, nor do documents use the same text among each other
even if they are similar. Therefore, text analysis is essential.

Configuration
Solr has various field types as we've previously explained, and one such type
(perhaps the most important one) is solr.TextField. This is the field type that
has an analyzer configuration. Let's look at the configuration for the text field type
definition that comes with Solr:

<fieldType name="text" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <!-- in this example, we will only use synonyms at query time
 <filter class="solr.SynonymFilterFactory"
 synonyms="index_synonyms.txt" ignoreCase="true"
 expand="false"/>
 -->
 <!-- Case insensitive stop word removal.
 enablePositionIncrements=true ensures that a 'gap' is left to
 allow for accurate phrase queries.
 -->
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt" enablePositionIncrements="true" />
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="1" catenateNumbers="1" catenateAll="0"
 splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

Chapter 2

[49]

 <filter class="solr.SynonymFilterFactory"
 synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="0" catenateNumbers="0" catenateAll="0"
 splitOnCaseChange="1"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"
 protected="protwords.txt"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
</fieldType>

There are two analyzer chains, each of which specifies an ordered sequence of
processing steps that convert the original text into a sequence of terms. One is of
the index type, while the other is query type. As you might guess, this means the
contents of the index chain apply to index-time processing, whereas the query chain
applies to query-time processing. Note that the distinction is optional and so you can
opt to specify just one analyzer element that has no type, and it will apply to both.
When both are specified (as in the example above), they usually only differ a little.

Analyzers, Tokenizers, Filters, oh my!
The various components involved in text analysis go by various names,
even across Lucene and Solr. In some cases, their names are not intuitive.
Whatever they go by, they are all conceptually the same. They take in
text and spit out text, sometimes filtering, sometimes adding new terms,
sometimes modifying terms. I refer to the lot of them as analyzers. Also,
term, token, and word are often used interchangeably.

An analyzer chain can optionally begin with a CharFilterFactory, which is
not really an analyzer but something that operates at a character level to perform
manipulations. It was introduced in Solr 1.4 to perform tasks such as normalizing
characters like removing accents. For more information about this new feature,
search Solr's Wiki for it, and look for the example of it that comes with Solr's
sample schema.

Schema and Text Analysis

[50]

The first analyzer in a chain is always a tokenizer, which is a special type of analyzer
that tokenizes the original text, usually with a simple algorithm such as splitting
on whitespace. After this tokenizer is configured, the remaining analyzers are
configured with the filter element in sequence.(These analyzers don't necessarily
filter—it was a poor name choice). What's important to note about the configuration
is that an analyzer is either a tokenizer or a filter, not both. Moreover, the analysis
chain must have only one tokenizer, and it always comes first. There are a handful
of tokenizers available, and the rest are filters. Some filters actually perform a
tokenization action such as WordDelimeterFilterFactory. However, you are not
limited to do all tokenization at the first step.

Experimenting with text analysis
Before we dive into the details of particular analyzers, it's important to become
comfortable with Solr's analysis page, which is an experimentation and a
troubleshooting tool that is absolutely indispensable. You'll use this to try out
different analyzers to verify whether you get the desired effect, and you'll use this
when troubleshooting to find out why certain queries aren't matching certain text
you think they should. In Solr's admin pages, you'll see a link at the top that looks
like this:[ANALYSIS].

The first choice at the top of the page is required. You pick whether you want to
choose a field type based on the name of one, or if you want to indirectly choose it
based on the name of a field. Either way you get the same result, and it's a matter
of convenience. In this example, I'm choosing the text field type that has some
interesting text analysis. This tool is mainly for the text oriented field types, not
boolean, date, and numeric oriented types. You may get strange results if you
try those.

Chapter 2

[51]

At this point you can analyze index and/or query text at the same time. Remember
that there is a distinction for some field types. You activate that analysis by
putting some text into the text box, otherwise it won't do that phase. If you are
troubleshooting why a particular query isn't matching a particular document's field
value, then you'd put the field value into the Index box and the query text into
the Query box. Technically that might not be the same thing as the original query
string, because the query string may use various operators to target specified fields,
do fuzzy queries, and so on. You will want to check off verbose output to take full
advantage of this tool. However, if you only care about which terms are emitted at
the end, you can skip it. The highlight matches is applicable when you are doing
both query and index analysis together and want to see matches in the index part of
the analysis.

The output after clicking Analyze on the Field Analysis is a bit verbose so I'm not
repeating it here verbatim. I encourage you to try it yourself. The output will show
one of the following grids after the analyzer is done:

The most important row and that which is least technical to understand is the
second row, which is term text. If you recall, terms are the atomic units that are
actually stored and queried. Therefore, a matching query's analysis must result in
a term in common with that of the index phase of analysis. Notice that at position
3 there are two terms. Multiple terms at the same position can occur due to
synonym expansion and in this case due to alternate tokenizations introduced by
WordDelimeterFilterFactory. This has implications with phrase queries. Other
things to notice about the analysis results (not visible in this screenshot) is that
Quoting ultimately became quot after stemming and lowercasing. and was omitted
by the StopFilter. Keep reading to learn more about specific text analysis steps such
as stemming and synonyms.

Schema and Text Analysis

[52]

Tokenization
A tokenizer is an analyzer that takes text and splits it into smaller pieces of the
original whole, most of the time skipping insignificant bits like whitespace. This
must be performed as the first analysis step and not done thereafter. Your tokenizer
choices are as follows:

WhitespaceTokenizerFactory: Text is tokenized by whitespace (that is,
spaces, tabs, carriage returns). This is usually the most appropriate tokenizer
and so I'm listing it first.
KeywordTokenizerFactory: This doesn't actually do any tokenization or
anything at all for that matter! It returns the original text as one term. There
are cases where you have a field that always gets one word, but you need to
do some basic analysis like lowercasing. However, it is more likely that due
to sorting or faceting requirements you will require an indexed field with no
more than one term. Certainly a document's identifier field, if supplied and
not a number, would use this.
StandardTokenizerFactory: This analyzer works very well in practice. It
tokenizes on whitespace, as well as at additional points. Excerpted from the
documentation:

Splits words at punctuation characters, removing
punctuations. However, a dot that's not followed by
whitespace is considered part of a token.
Splits words at hyphens, unless there's a number in the token.
In that case, the whole token is interpreted as a product
number and is not split.
Recognizes email addresses and Internet hostnames as
one token.

LetterTokenizerFactory: This tokenizer emits each contiguous sequence of
letters (only A-Z) and omits the rest.
HTMLStripWhitespaceTokenizerFactory: This is used for HTML or
XML that need not be well formed. Essentially it omits all tags altogether,
except the contents of tags, skipping script, and style tags. Entity references
(example: &) are resolved. After this processing, the output is internally
processed with WhitespaceTokenizerFactory.
HTMLStripStandardTokenizerFactory: Like the previous tokenizer, except
the output is subsequently processed by StandardTokenizerFactory
instead of just whitespace.

•

•

•

°

°

°

•

•

•

Chapter 2

[53]

PatternTokenizerFactory: This one can behave in one of two ways:
To split the text on some separator, you can use it like this:
<tokenizer class="solr.PatternTokenizerFactory"
pattern=";*" />*" />. Pattern is a regular expression. This
example would be good for a semi-colon separated list.
To match only particular patterns and possibly use
only a subset of the pattern as the token. Example:
<tokenizer class="solr.PatternTokenizerFactory"
pattern="\'([^\']+)\'" group="1" />. If you had input
text like 'aaa' 'bbb' 'ccc', then this would result in
tokens bbb and ccc.

The regular expression specification supported by Solr is the one that Java
uses. It's handy to have this reference bookmarked: http://java.sun.
com/javase/6/docs/api/java/util/regex/Pattern.html

WorkDelimiterFilterFactory
I have mentioned earlier that tokenization only happens as the first analysis
step. That is true for those tokenizers listed above, but there is a very useful and
configurable Solr filter that is essentially a tokenizer too:

<filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="1"
 catenateWords="1" catenateNumbers="1"
 catenateAll="0" splitOnCaseChange="1"/>

The purpose of this analyzer is to both split and join compound words with various
means of defining compound words. This one is often used with a basic tokenizer,
not a StandardTokenizer, which removes the intra-word delimiters, thereby
defeating some of this processing. The options to this analyzer have the values 1
to enable and 0 to disable.

The WordDelimiter analyzer will tokenize (aka split) in the following ways:

split on intra-word delimiters: Wi-Fi to Wi, Fi
split on letter-number transitions: SD500 to SD, 500
omit any delimiters: /hello--there, dude to hello, there, dude
if splitOnCaseChange, then it will split on lower to upper case transitions:
WiFi to Wi, Fi

•

°

°

•

•

•

•

Schema and Text Analysis

[54]

The splitting results in a sequence of terms, wherein each term consists of only letters
or numbers. At this point, the resulting terms are filtered out and/or catenated
(that is combined):

To filter out individual terms, disable generateWordParts for the alphabetic
ones or generateNumberParts for the numeric ones. Due to the possibility of
catenation, the actual text might still appear in spite of this filter.
To concatenate a consecutive series of alphabetic terms, enable
catenateWords (example: wi-fi to wifi). If the generateWordParts
is enabled, then this example would also generate wi and fi but not
otherwise. This will work even if there is just one term in the series, thereby
emitting a term that disabling generateWordParts would have omitted.
catenateNumbers works similarly but for numeric terms. catenateAll will
concatenate all of the terms together. The concatenation process will take care
to not emit duplicate terms.

Here is an example exercising all options:

WiFi-802.11b to Wi, Fi, WiFi, 802, 11, 80211, b, WiFi80211b

Solr's out-of-the-box configuration for the text field type is a reasonable way to
use the WordDelimiter analyzer: generation of word and number parts at both
index and query-time, but concatenating only at index-time (query-time would
be redundant).

Stemming
Stemming is the process for reducing inflected (or sometimes derived) words to their
stem, base, or root form. For example, a stemming algorithm might reduce riding
and rides, to just ride. Most stemmers in use today exist thanks to the work of
Dr. Martin Porter. There are a few implementations to choose from:

EnglishPorterFilterFactory: This is an English language stemmer using
the Porter2 (aka Snowball English) algorithm. Use this if you are targeting
the English language.
SnowballPorterFilterFactory: If you are not targeting English or if you
wish to experiment, then use this stemmer. It has a language attribute in
which you make an implementation choice. Remember the initial caps, and
don't include my parenthetical remarks: Danish, Dutch, Kp (a Dutch variant),
English, Lovins (an English alternative), Finnish, French, German, German2,
Italian, Norwegian, Portuguese, Russian, Spanish, or Swedish.
PorterStemFilterFactory: This is the original Porter algorithm. It is for the
English language.

•

•

•

•

•

Chapter 2

[55]

KStem: An alternative to the Porter's English stemmer that is less aggressive.
This means that it will not stem in as many cases as Porter will in an effort to
reduce false-positives at the expense of missing stemming opportunities.

You have to download and build KStem yourself due to
licensing issues. See http://wiki.apache.org/solr/
AnalyzersTokenizersTokenFilters/Kstem

Example:

<filter class="solr.EnglishPorterFilterFactory"
 protected="protwords.txt"/>

Algorithmic stemmers such as these are fundamentally imperfect and will stem
in ways you do not want on occasion. But on the whole, they help. If there are
particularly troublesome exceptions, then you can specify those words in a file and
reference them as in the example (the protected attribute references a file in the
conf directory). If you are processing general text, then you will most likely improve
search results with stemming. However, if you have text that is mostly proper nouns
(such as an artist's name in MusicBrainz) then stemming will only hurt the results.

Remember to apply your stemmer at both index-time and query-time
or else few stemmed words will match the query. Unlike Synonym
processing, the stemmers in Lucene do not have the option of expansion.

Synonyms
The purpose of synonym processing is straightforward. Someone searches using a
word that wasn't in the original document but is synonymous with a word that is
indexed, so you want that document to match the query. Of course, the synonym
need not be strictly those identified by a Thesaurus, and they can be whatever you
want including terminology specific to your application's domain.

The most widely known free Thesaurus is WordNet: http://wordnet.
princeton.edu/. There isn't any Solr integration with that data set yet.
However, there is some simple code in the Lucene sandbox for parsing
WordNet's prolog formatted file into a Lucene index. A possible
approach would be to modify that code to instead output the data into
a text file formatted in a manner about to be described—a simple task.
Then, Solr's SynonymFilterFactory can make use of it.

•

Schema and Text Analysis

[56]

Here is a sample analyzer configuration line for synonym processing:

<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
 ignoreCase="true" expand="true"/>

The synonyms reference is to a file in the conf directory. Set ignoreCase to true if
the case of the terms in synonyms.txt might not be identical, however, they should
match anyway. Before describing the expand option, let's consider an example.
The synonyms file is processed line-by-line. Here is a sample line with an explicit
mapping that uses the arrow =>:

i-pod, i pod => ipod

This means that if either i-pod or ipod (source terms) are found, then they
are replaced with ipod (a replacement term). There could have been multiple
replacement terms but not in this example. Also notice that commas are what
separates each term.

Alternatively you may have lines that look like this:

ipod, i-pod, i pod

These lines don't have a => and are interpreted differently according to the expand
parameter. If expand is true, then it is translated to this explicit mapping:

ipod, i-pod, i pod => ipod, i-pod, i pod

If expand is false then it becomes this explicit mapping:

ipod, i-pod, i pod => ipod

By the way, it's okay to have multiple lines that reference the same terms. If a source
term in a new rule is already found to have replacement terms from another rule,
then those replacements are merged.

Multi-word (aka Phrase) synonyms
For multi-word synonyms to work, the analysis must be applied at
index-time and with expansion so that both the original words and the
combined word get indexed. The next section elaborates on why this is so.
Also, be aware that the tokenizer and previous filters can affect the terms
that the SynonymFilter sees. Thus depending on the configuration,
hyphens and other punctuations may or may not be stripped out.

Chapter 2

[57]

Index-time versus Query-time, and to expand or not
If you are doing synonym expansion (have any source terms that map to multiple
replacement terms), then do synonym processing at either index-time or query-time,
but not both, as that would be redundant. For a variety of reasons, it is usually better
to do this at index-time:

A synonym containing multiple words (example: i pod) isn't recognized
correctly at query-time because the query parser tokenizes on whitespace.
The IDF component of Lucene's scoring algorithm will be much higher
for documents matching a synonym appearing rarely, as compared to its
equivalents that are common. This reduces the scoring effectiveness.
Prefix, wildcard, and fuzzy queries aren't analyzed, and thus won't
match synonyms.

However, any analysis at index-time is less flexible, because any changes to the
synonyms will require a complete re-index to take effect. Moreover, the index will
get larger if you do index-time expansion. It's plausible to imagine the issues above
being rectified at some point. However, until then, index-time is usually best.

Alternatively, you could choose not to do synonym expansion. This means that
for a given synonym term, there is just one term that should replace it. This
requires processing at both index-time and query-time to effectively normalize
the synonymous terms. However, since there is query-time processing, it suffers
from the problems mentioned above with the exception of poor scores, which isn't
applicable. The benefit to this approach is that the index size would be smaller,
because the number of indexed terms is reduced.

You might also choose a blended approach to meet different goals. For example,
if you have a huge index that you don't want to re-index often but you need to
respond rapidly to new synonyms, then you can put new synonyms into both a
query-time synonym file and an index-time one. When a re-index finishes, you
empty the query-time synonym file. You might also be fond of the query-time
benefits, but due to the multiple word term issue, you decide to handle those
particular synonyms at index-time.

Stop words
There is a simple filter called StopFilterFactory that filters out certain so-called
stop words specified in a file in the conf directory, optionally ignoring case.
Example usage:

<filter class="solr.StopFilterFactory" words="stopwords.txt"
 ignoreCase="true"/>

•

•

•

Schema and Text Analysis

[58]

This is usually incorporated into both index and query analyzer chains.

For indexes with lots of text, common uninteresting words like "the", "a", and so on,
make the index large and slow down phrase queries. To deal with this problem, it is
best to remove them from fields where they show up often. Fields likely to contain
more than a sentence are ideal candidates. Our MusicBrainz schema does not have
content like this. The trade-off when omitting stop words from the index is that those
words are no longer query-able. This is usually fine, but in some circumstances like
searching for To be or not to be, it is obviously a problem. Chapter 9 discusses a
technique called shingling that can be used to improve phrase search performance,
while keeping these words.

Solr comes with a decent set of stop words for the English language. You may want
to supplement it or use a different list altogether if you're indexing non-English
text. In order to determine which words appear commonly in your index, access the
SCHEMA BROWSER menu option in Solr's admin interface. A list of your fields
will appear on the left. In case the list does not appear at once, be patient. For large
indexes, there is a considerable delay before the field list appears because Solr is
analyzing the data in your index. Now, choose a field that you know contains a
lot of text. In the main viewing area, you'll see a variety of statistics about the field
including the top-10 terms appearing most frequently.

Phonetic sounds-like analysis
Another useful text analysis option to enable searches that sound like a queried word
is phonetic translation. A filter is used at both index and query-time that phonetically
encodes each word into a phoneme. There are four phonetic encoding algorithms
to choose from: DoubleMetaphone, Metaphone, RefinedSoundex, and Soundex.
Anecdotally, DoubleMetaphone appears to be the best, even for non-English
text. However, you might want to experiment in order to make your own choice.
RefinedSoundex declares itself to be most suitable for spellcheck applications.
However, Solr can't presently use phonetic analysis in its spellcheck component
(described in a later chapter).

Solr has three tools at its disposal for more aggressive in-exact searching:
phonetic sounds-like, query spellchecking, and fuzzy searching. These are
all employed a bit differently.

The following is a suggested configuration for phonetic analysis in the schema.xml:

<!-- for phonetic (sounds-like) indexing -->
<fieldType name="phonetic" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer>

Chapter 2

[59]

 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"
 generateWordParts="1" generateNumberParts="0"
 catenateWords="1" catenateNumbers="0" catenateAll="0"/>
 <filter class="solr.DoubleMetaphoneFilterFactory"
 inject="false" maxCodeLength="8"/>
 </analyzer>
</fieldType>

Note that the encoder options internally handle both upper and lower case.

In the MusicBrainz schema that is supplied with the book, a field named a_phonetic
is declared to use this field type, and it has the artist name copied into it through
a copyField directive. In a later chapter, you will read about the dismax search
handler that can conveniently search across multiple fields with different scoring
boosts. Such a handler might be configured to search not only the artist name
(a_name) field, but also a_phonetic with a low boost, so that regular exact matches
will come above those that match phonetically.

Using Solr's analysis admin page, it can be shown that this field type encodes
Smashing Pumpkins as SMXNK|XMXNK PMPKNS. The use of a vertical bar | here
indicates both sides are alternatives for the same position. This is not supposed to be
meaningful, but it is useful for comparing similar spellings to detect its effectiveness.

The example above used the DoubleMetaphoneFilterFactory analysis filter, which
has these two options:

inject: A boolean defaulting to true that will cause the original words to
pass through the filter. It might interfere with other filter options, querying,
and potentially scoring. Therefore, it is preferred to disable this, and use a
separate field dedicated to phonetic indexing.
maxCodeLength: The maximum phoneme code (that is Phonetic character,
or syllable) length. It defaults to 4. Longer code are truncated. Only
DoubleMetaphone supports this option.

In order to use one of the other three phonetic encoding algorithms, you must use
this filter:

<filter class="solr.PhoneticFilterFactory" encoder="RefinedSoundex"
 inject="false"/>

The encoder attribute must be one of those algorithms listed in the first paragraph of
this section.

•

•

Schema and Text Analysis

[60]

Partial/Substring indexing
Usually, text indexing technology is employed to search entire words. Occasionally
however, there arises a need for a search to match an arbitrary substring of a word
or across them. Lucene supports leading and trailing wildcards (example: *) on
queries. However, only the latter is supported by Solr without internal modification.
Moreover, this approach only scales for very small indices before it gets very slow
and/or results in an error. The right way to solve this is to venture into the black art
of n-grams.

Before employing this approach, consider if what you really need is better
tokenization for special code. For example, if you have a long string code
that internally has different parts that users might search on separately,
then you can use a PatternReplaceFilterFactory with some other
analyzers to split them up.

N-gram analysis slices text into many smaller substrings ranging between a
minimum and maximum configured size. For example, consider the word Tonight.
An NGramFilterFactory configured with minGramSize of 2 and maxGramSize
of 5 would yield all of the following indexed terms: (2-grams:) To, on, ni, ig, gh,
ht, (3-grams:) Ton, oni, nig, igh, ght, (4-grams:) Toni, onig, nigh, ight, (5-grams:)
Tonig, onigh, night. Note that Tonight fully does not pass through because it has
more characters than the maxGramSize. N-gram analysis can be used as a filter
for processing on a term-by-term basis, and it can also be used as a tokenizer with
NGramTokenizerFactory, which will emit n-grams spanning across the words of
the entire source text.

The following is a suggested analyzer configuration using n-grams to
match substrings:

<fieldType name="nGram" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="2"
 maxGramSize="15"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Chapter 2

[61]

Notice that the n-gramming only happens at index-time. The range of gram sizes
goes from the smallest number of characters you wish to enable substring searches
on (2 in this example), to the maximum size permitted for substring searches (15 in
this example).

This analysis would be applied to a field created solely for the purpose of matching
substrings. Another field would exist for typical searches, and a dismax handler
(described in a later chapter) would be configured for searches to use both fields
using a smaller boost for this field.

Another variation is EdgeNGramTokenizerFactory and EdgeNGramFilterFactory,
which emit n-grams that are adjacent to either the start or end of the input text. For
the filter-factory, this input-text is a term, and the tokenizer is the entire input. In
addition to minGramSize and maxGramSize, these analyzers take a side argument
that is either front or back. If only prefix or suffix matching is needed instead of
both, then an EdgeNGram analyzer is for you.

N-gramming costs
There is a high price to be paid for n-gramming. Recall that in the earlier example,
Tonight was split into 15 substring terms, whereas typical analysis would probably
leave only one. This translates to greater index sizes, and thus a longer time to
index. Let's look at the effects of this in the MusicBrainz schema. The a_name field,
which contains the artist name, is indexed in a typical fashion and is stored. The
a_ngram field is fed by the artist name and is indexed with n-grams ranging from 2
to 15 characters in length. It is not a stored field because the artist's name is already
stored in a_name.

a_name a_name + a_ngram Increase
Indexing Time 46 seconds 479 seconds > 10x
Disk Size 11.7 MB 59.7 MB > 5x
Distinct Terms 203,431 1,288,720 > 6x

The table above shows a comparison of index statistics of an index with just a_name
versus both a_name and a_ngram. Note the ten-fold increase in indexing time for the
artist name, and a five-fold increase in disk space. Remember that this is just
one field!

Given these costs, n-gramming, if used at all, is generally only done
on a field or two of small size where there is a clear requirement for
substring matches.

Schema and Text Analysis

[62]

The costs of n-gramming are lower if minGramSize is raised and to a lesser extent if
maxGramSize is lowered. Edge n-gramming costs less too. This is because it is only
based on one side. It definitely costs more to use the tokenizer-based n-grammers
instead of the term-based filters used in the example before, because terms are
generated that include and span whitespace. However, with such indexing, it is
possible to match a substring spanning words.

Miscellaneous analyzers
There are some Solr filters that have not been mentioned yet that we can go
over quickly:

StandardFilterFactory: Works in conjunction with StandardTokenizer.
It will remove periods inbetween acronyms and s at the end of terms:
"I.B.M. cat's" => "IBM", "cat"

LowerCaseFilterFactory: Simply lowercases all text. Don't put this before
WordDelimeterFilterFactory if you want to split on case transitions.
KeepWordFilterFactory: Omits all of the words, except those in the
specified file:
<filter class="solr.KeepWordFilterFactory" words="keepwords.txt"
 ignoreCase="true"/>

If you want to ensure a certain vocabulary of words in a special field, then
you might enforce it with this.
LengthFilterFactory: Filters out the terms that do not have a length within
an inclusive range.
<filter class="solr.LengthFilterFactory" min="2" max="5" />

RemoveDuplicatesTokenFilterFactory: Ensures that no duplicate terms
appear at the same position. This can happen, for example, when synonyms
stem to a common root. It's a good idea to add this to your last analysis step,
if you are doing a fair amount of other analysis.
ISOLatin1AccentFilterFactory: This will normalize accented characters
such as é to the unaccented equivalent e. An alternative and more
customizable mechanism introduced in Solr 1.4 is a CharFilterFactory,
which is something that actually comes before the lead tokenizer in the
analysis chain. For more information about this approach, search Solr's Wiki
for MappingCharFilterFactory.

•

•

•

•

•

•

Chapter 2

[63]

CapitalizationFilterFactory: This capitalizes each word according
to the rules that you specify. For more information, see the Javadocs at
http://lucene.apache.org/solr/api/org/apache/solr/analysis/

CapitalizationFilterFactory.html.
PatternReplaceFilterFactory: Takes a regular expression and replaces
the matches. Example:
<filter class="solr.PatternReplaceFilterFactory" pattern=".*@(.*)"
 replacement="$1" replace="first" />

This replacement happens to be a reference to a regexp group, but it might
be any old string. The replace attribute is either first to only apply to the
first occurrence, or all. This example is for processing an email address field
to get only the domain of the address.
Write your own: Writing your own filter is of course an option if the existing
ones don't suffice. Crack open the source code to Solr for one of these to get
a handle on what's involved. Before you head down this path though, you'd
be surprised at what a little creativity with PatternReplaceFilterFactory
and some of the others can offer you. For starters, check out the rType field
type in the schema.xml that is supplied online with this book.

There are some other miscellaneous Solr filters not mentioned, and a few stemmers
are not of the Snowball variety. See the known implementing classes listed at the top
of this URL: http://lucene.apache.org/solr/api/org/apache/solr/analysis/
TokenFilterFactory.html

Summary
At this point, you should have a schema that you believe will suit your needs—for
now anyway. But do expect to revisit the schema. It is quite normal to start with
something workable, and then subsequently make modifications to address issues,
and implement features that require changes. The only irritant with changing the
schema is that you probably need to re-index all of the data. The only exception to
this would be an analysis step applied only at query-time. In the next chapter, you'll
learn about the various ways to import data into the index.

•

•

•

Indexing Data
With a first cut of the schema defined, it's time to get data into the index. In this
chapter, we're going to review the four main mechanisms that Solr offers:

Solr's native XML
CSV (Character Separated Value)
Direct Database and XML Import through Solr's DataImportHandler
Rich documents through Solr Cell

You will also find some options in Chapter 8 that have to do with language bindings
and framework integration. All of them generally use Solr's native XML format,
which we'll get to right away.

Communicating with Solr
There are a few dimensions to the options available for communicating with Solr:

Direct HTTP or a convenient client API
Applications interact with Solr over HTTP. This can either be done directly
(by hand, but by using an HTTP client of your choice), or it might be facilitated by a
Solr integration API such as SolrJ or Solr Flare, which in turn use HTTP. Such APIs
are discussed in Chapter 8.

An exception to HTTP is offered by SolrJ, which can optionally be used in an
embedded fashion with Solr (so-called Embedded Solr) to avoid network and
interprocess communication altogether. However, unless you are sure you really
want to embed Solr within another application, this option is discouraged in favor
of writing a custom Solr updating request handler. More information about SolrJ
and EmbeddedSolr is in Chapter 8.

•

•

•

•

Indexing Data

[66]

Data streamed remotely or from Solr's
filesystem
Even though an application will be communicating with Solr over HTTP, it does
not have to send Solr data over this channel. Solr supports what it calls remote
streaming. Instead of giving Solr the data directly, it is given a URL that it will
resolve. It might be an HTTP URL, but more likely it is a filesystem based URL,
applicable when the data is already on Solr's machine. Finally, in the case of Solr's
DataImportHandler, the data can be fetched from a database.

Data formats
The following are the different data formats:

Solr-XML: Solr has a specific XML schema it uses to specify documents and
their fields. It supports instructions to delete documents and to perform
optimizes and commits too.
Solr-binary: Analogous to Solr-XML, it is an efficient binary representation
of the same structure. This is only supported by the SolrJ client API.
CSV: CSV is a character separated value format (often a comma).
Rich documents like PDF, XLS, DOC, PPT to Solr: The text data extracted
from these formats is directed to a particular field in your Solr schema.
Finally, Solr's DIH DataImportHandler contrib add-on is a powerful
capability that can communicate with both databases and XML sources
(for example: web services). It supports configurable relational and
schema mapping options and supports custom transformation additions
if needed. The DIH uniquely supports delta updates if the source data has
modification dates.

We'll use the XML, CSV, and DIH options in bringing the MusicBrainz data into Solr
from its database to demonstrate Solr's capability. Most likely, an application would
use just one format.

Before these approaches are described, we'll discuss curl and remote streaming,
which are foundational topics.

Using curl to interact with Solr
Solr receives commands (and possibly the associated data) through HTTP POST.

•

•

•

•

•

Chapter 3

[67]

Solr lets you use HTTP GET too (for example, through your web
browser). However, this is an inappropriate HTTP verb if it causes
something to change on the server, as happens with indexing. For
more information on this concept, read about REST at http://
en.wikipedia.org/wiki/Representational_State_Transfer

One way to send an HTTP POST is through the Unix command line program curl
(also available on Windows through Cygwin). Even if you don't use curl, it is very
important to know how we're going to use it, because the concepts will be applied no
matter how you make the HTTP messages.

There are several ways to tell Solr to index data, and all of them are through
HTTP POST:

Send the data as the entire POST payload (only applicable to Solr's XML
format). curl does this with data-binary (or some similar options) and an
appropriate content-type header reflecting that it's XML.
Send some name-value pairs akin to an HTML form submission. With curl,
such pairs are proceeded by -F. If you're giving data to Solr to be indexed
(as opposed to it looking for it in a database), then there are a few ways to
do that:

Put the data into the stream.body parameter. If it's small,
perhaps less than a megabyte, then this approach is fine. The
limit is configured with the multipartUploadLimitInKB
setting in solrconfig.xml.
Refer to the data through either a local file on the Solr server
using the stream.file parameter or a URL that Solr will
fetch it from through the stream.url parameter. These
choices are a feature that Solr calls remote streaming.

Here is an example of the first choice. Let's say we have an XML file named
artists.xml in the current directory. We can post it to Solr using the following
command line:
curl http://localhost:8983/solr/update -H 'Content-type:text/xml;
charset=utf-8' --data-binary @artists.xml

If it succeeds, then you'll have output that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int><int name="QTime">128</int>
</lst>
</response>

•

•

°

°

Indexing Data

[68]

To use the solr.body feature for the example above, you would do this:

curl http://localhost:8983/solr/update -F solr.body=@artists.xml

In both cases, the @ character instructs curl to get the data from the file instead of
being @artists.xml literally. If the XML is short, then you can just as easily specify
it literally on the command line:

curl http://localhost:8983/solr/update -F stream.body=' <commit />'

Notice the leading space in the value. This was intentional. In this example,
curl treats @ and < to mean things we don't want. In this case, it might be more
appropriate to use form-string instead of -F. However, it's more typing, and I'm
feeling lazy.

Remote streaming
In the examples above, we've given Solr the data to index in the HTTP message.
Alternatively, the POST request can give Solr a pointer to the data in the form of
either a file path accessible to Solr or an HTTP URL to it.

The file path is accessed by the Solr server on its machine, not
the client, and it must also have the necessary operating system
file permissions too.

However, just as before, the originating request does not return a response until Solr
has finished processing it. If you're sending a large CSV file, then it is practical to
use remote streaming. Otherwise, if the file is of a decent size or is already at some
known URL, then you may find remote streaming faster and/or more convenient,
depending on your situation.

Here is an example of Solr accessing a local file:

curl http://localhost:8983/solr/update -F stream.file=/tmp/artists.xml

To use a URL, the parameter would change to stream.url, and we'd specify a
URL. We're passing a name-value parameter (stream.file and the path), not
the actual data.

Chapter 3

[69]

Remote streaming must be enabled
In order to use remote streaming (stream.file or stream.url),
you must enable it in solrconfig.xml. It is disabled by default and
is configured on a line that looks like this:

<requestParsers enableRemoteStreaming="true"
 multipartUploadLimitInKB="2048" />

Sending XML to Solr
Solr's native XML syntax is very simple. You can tell Solr to add documents to an
index, to commit changes, to optimize the index, and to delete documents. Here is
a sample XML file you can HTTP POST to Solr:

<add allowDups="false">
<doc boost="2.0">
<field name="id">5432a</field>
<field name="type" ...</field>
<field name="a_name" boost="0.5"></field>
<!-- the date/time syntax MUST look just like this (ISO-8601)-->
<field name="begin_date">2007-12-31T09:40:00Z</field>
</doc>
<doc>
<doc>
<field name="id">5432a</field>
<field name="type" ...
<field name="begin_date">2007-12-31T09:40:00Z</field>
</doc>
<!-- more here as needed -->
</add>

The allowDups defaults to false to guarantee the uniqueness of values in the field
that you have designated as the unique field in the schema (assuming you have such
a field). If you were to add another document that has the same value for the unique
field, then this document would override the previous document, whether it is
pending a commit or it's already committed. You will not get an error.

If you are sure that you will be adding a document that is not
a duplicate, then you can set allowDups to true to get a
performance improvement.

Indexing Data

[70]

Boosting affects the scores of matching documents in order to affect ranking in
score-sorted search results. Providing a boost value, whether at the document or
field level, is optional. The default value is 1.0, which is effectively a non-boost.
Technically, documents are not boosted, only fields are. The effective boost value
of a field is that specified for the document multiplied by that specified for the field.

Specifying boosts here is called index-time boosting, which is rarely
done as compared to the more flexible query-time boosting. Index-time
boosting is less flexible because such boosting decisions must be decided
at index-time and will apply to all of the queries.

Deleting documents
You can delete a document by its unique field (we delete two documents here):

<delete><id>artist:11604</id><id>artist:11603</id></delete>

Or, you can delete all of the documents that match a particular Lucene/Solr query
(the query syntax is not discussed in this chapter):

<delete><query>timestamp:[* TO NOW-12HOUR]</query></delete>

The contents of the delete tag can be any number of ID and query tags if you want to
batch many deletions into one message to Solr.

The query syntax is not discussed in this chapter, but I'll explain this somewhat
complicated query anyway. Let's suppose that all of your documents had a
timestamp field with a value of the time it was indexed, and you have an update
strategy that bulk loads all of the data on a daily basis. If the loading process results
in documents that shouldn't be in the index anymore, then we can delete them
immediately after a bulk load. This query would delete all of the documents not
indexed within the last 12 hours. Twelve was chosen somewhat arbitrarily, but it
needs to be less than 24 (the update process interval) and greater than the longest
time it might conceivably take to bulk load all the data.

Commit, optimize, and rollback
Data sent to Solr is not immediately searchable, nor do deletions take immediate
effect. Like a database, changes must be committed first. Unlike a database, there
are no distinct sessions (that is transactions) between each client, and instead there
is in-effect one global modification state. This means that if more than one Solr client
were to submit modifications and commit them at similar times, it is possible for part
of one client's set of changes to be committed before that client told Solr to commit.
Usually, you will have just one process responsible for updating Solr. But if not, then
keep this in mind.

Chapter 3

[71]

To commit changes using the XML syntax, simply send this to Solr:

<commit />

Depending on Solr's auto-warming configuration and cache state prior
to committing (a Chapter 9 topic), a commit can take a non-trivial
amount of time, in the order of seconds, perhaps up to a minute or
longer in extreme cases. The amount of data committed has little impact
on this delay. Generally, databases commit very fast. The last chapter
deals with performance.

All uncommitted changes can be withdrawn by sending Solr the rollback command:

<rollback />

Lucene's index is internally composed of one or more segments. Modifications
get committed to the last segment. Lucene will on occasions either start a new
segment or merge them all together into one. When Lucene has just one segment,
it is in an optimized state, because each segment degrades query performance. It is
recommended to explicitly optimize the index at an opportune time like after a bulk
load of data and/or a daily interval in off-peak hours, if there are sporadic updates
to the index. You can do this by simply sending this XML:

<optimize />

Both commit and optimize take two additional boolean options that default to true:

<commit waitFlush="true" waitSearcher="true">

If you were to set these to false, then commit and optimize return immediately,
even though the operation hasn't actually finished yet. So if you wrote a script that
committed with these at their false values and then executed a query against Solr,
then you may find that the query will not reflect the changes (yet). By waiting for the
data to flush to the disk (waitFlush) and waiting for a new searcher to be ready to
respond to changes (waitSearcher), this circumstance is avoided.

A convenient alternative to send these commands through XML is
to simply add commit, optimize, or rollback as boolean request
parameters when communicating with Solr. You'll see an example of this
with CSV in the next section. Request parameters can be put on the URL
and/or as form parameters, if applicable. These three request parameters
are honored by Solr whether you send Solr its native XML format, CSV,
or rich documents. waitFlush and waitSearcher are not supported in
this manner.

Indexing Data

[72]

Sending CSV to Solr
If you have data in a CSV format or if it is more convenient for you to get CSV than
XML, then you may prefer the CSV option to the XML format. Solr's CSV options are
fairly flexible.

To get some CSV data out of a local PostgreSQL database for the MusicBrainz tracks,
I ran this command:

psql -U postgres -d musicbrainz_db -c "COPY (\

select 'Track:' || t.id as id, 'Track' as type, t.name as t_name,
t.length/1000 as t_duration, a.id as t_a_id, a.name as t_a_name,
albumjoin.sequence as t_num, r.id as t_r_id, r.name as t_r_name, array_
to_string(r.attributes,' ') as t_r_attributes, albummeta.tracks as t_r_
tracks \

from (track t inner join albumjoin on t.id = albumjoin.track \

 inner join album r on albumjoin.album = r.id left join albummeta on
albumjoin.album = albummeta.id) inner join artist a on t.artist = a.id \

) to '/tmp/tracks' CSV HEADER"

And it generated output that looks like this (first three lines):

id,type,t_name,t_duration,t_a_id,t_a_name,t_num,t_r_id,t_r_name,t_r_
attributes,t_r_tracks

Track:183326,Track,In the Arms of Sleep,254,11650,The Smashing
Pumpkins,4,22471,Mellon Collie and the Infinite Sadness (disc 2: Twilight
to Starlight),0 1 100,14

Track:183328,Track,Tales of a Scorched Earth,228,11650,The Smashing
Pumpkins,6,22471,Mellon Collie and the Infinite Sadness (disc 2: Twilight
to Starlight),0 1 100,14

To get Solr to import the CSV file, I typed this at the command line:

curl http://localhost:8983/solr/update/csv -F f.t_r_attributes.split=true
-F f.t_r_attributes.separator=' ' -F overwrite=false -F commit=true -F
stream.file=/tmp/tracks

When I actually did this I had PostgreSQL on one machine and Solr on another.
I used the Unix mkfifo command to create an in-memory data pipe mounted at
/tmp/tracks. This way, I didn't have to actually generate a huge CSV file. I could
essentially stream it directly from PostgreSQL into Solr. Details on this approach and
PostgreSQL are out of the scope of this book.

Chapter 3

[73]

Configuration options
The configuration options to Solr's CSV capability are set through HTTP posting
name-value pairs in the same format that HTML forms post their data. As
explained earlier, technically you could use a URL through HTTP GET with a
stream.url or stream.file parameter. However, this is a bad practice. Also
note that Solr's CSV capability doesn't support index-time boosting, but that is
an uncommon requirement.

The following are the names of each configuration option with an explanation. For
the MusicBrainz track CSV file, I was able to use the defaults with the exception
of specifying how to parse the multi-valued t_r_attributes field and disabling
unique key processing for performance.

separator: The character that separates each value on a line. Defaults to ,.
header: Is set to true if the first line lists the field names (the default).
fieldnames: If the first line doesn't have the field names, then you'll have to
use this instead to indicate what they are. They are comma separated. If no
name is specified for a column, then its data is skipped.
skip: The fields to not import in the CSV file.
skipLines: The number of lines to skip in the input file. Defaults to 0.
trim: If true, then removes leading and trailing whitespace as a final step,
even if quoting is used to explicitly specify a space. Defaults to false. Solr
already does an initial pass trim, but quoting may leave spaces.
encapsulator: This character is used to encapsulate (that is surround,
quote) values in order to preserve the field separator as a field value
instead of mistakenly parsing it as the next field. This character itself is
escaped by doubling it. It defaults to the double quote, unless escape is
specified. Example:
11604, foo, "The ""second"" word is quoted.", bar

escape: If this character is found in the input text, then the next character is
taken literally in place of this escape character, and it isn't otherwise treated
specially by the file's syntax. Example:
11604, foo, The second\, word is followed by a comma., bar

keepEmpty: Specified whether blank (zero length) fields should be indexed
as such or omitted. It defaults to false.
overwrite: It indicates whether to enforce the unique key constraint of the
schema by overwritting existing documents with the same ID. It defaults to
true. Disable this to increase performance, if you are sure you are passing
new documents.

•

•

•

•

•

•

•

•

•

•

Indexing Data

[74]

split: This is a field-specific option used to split what would normally be
one value into multiple values. Another set of CSV configuration options
(separator, and so on) can be specified for this field to instruct Solr on how to
do that. See the previous tracks MusicBrainz example on how this is used.
map: This is another field-specific option used to replace input values with
another. It can be used to remove values too. The value should include a
colon which separates the left side which is replaced with the right side. If we
were to use this feature on the tracks of the MusicBrainz data, then it could
be used to map the numeric code in t_r_attributes to more meaningful
values. Here's an example of such an attempt:
-F keepEmpty=false -F f.t_r_attributes.map=0:
 -F f.t_r_attributes.map=1:Album -F f.t_r_attributes.map=2:Single

This causes 0 to be removed, because it seems to be useless data, as nearly all
tracks have it, and we map 1 to Album and 2 to Single.

Direct database and XML import
The capability for Solr to get data directly from a database or HTTP GET
accessible XML is distributed with Solr as a contrib module, and it is known as the
DataImportHandler (DIH in short). The complete reference documentation for this
capability is here at http://wiki.apache.org/solr/DataImportHandler, and it's
rather thorough. In this chapter, we'll only walk through an example to see how it
can be used with the MusicBrainz data set.

In short, the DIH offers the following capabilities:

Imports data from databases through JDBC (Java Database Connectivity)
Imports XML data from a URL (HTTP GET) or a file
Can combine data from different tables or sources in various ways
Extraction/Transformation of the data
Import of updated (delta) data from a database, assuming a
last-updated date
A diagnostic/development web page
Extensible to support alternative data sources and transformation steps

As the MusicBrainz data is in a database, the most direct method to get data into Solr
is definitely through the DIH using JDBC.

•

•

•

•

•

•

•

•

•

Chapter 3

[75]

Getting started with DIH
DIH is not a direct part of Solr. Hence it might not be included in your Solr setup. It
amounts to a JAR file named something like apache-solr-dataimporthandler-
1.4.jar, which is probably already embedded within the solr.war file. You can
use jar -tf solr.war to see. Alternatively, it may be placed in <solr-home>/
lib, which is alongside the conf directory we've been working with. For database
connectivity, we need to ensure that the JDBC driver is on the Java classpath. Placing
it in <solr-home>/lib is a convenient way to do this.

The DIH needs to be registered with Solr in solrconfig.xml. Here is how it is done:

<requestHandler name="/dataimport"
 class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
</requestHandler>

mb-dih-artists-jdbc.xml (mb being short for MusicBrainz) is a file in
<solr-home>/conf, which is used to configure DIH. It is possible to specify
some configuration aspects in this request handler configuration instead of the
dedicated configuration file. However, I recommend that it all be in the DIH
config file, as in our example here.

Given below is an mb-dih-artists-jdbc.xml file with a rather long SQL query:

<dataConfig>
 <dataSource name="jdbc" driver="org.postgresql.Driver"
 url="jdbc:postgresql://localhost/musicbrainz_db"
 user="musicbrainz" readOnly="true" autoCommit="false" />
 <document>
 <entity name="artist" dataSource="jdbc" pk="id" query="
 select
 a.id as id,
 a.name as a_name, a.sortname as a_name_sort,
 a.begindate as a_begin_date, a.enddate as a_end_date,
 a.type as a_type
 ,array_to_string(
 array(select aa.name from artistalias aa
 where aa.ref = a.id)
 , '|') as a_alias
 ,array_to_string(

Indexing Data

[76]

 array(select am.name from v_artist_members am
 where am.band = a.id order by am.id)
 , '|') as a_member_name
 ,array_to_string(
 array(select am.id from v_artist_members am
 where am.band = a.id order by am.id)
 , '|') as a_member_id,
 (select re.releasedate from release re inner join
 album r on re.album = r.id where r.artist = a.id
 order by releasedate desc limit 1) as
 a_release_date_latest
 from artist a
 "
 transformer="RegexTransformer,DateFormatTransformer,
 TemplateTransformer">
 <field column = "id" template="Artist:${artist.id}" />
 <field column = "type" template="Artist" />
 <field column = "a_begin_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_end_date"
 dateTimeFormat="yyyy-MM-dd" />
 <field column = "a_alias" splitBy="\|" />
 <field column = "a_member_name" splitBy="\|"/>
 <field column = "a_member_id" splitBy="\|" />
 </entity>
 </document>

</dataConfig>

The DIH development console
Before describing the configuration details, we're going to take a look at the DIH
development console. It is accessed by going to this URL (modifications may be
needed for your host, port, core, and so on):

http://localhost:8983/solr/admin/dataimport.jsp

Chapter 3

[77]

The development console looks like the following screenshot:

The screen is divided into two panes: on the left is the DIH control form, which
includes an editable version of the DIH configuration file and on the right is the
command output as raw XML. The screen works quite simply. The form essentially
results in submitting a URL to the right pane. There's no real server-side logic to this
interface beyond the standard DIH command invocations being executed on the
right. The last section on DIH in this chapter goes into more detail on submitting a
command to the DIH.

DIH DataSources of type JdbcDataSource
The DIH configuration file starts with the declaration of one or more data
sources using the element <dataSource/>, which refers to either a database,
a file, or an HTTP URL, depending on the type attribute. It defaults to a value
of JdbcDataSource. Those familiar with JDBC should find the driver and url
attributes with accompanying user and password straightforward—consult the
documentation for your driver/database for further information. readOnly is a
boolean that will set a variety of other JDBC options appropriately when set

Indexing Data

[78]

to true. And batchSize is an alias for the JDBC fetchSize and defaults to 500.
There are numerous JDBC oriented attributes that can be set as well. I would not
normally recommend learning about a feature by reading source code, but this is an
exception. For further information, read org.apache.solr.handler.dataimport.
JdbcDataSource.java

Efficient JDBC configuration
Many database drivers in the default configurations (including those for
PostgreSQL and MySQL) fetch all of the query results into the memory
instead of on-demand or using a batch/fetch size. This may work well
for typical database usage like OLTP (Online Transaction Processing
systems), but is completely unworkable for ETL (Extract Transform
and Load) usage such as this. Configuring the driver to stream the
data requires driver-specific configuration options. You may need to
consult relevant documentation for the JDBC driver. For PostgreSQL,
set autoCommit to false. For MySQL, set batchSize to -1(The DIH
detects the -1 and replaces it with Java's Integer.MIN_VALUE, which
triggers the special behavior in MySQL's JDBC driver). For Microsoft SQL
Server, set responseBuffering to adaptive. Further information
about specific databases is at http://wiki.apache.org/solr/
DataImportHandlerFaq.

DIH documents, entities
After the declaration of <dataSource/> element(s) is the <document/> element.
In turn, this element contains one or more <entity/> elements. In this sample
configuration, we're only getting artists. However, if we wanted to have more than
one type in the same index, then another could be added. The dataSource attribute
references a correspondingly named element earlier. It is only necessary if there are
multiple to choose from, but we've put it here explicitly anyway.

The main piece of an entity used with a JDBC data source is the query attribute,
which is the SQL query to be evaluated. You'll notice that this query involves some
sub-queries, which are made into arrays and then transformed into strings joined
by spaces. The particular functions used to do these sorts of things are generally
database specific. This is done to shoe-horn multi-valued data into a single row
in the results. It may create a more complicated query, but it does mean that the
database does all of the heavy lifting so that all of the data Solr needs for an artist is
in the row. An alternative with DIH is to declare other entities within the entity. If
you aren't using a database or if you wish to mix in another data source (even if it's
of a different type), then you will be forced to do that. See the Solr DIH Wiki page for
examples: http://wiki.apache.org/solr/DataImportHandler.

Chapter 3

[79]

The DIH also supports a delta query, which is a query that selects time-stamped data
with dates after the last queried date. This won't be covered here, but you can find
more information at the previous URL.

DIH fields and transformers
Within the <entity/> are some <field/> elements that declare how the columns in
the query map to Solr. The field element must have a column attribute that matches
the corresponding named column in the SQL query. The name attribute is the Solr
schema field name that the column is going into. If it is not specified (and it never is
for our example), then it defaults to the column name.

Use the SQL as a keyword as we've done to use the same names as
the Solr schema instead of the database schema. This reduces the
number of explicit mappings needed in <field/> elements and
shortens existing ones.

When a column in the result can be placed directly into Solr without further
processing, there is no need to specify the field declaration, because it is implied.

An attribute of the entity declaration that we didn't mention yet is transformer.
This declares a comma-separated list of transformers that manipulate the transfer of
data from the JDBC resultset into a Solr field. These transformers evaluate a field,
if it has an attribute it uses to do its job. More than one might operate on a given
field. Therefore, the order in which the transformers are declared in matters. Here
are the attributes we've used:

template: It is used by TemplateTransformer and declares text, which
might include variable name substitutions using ${name} syntax. To access
an existing field, use the entityname.columnname syntax.
splitBy: It is used by RegexTransformer and splits a single string value into
a multi-value by looking for the specified character.
dateTimeFormat: It is used by DateFormatTransformer. This is a Java
date/time format pattern (http://java.sun.com/j2se/1.5.0/docs/
api/java/text/SimpleDateFormat.html). If the type of the field in the
schema is a date, then it is necessary to ensure Solr can interpret the format.
Alternatively, ensure that the string matches the ISO-8601 format, which
looks like this: 1976-10-23T23:59:59.000Z. As in all cases in Solr, when
specifying dates you can use its so-called "DateMath" syntax (described in the
next chapter) such as appending /DAY to tell Solr to round the date to a day.

•

•

•

Indexing Data

[80]

Importing with DIH
Unlike the other importing mechanisms, the DIH returns immediately, while the
import continues asynchronously. To get the current status of the DIH, go to this
URL http://localhost:8983/solr/dataimport, and you'll get output like
the following:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 </lst>
 <lst name="initArgs">
 <lst name="defaults">
 <str name="config">mb-dih-artists-jdbc.xml</str>
 </lst>
 </lst>
 <str name="status">idle</str>
 <str name="importResponse"/>
 <lst name="statusMessages"/>
 <str name="WARNING">This response format is experimental. It is
 likely to change in the future.</str>
</response>

Commands are given to DIH as request parameters just as everything else is
in Solr. We could tell the DIH to do a full-import just by going to this URL:
http://localhost:8983/solr/dataimport?command=full-import. On the
command line we would use:

curl http://localhost:8983/solr/dataimport
 -F command=full-import

It uses HTTP POST, which is better, as discussed much earlier.

Other boolean parameters named clean, commit, and optimize may accompany the
parameter that defaults to true, if not present. Clean is specific to DIH, and it means
that before running the import, it will remove all of the existing data.

Two other useful commands are reload-config and abort. The first will reload the
DIH configuration file, which is useful for picking up small changes. The second will
cancel any existing imports in progress.

Chapter 3

[81]

Indexing documents with Solr Cell
While most of this book assumes that the content you want to index in Solr is in a
neatly structured data format of some kind, such as in a database table, a selection of
XML files, or CSV, the reality is that we store information in the much messier world
of binary formats such as PDF, Microsoft Office, or even images and music files.
Your author Eric Pugh, became involved with the Solr community when a client
required a search system that could ingest the thousands of PDF and Microsoft Word
documents that they had produced over the years. The outgrowth of that effort, Solr
Cell, distributed as a contrib module to Solr, provides a very powerful framework
for indexing various binary formats.

Solr Cell is technically called the Extracting Request Handler, however the name
came about because:

Grant [Ingersoll] was writing the javadocs for the code and needed an entry for
the <title> tag and wrote out "Solr Content Extraction Library", as the contrib
directory is named "extraction". This then lead to an "acronym": Solr CEL,
which then gets mashed to: Solr Cell! Hence, the project name is "Solr Cell"! It's
also appropriate because a Solar Cell's job is to convert the raw energy of the Sun
to electricity, and this contrib's module is responsible for converting the "raw"
content of a document to something usable by Solr.

We'll look at how to leverage Solr Cell for extracting karaoke song lyrics from
MIDI files. Just think, you can build a Solr powered index of all your favorite
karaoke songs! The complete reference material for Solr Cell is available at
http://wiki.apache.org/solr/ExtractingRequestHandler.

Extracting binary content
Every binary format is different, and all of them provide different types of metadata,
as well as different methods of extracting content. The heavy lifting of providing
a single API to an ever expanding list of binary/structured formats is left up to
Apache Tika:

Apache Tika is a toolkit for detecting and extracting metadata and structured text
content from various documents using existing parser libraries.

Indexing Data

[82]

Tika supports a wide variety of formats, from the predictable to the unexpected.
Some of the key formats supported are Adobe PDF, Microsoft Office including
Word, Excel, PowerPoint, and Visio, and Outlook. Other formats that are supported
include extracting metadata from images such as JPG, GIF, and PNG, as well as
from various audio formats such as MP3, MIDI, and Wave audio. Tika itself does
not attempt to parse the individual binary formats. Instead, it delegates the parsing
to various third party libraries, while providing a high level stream of SAX events as
the documents are parsed.

Solr Cell is a fairly thin wrapper consisting of a SolrContentHandler that consumes
the SAX events and builds the SolrInputDocument from the fields that are specified
to be extracted from the binary document.

There are some not so obvious things to keep in mind when indexing
binary documents:

You can supply any kind of supported document to Tika, and the
AutoDetectParser will attempt to discover the correct MIME type of the
document. Alternatively, you can supply a stream.type parameter to
specify which parser to use.
The default SolrContentHandler that is used by Solr Cell is fairly simplistic.
You may find that you need to perform extra massaging of the data being
indexed beyond what Solr Cell offers to reduce the junk data being indexed.
Subclass createFactory() method of ExtractingRequestHandler to
return your own custom SolrContentHandler.
Remember that as you are indexing you are potentially sending large binary
files over the wire that must then be parsed in server memory, which can be
very slow. If you are looking to only index metadata, then it may make sense
to write your own parser using Tika directly, extract the metadata, and post
that across to the server. See the Indexing HTML in Solr section in Chapter 8 for
an example of parsing out metadata from an archive of a web site and posting
the data through SolrJ.
You need to supply to Solr the various dependent JAR files that Tika requires
to parse the documents. Put them with the Solr Cell JAR (named something
like apache-solr-cell-1.4.jar) in <solr-home>/lib.

Tika has only recently become a full fledged project and has already had
a couple of releases. You can learn more about Tika from the web site at
http://lucene.apache.org/tika/.

•

•

•

•

Chapter 3

[83]

Configuring Solr Solr
In /examples/cores/karaoke/conf/solrconfig.xml lies the request handler for
parsing binary documents:

<requestHandler name="/update/extract"
 class="org.apache.solr.handler.extraction.ExtractingRequestHandler">
 <lst name="defaults">
 <str name="map.Last-Modified">last_modified</str>
 <str name="uprefix">metadata_</str>
 </lst>
</requestHandler>

Here we can see that the Tika metadata attribute Last-Modified is being mapped
to the Solr field last_modified, assuming we are provided that Tika attribute. The
parameter uprefix is specifying the prefix to use when storing any Tika fields that
don't have a corresponding matching Solr field.

In order to use Solr Cell, we placed the Solr Cell JAR in the ./examples/cores/
karaoke/lib/ directory, because it is not included in solr.war. The JAR files
placed in this lib directory are available only to the karaoke core. To share across
all cores add to ./examples/cores/lib/ and by specifying it as the shared lib in
./examples/cores/solr.xml:

<solr persistent="false" sharedLib="lib">

For this example, we are parsing .kar karaoke files that are recorded in the MIDI
format using the standard Java package javax.audio.midi. However, we have also
put other JAR dependencies of Solr Cell such as pdfbox, poi, and icu4j in ./lib.

Extracting karaoke lyrics
We are now ready to extract karaoke lyrics by posting MIDI files to our
Solr /karaoke/update/extract handler. Some classic ABBA tunes for your
enjoyment are available in the ./examples/appendix/karaoke/songs/ directory,
gratefully sourced from FreeKaraoke at http://www.freekaraoke.com/. In order to
index the song Angel Eyes from the command line using curl, the simplest command
to run is:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?map.
content=text' -F "file=@angeleyes.kar"

Indexing Data

[84]

Don't forget to commit your changes:
>> curl http://localhost:8983/solr/karaoke/update/ -H "Content-Type:
text/xml" --data-binary '<commit waitFlush="false"/>'

You can also trigger a commit when indexing content by appending
commit=true to the URL, however this is an inefficient approach if you
are indexing many documents

We have a single map.content=text parameter that specifies the default field for
content extracted from the source. In this case, angeleyes.kar should be stored in
the Solr field text. Now go look for the results at http://localhost:8983/solr/
karaoke/select/?q=*:*. You should see:

<result name="response" numFound="1" start="0">
 <doc>
 <arr name="text">
 <str>
 Angel Eyes by Abba sequenced by Michael Boyce
 tinker@worldnet.att.netSoft karaoke@KMIDI KARAOKE
 FILEWords@LENGL@TAngel Eyes@TABBA\Last night I was taking a walk
 along the river/And I saw him together with a young girl/And the
 look that he gave made me shiver/'Cause he always used ...
 </str>
 </arr>
 </doc>
</result>

You've now indexed information about the song and the lyrics in the text field that
forms the textual content of the MIDI file. However, what about the metadata, for
the MIDI file that Tika also exposes? Well, this is where dynamic fields come in very
handy. Every binary format has a set of metadata that to a varying extent overlaps
with other formats. Fortunately it is very easy to specify to Solr Cell how you would
want to map metadata by using the uprefix property. We specify that all of the
metadata_* fields should be created using dynamic fields in schema.xml:

<dynamicField name="metadata_*" type="string" indexed="true"
 stored="true" multiValued="false"/>

Since handling metadata properly is something we want to standardize on, we add
to the configuration element in solrconfig.xml:

<str name="map.Last-Modified">last_modified</str>
<str name="uprefix">metadata_</str>

Notice that the & values in the URL are escaped with backslashes:
\. Forgetting to escape special characters is a common issue when
working with curl.

Chapter 3

[85]

When you search for all documents, you should see indexed metadata for Angel Eyes,
prefixed with metadata_:

<str name="metadata_Content-Type">audio/midi</str>
<str name="metadata_divisionType">PPQ</str>
<str name="metadata_patches">0</str>
<str name="metadata_stream_content_type">
 application/octet-stream</str>
<str name="metadata_stream_name">angeleyes.kar</str>
<str name="metadata_stream_size">55677</str>
<str name="metadata_stream_source_info">file</str>
<str name="metadata_tracks">16</str>

Obviously, in most use cases, every time you index the same file you don't want to get
a new document. If your schema has a uniqueKey field defined such as id, then you
can provide a specific ID by passing a literal value using literal.id=34. Each time
you index the file using the same ID, it will delete and insert that document. However,
that implies that you have the ability to manage IDs through some third party system
like a database. If you want to use the metadata, such as the stream_name provided
by Tika to provide the key, then you just need to map that field using map.stream_
name=id. To make the example work, update ./examples/cores/karaoke/schema.
xml to specify <uniqueKey>id</uniqueKey>.

>> curl 'http://localhost:8983/solr/karaoke/update/extract?map.
content=text&map.stream_name=id' -F "file=@angeleyes.kar"

This of course assumes that you've defined <uniqueKey>id</uniqueKey> to be of
type string, not a number.

Indexing richer documents
Indexing karaoke lyrics from MIDI files is also a fairly trivial example. We basically
just strip out all of the contents, and store them in the Solr text field. However,
indexing other types of documents, such as PDFs, can be a bit more complicated.
Let's look at Take a Chance on Me, a complex PDF file that explains what a Monte
Carlo simulation is, while making lots of puns about the lyrics and titles of songs
from ABBA. View ./examples/appendix/karaoke/mccm.pdf, and you will
see a complex PDF document with multiple fonts, background images, complex
mathematical equations, Greek symbols, and charts. However, indexing that
content is as simple as the prior example:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?map.
content=text&map.stream_name=id&commit=true' -F "file=@mccm.pdf"

Indexing Data

[86]

If you do a search for the document using the filename as the id via
http://localhost:8983/solr/karaoke/select/?q=id:mccm.pdf, then you'll
also see that the last_modified field that we mapped in solrconfig.xml is being
populated. Tika provides a Last-Modified field for PDFs, but not for MIDI files:

<doc>
 <arr name="id">
 <str>mccm.pdf</str>
 </arr>
 <arr name="last_modified">
 <str>Sun Mar 03 15:55:09 EST 2002</str>
 </arr>
 <arr name="text">
 <str>
 Take A Chance On Me

So with these richer documents, how can we get a handle on the metadata and
content that is available? Passing extractOnly=true on the URL will output what
Solr Cell has extracted, including metadata fields, without actually indexing them:

<response>
...
<str name="mccm.pdf"><?xml version="1.0" encoding="UTF-8"?>
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Take A Chance On Me</title>
 </head>
 <body>
 <div>
 <p>
Take A Chance On Me
Monte Carlo Condensed Matter
A very brief guide to Monte Carlo simulation.
...
</str>
<lst name="mccm.pdf_metadata">
 <arr name="stream_source_info"><str>file</str></arr>
 <arr name="subject"><str>Monte Carlo Condensed Matter</str></arr>
 <arr name="Last-Modified"><str>Sun Mar 03 15:55:09 EST
 2002</str></arr>
...
 <arr name="creator"><str>PostScript PDriver module 4.49</str></arr>
 <arr name="title"><str>Take A Chance On Me</str></arr>
 <arr name="stream_content_type"><str>application/
 octet-stream</str></arr>
 <arr name="created"><str>Sun Mar 03 15:53:14 EST 2002</str></arr>
 <arr name="stream_size"><str>378454</str></arr>
 <arr name="stream_name"><str>mccm.pdf</str></arr>
</lst>
</response>

Chapter 3

[87]

At the top in an XML node called <str name="mccm.pdf"/> is the content extracted
from the PDF as an XHTML document. As it is XHTML wrapped in another separate
XML document, the various <and> tags have been escaped: <div>. If you cut
and paste the contents of <str/> node into a text editor and convert the < to < and
> to >, then you can see the structure of the XHTML document that is indexed.

Below the contents of the PDF, you can also see a wide variety of PDF
document-specific metadata fields, including subject, title, and creator, as
well as metadata fields added by Solr Cell for all imported formats, including
stream_source_info, stream_content_type, stream_size, and the
already-seen stream_name.

So why would we want to see the XHTML structure of the content? The answer
is in order to narrow down our results. We can use XPath queries through the
ext.xpath parameter to select a subset of the data to be indexed. To make up an
arbitrary example, let's say that after looking at mccm.html we know we only want
the second paragraph of content to be indexed:

>> curl 'http://localhost:8983/solr/karaoke/update/extract?map.
content=text&map.div=divs_s&capture=div&captureAttr=true&xpath=\/\/xhtml:
p[1]' -F "file=@mccm.pdf"

We now have only the second paragraph, which is the summary of what the
document Take a Chance on Me is about.

Binary file size
Take a Chance on Me is a 372 KB file stored at ./examples/appendix/
karaoke/mccm.pdf, and it highlights one of the challenges of using
Solr Cell. If you are indexing a thousand PDF documents that each
average 372 KB, then you are shipping 372 megabytes over the wire,
assuming the data is not already on Solr's file system. However, if you
extract the contents of the PDF on the client side and only send that over
the web, then what is sent to the Solr text field is just 5.1 KB. Look at
./examples/appendix/karaoke/mccm.txt to see the actual text
extracted from mccm.pdf. Generously assuming that the metadata adds
an extra 1 KB of information, then you have a total content sent over the
wire of 6.1 megabytes ((5.1 KB + 1.0 KB) * 1000).
Solr Cell offers a quick way to start indexing that vast amount of
information stored in previously inaccessible binary formats without
resorting to custom code per binary format. However, depending on the
files, you may be needlessly transmitting a lot of data, only to extract a
small portion of text. Moreover, you may find that the logic provided by
Solr Cell for parsing and selecting just the data you want may not be
rich enough. For these cases you may be better off building a dedicated
client-side tool that does all of the parsing and munging you require.

Indexing Data

[88]

Summary
At this point, you should have a schema that you believe will suit your needs, and
you should know how to get your data into it. From Solr's native XML to CSV to
databases to rich documents, Solr offers a variety of possibilities to ingest data into
the index. Chapter 8 will discuss some additional choices for importing data. In
the end, usually one or two mechanisms will be used. In addition, you can usually
expect the need to write some code, perhaps just a simple bash or ant script to
implement the automation of getting data from your source system into Solr.

Now that we've got data in Solr, we can finally get to querying it. The next chapter
will describe Solr/Lucene's query syntax in detail, which includes phrase queries,
range queries, wildcards, boosting, as well as the description of Solr's DateMath
syntax. Finally, you'll learn the basics of scoring and how to debug them. The
chapters after that will get to more interesting querying topics that of course
depend on having data to search with.

Basic Searching
At this point, you have Solr running and some data indexed, and you're finally ready
to put Solr to the test. Searching with Solr is arguably the most fun aspect of working
with it, because it's quick and easy to do. While searching your data, you will learn
more about its nature than before. It is also a source of interesting puzzles to solve
when you troubleshoot why a search didn't find a document or conversely why it
did, or similarly why a document wasn't scored sufficiently high.

In this chapter, you are going to learn about:

The Full Interface for querying Solr
Solr's query response XML
Using query parameters to configure the search
Solr/Lucene's query syntax
The factors influencing scoring

Your first search, a walk-through
We've got a lot of data indexed, and now it's time to actually use Solr for what it is
intended—searching (aka querying). When you hook up Solr to your application,
you will use HTTP to interact with Solr, either by using an HTTP software library
or indirectly through one of Solr's client APIs. However, as we demonstrate Solr's
capabilities in this chapter, we'll use Solr's web-based admin interface. Surely you've
noticed the search box on the first screen of Solr's admin interface. It's a bit too basic,
so instead click on the [FULL INTERFACE] link to take you to a query form with
more options.

•

•

•

•

•

Basic Searching

[90]

The following screenshot is seen after clicking on the [FULL INTERFACE] link:

Contrary to what the label FULL INTERFACE might suggest, this form only has a
fraction of the options you might possibly specify to run a search. Let's jump ahead
for a second, and do a quick search. In the Solr/Lucene Statement box, type *:*
(an asterisk, colon, and then another asterisk). That is admittedly cryptic if you've
never seen it before, but it basically means match anything in any field, which is to
say, it matches all documents. Much more about the query syntax will be discussed
soon enough. At this point, it is tempting to quickly hit return or enter, but that
inserts a newline instead of submitting the form (this will hopefully be fixed in
the future). Click on the Search button, and you'll get output like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">392</int>

Chapter 4

[91]

 <lst name="params">
 <str name="explainOther"/>
 <str name="fl">*,score</str>
 <str name="indent">on</str>
 <str name="start">0</str>
 <str name="q">*:*</str>
 <str name="hl.fl"/>
 <str name="qt">standard</str>
 <str name="wt">standard</str>
 <str name="version">2.2</str>
 <str name="rows">10</str>
 </lst>
</lst>
<result name="response" numFound="1002272" start="0" maxScore="1.0">
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:449119</str>
 <str name="r_a_id">56063</str>
 <str name="r_a_name">The Spotnicks</str>
 <arr name="r_attributes"><int>0</int><int>1</int><int>100</int>
 </arr>
 <arr name="r_event_country"><str>JP</str></arr>
 <arr name="r_event_date"><date>1965-11-30T05:00:00Z</date></arr>
 <str name="r_lang">English</str>
 <str name="r_name">The Spotnicks in Tokyo</str>
 <int name="r_tracks">16</int>
 <str name="type">Release</str>
 </doc>
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:186779</str>
 <str name="r_a_id">56011</str>
 <str name="r_a_name">Metro Area</str>
 <arr name="r_attributes"><int>0</int><int>1</int><int>100</int>
 </arr>
 <arr name="r_event_country"><str>US</str></arr>
 <arr name="r_event_date"><date>2001-11-30T05:00:00Z</date></arr>
 <str name="r_name">Metro Area</str>
 <int name="r_tracks">11</int>
 <str name="type">Release</str>
 </doc>
<!-- ** 7 other docs omitted for brevity ** -->
</result>
</response>

Basic Searching

[92]

Browser note
Use Firefox for best results when searching Solr. Solr's search results
return XML, and Firefox renders XML color coded and pretty-printed.
For other browsers (notably Safari), you may find yourself having to use
the View Source feature to interpret the results. Even in Firefox, however,
there are cases where you will use View Source in order to look at the
XML with the original indentation, which is relevant when diagnosing the
scoring debug output.

Solr's generic XML structured data
representation
Solr has its own generic XML representation of typed and named data structures.
This XML is used for most of the responseXML and it is also used in parts of
solconfig.xml too. The XML elements involved in this partial schema are:

lst: A named list. Each of its child nodes should have a name attribute. This
generic XML is often stored within an element not part of this schema, like
doc, but is in effect equivalent to lst.
arr: An array of values. Each of its child nodes are a member of this array.

The following elements represent simple values with the text of the element storing
the value. The numeric ranges match that of the Java language. They will have a
name attribute if they are underneath lst (or an equivalent element like doc), but
not otherwise.

str: A string of text
int: An integer in the range -2^31 to 2^31-1
long: An integer in the range -2^63 to 2^63-1
float: A floating point number in the range 1.4e-45 to about 3.4e38
double: A floating point number in the range 4.9e-324 to about 1.8e308
bool: A boolean value represented as true or false
date: A date in the ISO-8601 format like so: 1965-11-30T05:00:00Z, which
is always in the GMT time zone represented by Z

•

•

•

•

•

•

•

•

•

Chapter 4

[93]

Solr's XML response formatresponse format format
The <response/> element wraps the entire response.

The first child element is <lst name="responseHeader">, which is intuitively the
response header that captures some basic metadata about the response.

status: Always zero unless something went very wrong.
QTime: The number of milliseconds Solr takes to process the entire request
on the server. Due to internal caching, you should see this number drop to
a couple of milliseconds or so for subsequent requests of the same query. If
subsequent identical searches are much faster, yet you see the same QTime,
then your web browser (or intermediate HTTP Proxy) cached the response.
Solr's HTTP caching configuration is discussed in Chapter 9.
Other data may be present depending on query parameters.

The main body of the response is the search result listing enclosed by this:
<result name="response" numFound="1002272" start="0" maxScore="1.0">,
and it contains a <doc> child node for each returned document. Some of the fields
are explained below:

numFound: The total number of documents matched by the query. This is not
impacted by the rows parameter and as such may be larger (but not smaller)
than the number of child <doc> elements.
start: The same as the start parameter, which is the offset of the returned
results into the query's result set.
maxScore: Of all documents matched by the query (numFound), this is the
highest score. If you didn't explicitly ask for the score in the field list using
the fl parameter, then this won't be here. Scoring is described later in
this chapter.

The contents of the resultant element are a list of doc elements. Each of these
elements represents a document in the index. The child elements of a doc element
represent fields in the index and are named correspondingly. The types of these
elements are in the generic data structure partial schema, which was described
earlier. They are simple values if they are not multi-valued in the schema. For
multi-valued values, the field would be represented by an ordered array of
simple values.

There was no data following the results element in our demonstration query.
However, there can be, depending on the query parameters using features such as
faceting and highlighting. When those features are described, the corresponding
XML will be explained.

•

•

•

•

•

•

Basic Searching

[94]

Parsing the URL
The search form is a very simple thing, no more complicated than a basic one you
might see in a tutorial if you are learning HTML for the first time. All that it does is
submit the form using HTTP GET, essentially resulting in the browser loading a new
URL with the form elements becoming part of the URL's query string. Take a good
look at the URL in the browser page showing the XML response. Understanding the
URL's structure is very important for grasping how search works:

http://localhost:8983/solr/select?indent=on&version=2.2&q=*%3A*&start
=0&rows=10&fl=*%2Cscore&qt=standard&wt=standard&explainOther=&hl.fl=

The /solr/ is the web application context where Solr is installed on the Java
servlet engine. If you have a dedicated server for Solr, then you might opt to
install it at the root. This would make it just /. How to do this is out of scope
of this book, but letting it remain at /solr/ is fine.
After the web application context is a reference to the Solr core
(we don't have one for this configuration). We'll configure Solr Multicore
in Chapter 7, at which point the URL to search Solr would look something
like /solr/corename/select?...
The /select in combination with the qt=standard parameter is a reference
to the Solr request handler. More on this is covered later under the
Request Handler section. As the standard request handler is the default
handler, the qt parameter can be omitted in this example.
Following the ?, is a set of unordered URL parameters (aka query parameters
in the context of searching). The format of this part of the URL is an &
separated set of unordered name=value pairs. As the form doesn't have an
option for all query parameters, you will manually modify the URL in your
browser to add query parameters as needed.

Remember that the data in the URL must be URL-Encoded so that the
URL complies with its specification. Therefore, the %3A in our example is
interpreted by Solr as :, and %2C is interpreted as ,. Although not in our
example, the most common escaped character in URLs is a space, which
is escaped as either + or %20. For more information on URL encoding see
http://en.wikipedia.org/wiki/Percent-encoding.

•

•

•

•

Chapter 4

[95]

Query parameters
There are a great number of query parameters for configuring Solr searches,
especially when considering all of the components like faceting and highlighting.
Only the core parameters are listed here, furthermore, in-depth explanations for
some lie further in the chapter.

For the boolean parameters, a true value can be any one of true,
on, or yes. False values can be any of false, off, and no.

Parameters affecting the query
The parameters affecting the query are as follows:

q: The query string, aka the user query or just query for short. This
typically originates directly from user input. The query syntax will be
discussed shortly.
q.op: By default, either AND or OR to signify if, all of the search terms or just
one of the search terms respectively need to match. If this isn't present, then
the default is specified near the bottom of the schema file (an admittedly
strange place to put the default).
df: The default field that will be searched by the user query. If this isn't
specified, then the default is specified in the schema near the bottom in the
defaultSearchField element. If that isn't specified, then an unqualified
query clause will be an error.

Searching more than one field
In order to have Solr search more than one field, it is a common technique
to combine multiple fields into one field (indexed, multi-valued, not
stored) through the schema's copyField directive, and search that
by default instead. Alternatively, you can use the dismax query type
through defType, described in the next chapter, which features varying
score boosts per field.

defType: A reference to the query parser. The default is "lucene" with the
syntax to be described shortly. Alternatively there is "dismax" which is
described in the next chapter.
fq: A filter query that limits the scope of the user query. Several of these can
be specified, if desired. This is described later.
qt: A reference to the query type, aka query handler. These are defined in
solrconfig.xml and are described later.

•

•

•

•

•

•

Basic Searching

[96]

Result paging paging
A query could match any number of the documents in the index, perhaps even
all of them (such as in our first example of *:*). Solr doesn't generally return all
the documents. Instead, you indicate to Solr with the start and rows parameters
to return a contiguous series of them. The start and rows parameters are
explained below:

start: (default: 0) This is the zero based index of the first document to be
returned from the result set. In other words, this is the number of documents
to skip from the beginning of the search results. If this number exceeds the
result count, then it will simply return no documents, but it is not considered
as an error.
rows: (default: 10) This is the number of documents to be returned in the
response XML starting at index start. Fewer rows will be returned if there
aren't enough matching documents. This number is basically the number of
results displayed at a time on your search user interface.

It is not possible to ask Solr for all rows, nor would it be pragmatic for
Solr to support that. Instead, ask for a very large number of rows, a
number so big that you would consider there to be something wrong if
this number were reached. Then check for this condition, and log it or
throw an error. You might even want to prevent users (and web crawlers)
from paging farther than 1000 or so documents into the results, because
Solr doesn't scale well with such requests, especially under high load.

Output related parametersparameters
The output related parameters are explained below:

fl: This is the field list, separated by commas and/or spaces. These fields are
to be returned in the response. Use * to refer to all of the fields but not the
score. In order to get the score, you must specify the pseudo-field score.
sort: A comma-separated field listing, with a directionality specifier
(asc or desc) after each field. Example: r_name asc, score desc. The
default is score desc. There is more to sorting than meets the eye,
which is explained later in this chapter.

•

•

•

•

Chapter 4

[97]

wt: A reference to the writer type (aka query response writer) defined
in solrconfig.xml. This is essentially the output format. Most output
formats share a similar conceptual structure but they vary in syntax. The
language-oriented formats are for scripting languages that have an eval()
type method, which can conveniently turn a string into a data structure by
interpreting the string as code. Here is a listing of the formats supported by
Solr out-of-the-box:

xml (aliased to standard, the default): This is the XML format
seen throughout most of the book.
javabin: A compact binary output used by SolrJ.
json: The JavaScript Object Notation format for JavaScript
clients using eval(). http://www.json.org/
python: For Python clients using eval().
php: For PHP clients using eval(). Prefer phps instead.
phps: PHP's serialization format for use with unserialize().
http://www.hurring.com/scott/code/perl/serialize/

ruby: For Ruby clients using eval().
xslt: An extension mechanism using the eXtensible
Stylesheet Transformation Language to output other formats.
An XSLT file is placed in the conf/xslt/ directory and is
referenced through the tr request parameter. A great use
of this technique is for exposing an RSS (Really Simple
Syndication) or Atom feed. The Solr distribution includes
examples of both.

A practical use of the XSLT option is to expose an RSS/Atom feed on your
search results page. With very little work on your part, you can empower
users to subscribe to a search to monitor for new data! Look at the Solr
examples for a head start.

Custom output formats:
Usually you won't need a custom output format since you'll be writing
the client and can use a Solr integration library like SolrJ or just talk to
Solr directly with an existing response format. If you do need to support a
special format, then you have three choices. The most flexible is to write the
mediation code to talk to Solr that exposes the special format/protocol. The
simplest if it will suffice is to use XSLT, assuming you know that technology.
Finally, you could write your own query response writer.

•

°

°

°

°

°

°

°

°

Basic Searching

[98]

version: The requested version of the response XML's formatting. This is
not particularly useful at the time of writing. However, if Solr's responseXML
changes, then it will do so under a new version. By using this in the request
(a good idea for your automated querying), you reduce the chances of your
client breaking if Solr is updated.

Diagnostic query parameters query parameters
These diagnostic parameters are helpful during development with Solr. Obviously,
you'll want to be sure NOT to use these, particularly debugQuery, in a production
setting because of performance concerns. The use of debugQuery will be explained
later in the chapter.

indent: A boolean option, when enabled, will indent the output. It works for
all of the response formats (example: XML, JSON, and so on)
debugQuery: If true, then following the search results is
<lst name="debug">, and it contains voluminous information about
the parsed query string, how the scores were computed, and millisecond
timings for all of the Solr components to perform their part of the processing
such as faceting. You may need to use the View Source function of your
browser to preserve the formatting used in the score computation section.

explainOther: If you want to determine why a particular
document wasn't matched by the query, or the query
matched many documents and you want to ensure that you
see scoring diagnostics for a certain document, then you can
put a query for this value, such as id:"Release:12345",
and debugQuery's output will be sure to include documents
matching this query in its output.

echoHandler: If true, then this emits the Java class name identifying the Solr
query handler. Solr query handlers are explained later.
echoParams: Controls if any query parameters are returned in the response
header (as seen verbatim earlier). This is for debugging URL encoding issues
or for checking which parameters are set in the request handler, but is not
particularly useful. Specifying none disables this, which is appropriate for
production real-world use. The standard request handler is configured
for this to be explicit by default, which means to list those parameters
explicitly mentioned in the request (for example the URL). Finally, you can
use all to include those parameters configured in the request handler in
addition to those in the URL.

•

•

•

°

•

•

Chapter 4

[99]

Query syntax
Solr's query syntax is Lucene's syntax with a couple of additions that will be pointed
out explicitly. What Solr/Lucene does is parse a query string using the rules outlined
in this section to construct an internal query object tree. The existence of this feature
(which is easy to take for granted) allows you or a user to express much more
interesting queries than just AND-ing or OR-ing terms specified through q.op. The
syntax that is discussed in this chapter can be thought of as the full Solr/Lucene
syntax. There are no imposed limitations. If you do not want users to have this full
expressive power (perhaps because they might unintentionally use this syntax and it
either won't work or an error will occur), then you can choose an alternative with the
defType query parameter. This defaults to lucene, but can be set to dismax, which is
a reference to the DisjunctionMax parser. The parser and this mechanism in general
will be discussed in the next chapter.

In the following examples:

1. q.op is set to OR (which is the default choice, if it isn't specified anywhere).
2. The default field has been set to a_name in the schema.
3. You may find it easier to scan the resulting XML if you set the field list to

a_name, score.

Use debugQuery=on
To see a normalized string representation of the parsed
query tree, enable query debugging. Then look for
parsedquery in the debug output. See how it changes
depending on the query.

Matching all the documents
Lucene doesn't natively have a query syntax to match all documents. Solr enhanced
Lucene's query syntax to support it with the following syntax:

:

It isn't particularly common to use this, but it definitely has its uses.

Mandatory, prohibited, and optional clauses
Lucene has a somewhat unique way of combining multiple clauses in a query string.
It is tempting to think of this as a mundane detail common to boolean operations in
programming languages, but Lucene doesn't quite work that way.

Basic Searching

[100]

A query expression is decomposed into a set of unordered clauses of three types:

A clause can be mandatory: (for example, only artists containing the
word Smashing)
+Smashing

A clause can be prohibited: (for example, all documents except those
with Smashing)
-Smashing

A clause can be optional:
Smashing

It's okay for spaces to come between + or - and the
search word.

The term optional deserves further explanation. If the query expression contains
at least one mandatory clause, then any optional clause is just that—optional. This
notion may seem nonsensical, but it serves a useful function in scoring documents
that match more of them higher. If the query expression does not contain any
mandatory clauses, then at least one of the optional clauses must match. The next two
examples illustrate optional clauses.

Here, Pumpkins is optional, and my favorite band will surely be at the top of the list,
ahead of bands with names like Smashing Atoms:

+Smashing Pumpkins

Here, there are no mandatory clauses and so documents with Smashing or Pumpkins
are matched, but not Atoms. Again, my favorite band is at the top because it matched
both, though there are other bands containing one of those words too:

Smashing Pumpkins -Atoms

Boolean operators
The boolean operators AND, OR, and NOT can be used as an alternative syntax to arrive
at the same set of mandatory, prohibited, and optional clauses that were mentioned
previously. Use the debugQuery feature, and observe that the parsedquery string
normalizes-away this syntax into the previous (clauses being optional by default
such as OR).

Case matters! At least this means that it is harder to accidentally
specify a boolean operator.

•

•

•

Chapter 4

[101]

When the AND or && operator is used between clauses, then both the left and right
sides of the operand become mandatory, if not already marked as prohibited. So:

Smashing AND Pumpkins

is equivalent to:

+Smashing +Pumpkins

Similarly, if the OR or || operator is used between clauses, then both the left and
right sides of the operand become optional, unless they are marked mandatory or
prohibited. If the default operator is already OR then this syntax is redundant. If the
default operator is AND, then this is the only way to mark a clause as optional.

To match artist names that contain Smashing or Pumpkins try:

Smashing || Pumpkins

The NOT operator is equivalent to the - syntax. So to find artists with Smashing but
not Atoms in the name, you can do this:

Smashing NOT Atoms

We didn't need to specify a + on Smashing. This is because, as the only optional
clause in the absence of mandatory clauses, it must match. Likewise, using an AND
or OR would have no effect in this example.

It may be tempting to try to combine AND with OR such as:

Smashing AND Pumpkins OR Green AND Day

However, this doesn't work as you might expect. Remember that AND is equivalent
to both sides of the operand being mandatory, and thus each of the four clauses
becomes mandatory. Our data set returned no results for this query. In order to
combine query clauses in some ways, you will need to use sub-expressions.

Sub-expressions (aka sub-queries)
You can use parenthesis to compose a query of smaller queries. The following
example satisfies the intent of the previous example:

(Smashing AND Pumpkins) OR (Green AND Day)

Using what we know previously, this could also be written as:

(+Smashing +Pumpkins) (+Green +Day)

But this is not the same as:

+(Smashing Pumpkins) +(Green Day)

Basic Searching

[102]

The sub-query above is interpreted as documents that must have a name with either
Smashing or Pumpkins and either Green or Day in its name. So if there was a band
named Green Pumpkins, then it would match. However, there isn't.

Limitations of prohibited clauses in sub-expressions
Lucene doesn't actually support a pure negative query, for example:

-Smashing -Pumpkins

Solr enhances Lucene to support this, but only at the top level query expression such
as in the example above. Consider the following admittedly strange query:

Smashing (-Pumpkins)

This query attempts to ask the question: Which artist names contain either Smashing
or do not contain Pumpkins? However, it doesn't work and only matches the first
clause—(4 documents). The second clause should essentially match most documents
resulting in a total for the query that is nearly every document. The artist named
Wild Pumpkins at Midnight is the only one in my index that does not contain
Smashing but does contain Pumpkins, and so this query should match every
document except that one. To make this work, you have to take the sub-expression
containing only negative clauses, and add the all-documents query clause: *:*,
as shown below:

Smashing (-Pumpkins *:*)

Hopefully a future version of Solr will make this work-around unnecessary.

Field qualifier
To have a clause explicitly search a particular field, precede the relevant clause with
the field's name, and then add a colon. Spaces may be used in-between, but that is
generally not done.

a_member_name:Corgan

This matches bands containing a member with the name Corgan. To match, Billy
and Corgan:

+a_member_name:Billy +a_member_name:Corgan

 Or use this shortcut to match multiple words:

a_member_name:(+Billy +Corgan)

Chapter 4

[103]

The content of the parenthesis is a sub-query, but with the default field being
overridden to be a_member_name, instead of what the default field would be
otherwise. By the way, we could have used AND instead of + of course. Moreover,
in these examples, all of the searches were targeting the same field, but you can
certainly match any combination of fields needed.

Phrase queries and term proximity
A clause may be a phrase query (a contiguous series of words to be matched in that
order) instead of just one word at a time. In the previous examples, we've searched
for text containing multiple words like Billy and Corgan, but let's say we wanted to
match Billy Corgan (that is the two words adjacent to each other in that order). This
further constrains the query. Double quotes are used to indicate a phrase query, as
shown below:

"Billy Corgan"

Related to phrase queries is the notion of the term proximity, aka the slop factor or
a near query. In our previous example, if we wanted to permit these words to be
separated by no more than say three words in–between, then we could do this:

"Billy Corgan"~3

For the MusicBrainz data set, this is probably of little use. For larger text fields, this
can be useful in improving search relevance. The dismax search handler, which is
described in the next chapter, can automatically turn a user's query into a phrase
query with a configured slop. However, before adding slop, you may want to gauge
its impact on query performance.

Wildcard queries
A Lucene index fundamentally stores analyzed terms (words after lowercasing and
other processing), and that is generally what you are searching for. However, if you
really need to, you can search on partial words. But there are issues with this:

No text analysis is performed on the search word. So if you want to find a
word starting with Sma, then Sma* will find nothing but sma* will, assuming
that typical text analysis like lowercasing is performed. Moreover, if the field
that you want to use the wildcard query on is stemmed in the analysis, then
smashing* would not find the original text Smashing, because the stemming
process transforms this to smash. If you want to use wildcard queries, you
may find yourself lowercasing the text before searching it to overcome
that problem.

•

Basic Searching

[104]

Wildcard processing is much slower, especially if there is a leading wildcard,
and it has hard-limits that are easy to reach if your data set is not very small.
You should perform tests on your data set to see if this is going to be a
problem or not. The reasons why this is slow are as follows:

Every term ever used in the field needs to be iterated over to
see if it matches the wildcard pattern.
Every matched term is added to an internal query, which
could grow to be large, but will fail if it attempts to grow
larger than 1024 different terms.

Leading wildcards are not enabled in Solr. If you are comfortable writing a
little Java, then you can modify Solr's QueryParser or write your own and
set setAllowLeadingWildcard to true.

If you really need substring matches and on your data, then there is an
advanced strategy discussed in the previous chapter involving what is
known as N-Gram indexing.

To find artists containing words starting with Smash, you can do:

smash*

Or perhaps those starting with sma and ending with ing:

sma*ing

The asterisk matches any number of characters (perhaps none). You can also use ?
to force a match of any character at that position:

sma??*

That would match words that start with sma and that have at least two more
characters but potentially more.

You can put a wildcard at the front, if you've enabled this with a bit of
custom programming.

A nice thing about the wildcard matching is that the scoring is influenced by how
close the indexed term is to the query pattern. So a word Smash might get a higher
score than Smashing in the previous example. I say might because this is just one
factor in the score.

•

°

°

•

Chapter 4

[105]

Fuzzy queriesqueries
Fuzzy queries are useful when your search term needn't be an exact match, but
the closer the better. The fewer the number of character insertions, deletions, or
exchanges relative to the search term length, the better the score. The algorithm used
is known as the Levenstein Distance algorithm. Fuzzy queries suffer from some of
the same problems as the wildcard queries just described, but it is not as serious.
For example:

Smashing~

Notice the tilde character at the end. Without this notation, simply Smashing would
match only four documents because only that many artist names contain that word.
Smashing~ matched 578, words and it took my computer 706 milliseconds. You can
modify the proximity threshold, which is a number between 0 and 1, defaulting to
0.5. For instance, changing the proximity to a more stringent 0.7:

Smashing~0.7

Twenty-five matched documents resulted and it took 388 milliseconds. If you
want to use fuzzy queries, then you should consider experimenting with
different thresholds.

As with wildcard queries, fuzzy queries also influence the score so that closer
matched terms generally score higher.

To illustrate how text analysis can still pose a problem, consider the search for:

SMASH~

There is an artist named S.M.A.S.H., and our analysis configuration emits smash as
a term. So SMASH would be a perfect match, but adding the tilde results in a search
term in which every character is different due to the upper/lower case difference
and so this search returns nothing. As with wildcard searches, if you intend on using
fuzzy searches then you might want to consider lowercasing the query string.

Range queries
Lucene lets you query for numeric, date, and even text ranges. The following query
matches all of the bands formed in the 1990s:

a_type:2 AND a_begin_date:[1990-01-01T00:00:00.000Z TO 1999-12-
31T24:59:99.999Z]

Basic Searching

[106]

Observe that the date format is the full ISO-8601 date-time in GMT, which Solr
mandates (the same format used by Solr to index dates and that which is emitted in
search results). The fractional seconds part (milliseconds) is actually optional. The
[and] brackets signify an inclusive range, and therefore it includes the dates on
either end. To specify an exclusive range, use { and } but note that you can't mix
and match, either the range is exclusive or inclusive.

Remember to use sortable numeric field types
In order to do numeric ranges, you must index the field with one of the
sortable variations, such as sint or sfloat. The range query might
return results, but it will most likely be incorrect.

For most numbers in the MusicBrainz schema, we have only identifiers, and so it
made no sense to index them for sortability. There is more, but not much memory
used internally for sortable fields. So, if there is a chance you might sort on it, then
prefer the sortable variants. For our track count on the tracks data, we could do a
query such as this to find all of the tracks that are longer than 5 minutes (300 seconds):

t_duration:[300000 TO *]

In this example, we can see Solr's support for open-ended range queries by using *.
This feature is not in Lucene.

Although uncommon, you can also use range queries with text fields. For this to have
any use, the field should have only one term indexed. You can control this either by
using no analysis, or by using very little of it, perhaps with keywordTokenizer. You
may want to do some experimentation. The following example finds all documents
where somefield has a term starting with B. It also finds C by itself if it exists.

somefield:[B TO C]

Date math
Solr extended Lucene with some date-time math that is especially useful in specifying
date ranges. In addition, there is a way to specify the current date-time using NOW. The
syntax offers addition, subtraction, and rounding at various levels of date granularity
(years, seconds, and so on.) The operations can be chained together as needed, in which
case they are executed from left to right. Spaces aren't allowed. For example:

r_event_date:[* TO NOW-2YEAR]

Chapter 4

[107]

In the example above, we searched for documents where an album had a release date
of before two years (two years before now), but not afterwards. NOW has millisecond
precision. Let's say what we really wanted was precision to the day. By using / we can
round down (it never rounds up):

r_event_date:[* TO NOW/DAY-2YEAR]

The units to choose from are: YEAR, MONTH, DAY, DATE (synonymous with DAY),
HOUR, MINUTE, SECOND, MILLISECOND, and MILLI (synonymous with MILLISECOND).
Furthermore, they can be pluralized by adding an S as in YEARS.

This so-called DateMath syntax is not just for querying dates, it is for
supplying dates to be indexed by Solr too. When supplying dates to Solr
for indexing, consider concatenating a rounding operation to a courser
time granularity sufficient for your needs. Solr will evaluate the math and
index the result. Full millisecond precision time take up more disk space
and are slower to query than more course granularity times. Another
index-time common usage is to timestamp added data. Using the NOW
syntax as the default attribute of a timestamp field definition makes
this easy.

Score boosting
You can easily modify the degree to which a clause in the query string contributes
to the ultimate score by adding a multiplier. This is call boosting. A value between
0 and 1 reduces the score, and numbers greater than 1 increase it. Scoring details are
described later in this chapter. In the following example, we search for artists (a band
is a type of artist in MusicBrainz) that either have a member named Billy, or have a
name containing the word Smashing.

a_member_name:Billy^2 OR Smashing

Here we search for artists named Billy, and either Bob or Corgan, but we're less
interested in those that are also named Corgan:

+Billy Bob Corgan^0.7

Existence (and non-existence) queries
This is actually not a new syntax case, but an application of range queries. Suppose
you wanted to match all of the documents that have a value in a field (whatever that
value is, it doesn't matter). Here we find all of the documents that have a_name:

a_name:[* TO *]

As a_name is the default field, just [* TO *] will do.

Basic Searching

[108]

This can be negated to find documents that do not have a value for a_name, as
shown below:

-a_name:[* TO *]

Escaping special characters
The following characters are used by the query syntax, as described in this chapter:

+ - && || ! () { } [] ^ " ~ * ? : \

In order to use any of these without their syntactical meaning, you need to escape them
by a preceding \:

id:Artist\:11650

In some cases such as this one where the character is part of the text that is indexed, the
double-quotes phrase query will also work, even though there is only one term:

id:"Artist:11650"

Filtering
Filtering in Solr is really quite simple. Let's say you are dispatching a user's query to
Solr, but you want to limit the scope of that query further than what the query might
be doing. As an example, let's say we wanted to make a search form for MusicBrainz
that lets the user search for bands, not individual artists. Let's also say that the user's
query string is Green. In the index, a_type is either 1 for an individual, 2 for a band,
and 0 if unknown. Therefore, a clause that would find non-individuals would be
this, combined with the user's query:

+Green +type:Artist -a_type:1

However, you should not use this approach.

Instead, use multiple fq query parameters, and leave the query string blank:

q=Green&fq=type%3AArtist&fq=-a_type%3A1

Remember that in the URL snippet above we needed to URL Encode special
characters like the colons.

Filters:

Improve performance, because each filter query is cached.
Do not affect the scores of matched documents (nor would you want
them to).

•

•

Chapter 4

[109]

Are easier to apply rather than modifying the user's query, which is error
prone. Making a mistake could even expose data you are trying to hide
(similar in spirit to SQL injection attacks).
Clarify the logs, which show what the user queried for without it being
confused with the filters.

In general, raw user query text doesn't wind up being part of a filter-query. Instead,
the filters are usually known by your application in advance. Although it wouldn't
necessarily be a problem for user query text to become a filter, there may be
scalability issues if many unique filter queries end up being performed that
don't get re-used and so consume needless memory.

Sorting
The sorting specification is specified with the sort query parameter. The default is
to sort by score in a descending order. In order to sort in an ascending order, you
would put this in the URL:

sort=score+asc

That was URL-encoded. Therefore, there is a + instead of a space. %20
might have been used too.

In the following example, suppose we searched for artists that are not individuals
(a previous example in the chapter), then we might want to ensure that those that
are surely bands get top placement ahead of those that are unknown (2's then 0's).
Secondly, we want the typical score descending search. This would simply be:

sort=a_type+desc,score+desc

Use the right field type/analysis!
Using the wrong field type or analysis configuration will not result in an
error, just bad results! For sorting on numbers, you will want to use the
sortable variants of the number types documented in the schema: sint,
slong, sfloat, and sdouble. Dates are sortable, as are booleans. For
sensible results with text, no tokenization should occur so that only one
term gets indexed. Either don't do any text-analysis or use very little such
as KeywordTokenizer with LowerCaseFilterFactory. You may
need to copy the field to another, explicitly for sorting purposes.

•

•

Basic Searching

[110]

Request handlers
Querying Solr, and most other interactions with Solr including indexing for that
matter, is processed by what Solr calls a request handler. Request handlers are
configured in the solrconfig.xml file and are clearly labeled as such. Most of
them exist for special purposes like handling a CSV import, for example. Our
searches in this chapter have been directed to a request handler labeled standard
due to the presence of qt=standard in the URL. It happens to be the default that
/select chooses, if not specified. Here is how this query handler is configured:

<requestHandler name="standard" class="solr.SearchHandler"
 default="true">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <!--
 <int name="rows">10</int>
 <str name="fl">*</str>
 <str name="version">2.1</str>
 -->
 </lst>
</requestHandler>

The request handlers that perform searches allow configuration of two things:

Establishing default parameters and making some unchangeable
Registering Solr search components such as faceting and highlighting

Create a request handler configuration for your application.
Instead of using the standard request handler for use by the
application you are building, it is a good idea to create a request
handler just for your application, perhaps even several to satisfy
multiple search forms. In doing so, you can change various search
aspects more easily in Solr through re-configuration, instead of having
your application hard-wired more than it has to be. This centralizes
the search configuration a bit more too.

By copying the standard configuration, removing the default boolean setting, and
giving it a name such as mb_artists, we can now use this request handler with
qt=mb_artists in the URL as shown below:

/solr/select?qt=mb_artists&q=Smashing&.....

•

•

Chapter 4

[111]

An alternative to this is to precede the name with / in your configuration. Now this
handler is invoked like this:

/solr/mb_artists&q=Smashing&.....

Let's now configure this request handler to filter searches to find only artists, without
the querying application having to specify this. We'll also set few other options.

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">none</str>
 <int name="rows">20</int>
 </lst>
 <lst name="appends">
 <str name="fq">type:Artist</str>
 </lst>
 <lst name="invariants">
 <str name="facet">false</str>
 </lst>
</requestHandler>

Request handlers have several lists to configure. These use Solr's Generic XML data
structure, which was described earlier.

defaults: These simply establish default values for various request
parameters. The client (aka the application or user) is free to change them.
appends: For parameters that can be set multiple times (like fq), this section
specifies values that will be set in addition to any that may be specified by
the client.
invariants: Sets defaults that cannot be overridden. This is useful for
security purposes.
first-components, components, last-components: These list the Solr
search components to be registered for possible use with this request handler.
By default, a set of search components are already registered to enable
functionality such as querying and faceting. Setting first-components
or last-components would prepend or append to this list respectively,
whereas setting components would override the list completely. For more
information about search components, read Chapter 6.

•

•

•

•

Basic Searching

[112]

Scoring
Scoring in Lucene is an advanced subject, but in spite of this it is important to at least
have a basic understanding of it. Instead of presenting the algorithm, comprehension
of which is a bit of an advanced subject and not suitable for this chapter or even
this book, we will discuss the factors influencing the score and where to look for
diagnostic scoring information. If this overview is insufficient for your interest, then
you can get the full details here at http://lucene.apache.org/java/2_4_1/api/
org/apache/lucene/search/Similarity.html

Before some of these factors are described, keep in mind that no matter how
complicated a query might be, they fundamentally boil down to a combination of
term lookups of indexed terms, and this is on a field-basis (not entire documents).

An important thing to understand about scores is not to attribute much meaning to
a score by itself; it's almost meaningless. The relative value to the max score is more
relevant. A document scored as 0.25 might be a great match or not, there's no telling.
But if you compare this score to another from the very same search and find it to be
twice as large, then it is fair to say that the document matched the query twice as
well. This being said, you will usually find that scores in the vicinity of 0.5 or better
are decent matches. The factors influencing the score are as follows:

Term Frequency—tf: The more times a term is found in a document's field,
the higher the score it gets. This concept is most intuitive. Obviously, it
doesn't matter how many times the term may appear in some other field, it's
the searched field that is relevant (whether explicitly targeted or the default).
Inverse Document Frequency—idf: The document frequency is the number
of documents in which the term appears (on a per-field basis, of course). It
is the inverse of the document frequency that is positively correlated with the
score. In short, rare terms result in higher scores.
Co-ordination Factor—coord: The greater the number of queried terms
match, the greater the score—all things being equal otherwise. Any
mandatory clauses must match and the prohibited ones must not match,
leaving the relevance of this piece of the score to situations where there are
multiple optional clauses.
Field Length—fieldNorm: The shorter the matching field is (measured in
number of indexed terms), the greater the matching document's score will be.
For example, if there was a band named just Smashing, and another named
Smashing Pumpkins, then this factor in the scoring would be higher for the
first band upon a search for just Smashing, as it has one word, while the
other has two. Remember that norms can be omitted from some fields in
the schema configuration.

•

•

•

•

Chapter 4

[113]

Query-time and index-time boosting
At index-time, you have the option to boost a particular document (entirely or just a
field). This is internally stored as part of the norms number, which must be enabled
for this to work. It's uncommon to perform index-time boosting.

At query-time, we have described earlier how to boost a particular clause of a
query higher or lower if needed. Later the powerful Disjunction-Max (dismax for
short) query will be demonstrated, which can apply searches to multiple fields with
different boosting levels automatically.

Troubleshooting scoring
An invaluable tool in diagnosing scoring behavior is enabling query debugging with
the debugQuery query parameter. There is no better way to describe it than with an
example. Consider the fuzzy query:

a_name:Smashing~

We would intuitively expect that documents with fields containing Smashing
would get the top scores, but that didn't happen. Execute the query mentioned
above with debugQuery=on, and ensure that you're looking at the original
indentation by using the View Source feature in your browser. Try right-clicking
the XML to see the option.

The top score is 2.844, and there were two documents matching, neither with
Smashing. One had Mashina, and the other had Smashin'.

 <doc>
 <float name="score">2.8440614</float>
 <str name="a_name">Mashina</str>
 </doc>
 <doc>
 <float name="score">2.8440614</float>
 <str name="a_name">Smashin'</str>
 </doc>
 <doc>
 <float name="score">2.72019</float>
 <str name="a_name">Smashing Atoms</str>
 </doc>

Both the first two documents have words that differ from smashing by only two
characters (remember the case difference). The third document finally matched
Smashing. Its score was a little less, but not enough to overtake the top two. What's
going on here? Let's look at the following debug output, showing the first and the
third document. We'll skip the second, as it has the same score as the first:

Basic Searching

[114]

<lst name=”explain”>
 <str name=”Artist:227132”>
2.8440614 = (MATCH) sum of:
 2.8440614 = (MATCH) weight(a_name:mashina^0.42857146 in 890035),
 product of:
 0.20135471 = queryWeight(a_name:mashina^0.42857146),
 product of:
 0.42857146 = boost
 14.124633 = idf(docFreq=1, numDocs=1002272)
 0.033262998 = queryNorm
 14.124633 = (MATCH) fieldWeight(a_name:mashina in 890035),
 product of:
 1.0 = tf(termFreq(a_name:mashina)=1)
 14.124633 = idf(docFreq=1, numDocs=1002272)
 1.0 = fieldNorm(field=a_name, doc=890035)
 </str>
<!-- skip 2nd doc ...-->
 <str name=”Artist:93855”>
2.72019 = (MATCH) sum of:
 2.72019 = (MATCH) weight(a_name:smashing^0.75 in 612886),
 product of:
 0.32951176 = queryWeight(a_name:smashing^0.75),
 product of:
 0.75 = boost
 13.208342 = idf(docFreq=4, numDocs=1002272)
 0.033262998 = queryNorm
 8.255214 = (MATCH) fieldWeight(a_name:smashing in 612886),
 product of:
 1.0 = tf(termFreq(a_name:smashing)=1)
 13.208342 = idf(docFreq=4, numDocs=1002272)
 0.625 = fieldNorm(field=a_name, doc=612886)
 </str>

What we see here is the mathematical breakdown of the various components of the
score. We see that mashina (the term actually in the index) was given a query-time
boost of 0.43, whereas smashing was given a query-time boost of 0.75. We expected
this because the fuzzy matching was going to give higher weights to stronger
matches, and it did. However, other factors pulled the final score in the other
direction. Notice that the fieldNorm for mashina was 1.0 whereas smashing had a
fieldNorm of 0.625. This is because the document we wanted to score higher had
a field with more indexed terms (Smashing Atoms) versus just the one that Mashina
had. So arguably, Mashina is a closer match than Smashing Atoms to the fuzzy
query Smashing~.

Chapter 4

[115]

Summary
At this point, you've learned the basics of searching in Solr, from query parameters
to interpreting the search results to nearly the full gamut of Solr's query syntax to
the essential factors of scoring. We have spent a lot of time on the query syntax
because you'll see the syntax pop-up in several places across Solr, not just the user's
query. Such places include filtering the query, deleting by query, and query warming
(discussed in later chapters). Even if you don't wish to expose the syntax to your
users, you will probably be using it for various things. In the next chapter, you'll
learn more about querying, notably advanced function queries, and the ever-useful
Dismax query handler. You'll also learn about faceting—arguably the most important
Solr search component beyond searching itself.

Enhanced Searching
So we've got the searching basics down, and we even know a thing or two about
more advanced topics like scoring. In this chapter, we'll extend the searching topic
into more advanced features of Solr's searching capabilities, such as:

function queries
the Dismax query handler
faceting

Function queries
A function query allows you to introduce a component of the score that is computed,
based on a mathematical expression of your choice involving indexed field value(s).
This is not a replacement for Lucene's scoring algorithm, but it basically adds to the
existing score.

A bad name for this feature
The name of this feature is poor as it does not reflect what it does.
Perhaps Scoring Function or even Score Query might have been
better. The reason for the name Function Query undoubtedly stems
from the manner in which the feature is implemented. It is implemented
as a Lucene Query type, albeit a very strange one that matches all of the
documents but scores them differently.

There are two ways in which you can incorporate a function query into your
searches in Solr:

with the standard request handler using the _val_ pseudo-field hack.
with the dismax request handler using the bf parameter.

•

•

•

•

•

Enhanced Searching

[118]

The latter is cleaner, and you'll probably use that approach. The dismax handler and
this parameter is described a little later in this chapter. Given next is an example of
the _val_ trick with the standard request handler (the one we've been using so far):

t_name:Daydreaming && _val_:"t_trm_lookups"^0.01

The first query clause is a search of tracks containing Daydreaming. The
second clause is the function query clause. The actual function query
is simply t_trm_lookups with a boost of 0.01. This query and more
complicated ones involving functions will be explained shortly.
The use of _val_ suggests that there is a field by this name, but there isn't.
This is a hack so that the existing Lucene syntax can be used.
The quotes around the function query are used to escape the function
query from potential syntactical conflicts with Lucene's query syntax. These
characters are listed in the last chapter. This example did not need to be
escaped but it's a good habit to do so. Additionally, there cannot be any
spaces within the function query.
Lucene's syntax doesn't mandate specifying a boost, but with function
queries you will most likely have one.
We've made both the non-function query clause and the function query
clause mandatory. Had we not done this, then every document would
have matched the query, as a function query matches all documents.

An example: Scores influenced by a
lookupcount
Let's consider an extremely simple case of a schema with a field containing a
popularity number. In the MusicBrainz schema, there is actually something
close—a TRM and PUID lookupcount. TRM and PUID are MusicBrainz's audio
fingerprint technologies. These identifiers roughly correspond to a song, which in
MusicBrainz appears as multiple tracks due to various releases that occur as singles,
compilations, and so on. By the way, audio fingerprints aren't perfect, and so a very
small percentage of TRM IDs and PUIDs refer to songs that are completely different.
We're only using this to influence scoring so this isn't a problem for this example.

MusicBrainz records the number of times one of these IDs are looked up from
its servers, which is a good measure of popularity. A track that contains a higher
lookupcount should score higher than one with a smaller value, with all other
factors being equal. This scheme could easily be aggregated to releases and artists, if
desired. I've arranged for the sum of TRM and PUID lookupcounts being stored into
our track data as t_trm_lookups with the following field specification in the schema:

<field name="t_trm_lookups" type="sint" />

•

•

•

•

•

Chapter 5

[119]

About 25% of the tracks have a non-zero value.

When I search my MusicBrainz track index with the Daydreaming search
example and with debugQuery set to on, I see that the top result has the
following scoring explanation:

 <str name="Track:10">
 26.898853 = (MATCH) sum of:
 12.039736 = (MATCH) weight(t_name:daydreaming in 2412430),
 product of:
 0.99999964 = queryWeight(t_name:daydreaming), product of:
 12.039741 = idf(docFreq=111, numDocs=6977765)
 0.08305824 = queryNorm
 12.039741 = (MATCH) fieldWeight(t_name:daydreaming in
 2412430), product of:
 1.0 = tf(termFreq(t_name:daydreaming)=1)
 12.039741 = idf(docFreq=111, numDocs=6977765)
 1.0 = fieldNorm(field=t_name, doc=2412430)
 14.859118 = (MATCH) FunctionQuery(sint(t_trm_lookups)),
 product of:
 17890.0 = sint(t_trm_lookups)=17890
 0.01 = boost
 0.08305824 = queryNorm
 </str>

The first half of this text shows that daydreaming accounted for a score of ~12
(nearly half of the total score of 26). The latter half shows that our function query
added 14 to the score. The interesting part is highlighted as this is the result of
the function query, except for the boost. As this function query is merely a field
reference, its score is the value in this field for this document, which is 17890.

If you want to simply sort search results by a field value, then you
would use the sort parameter described in the last chapter.

Enhanced Searching

[120]

Field references
For fields used in a function query, keep the following points in mind:

The field must be indexed.
The field must not be multi-valued.
No more than a single term/token may be indexed from text-analysis. This
isn't a problem for numeric and date data types, but it is something to watch
out for with text. Consider using the KeywordTokenizer, and beware of
analysis steps that may introduce extra terms.
Only number fields have their values referenced directly by the functions
in the next sections. For date and text fields, the ord() function is implicitly
used (explained shortly). If this poses a problem for how you wish to use
dates, then you should index the date as a number.
If there is no value for a field in the index, then zero is substituted for use in
the function query.

Function reference
Instead of using a naked field reference, you will probably use a more elaborate
mathematical expression composed of constants, field references, and functions (both
basic mathematical ones and special Solr additions). Constants and field-references
are used literally. An example involving a sampling of these is shown below:

div(log(t_trm_lookups),log(2))

This example and subsequent ones show just the function query itself, and not
surrounding syntax for potential use in _val_ or with the bf parameter, nor with
boosts. In all cases, remember to omit spaces. One thing to observe from this example
is that div, short for divide, is expressed as a function instead of using the common
/ operator. There are no operators in Solr function query expressions, just function
calls and either constant or field reference literals.

Function argument limitations
For the functions listed as follows, any argument named x, y, or z can be
any expression: constants, field references, or functions. Other arguments
like a, or min require a constant. If you attempt to do otherwise, then you
will get an unhelpful parsing error.

•

•

•

•

•

Chapter 5

[121]

Mathematical primitives
The mathematical primitives are explained as follows:

sum(x,y,z,...): Sums, that is adds, all of the arguments. The argument count
is variable. Note that if you need to subtract, then you'll have to use this with
a negative argument.
product(x,y,z,...): Multiplies the arguments together. The argument count
is variable.
div(x,y): Divides x by y as in the expression x/y.
pow(x,y): Raises x to the power y, as in the expression xy.
abs(x): The absolute value of x, that is |x|. If x is negative, then it
becomes positive.
log(x): The logarithm, base 10, of x. Remember that if you need another base
such as 2, example, log2x, then this is equivalent to: div(log(myfield),log(2)).
sqrt(x): The square root of x, that is √x.

Miscellaneous math
map(x,min,max,target): If x is found to be between min and max inclusive,
then the target is returned, otherwise x is returned. This is useful for dealing
with default values or to limit x, to ensure that it isn't above or below
some threshold.
max(x,c): Returns the greater value of x and c.
scale(x,minTarget,maxTarget): Returns x scaled to be between
minTarget and maxTarget. For example, if the value of x is found to be one-
third from the smallest and largest values of x across all documents, then x
is returned as one-third of the distance between minTarget and maxTarget.
The important limitations in Solr 1.3 are as follows:

scale will traverse the entire document set and evaluate
the function to determine the smallest and largest values for
each query invocation, and it is not cached. This makes it
impractical for many uses as it is too slow.
scale will return zero if it is evaluated on a deleted
document. Consider using the map function for x such as
scale(map(myfield,0,2),1,2).

•

•

•

•

•

•

•

•

•

•

°

°

Enhanced Searching

[122]

linear(x,m,c): A macro for sum(product(m,x),c) for convenience
and speed.
recip(x,m,a,c): A macro for div(a,linear(x,m,c)) for convenience
and speed.

ord and rord
Use of ord() and rord() are to be performed on fields that are indexed
appropriately for sorting, even if the search results won't be sorted on this field.
See Chapter 2 for information on field sorting requirements.

Date and text fields are implicitly referenced through ord(), if not
explicitly referenced in ord() or rord(). You will see evidence
of this in the debug output.

ord(fieldReference): Given a hypothetical ascending sorted array of all
unique indexed values for fieldReference, this returns the array position,
for example, the ordinal of a document's indexed value. fieldReference is
of course a reference to a field. Unlike the other functions it cannot be any
other kind of expression. The order of the values is in an ascending order and
the first position is 1. A non-existent value results in 0.
rord(fieldReference): The same as ord(), but with the ordering reversed.

A definition of ord is not sufficient to fully convey its ramification. Suppose five
documents are added to an index with the following values in a field x: 70, 70, 90, 95,
98. Even though there are five documents, ord(x) is going to return values ranging
from 1 to 4, because there are only four distinct values; one of them, 70, is repeated.
There is another difference that is more subtle. The original values are not distributed
in a linear fashion. They are more clumped together towards the higher values (do not
consider duplicates). ord and rord in-effect linearizes the data so that the distribution
of the original value is lost, assuming it was non-linear. If you are using dates and
wish to avoid ord/rord because of this problem, then you can encode the date as a
number in a numeric field, such as the number of days since an epoch.

To determine how high ord/rord can get, you can use Solr's web admin
interface. Go to the Schema Browser. Click on an indexed field, and observe
the distinct number.

•

•

•

•

Chapter 5

[123]

An example with scale() and lookupcount
In our last example, the function query was simply a field's value, and we scaled it
down with a boost so that it wouldn't overpower the other components of the score.
It created a simple example. However, using a field value directly like this can be
problematic. If the field values lie within a fixed range, then this approach would be
fine, but it turns out that t_trm_lookups is as high as ~300,000, and it will increase
steadily as time goes on. A further inspection of the data reveals, that only a handful
of records exceed 90,000. We can use an even smaller fractional boost, but whatever
we pick would need frequent adjustment as the data changes.

One option is to use the scale function such as this:

scale(t_trm_lookups,0,100)

I used a boost of 10 with this and was happy with the scores. The debug output for
the function query was as follows:

6.069365 = scale(sint(t_trm_lookups)=17890,
 toMin=0.0,toMax=100.0,fromMin=0.0,fromMax=294759.0)

Here we see that the values in the index ranged from 0 to 294,759. Interesting output
can be gleaned when enabling debugging.

Due to problems with the scale function that were previously noted, it took about
five seconds for that search. Perhaps a future version of Solr will address this. It's
also very sensitive to the maximum value, which I've found to be a bit of a fluke
with this data. A more accurate maximum value is 90,000, not 300,000. So read
on for alternatives.

Using logarithms
Let's try an alternative approach that does not give the same scores but has desirable
characteristics. If we use a logarithm, then we would have numbers that might not
be capped at a value of our choosing, but it would at least have its growth stunted
dramatically where we want. With a good deal of experimentation, I finally found
the formula I was looking for:

Log (c-1)·m·x+1c ()

Enhanced Searching

[124]

m is the inverse of the t_trm_lookups value where we want this function to evaluate
to 1: 1/90,000. c is a number greater than one and is a value of your choosing that
will alter how the curve below bends. I used 10, which turned out to closely match
the approach shown below:

y

x

0 1-105 2-105 3-105

1

2

Here is the formula as a function query:

log(linear(t_trm_lookups,0.0001,1))

If I used a value for c other than 10, I would need to divide this function by log(c). I
found a boost of 100 to work well. This search only took my machine 12 milliseconds.
Nice! However, note that this curve keeps growing steadily as t_trm_lookups
increases. One way to deal with this is by replacing t_trm_lookups in the function
with map(t_trm_lookups,100000,99999999,100000).

Using inverse reciprocals
Another way that is more elegant, is to use the reciprocal of a linear function instead
of the logarithm. Here is an equation I devised for this:

-max + max2

+ max
m·x + max-1

Chapter 5

[125]

Here, max is the value that this function approaches but never quite reaches. It should
be greater than 1 and less than 2; 1.5 works well. You can experiment with this to
see how it changes the bend in the curve below. m is the inverse of the maximum
value that we can expect t_trm_lookups to reasonably be: 1/90,000. The function
is plotted as shown below:

y

x

0 1-105 2-105 3-105

1

2

A simplified function query for this is as follows:

sum(recip(t_trm_lookups,0.0000111,-0.75,0.5),1.5)

I used a boost of 100 and the results are as expected and are similar to the
logarithm based function that was mentioned previously. However, if high values
of t_trm_lookups were to some day wind up in the index, then this piece of the
score computation would not exceed 1.5. In practice, the logarithmic approach
would probably be fine too.

A problem with both approaches mentioned above is that the constants
would ideally need modification from time to time to reflect the highest
value in the index (less extreme outliers).

Enhanced Searching

[126]

Using reciprocals and rord with dates
Using dates in scores presents some different issues. Suppose when we search for
releases, we want to include a boost that is larger for more recent releases. At first
glance, this problem may seem just like the previous one, because dates increase as
the scores are expected to, but it is different in practice. Instead of the data ranging
from zero to some value that changes occasionally, we now have data ranging from a
non-zero value that might change rarely to a value that we always know but changes
continuously (the current date). Moreover, ideally the score curve would bend on the
oppose side of the linear function than the previous functions did. Instead, approach
this from the other side, that is, by considering how much time there is between the
current time and the document's date. So at x=0 in the graph (x representing time),
we want 1, and we want it to slope downward towards 0, but not below it. Here's
an equation with this pattern:

c
x + c

y

x

1

0
1-104

2

Coming up with a value for c will take a little experimentation, but a decent starting
point is 10 times the greatest value of x. Our MusicBrainz schema has r_event_date,
which is a promising candidate for x. However, multi-value is not supported by
function queries. I made a simple addition to the schema and index to record the
earliest release event date: r_event_date_earliest. Here is a function query that
should work well:

recip(map(rord(r_event_date_earliest),0,0,99000),1,95000,95000)

Chapter 5

[127]

This example uses rord, and therefore the greatest indexed date will have the value
1, the one before that 2, and so on to about 9500.

Since some of the releases have no value and rord returns 0, we needed to map
these to a number on the other side. I used 99,000. Alternatively, I might fix this by
substituting an alternative estimate, based on other known dates at index-time so
that it's never blank. This is probably a better approach.

~40 releases or so in MusicBrainz have release dates before my data
snapshot was taken. Since this is a very small fraction, I'm ignoring this
idiosyncrasy. For scoring purposes, at index-time I should pivot such
dates in the opposite direction of the current date (at index-time) so that
a month in the future becomes a month in the past.

There are ~9500 unique discrete dates indexed. If this number changes substantially,
then the constants above would need to be updated too. One potential way to deal
with that is to first store the dates with a lower precision (monthly) to linearize most
of the data, and then cap the values beyond a threshold using the map function.
As a reminder, month rounding is easily accomplished at the time of indexing by
concatenating /MONTH at the end of the date format. This is part of Solr's date math
syntax that was mentioned in Chapter 4. By lowering the precision, we ensure
that all/most months for quite some time have a release date occurring in it. This
increases the accuracy of rord(r_event_date_earliest) being a months-in-the-past
index for a substantial duration of time. If there is a decade of such data with few
gaps, then the query function would be:

recip(map(map(rord(r_event_date_earliest),1201,999999,1201)
 ,0,0,2000),1,1200,1200)

If you insist on using the exact difference between an indexed date and
the current date (and thus not using ord/rord), then you're forced to
store the dates as numbers (such as the number of days since an epoch).
The reason is that there is no way to use date literals or a way to reference
now since actual date values cannot be referenced numerically in a
function query. This is a shortcoming of Solr.

Enhanced Searching

[128]

Function query tips
Here are some tips on using function queries:

Use a tool such as a graphing calculator or other software to plot the
functions as you devise what your function will look like. If you are using
Mac OS X as I am, then your computer already includes Grapher, which
generated the charts in this chapter. It's a powerful tool. You might be
inclined to use a spreadsheet like Excel, but that's really not the right tool.
With luck, you may find some web sites that will suffice.
Aim for getting the function to generate values between 0 to ~1, or reversed
if going the other direction. You'll then use a boost to scale it up. This
approach makes your function queries more comparable by using a
common baseline, as the values will fit within the same range.
If your data changes in ways causing you to alter the constants in your
function queries, then consider implementing a periodic automated test
of your Solr data to ensure that the data fits within expected bounds. A
Continuous Integration (CI) server might be configured to do this task. An
approach is to run a search simply sorting by the data field in question to get
the highest or lowest value.
As you tweak the boost, you'll want to look at the proportion of the function
query's score contribution (which includes the raw function query, the boost,
and the queryNorm) relative to the total score. You'll most likely want this
component of the score to be small so that the other factors of the score are
more prominent. Even if you use a small boost, such that the function query's
score seems negligible, then it still serves as a tie breaker when the other
factors are equal.

Dismax Solr request handler
Solr's Search Request Handler is intuitively the request handler used for searching.
An important early step involved in handling search requests is parsing the user's
query string into a Lucene Query object. This step is handled by a Solr query parser
plugin. The search handler allows choosing this plugin through the defType
parameter, which defaults to lucene. Since we have not been setting the defType
parameter (it's not used in the query form), we've been using this one so far. I'm now
going to introduce you to the dismax request handler, which is the search request
handler, configured with defType set to dismax. The dismax request handler is
actually deprecated but it is commonly referred to this way when it would be more
accurate to just say "dismax" or "dismax query parser". Similarly, it is common to
refer to the "standard request handler" when it's the lucene query parser in particular
that is being referenced. I admit that this book uses both interchangeably. There are
other query parser plugins used for special purposes too, by the way.

•

•

•

•

Chapter 5

[129]

The standard query parser we've been using so far for searching is fairly basic with
no frills. A notable problem with parsing user queries directly with it is that the
query must be well formed according to the syntax rules of the previous chapter.

The dismax query parser has many more features and is intended
to be the ideal choice for processing a query string from a user.

The dismax handler has the following features over the standard handler:

Searches across multiple fields with different boosts through Lucene's
DisjunctionMaxQuery.
Limits the query syntax to a small subset and there is never a syntax error.
This feature is not optional or configurable.
Automatic phrase boosting of the entire search query.
Convenient query boosting parameters, generally for use with
function queries.
Can specify the minimum number of words to match, depending on the
number of words in a query string.

Use debugQuery to see the effects of this query handler
This dismax query handler essentially creates a new query, based on the
user query and its configuration options. By enabling Solr's debugQuery
option, which was described in Chapter 4, you can see what the resulting
query is.

These features will subsequently be described in greater detail. But first, let's take a
look at a search handler I've set up for searching artists. Solr configuration that is not
related with the schema is located in solrconfig.xml.

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="defType">dismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <str name="tie">0.1</str>
 </lst>
</requestHandler>

•

•

•

•

•

Enhanced Searching

[130]

In Solr's full search interface screen, we can refer to this with a Query Type of
mb_artists. This value aligns with the qt parameter, which you will observe in
the URL when you submit the form. It wasn't necessary to set up such a request
handler, because Solr is fully configurable from a URL, but it's a good practice
and is convenient for Solr's search form.

Lucene's DisjunctionMaxQuery
The ability to search across multiple fields with different boosts in this query handler
is a feature powered by Lucene's DisjunctionMaxQuery query type. In Solr you
must use this query handler to use this feature, because it is not a capability that you
can tap into with Solr's query syntax. Let's start with an example. If the query string
is simply rock, then a dismax query handler might be configured to turn this into a
DisjunctionMaxQuery similar to this:

fieldA:rock^2 OR fieldB:rock^1.2 OR fieldC:rock^0.5

Advanced topic warning
The following discussion is advanced, and you needn't understand it. Just
know that a dismax query is ideal for searching multiple fields and to set
the tie parameter to 0.1, which is a reasonable value.

The boolean query mentioned above is not quite equivalent to what the dismax
query actually does. The difference is in the scoring. A boolean query, such as
this, will have a score based on the sum of each of the three clauses whereas a
DisjunctionMaxQuery takes the maximum of each (this is a simplification). The
dismax behavior should produce better scores for this use case, which is where you
are looking in multiple fields for the same term, where some fields are deemed to be
more significant than others. An example from the Javadocs of this feature explains
that if a user searched for albino elephant, then dismax ensures that albino
matching one field and elephant matching another gets a higher score than albino
matching both fields but elephant neither.

Another wrinkle on this description of dismax scoring is the tie parameter, which
is between zero (the default) and one. By raising this value above zero, the scoring
begins to favor documents that matched multiple terms over those that were boosted
higher. This can be moved to the extreme of one results in scoring that is closer to
that of a boolean query, but it is not quite the same. In practice, a small value like
0.1 is effective.

Chapter 5

[131]

Configuring queried fields and boosts
You use the qf parameter to tell the dismax query handler which fields you want
to be searched and their corresponding boosts. As explained in the last chapter, the
query parameters can be specified in the URL or in the search handler configuration
in solrconfig.xml (you'll probably choose the latter). Here is the relevant
configuration line from our dismax based handler configuration earlier:

<str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>

This syntax is a space-separated list of field names that can have optional boosts
applied to them using the same syntax for boosting that is used in the query syntax.
This query handler is intended to find artists (which include bands) from a user's
query. Such a query would ideally match the artist's name, but we'll also search aliases,
and as a last resort find bands that the artist is a member of. Perhaps the user didn't
recall the band name but knew the artist's name. This configuration would give them
the band in the search results, most likely towards the end of the search results.

Remember that the boosting does not strictly order the results in a
cascading fashion. An exact match in a_alias that matched only part
of a_name will probably appear on top. If in your application you are
matching identifiers of some sort, then you may want to give a boost to
that field that is very high, such as 1000, to virtually assure it will be
on top.

Limited query syntax
The dismax query handler intentionally restricts the syntax permitted to terms,
phrases, and uses + and - (but not AND, OR, &&, ||) to make a clause mandatory or
prohibited. Anything else is escaped if needed to ensure that the underlying query
is valid, but you will never get a syntax error. Therefore, attempting to use Solr's
full syntax such as targeting a field, example: a_name:Corgan, will be escaped to
a_name\:Corgan, and it wouldn't find anything because we have no such data.
Imagine a large text field that has some URLs, and a user comes along and searches
for one of these URLs with this query: http://lucene.apache.org. Such a query
would certainly result in an error in the standard search handler, because there is no
field in the schema named http. With the dismax handler it will be escaped, and it
will find documents containing that URL.

The following query example uses all of the supported features:
"a phrase query" plus +mandatory without -prohibited

The limited syntax is a good feature for processing end user queries, because we
want to search for what the user typed, and not return an error if the syntax is
incorrect, which is almost certainly unintentional.

Enhanced Searching

[132]

Don't want a limited syntax?
If you want to enable power-users to use boolean logic and other
capabilities that Solr offers (covered in Chapter 4), then you can't use the
dismax query handler. This is unfortunate, because the alternatives are
not ideal. You basically have two choices: Use the standard query handler
instead, and not be able to easily search multiple fields anymore, or use
the other nice features of dismax. If you are comfortable with hacking
Solr's Java code, then you can change DisMaxQParserPlugin.java
to not limit the syntax. This is what I have done for an application.
See SOLR-758.

Boosting: Automatic phrase boosting
Suppose a user searches for Billy Joel. This is interpreted as two terms to search,
and depending on how the search handler is configured, either both must be found
in the document or just one. Perhaps for one of the matching documents, Billy is
the sole name of a band, and it has a member named Joel. Great, Solr found this
document and perhaps it is of interest to the user, after all, it contained both words
the user typed. However, it's a fairly intuitive observation that a document field
containing the entirety of what the user typed, Billy Joel, represents a closer match
to what the user is looking for. Such a document would certainly be found by Solr
too, without question, but it's hard to predict what the relative scoring might be. To
improve the scoring, you might be tempted to automatically quote the user's query,
but that would omit documents that don't have the adjacent words. What the dismax
handler can do is add a phrased version of the user's query onto the original query
with optional, that is, "should", semantics. So, in a nutshell, it turns this query:

Billy Joel

into

+(Billy Joel) "Billy Joel"

But remember, there is no query syntax to invoke Lucene's
DisjunctionMaxQuery, which is targeting multiple fields, as
discussed earlier. Putting the semantics of that aside, the syntax is
accurate. It depicts that the original query is mandatory by using
+, and it shows that we've added an optional phrase to search. It's
optional because that is generally the default state in the absence of
+, -, and other boolean operators that were discussed previously.

Chapter 5

[133]

This works because a document containing the phrase Billy Joel not only matches
that clause of the rewritten query, but it also matches Billy and Joel—three clauses
in total. If in another document the phrase didn't match, but it had both words, then
only two clauses would match. Lucene's scoring algorithm would give a higher
coordination factor to the first document, and would score it higher, all other factors
being equal—which they never are, but I digress.

Configuring automatic phrase boosting
Automatic phrase boosting is not enabled by default. In order to use this feature,
you must use the pf parameter, which is an abbreviation of phrase fields. The syntax
is identical to bf, and you might very well use the same value for both parameters.
However, you have the option to change it. Here are some reasons to vary bf
from pf:

To use different boost factors so that you lower or raise the impact of phrase
boosting. Some experimentation may guide you to make such adjustments.
To omit fields that are always one term, such as an identifier, because there's
no point in searching the field for phrases.
To substitute a field for another that has the same data but analyzed
differently. The main use case for this is shingling, which speeds up phrase
queries on large data sets. Shingling is an advanced technique described
in Chapter 9.
To have some fields match only in their entirety.

For an example of the last bullet, imagine that our documents had a category field of
some kind, perhaps a music genre. A sample genre is Hip Hop. The genre could be
indexed so that it is one token, similar to that done for sorting. Again, this happens
when no text analysis is performed or when such analysis is configured to have
this effect such as by using KeywordTokenizerFactory. So if someone searches for
Hip Hop then they get all hip-hop genre music, but if they just have hip or hop, then
it won't match the genre. Here is a sample configuration in solrconfig.xml for our
mb_artists handler with the fictitious genre addition:

<str name="pf">a_name a_alias^0.8 a_member_name^0.4 genre</str>

•

•

•

•

Enhanced Searching

[134]

pf Tips
Start with the same value used as bf, and then potentially modify it.
Remove fields that are always one word, such as an ID, because doing
a phrase search on it would be pointless. Do not add fields that are not
present in bf, because it will have no effect. The exception to this is if the
field comes from the same source but is using different text analysis (such
as a single token), and you want phrase searches on this data to only
match entire field values.

Phrase slop configuration
In the previous chapter, we had mentioned the phrase slop, aka term proximity, by
following a phrase with a tilde and a number, as shown below:

"Billy Joel"~1

But you can't use most of Solr's syntax with dismax such as this. Instead, there are
two parameters to configure the slop: qs for any user-entered query phrases and ps
for the phrase boosting mentioned previously. If slop is not specified, then there is no
slop, which is equivalent to a value of zero. For more information about slop, see the
corresponding discussion in the previous chapter. Here is a sample configuration of
both slop settings:

<str name="qs">1</str>
<str name="ps">0</str>

Boosting: Boost queries
Continuing with the boosting theme is a simple way to affect the score of documents:
boost queries. The dismax handler lets you specify multiple additional queries using
bq parameter(s) which, like the automatic phrase boost, get added onto the user's
query in a similar manner. Remember that a boosting query only serves to affect the
scoring of documents that already matched the user's query in the q parameter. If
a matched document also matches a bq query, then it will be scored higher. These
queries are not limited by the dismax handler's syntax restrictions, as they are not
intended to come from user input.

For this feature, we'll go into a more in-depth example. Perhaps we've decided that
searches for current artists should get scored higher. With our data set, for the sake
of this example, let's simply say that if a_end_date is blank, then such an artist is
current, but not otherwise. In order to find documents with no a_end_date, you
can try the following query in the web interface with the standard handler:

-a_end_date:[* TO *] AND *:*

Chapter 5

[135]

Why the AND *:*
Remember from Chapter 4 that a pure negative query doesn't work
correctly if it is not at the top level of the query that Lucene ultimately
processes. Testing this query out in q with the standard handler will work
without the *:* part, but once we use it in bq, then the AND *:* will be
required for it to work.

If we put the previous query into the URL and add an initial arbitrary boost of two,
then it looks like this after URL encoding:

bq=(-a_end_date%3A[*+TO+*]+AND+*%3A*)^2

Of course, URL encoding is only for the URL, and not for entry in the request
handler configuration, where bq is probably most suitably configured.

Remember to specify a non-default boost
There is some code within dismax that supports legacy behavior of this
feature. It kicks in when there is one boost query, and it has a boost of
one, by default. This legacy behavior is not necessarily a problem, but
it was for our query here, before I made the boost two. I noticed some
strange results using debugQuery and looking at parsedquery in the
output, which allowed me to see that my boost query wasn't incorporated
into the final query in the way I expected. Looking at the source code
showed the legacy logic and under what circumstances it took effect. It
should be easy to avoid this problem, because you will want to tweak the
boost value to your liking.

I experimented with a search for the band Nirvana. Nirvana, the well-known 90's
alternative rock band, is no longer current, and it has an end date. But it appears
that there are bands that are also named Nirvana in our MusicBrainz data set that
don't have an end date. Here is a search for Nirvana with our mb_artists handler
without specifying a boost query:

<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">4</int>
 <lst name="params">
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <str name="defType">dismax</str>
 <str name="tie">0.1</str>
 <str name="wt">standard</str>
 <str name="rows">10</str>
 <str name="start">0</str>

Enhanced Searching

[136]

 <str name="explainOther"/>
 <str name="hl.fl"/>
 <str name="echoParams">all</str>
 <str name="indent">on</str>
 <str name="q">Nirvana</str>
 <str name="fl">id,a_name,a_end_date,score</str>
 <str name="qt">mb_artists</str>
 <str name="version">2.2</str>
 </lst>
</lst>
<result name="response" numFound="8" start="0" maxScore="13.412962">
 <doc>
 <float name="score">13.412962</float>
 <date name="a_end_date">1994-04-05T04:00:00Z</date>
 <str name="a_name">Nirvana</str>
 <str name="id">Artist:54</str>
 </doc>
 <doc>
 <float name="score">12.677703</float>
 <str name="a_name">Nirvana</str>
 <str name="id">Artist:236413</str>
 </doc>
 <doc>
 <float name="score">12.677703</float>
 <str name="a_name">Nirvana</str>
 <str name="id">Artist:303288</str>
 </doc>
 <doc>
 <float name="score">7.9235644</float>
 <str name="a_name">El Nirvana</str>
 <str name="id">Artist:407794</str>
 </doc>
 <doc>
 <float name="score">7.9235644</float>
 <str name="a_name">Nirvana 2002</str>
 <str name="id">Artist:512007</str>
 </doc>
 <doc>
 <float name="score">7.9235644</float>
 <str name="a_name">Nirvana Singh</str>
 <str name="id">Artist:520885</str>
 </doc>
 <doc>
 <float name="score">6.3388515</float>

Chapter 5

[137]

 <str name="a_name">Nirvana Sitar & String Group</str>
 <str name="id">Artist:132835</str>
 </doc>
 <doc>
 <float name="score">0.7352593</float>
 <str name="a_name">The String Quartet Tribute</str>
 <str name="id">Artist:186308</str>
 </doc>
</result>

</response>

First in the results is Nirvana, id # 54. I know this because I also ran the query
showing other fields and that one is definitely it. Our goal here is to add the boost
query and to use a boost value that is sufficiently high so that Nirvana moves from
the number one spot to number three, below the other two that have bands named
the same but no end date. By using the boost query parameter indicated earlier and
with a boost value of ten, I was able to do this. It takes some experimentation to find
a good value. The scores for each document changed a bit. This happens when you
fiddle with the scoring. The actual score values aren't relevant, though the relativity
of each score to each other's score is.

This is a hypothetical scenario to illustrate the usage of this feature.
Someone searching for Nirvana probably actually does want the band
that came out on top without our boost query.

Boosting: Boost functions
Earlier in the chapter you learned about function queries. We used them with the
standard request handler by using the _val_ trick as part of the query. That method
is a bit of a hack on the syntax, and it isn't a method that will work with the dismax
handler because of self-imposed syntax restrictions. Instead, the dismax handler
offers a convenient query parameter for direct entry of function queries: bf. As
with bq, you can specify bf as many times as you wish. As with boost queries and
automatic phrase boosting, these boost functions are incorporated into the final
query in a similar manner.

For a thorough explanation of function queries, see the earlier section
on this topic. The following example was taken from it but does not
go into detail.

Enhanced Searching

[138]

Consider the case where we'd like to boost searches for releases according to their
release date. Releases released more recently get more of a boost than those released
long ago. We'll use the r_event_date_earliest field, that needs to be indexed and
not be multi-valued, which is indeed the case. A boosting function that satisfies this
requirement would involve a parameter that looks like this, if specified in the request
handler configuration:

<str name="bf"> recip(map(rord(r_event_date_earliest),0,0,99000)
 ,1,95000,95000)^100 </str>

Notice that we didn't use quotes, which would be needed when using the
val syntax. Remember to omit spaces too. If this were to be put in the URL
for our experimentation, then it would need to be URL encoded. Only the commas
need escaping to %2C:

bf=recip(map(rord(r_event_date_earliest)%2C0%2C0%2C99000)
 %2C1%2C95000%2C95000)^100

Min-should-match
With the standard handler, you have a choice of the default operator being OR,
thereby requiring just one queried clause (that is word) to match, or choosing AND
to make all queried clauses required. This of course only applies to clauses not
otherwise explicitly marked required or prohibited in the query using + and -.
But these are two extremes, and it would be useful to pick some middle ground.
The dismax handler uses a strategy called min-should-match, a feature which
describes how many clauses should match, depending on how many are there in the
query—required and prohibited clauses are not included in the numbers. This allows
you to quantify the number of clauses as either a percentage or a fixed number. The
configuration of this setting is entirely contained within the mm query parameter
using a concise syntax specification that I'll describe in a moment.

This feature is more useful if users use many words in their queries, at
least three. This in turn suggests a text field that has some substantial text
in it but that is not the case for our MusicBrainz data set. Nevertheless, we
will put this feature to good use.

Chapter 5

[139]

Basic rules
The following are the four basic mm specification formats expressed as examples:

3 3 clauses are required, the rest are optional.
-2 2 clauses are optional, the rest are required.
66% 66% of the clauses (rounded down) are required, the rest are optional.
-25% 25% of the clauses (rounded down) are optional, the rest are required.

Notice that - inverses the required/optional definition. It does not make any number
negative from the standpoint of any definitions herein.

Note that 75% and -25% may seem the same but are not due to rounding.
Given five queried clauses, the first requires three, whereas the second
requires four. This shows that if you desire a round-up calculation, then
you can invert the sign and subtract it from 100.

Two additional points about these rules are as follows:

If the mm rule is a fixed number n but there are fewer queried clauses, then
n is reduced to the queried clause count so that the rule will make sense.
For example: if mm is -5 and only two clauses are in the query, then all are
optional. Sort of!
Remember that in all circumstances across Lucene (and thus Solr), at least
one clause in a query must match, even if every clause is optional. So in the
example above and for 0 or 0%, one clause must still match, assuming that
there are no required clauses present in the query.

Multiple rules
In addition to the basic specification formats is the final format, which allows for
one of the multiple basic formats to be chosen, depending on how many clauses are
in the query. This format is composed of an ordered space-separated series of the
following: number<basicmm—which can be read as "If the clause count is greater
than number, then apply rule basicmm". Only the right-most rule that meets the
clause count threshold is evaluated. As they are ordered in an ascending order,
the chosen rule is the one that requires the greatest number of clauses. If none
match because there are fewer clauses, then all clauses are required (that is a
basic specification of 100%).

An example of the mm specification is given below:

2<75% 9<-3

•

•

Enhanced Searching

[140]

This reads: If there are over nine clauses, then all but three are required (three are
optional, and the rest are required). If there are over two clauses, then 75% are
required (rounded down). Otherwise (one or two clauses) all clauses are required,
which is the default rule.

I find it easier to interpret these rules if they are
read right to left.

What to choose
A simple configuration for min-should-match is making all of the search terms
optional. This is effectively equivalent to a default OR operator in the standard
handler. This is configured as shown below:

0%

Conversely, the other extreme is requiring all of the terms, and this is equivalent to a
default AND operator. This is configured as shown below:

100%

For MusicBrainz's dismax handlers, I do not expect users to be using many terms.
However, for the most part, I expect them to be queried. If a user searches for three
or more terms, then I'll let one be optional. Here is the mm spec:

2<-1

You may be inclined to require all of the search terms. Remember from
the scoring discussion in Chapter 4 that the percentage of matching search
terms is a factor in scoring. With this in mind, it is not necessarily a bad
thing to let some of the search terms be optional if the user enters a few
terms (or whatever number you choose). The user will get some results,
which for many applications is better than returning none. However, this
is only a suggestion.

A default search
There is one last feature of the dismax handler, and this is the following parameter:

q.alt: This is the query that is performed if q is not specified. Unlike q it
uses Solr's regular (full) syntax, not dismax's limited one.

•

Chapter 5

[141]

This parameter is usually set to *:* to match all documents and is specified in
the handler configuration in solrconfig.xml. You'll see with faceting in the next
section, that there will not necessarily be a user query, and so you'll want to display
facets over all of the data. Without q.alt there would be no way for your application
to submit a query for all documents, as dismax's limited syntax does not permit *:*
for the q parameter.

Faceting
Faceting, after searching, is arguably the second-most valuable feature in Solr. It
is perhaps even the most fun you'll have, because you will learn more about your
data than with any other feature. Faceting enhances search results with aggregated
information over all of the documents found in the search to answer questions such
as the ones mentioned below, given a search on MusicBrainz releases:

How many are official, bootleg, or promotional?
What were the top five most common countries in which the
releases occurred?
Over the past ten years, how many were released in each year?
How many have names in these ranges: A-C, D-F, G-I, and so on?
Given a track search, how many are < 2 minutes long, 2-3, 3-4, or more?

Moreover, in addition, it can power term-suggest aka auto-complete functionality,
which enables your search application to suggest a completed word that the user is
typing, which is based on the most commonly occurring words starting with what
they have already typed. So if a user started typing siamese dr, then Solr might
suggest that dreams is the most likely word, along with other alternatives.

Faceting, sometimes referred to as faceted navigation, is usually used to power user
interfaces that display this summary information with clickable links that apply Solr
filter queries to a subsequent search.

If we revisit the comparison of search technology to databases, then faceting is more
or less analogous to SQL's group by feature on a column with count(*). However,
in Solr, facet processing is performed subsequent to an existing search as part of a
single request-response with both the primary search results and the faceting results
coming back together. In SQL, you would need to potentially perform a series of
separate queries to get the same information.

•

•

•

•

•

Enhanced Searching

[142]

A quick example: Faceting release types
Observe the following search results. echoParams is set to explicit (defined in
solrconfig.xml) so that the search parameters are seen here. This example is
using the standard handler (though perhaps dismax is more typical). The query
parameter q is *:*, which matches all documents. In this case, the index I'm using
only has releases. If there were non-releases in the index, then I would add a filter
fq=type%3ARelease to the URL or put this in the handler configuration, as that is
the data set we'll be using for most of this chapter. I wanted to keep this example
brief so I set rows to 2. Sometimes when using faceting, you only want the facet
information and not the main search, so you would set rows to 0, if that is the case.

It's important to understand that the faceting numbers are computed
over the entire search result, which is all of the releases in this example,
and not just the two rows being returned.

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">160</int>
 <lst name="params">
 <str name="wt">standard</str>
 <str name="rows">2</str>
 <str name="facet">true</str>
 <str name="q">*:*</str>
 <str name="fl">*,score</str>
 <str name="qt">standard</str>
 <str name="facet.field">r_official</str>
 <str name="f.r_official.facet.missing">true</str>
 <str name="f.r_official.facet.method">enum</str>
 <str name="indent">on</str>
 </lst>
</lst>
<result name="response" numFound="603090" start="0" maxScore="1.0">
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:136192</str>
 <str name="r_a_id">3143</str>
 <str name="r_a_name">Janis Joplin</str>
 <arr name="r_attributes"><int>0</int><int>9</int>
 <int>100</int></arr>
 <str name="r_name">Texas International Pop Festival
 11-30-69</str>
 <int name="r_tracks">7</int>

Chapter 5

[143]

 <str name="type">Release</str>
 </doc>
 <doc>
 <float name="score">1.0</float>
 <str name="id">Release:133202</str>
 <str name="r_a_id">6774</str>
 <str name="r_a_name">The Dubliners</str>
 <arr name="r_attributes"><int>0</int></arr>
 <str name="r_lang">English</str>
 <str name="r_name">40 Jahre</str>
 <int name="r_tracks">20</int>
 <str name="type">Release</str>
 </doc>
</result>
 <lst name="facet_counts">

 <lst name="facet_queries"/>

 <lst name="facet_fields">

 <lst name="r_official">

 <int name="Official">519168</int>

 <int name="Bootleg">19559</int>

 <int name="Promotion">16562</int>

 <int name="Pseudo-Release">2819</int>

 <int>44982</int>

 </lst>

 </lst>

 <lst name="facet_dates"/>

 </lst>

</response>

The facet related search parameters are highlighted at the top. The facet.missing
parameter was set using the field-specific syntax, which will be explained shortly.

Notice that the facet results (highlighted) follow the main search result and are given
a name facet_counts. In this example, we only faceted on one field, r_official,
but you'll learn in a bit that you can facet on as many fields as you desire. The name
attribute holds a facet value, which is simply an indexed term, and the integer
following it is the number of documents in the search results containing that term,
aka a facet count. The next section gives us an explanation of where r_official
and r_type came from.

Enhanced Searching

[144]

MusicBrainz schema changes
In order to get better self-explanatory faceting results out of the r_attributes field
and to split its dual-meaning, I modified the schema and added some text analysis.
r_attributes is an array of numeric constants, which signify various types of
releases and it's official-ness, for lack of a better word. As it represents two different
things, I created two new fields: r_type and r_official with copyField directives
to copy r_attributes into them:

<field name="r_attributes" type="integer" multiValued="true"
 indexed="false" /><!-- ex: 0, 1, 100 -->
<field name="r_type" type="rType" multiValued="true"
 stored="false" /><!-- Album | Single | EP |... etc. -->
<field name="r_official" type="rOfficial" multiValued="true"
 stored="false" /><!-- Official | Bootleg | Promotional -->

And:

<copyField source="r_attributes" dest="r_type" />
<copyField source="r_attributes" dest="r_official" />

In order to map the constants to human-readable definitions, I created two field
types: rType and rOfficial that use a regular expression to pull out the desired
numbers and a synonym list to map from the constant to the human readable
definition. Conveniently, the constants for r_type are in the range 1-11, whereas
r_official are 100-103. I removed the constant 0, as it seemed to be bogus.

<fieldType name="rType" class="solr.TextField" sortMissingLast="true"
 omitNorms="true">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilterFactory"
 pattern="^(0|1\d\d)$" replacement=""
 replace="first" />
 <filter class="solr.LengthFilterFactory" min="1" max="100" />
 <filter class="solr.SynonymFilterFactory"
 synonyms="mb_attributes.txt"
 ignoreCase="false" expand="false"/>
 </analyzer>
</fieldType>

The definition of the type rOfficial is the same as rType, except it has this regular
expression: ^(0|\d\d?)$.

Chapter 5

[145]

The presence of LengthFilterFactory is to ensure that no zero-length
(empty-string) terms get indexed. Otherwise, this would happen because
the previous regular expression reduces text fitting unwanted patterns to
empty strings.

The content of mb_attributes.txt is as follows:

from: http://bugs.musicbrainz.org/browser/mb_server/trunk/
cgi-bin/MusicBrainz/Server/Release.pm#L48
#note: non-album track seems bogus; almost everything has it
0=>Non-Album\ Track
1=>Album
2=>Single
3=>EP
4=>Compilation
5=>Soundtrack
6=>Spokenword
7=>Interview
8=>Audiobook
9=>Live
10=>Remix
11=>Other

100=>Official
101=>Promotion
102=>Bootleg
103=>Pseudo-Release

It does not matter if the user interface uses the name (for example:
Official) or constant (for example: 100) when applying filter queries when
implementing faceted navigation, as the text analysis will let the names
through and will map the constants to the names. This is not necessarily
true in a general case, but it is for the text analysis as I've configured
it above.

The approach I took was relatively simple, but it is not the only way to do it.
Alternatively, I might have split the attributes and/or mapped them as part
of the import process. This would allow me to remove the multiValued setting
in r_official. Moreover, it wasn't truly necessary to map the numbers to their
names, as a user interface, which is going to present the data, could very well map
it on the fly.

Enhanced Searching

[146]

Field requirements
The principal requirement of a field that will be faceted on is that it must be indexed.
In addition to all but the prefix faceting use case, you will also want to use text
analysis that does not tokenize the text. For example, the value Non-Album Track
is indexed the way it is in r_type. We need to be careful to escape the space where
this appeared in mb_attributes.txt. Otherwise, faceting on this field would show
tallies for Non-Album and Track separately. Depending on the type of faceting you
want to do and other needs you have like sorting, you will often find it necessary to
have a copy of a field just for faceting. Remember that with faceting, the facet values
returned in search results are the actual terms indexed, and not the stored value,
which isn't even used.

Types of faceting
Solr's faceting is broken down into three types. They are as follows:

field values (text): This is the most fundamental and common type
of faceting that works off of the indexed terms, which is the result of
text-analysis on an indexed field. It needn't necessarily be text, but it is
treated this way. Most faceting parameters are for configuring this type.
The count for such faceting is grouped in the output under the name
facet_fields.
dates: This is for faceting on dates to count matching documents by equal
date ranges. The facet counts are grouped in the output under facet_dates.
queries: This works quite differently by counting the number of documents
matching each specified query. This type is usually used for number ranges.
The facet counts are grouped in the output under facet_queries.

In the rest of this chapter, we will describe how to do these different types of facets.
But before that, there is one common parameter to enable faceting:

facet: It defaults to blank. In order to enable faceting, you must set this to
true or on. If this is not done, then the faceting parameters will be ignored.

In all of the examples here, we've obviously set facet=true.

•

•

•

•

Chapter 5

[147]

Faceting text
The following request parameters are for typical text based facets. They need not
literally be text but should not be indexed with one of the number or date field types.

facet.field: You must set this parameter to a field name in order to
text-facet on that field. Repeat this parameter for each field to be faceted on.
Solr, in essence, iterates over all of the indexed terms for the field and tallies
a count for the number of searched documents that have the term. Solr then
puts this in the response. Lucene's index makes this much faster than you
might think. See the previous Field requirements section.

The remaining faceting parameters can be set on a per-field
basis, otherwise they apply to all text faceted fields that
don't have a field-specific setting. You will usually specify
them per-field, especially if you are faceting on more than
one field so that you don't get your faceting configuration
mixed up. For brevity, many of these examples don't. For
example: f.r_type.facet.sort=lex (r_type is a field
name, facet.sort is a facet parameter).

facet.sort: It is set to either count to sort the facet values by descending
totals or to lex to sort alphabetically. If facet.limit is greater than zero
(which is true by default), then Solr picks count as the default, otherwise
lex is chosen.
facet.limit: It defaults to 100. It limits the number of facet values
returned in the search results of a field. As these are usually going to be
displayed to the user, it doesn't make sense to have a large number of these
in the response. If you are confident that the indexed terms fit a very limited
vocabulary, then you might choose to disable the limit with a value of -1,
which will change the default sort of them to alphabetic.
facet.offset: It defaults to 0. It is the index into the facet value list from
which the values are returned. This enables paging of facet values when used
with facet.limit. If there are lots of values and if you want the user to scan
through them, then you might page them as opposed to just showing them
the most popular ones.
facet.mincount: This defaults to 0. It filters out facet values that have facet
counts less than this. This is applied before limit and offset so that paging
works as expected.

•

•

•

•

•

Enhanced Searching

[148]

facet.missing: It defaults to blank and is set to true or on for the facet
value listing to include an unnamed count at the end, which is the number
of searched documents that have no indexed terms. The first facet example
demonstrates this.
facet.prefix: It filters the facet values to those starting with this value. See
a later section for an example.
facet.method: Solr can be told to use either the enum or fc (field cache)
algorithm to perform the faceting. The speed and memory usage of the query
varies depending on your data. If you are faceting on a field that you know
only has a small number of values (say less than 50), then it is advisable to
explicitly set this to enum. When faceting on multiple fields, remember to
set this for the specific fields desired and not universally for all facets. The
request handler configuration is a good place to put this.

Alphabetic range bucketing (A-C, D-F,
and so on)
Solr does not directly support alphabetic range bucketing (A-C, D-F, and so on).
However, with a creative application of text analysis and a dedicated field, we can
achieve this with little effort. Let's say we want to have these range buckets on the
release names. We need to extract the first character of r_name, and store this into
a field that will be used for this purpose. We'll call it r_name_facetLetter. Here is
our field definition:

<field name="r_name_facetLetter" type="bucketFirstLetter"
 stored="false" />

And here is the copyField:
<copyField source="r_name" dest="r_name_facetLetter" />

The definition of the type bucketFirstLetter is the following:

<fieldType name="bucketFirstLetter" class="solr.TextField"
 sortMissingLast="true" omitNorms="true">
 <analyzer type="index">
 <tokenizer class="solr.PatternTokenizerFactory"
 pattern="^([a-zA-Z]).*" group="1" />
 <filter class="solr.SynonymFilterFactory"
 synonyms="mb_letterBuckets.txt" ignoreCase="true"
 expand="false"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 </analyzer>
</fieldType>

•

•

•

Chapter 5

[149]

The PatternTokenizerFactory, as configured, plucks out the first character, and
the SynonymFilterFactory maps each letter of the alphabet to a range like A-C.
The mapping is in conf/mb_letterBuckets.txt. The field types used for faceting
generally have a KeywordTokenizerFactory for the query analysis to satisfy a
possible filter query on a given facet value returned from a previous faceted search.
After validating these changes with Solr's analysis admin screen, we then re-index
the data. For the facet query, we're going to advise Solr to use the enum method,
because there aren't many facet values in total. Here's the URL to search Solr:

http://localhost:8983/solr/select?indent=on&q=*%3A*&qt=standard&wt=st
andard&facet=on&facet.field=r_name_facetLetter&facet.sort=lex&facet.
missing=on&facet.method=enum

The URL produced results containing the following facet data:

<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_name_facetLetter">
 <int name="A-C">99005</int>
 <int name="D-F">68376</int>
 <int name="G-I">60569</int>
 <int name="J-L">49871</int>
 <int name="M-O">59006</int>
 <int name="P-R">47032</int>
 <int name="S-U">143376</int>
 <int name="V-Z">33233</int>
 <int>42622</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
</lst>
<lst name="facet_dates"/>
</lst>

Faceting dates
Solr has built-in support for faceting a date field by a range and divided interval.
You can think of this as a convenient feature instead of being forced to use the more
awkward facet queries described after this. Unfortunately, this feature does not
extend to numeric types yet. I'll demonstrate a quick example against MusicBrainz
release dates, and then describe the parameters and their options.

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">145</int>

Enhanced Searching

[150]

 <lst name="params">
 <str name="facet.date">r_event_date_earliest</str>

 <str name="facet.date.end">NOW/YEAR</str>

 <str name="facet.date.gap">+1YEAR</str>

 <str name="facet.date.other">all</str>

 <str name="rows">0</str>
 <str name="facet">on</str>

 <str name="indent">on</str>
 <str name="echoParams">explicit</str>
 <str name="q">smashing</str>
 <str name="qt">mb_releases</str>
 <str name="f.r_event_date_earliest.facet.date.start">
 NOW/YEAR-5YEARS</str>

 </lst>
</lst>
<result name="response" numFound="248" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>
 <lst name="facet_dates">

 <lst name="r_event_date_earliest">

 <int name="2004-01-01T00:00:00Z">1</int>

 <int name="2005-01-01T00:00:00Z">1</int>

 <int name="2006-01-01T00:00:00Z">3</int>

 <int name="2007-01-01T00:00:00Z">11</int>

 <int name="2008-01-01T00:00:00Z">0</int>

 <str name="gap">+1YEAR</str>

 <date name="end">2009-01-01T00:00:00Z</date>

 <int name="before">95</int>

 <int name="after">0</int>

 <int name="between">16</int>

 </lst>

 </lst>

</lst>
</response>

This example demonstrates a few things, not only date faceting:

qt=mb_releases is a dismax query type handler and ensures that we're
looking at releases.
q=smashing indicates that we're faceting on a search instead of all the
documents, granted we kept the rows at zero, which is unrealistic but
not pertinent.

•

•

Chapter 5

[151]

The facet start date was specified using the field specific syntax. It is just a
demonstration. We'd probably do this with every parameter.
The <date name="end"> part below the facet counts indicates the upper
bound of the last date facet count. It may or may not be the same as
facet.date.end (see facet.date.hardend explained in the next section).
The before, after, and between counts are for specifying
facet.date.other.

Date facet parameters
All of the date faceting parameters start with facet.date. As with most other
faceting parameters, they can be made field specific in the same way. The parameters
are explained as follows:

facet.date: You must set this parameter to your date field's name
to date-facet on that field. Repeat this parameter for each date field to
be faceted on.

The remainder of these date faceting parameters
can be specified on a per-field basis in the same
fashion that the non-date parameters can. For example,
f.r_event_date_earliest.facet.date.start.

facet.date.start: Mandatory, this is a date to specify the start of the
range to facet on. The syntax is the same as used elsewhere in Solr, which is
described in Chapter 4 under the Date Math section. Using NOW with some
Solr date math is quite effective as in this example: NOW/YEAR-5YEARS, which
is interpreted as five years ago, starting at the beginning of the year.
facet.date.end: Mandatory, this is a date to specify the end of the range
exclusively. It has the same syntax as facet.date.start. Note that the
actual end of the range may be different (see facet.date.hardend).
facet.date.gap: Mandatory, this specifies the time interval to divide the
range. It uses a subset of Solr's Date Math syntax, as it's a time duration and
not a particular time. It should always start with a +. Examples: +1YEAR or
+1MINUTE+30SECONDS. Note that after URL encoding, + becomes %3B.
facet.date.hardend: It defaults to false. This parameter instructs Solr on
what to do when facet.date.gap does not divide evenly into the facet date
range (start->end). If this is true, then the last date span will have a smaller
duration than the others. Moreover, you will observe that the end date value
in the facet results is the same as facet.date.end. Otherwise, by default, the
end is essentially increased sufficiently so that the date spans are all equal.

•

•

•

•

•

•

•

•

Enhanced Searching

[152]

facet.date.other: It defaults to none. This parameter adds more faceting
counts depending on its value. It can be specified multiple times. See the
example using this at the start of this section.

before: count of documents before the faceted range
after: count of documents following the faceted range
between: documents within the faceted range
(somewhat redundant)
none: (disabled) the default
all: shortcut for all three (before, between, and after)

Faceting on arbitrary queries
This is the final type of facet, and it offers a lot of flexibility. Instead of choosing a
field to facet on its values (whether text based or date), we specify some number
of Solr queries that each itself becomes a facet. For each facet query specified, the
number of search results matching the query is counted, and this number is returned
in the results. As with all other faceting, the set of documents that are faceted is the
search result, which is q less any filtered with fq.

There is only one parameter for configuring facet queries:

facet.query: A Solr query to be evaluated over the search results. The
number of matching documents is returned as an entry in the results next
to this query. Specify this multiple times to have Solr evaluate multiple
facet queries.

As facet queries are the only way to facet for numeric ranges, we'll use that as an
example. In our MusicBrainz tracks index, there is a field named t_duration, which
is how long the song is in seconds. In the search below, we've used echoParams for
making the search parameters clear.

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">106</int>
 <lst name="params">
 <str name="indent">on</str>
 <str name="rows">0</str>
 <str name="q">t_name:Geek</str>
 <arr name="facet.query">

 <str>t_duration:[* TO 119]</str>

 <str>t_duration:[120 TO 179]</str>

•

°

°

°

°

°

•

Chapter 5

[153]

 <str>t_duration:[180 TO 239]</str>

 <str>t_duration:[240 TO *]</str>

 </arr>

 <str name="facet">true</str>

 </lst>
</lst>
<result name="response" numFound="200" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries">

 <int name="t_duration:[* TO 119]">55</int>

 <int name="t_duration:[120 TO 179]">36</int>

 <int name="t_duration:[180 TO 239]">64</int>

 <int name="t_duration:[240 TO *]">45</int>

 </lst>

 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
</lst>
</response>

In this example, the facet.query parameter was specified four times to divide a
range of numbers into four buckets: less than 2 minutes, 2 to < 3 minutes, 3 to < 4
minutes and > 4 minutes. These numbers add up to 200, which is the total number
of documents. Note that the queries need not be disjointed, but they were in this
example. It's certainly possible to query for dates using various range durations
and to reference other fields in the facet queries too, whatever Solr query suits
your needs.

Excluding filters
Consider a scenario where you are implementing faceted navigation and you want
to let the user pick several values of a field to filter on instead of just one. Typically,
when an individual facet value is chosen, this becomes a filter that would cause any
other value in that field to have a zero facet count, if it would even show up at all. In
this scenario, we'd like to exclude this filter for this facet. I'll demonstrate this with a
before and after clause.

Here is a search for releases containing smashing, faceting on r_type. We'll leave
rows at 0 for brevity, but observe the numFound value nonetheless. At this point, the
user has not chosen a filter (therefore no fq).

http://localhost:8983/solr/select?indent=on&qt=mb_releases&rows=0&q=s
mashing&facet=on&facet.field=r_type&facet.mincount=1&facet.sort=lex

Enhanced Searching

[154]

And the output of the previous URL is:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">24</int>
</lst>
<result name="response" numFound="248" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 <int name="Compilation">41</int>
 <int name="EP">7</int>
 <int name="Interview">3</int>
 <int name="Live">95</int>
 <int name="Other">19</int>
 <int name="Remix">1</int>
 <int name="Single">45</int>
 <int name="Soundtrack">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
</lst>
</response>

Now the user chooses the Album facet value that interests him/her. This adds a filter
query. As a result, now the URL is as before but has &fq=r_type%3AAlbum at the end
and has this output:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">17</int>
</lst>
<result name="response" numFound="29" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
</lst>
</response>

Chapter 5

[155]

Notice that the other r_type facet counts are gone because of the filter, yet we want
these so that we can give the user a choice for expanding the filter. The reduced
numFound of 29 is good though, because at this moment the user did indeed filter
on a value so far.

The solution: Local Params
Solr can solve this problem with some additional metadata on both the filter query
and the facet field reference using a new and obscure Solr feature called Local
Params. Local Params are name-value parameters inserted at the start of a query and
in some other places like facet field references. The previous example would change
as follows:

fq would now be {!tag=foo}r_type:Album
facet.field would now be {!ex=foo}r_type

Remember to URL Encode this added syntax when used in the
URL. The only problem character is =, which becomes %3D.

Explanation:

tag is a local parameter to arbitrarily label a parameter.
The name foo was an arbitrarily chosen tag name, it truly doesn't matter
what it's named. If multiple fields and filter queries are to be tagged
correspondingly, then you could use the field name as the tag name to
differentiate them consistently.
ex is a local parameter on a facet field that refers to tagged filter queries to
be excluded in the facet count. Multiple tags can be referenced by commas
separating them. For example: {!ex=t1,t2,t3}r_type.

The new complete URL is:

http://localhost:8983/solr/select?indent=on&qt=mb_releases&ro
ws=0&q=smashing&facet=on&facet.field={!ex%3Dfoo}r_type&facet.

mincount=1&facet.sort=lex&fq={!tag%3Dfoo}r_type%3AAlbum.

And here is the output. The facet counts are back, but numFound remains at the
filtered 29:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">4</int>

•

•

•

•

•

Enhanced Searching

[156]

</lst>
<result name="response" numFound="29" start="0"/>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="r_type">
 <int name="Album">29</int>
 <int name="Compilation">41</int>
 <int name="EP">7</int>
 <int name="Interview">3</int>
 <int name="Live">95</int>
 <int name="Other">19</int>
 <int name="Remix">1</int>
 <int name="Single">45</int>
 <int name="Soundtrack">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
</lst>
</response>

At this point, if the user chooses additional values from this facet, then the filter
query can be modified to allow for more possibilities, such as: fq={!tag%3Dfoo}r_
type%3AAlbum+r_type%3AOther, which filters for releases that are either of type
Album or Other.

Facet prefixing (term suggest)
When one thinks of faceting, one doesn't think of term-suggest, aka auto-complete.
Within Solr, however, the faceting technology is suited for this purpose too.

For this example, we have a text box containing:

smashing pu

All of the words in the user's text box except the last one become the main query
for the term-suggest. We may want to make it a phrase query. For our example, this
is just smashing. If there isn't anything, then we'd want to ensure that the search
handler used would query for all documents. The faceted field is r_name, and we
want to sort by occurrence. We also want there to be at least one occurrence, and we
probably don't want more than ten values. We don't need the actual search results
either. This leaves the facet.prefix faceting parameter to make this work. This
parameter filters the facet values to those starting with this value.

Chapter 5

[157]

Remember that facet values are the final result of text analysis, and
therefore are probably lowercased for fields you might want to do term
completion on. You'll need to pre-process the prefix value similarly, or
else nothing will be found.

We're obviously going to set this to pu, the last word that the user has partially
typed. Here is a URL for such a search:

http://localhost:8983/solr/select?q=smashing&qt=mb_releases&wt=jso
n&indent=on&facet=on&rows=0&facet.limit=10&facet.mincount=1&facet.
field=r_name&facet.prefix=pu

In this example, we're going to use the JSON output format. Here is the result:

{
 "responseHeader":{
 "status":0,
 "QTime":5},
 "response":{"numFound":248,"start":0,"docs":[]
},
 "facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "r_name":[
 "pumpkins",10,
 "pumpkin",2,
 "pure",2,
 "pumpehuset",1,
 "punk",1]},
 "facet_dates":{}}}

This is exactly the information needed to fill up a pop-up box of choices that the user
can conveniently choose.

However, there are some issues to be aware of with this feature:

You may want to retain the case information of what the user is typing
so that it can then be re-applied to the Solr results. Remember that
facet.prefix will probably need to be lowercased depending on
text analysis.
If stemming text analysis is performed on the field at the time of indexing,
then the user is going to get junk. Either don't do stemming or use an
additional field for suitable text analysis of this feature.

•

•

Enhanced Searching

[158]

If you would like to do term-completion of multiple fields, then you'll be
disappointed that you can't do that directly. The easiest way is to combine
several fields at index-time. Alternatively, a query searching multiple fields
with faceting configured for multiple fields can be done. It would be up to
you to merge the faceting results based on ordered counts.

Summary
In this chapter, we've covered some topics regarding searching beyond the basics.
Function queries are an advanced technique that enables you to influence the scoring
based on numbers or dates in your documents. With the provided guidance on
which mathematical formulas to use, you need not be a math whiz to leverage this
feature. The dismax handler will almost certainly be the primary Solr search handler
you use for all of the extra bells and whistles over the standard handler—most
importantly, the ability to search across multiple fields and with varying boosts.
Finally, beyond searching is faceting. It is possibly the most valuable and popular
search component.

In the next chapter, we'll cover Solr Search Components. You've actually been using
them already because performing a query, enabling debug output, and faceting
are each actually implemented as search components. But there's also search result
highlighting, spelling correction, suggesting similar documents, collapsing/rolling
up search results, editorially elevating or evicting results, and more!

•

Search Components
One of Solr's primary extension mechanisms is Solr Search Components. You've
actually been using several of them already: QueryComponent performs the actual
searches (notably the q parameter), DebugComponent outputs the invaluable query
debugging information when setting debugQuery, and finally FacetComponent
performs the faceting we used in Chapter 5. However, there are many more that do
all sorts of useful things that can really enhance your search experience:

Highlighting: for returning highlighted text snippets of matching text in the
original data
Query Elevation: for (manually) modifying search results for certain queries
Spell Checking: for recommending alternative searches in query results
More-Like-This: for finding documents similar to other documents
Stats: for mathematical statistics of indexed numbers
Field Collapsing: for rolling-up/aggregating records that have a common
field value

About components
In solrconfig.xml, there are multiple <requestHandler/> elements defined.
Solr dispatches a request to the appropriate one, based on a handler's url
parameter, if present, or the qt (query type) URL parameter, which names a specific
handler. Any request handlers with class="solr.SearchRequestHandler" are
intuitively related to searching. The Java code implementing org.apache.solr.
SearchRequestHandler doesn't actually do any searching. Instead, it maintains
a list of SearchComponents that are invoked in series for a search request. The
search components used and their order are configured in solrconfig.xml.

•

•

•

•

•

•

Search Components

[160]

What follows is our request handler for releases but modified to explicitly configure
the components:

<requestHandler name="mb_releases" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">dismax</str>
 <str name="qf">r_name r_a_name^0.2</str>
 <str name="pf">r_name r_a_name^0.2</str>
 <str name="qs">1</str>
 <str name="ps">0</str>
 <str name="tie">0.1</str>
 <str name="q.alt">*:*</str>
 <str name="fq">type:Release</str>
 </lst>
 <!-- note: these components are the default ones -->

 <arr name="components">

 <str>query</str>

 <str>facet</str>

 <str>mlt</str>

 <str>highlight</str>

 <str>stats</str>

 <str>debug</str>

 </arr>

<!-- INSTEAD, "first-components" and/or "last-components"
 may be specified. -->

</requestHandler>

The named search components in the above XML comment are the default ones
that are automatically registered if you do not specify the components section. This
named list is also known as the standard component list. To specify additional
components, you can either re-specify components with changes, or you can add
it to the first-components or last-components lists, which are prepended and
appended respectively to the standard component list.

Many components depend on other components being executed first,
especially the query component, so you will usually add components to
last-components.

Chapter 6

[161]

Search components must be registered with Solr to be activated so that they can
then be referred to in a components list. All of the standard components are
pre-registered. Here's an example of how a search component named elevator
is registered in solrconfig.xml:

<searchComponent name="elevator" class="solr.QueryElevationComponent" >
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

The rest of this chapter describes the different search component implementations
that come with Solr, and one external one. The functionality in QueryComponent,
FacetComponent, and DebugComponent has been described in previous chapters,
and so will be omitted.

The highlighting component
You are probably most familiar with search highlighting when you use an Internet
search engine like Google. Most search results come back with a snippet of text
from the site containing the word(s) you search for, highlighted. Solr can do the
same thing. In the following screenshot we see Google highlighing a search including
Solr and search (in bold):

A non-obvious way to make use of the highlighting feature is to not actually do any
highlighting. Instead Solr's highlighter can be used to inform the user which fields
in the document satisfied their search, not to actually highlight the matched values.
In this scenario, there would be a search that searches across many fields or a
catch-all field and then hl.fl (the highlighted field list) is set to *. Of course a
mix of approaches could be used depending on the fields.

A highlighting example
Admittedly the MusicBrainz data set does not make an ideal example to show off
highlighting because there's no meaty text, but it can certainly be useful nonetheless.

Search Components

[162]

The following is a sample use of highlighting on a search for Corgan in the artist
MusicBrainz data set. Recall that the mb_artists request handler is configured to
match against the artist name, alias, and members fields.

http://localhost:8983/solr/select?indent=on&q=corgan&rows=3&qt=mb_
artists&hl=true

And here is the output of the above URL:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">89</int>
</lst>
<result name="response" numFound="5" start="0">
 <doc>
 <date name="a_begin_date">1967-03-17T05:00:00Z</date>
 <str name="a_name">Billy Corgan</str>
 <date name="a_release_date_latest">
 2005-06-21T04:00:00Z</date>
 <str name="a_type">1</str>
 <str name="id">Artist:102693</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <str name="a_name">Billy Corgan & Mike Garson</str>
 <str name="a_type">2</str>
 <str name="id">Artist:84909</str>
 <str name="type">Artist</str>
 </doc>
 <doc>
 <arr name="a_member_id"><str>102693</str></arr>
 <arr name="a_member_name"><str>Billy Corgan</str></arr>
 <str name="a_name">Starchildren</str>
 <str name="id">Artist:35656</str>
 <str name="type">Artist</str>
 </doc>
</result>
<lst name="highlighting">

 <lst name="Artist:102693">

 <arr name="a_name">

 <str>Billy Corgan</str>

 </arr>

 </lst>

Chapter 6

[163]

 <lst name="Artist:84909">

 <arr name="a_name">

 <str>Billy Corgan & Mike Garson</str>

 </arr>

 </lst>

 <lst name="Artist:35656">

 <arr name="a_member_name">

 <str>Billy Corgan</str>

 </arr>

 </lst>

</lst>

</response>

What should be noted in this example is the manner in which the highlighting results
are in the response data. Also note that not all of the result highlighting was against
the same field.

It is possible to enable highlighting and discover that some of the results
are not highlighted. Sometimes this can be due to complex text analysis,
and more likely it could simply be that there is a mismatch between the
fields queried and those highlighted.

Highlighting configuration
There are numerous configuration parameters for the highlighter component.
Understand that like faceting, nearly all of these parameters can be overridden
on a per-field basis. The syntax looks like f.fieldName.paramName=value for
example: f.allText.snippets=0

Even though there are so many options, don't get overwhelmed.
Like most things in Solr, the defaults are quite reasonable. The
only parameter required is hl, which enables highlighting. You'll
probably set hl.fl, and enable hl.usePhraseHighlighter and
hl.highlightMultiTerm and a couple others that suit your fancy.

Search Components

[164]

The following are the parameters observed by the highlighter search component:

hl: Set to true to enable search highlighting. Without this, the other
parameters are ignored, and highlighting is effectively disabled.
hl.fl: A comma or space separated list of fields that will be highlighted.
It is important for a field to be marked as stored in the schema in order to
highlight on it. This requirement should be intuitive, as the surrounding text in
highlighting has to come from somewhere. If this parameter is omitted, then it
defaults to the default field(s) that are queried: df parameter for the standard
handler or qf parameter for dismax. You may use an asterisk wildcard to
conveniently highlight on all of the text fields, such as * or r_*. If you use a
wildcard, then consider enabling the hl.requiredFieldMatch option.
hl.requireFieldMatch: If set to true, then a field will not be highlighted
for a result unless the query also matched against that field. This is false by
default, meaning that it's possible to query one field and highlight another
and get highlights back as long as the terms searched for are found within
the highlighted field. If you use a wildcard in hl.fl, then you will probably
enable this. However, if you query against an all-text catch-all field (probably
using copy-field directives), then leave this as false so that the search results
can indicate from which field the queried text was found in.
hl.usePhraseHighlighter: If the query contained a phrase (it was quoted),
then this will ensure that only the phrase is highlighted and not the words
out of context of the queried phrase. So, if "a b c" is the query with quotes,
then the "b" in the stored text "x b z" will not be highlighted if this option is
enabled. This is strangely false by default, perhaps for legacy reasons, but
you should probably always enable this.
hl.highlightMultiTerm: If any wildcard or fuzzy queries are used, then
this will ensure that the highlighting matches such terms correctly. This
defaults to false and it requires hl.usePhraseHighlighter. You should
probably always enable this.
hl.snippets: This is the maximum number of highlighted snippets (aka
fragments) that will be generated per field. It defaults to 1, which you will
probably not change. By setting this to 0 for a particular field (example:
f.allText.hl.snippets=0), you can effectively disable highlighting for
that field. You might do that if you used a wildcard for hl.fl and want to
make an exception.
hl.fragsize: The maximum number of characters returned in each snippet
(aka fragment), measured in characters. The default is 100. If 0 is specified,
then the field is not fragmented and whole field values are returned.
Obviously be wary of doing this for large text fields.

•

•

•

•

•

•

•

Chapter 6

[165]

hl.mergeContiguous: If set to true, then overlapping snippets are merged.
The merged fragment size is not limited by hl.fragsize. The default is
false, but you will probably set this to true when hl.snippets is greater
than zero and fragsize is non-zero.
hl.maxAnalyzedChars: The maximum number of characters in a field that
will be sought for highlighting. If you want to disable the limit, then set this
to -1. The default is 51200 characters.
hl.alternateField: If a snippet couldn't be generated (no terms matched)
for a field, then this parameter refers to a field that will be returned as the
snippet. You might use some sort of summary field for a document or
potentially the searched field itself. There is none by default.
hl.maxAlternateFieldLength: The maximum number of characters to
return for hl.alternateField. It's 0 by default, which means unlimited.
Set this to something reasonably close to hl.snippets * hl.fragsize to
maintain consistent sizing in the results.
hl.formatter: This is an extension point to supply alternate formatting
algorithms. The default is simple, which is presently the only supplied
option. In the unlikely event that it does not suffice, then you can see how
org.apache.solr.highlight.HtmlFormatter.java works and how it's
registered in solrconfig.xml within the highlighting element.

hl.simple.pre and hl.simple.post: This is the text that
will be inserted immediately before and after matched
terms in the snippet in order to demarcate them from the
surrounding text. The default is and (HTML
emphasis tags). Note that the circumstantial presence of
whatever values are chosen in the original text, such as
HTML with pre-existing emphasis tags, are not escaped, and
in rare circumstances may lead to a false highlight.

hl.fragmenter: This is an extension point in Solr to specify the fragmenting
algorithm. gap is the default typical choice based on a fragment size. regex is
an alternative in which the highlighted fragment boundaries can be defined
with a regular expression. It's an advanced choice that is atypical. In order to
see how default settings and registration of fragmenters (and formatters) are
configured, look in solrconfig.xml for the highlighting element.

•

•

•

•

•

°

•

Search Components

[166]

The various options available for the regex fragmenter are as follows:

hl.regex.pattern: This is a regular expression matching a block of text
that will serve as the snippet/fragment to subsequently be highlighted. The
default is [-\w ,/\n\"']{20,200}, which roughly looks for sentences. If
you are using the regex fragmenter, then you will most likely tune a regular
expression to your needs. The regular expression language definition used by
Java and thus Solr is here at http://java.sun.com/j2se/1.5.0/docs/api/
java/util/regex/Pattern.html.
hl.regex.slop: This is the factor to which hl.fragsize can vary to
accommodate the regular expression. The default is 0.6, which means that
fragment sizes may vary between 40 and 160 if hl.fragsize is 100.
hl.increment: Sets the minimum lucene position increment gap from
one term to the next to trigger a new fragment. There is no regex in the
parameter name but it is indeed only for the regex fragmenter. It defaults to
50, which is fine.
hl.regex.maxAnalyzedChars: For performance reasons, this puts a limit on
the number of leading characters of the field that are fragmented based on
the regular expression. After this limit is exceeded, the remaining characters
up to hl.maxAnalyzedChars are fragmented in a fashion consistent with the
gap fragmenter, which is faster. The default is 10000 characters.

The parts of the highlighting configuration that have configurable implementations
(the fragmenter and formatter) have their defaults configured in solrconfig.xml
within the <highlighting/> element if you wish to change them there. They can,
of course, be configured in the URL too.

Query elevation
At times, it may be desired to make editorial (that is manual) modifications to
the search results of particular user queries. This might be done as a solution to a
popular user query that doesn't score an expected document sufficiently high (if it
even matched at all). The query might have found nothing at all, perhaps due to a
common misspelling. The opposite may also be true: the top result for a popular user
query might yield a document that technically matched according to your search
configuration, but certainly isn't what you were looking for. Another usage scenario
is implementing a system akin to paid keywords for certain documents to be on top
for certain user queries.

•

•

•

•

Chapter 6

[167]

This feature isn't a general approach to fix queries not yielding effective
search results; it is a band-aid for that problem. If a query isn't returning
an expected document scored sufficiently high enough (if at all), then use
Solr's query debugging to observe the score computation. You may end
up troubleshooting text analysis issues too if a search query doesn't match
an expected document—perhaps by adding a synonym. The end result
may be tuning the boosts or applying function queries to incorporate
other relevant fields into the scoring. When you are satisfied with the
scoring and just need to make an occasional editorial decision, then this
component is for you.

Configuration
This search component is not in the standard component list and so it must be
registered with a handler in solrconfig.xml. Here we'll add it to the mb_artists
request handler definition (just for this example, anyway).

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <lst name="defaults">
 <!-- (omitted) -->
 </lst>
 <arr name="last-components">

 <str>elevateArtists</str>

 </arr>

</requestHandler>

<searchComponent name="elevateArtists"
 class="solr.QueryElevationComponent" >

 <str name="queryFieldType">text</str>

 <str name="config-file">elevateArtists.xml</str>

 <str name="forceElevation">false</str>

</searchComponent>

This excerpt also reveals the registration of the search component using the same
name as that referenced in last-components. A name was chosen reflecting the
fact that this elevation configuration is only for artists. There are three named
configuration parameters for a query elevation component, and they are explained
as follows:

config-file: This is a reference to the configuration file containing the
editorial adjustments. As most other configuration files, it can be located in
Solr's conf directory.

•

Search Components

[168]

config-file can also be placed within the data directory (usually
a sibling to conf) where it will be reloaded, when Solr's internal
IndexReaders get reloaded which occurs for commits of new data, Solr
core reloads, and some other events. This presents an interesting option if
the elevation choices need to be loaded more often.

queryFieldType: This is a reference to a field type in schema.xml. It is used
to normalize both a query (the q parameter) and the query text attribute
found in the configuration file for comparison purposes. A field type might
be crafted just for this purpose, but it should suffice to simply choose one
that at least performs lowercasing. By default, there is no normalization.
forceElevation: The query elevation component fools Solr into thinking
the specified documents matched the user's query and scored the highest.
However, by default, it will not violate the desired sort as specified by the
sort parameter. In order to force the elevated documents to the top no
matter what sort is, set this parameter to true.

Let's take a peek at elevateArtists.xml:
<elevate>
 <query text="corgan">
 <doc id="Artist:11650" /><!-- the Smashing Pumpkins -->
 <doc id="Artist:510" /><!-- Green Day -->
 <doc id="Artist:35656" exclude="true" /><!-- Starchildren -->
 </query>
 <!-- others queries... -->
</elevate>

In this elevation file, we've specified that when a user searches for corgan, the
Smashing Pumpkins then Green Day should appear in the top two positions
in the search results (assuming typical sort of score descending) and that the
artist Starchildren is to be excluded. Note that query elevation kicks in when
the configured query text matches the user's query exactly, while taking into
consideration configured text analysis. Thus a search for billy corgan would
not be affected by this configuration.

This component is quite simple with unsurprising results, so an example of this
in action is not given. The only thing notable about the results when searching for
corgan with the configuration mentioned above is that the top two results, the
Smashing Pumpkins and Green Day, have scores of 1.72 and 0.0 respectively, yet
the maxScore value in the result element is 11.3. Normally a default sort results
in the first document having the same score as the maximum score, but in this case
that happens at the third position, as the first two were inserted by this component.
Moreover, normally a result document has a score greater than 0, but in this case one
was inserted by this component that never matched the user's query.

•

•

Chapter 6

[169]

Spell checking
One of the better ways to enhance the search experience is offering spelling
corrections. This is sometimes presented at the top of search results with such text
as "Did you mean ...". Solr supports this with the Solr spellcheck search component.

A related technique is to use fuzzy queries (that is the tilde syntax).
However, fuzzy queries don't tell you what alternative spellings were
used, are not as scalable for large indexes, and might require more
programming than using this search component.

For spelling corrections to work, Solr must clearly have a corpus of words
(for example, a dictionary) to suggest alternatives to those in the user's query.
This component and the author use the term dictionary loosely as the collection of
correctly known spelled words, and not their definitions. Solr can be configured in
either of the following two ways:

A text file of words: For a freely available English word list, check out
SCOWL at http://wordlist.sourceforge.net.
Indexed content: This is generally preferred, principally because your data
contains proper nouns and other words not in a dictionary.

Before reading on about configuring spell checking in
solrconfig.xml, you may want to jump ahead and take
a quick peek at an example towards the end of this section,
and then come back.

Schema configuration
If your dictionary is going to be based on indexed content as is recommended,
then a field should be set aside exclusively for this purpose. This is so that it
can be analyzed specially and so that other fields can be copied into it since the
index-based dictionary uses just one field. Most Solr setups would have one field;
our MusicBrainz searches, on the other hand, are segmented by the data type
(example: artists, releases, tracks), and so one for each would be best. For the
purposes of demonstrating this feature, we will only do it for artists.

•

•

Search Components

[170]

In schema.xml, we need to define a field type for the indexed words and for
querying them. We're going to use two different strategies: the conventional one
named textSpell, and an alternative one named textSpellPhrase that will be
described in a bit.

<!--
SpellCheck analysis config based off of http://wiki.apache.org/solr/
SpellCheckingAnalysis
-->
<fieldType name="textSpell" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SynonymFilterFactory"
 synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
 words="stopwords.txt"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
 </analyzer>
</fieldType>

<!-- only useful for names & titles -->
<fieldType name="textSpellPhrase" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Chapter 6

[171]

With text analysis, there is no one-size-fits-all.
The field type named textSpell is what the author recommends for
most scenarios. However, an alternative approach only applicable to short
strings like titles and names as we have with MusicBrainz is to treat the
whole name as a single token. Optionally, a regexp can be used to take
out unusual characters and to remove a few common stop-words
like the.

A field type for spellchecking is not marked as stored because the spellcheck
component only uses the indexed terms. The important thing is to ensure that the
text analysis doesn't do stemming as the corrections presented would suggest the
stems, which would look very odd to the user. It's also hard to imagine a use-case
that doesn't apply lowercasing.

Now we need to create a field for this data:
<field name="a_spell" type="textSpell" />
<field name="a_spellPhrase" type="textSpellPhrase" />

And we need to get data into it with some copyField directives:
<copyField source="a_name" dest="a_spell" />
<copyField source="a_alias" dest="a_spell" />
<!-- (ditto for a_spellPhrase) -->

Arguably, a_member_name may be an additional choice to copy as well, as the
dismax search we configured (seen below) searches it too, albeit at a reduced score.
This as well as many decisions with search configuration can be subjective.

Configuration in solrconfig.xml
To use any search component, it needs to be in the components list of a request
handler. The spellcheck component is not in the standard list so it needs to
be added.

<requestHandler name="mb_artists" class="solr.SearchHandler">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <str name="defType">dismax</str>
 <str name="qf">a_name a_alias^0.8 a_member_name^0.4</str>
 <!-- etc. -->
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Search Components

[172]

This component should already be defined in solrconfig.xml. Within the
spellchecker search component, there are one or more XML blocks named
spellchecker so that different dictionaries and other options can be configured.
These might also be loosely referred to as the dictionaries, because the parameter
that refers to this choice is named that way (more on that later). We have four
spellcheckers as follows:

a_spell: An index-based spellchecker that is a typical recommended
configuration.
jarowinkler: This uses the same built dictionary, spellcheckIndexDir,
as a_spell, but contains an alternative configuration setting for
experimentation.
a_spellPhrase: Uses a less common approach, wherein the entire field is
treated as a single word for correction.
file: A sample configuration where the input dictionary comes from a file
(not included).

A complete MusicBrainz implementation would have a different spellchecker for
each MB data type, with all of them configured similarly.

Following the excerpt below is a description of all options available:

<!-- The spell check component can return a list of alternative
 spelling suggestions. -->
<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <str name="queryAnalyzerFieldType">textSpell</str><!-- ‘q' only -->

 <lst name="spellchecker">
 <str name="name">a_spell</str>
 <str name="field">a_spell</str>
 <str name="buildOnOptimize">true</str>
 <str name="spellcheckIndexDir">./spellchecker_a_spell</str>
 </lst>
 <lst name="spellchecker">
 <!-- Use previous spellchecker index with different
 distance measure -->
 <str name="name">jarowinkler</str>
 <str name="field">a_spell</str>
 <str name="distanceMeasure">
 org.apache.lucene.search.spell.JaroWinklerDistance</str>
 <str name="spellcheckIndexDir">./spellchecker_a_spell</str>
 </lst>
 <lst name="spellchecker">
 <str name="name">a_spellPhrase</str>
 <str name="field">a_spellPhrase</str>

•

•

•

•

Chapter 6

[173]

 <str name="buildOnOptimize">true</str>
 <str name="spellcheckIndexDir">
 ./spellchecker_a_spellPhrase</str>
 </lst>
 <!-- just an example -->
 <lst name="spellchecker">
 <str name="name">file</str>
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 </lst>
</searchComponent>

Configuring spellcheckers (dictionaries)
The double layer of spellchecker configuration is perhaps a little confusing. The outer
one just names the search component, it's mostly just a container. The inner ones are
distinct configurations to choose at search time.

The following options are common to both index and file based spellcheckers:

name: The name of the spellcheck configuration. It defaults to default. Be
sure not to have more than one configuration with the same name.
classname: The Java class name implementing the spellchecker. It defaults
to the index implementation, solr.IndexBasedSpellChecker. The
leading solr. is a shortcut abbreviation in Solr's configuration file for
those internally defined by Solr. The other known implementation is
solr.FileBasedSpellChecker.
spellcheckIndexDir: This is a reference to the directory location where
the spellchecker's internal dictionary is built, not its source. It is relative to
Solr's data directory, which in turn defaults to being within the Solr home
directory. This is actually optional, which results in an in-memory dictionary.

In our spellchecker named jarowinkler, we're actually referring
to another spellchecker's index so that we can try other configuration
options without having to duplicate the data or building time. If this
is done, be sure to use the spellcheck.reload command for this
dictionary if it changes (as described later).
For a high load Solr server, an in-memory index is appealing. Until
SOLR-780 is addressed (slated for Solr 1.5), you'll have to take care to
tell Solr to build the dictionary whenever the Solr core gets loaded.
This happens at startup or if you tell Solr to reload a core.

•

•

•

Search Components

[174]

buildOnCommit and buildOnOptimize: These boolean options (defaulting
to false) enable the spellchecker's internal index to be built automatically
when either Solr performs a commit or optimize. However, enabling
buildOnOptimize is recommended.
accuracy: Sets the minimum spelling correction accuracy to act as a
threshold. It falls between 0 and 1 with a default of 0.5.
distanceMeasure: This is a Java class name implementing the algorithm to
gauge similarity between a possible misspelling and a candidate correction.
It defaults to org.apache.lucene.search.spell.LevensteinDistance
(which is the same algorithm used in fuzzy query matching). Alternatively,
org.apache.lucene.search.spell.JaroWinklerDistance works
quite well.
fieldType: This is a reference to a field type in schema.xml for performing
text-analysis on words to be spellchecked by the spellcheck.q parameter
(not q). If this isn't specified, then it defaults to the field type of the field
parameter (used by only the index-based spellchecker) and if not specified,
then defaults to a simple whitespace delimiter, which most likely would be a
misconfiguration. When using the file-based spellchecker with spellcheck.q,
be sure to specify this.

IndexBasedSpellChecker options

The IndexBasedSpellChecker gets the dictionary from the indexed content of a
field in a Lucene/Solr index, and the options are explained as follows:

sourceLocation: If specified, then it refers to an external Lucene/Solr index
path. This is an unusual choice but shows that the source dictionary does
not need to come from Solr's main index; it could be from another location,
perhaps from another Solr core. This is an advanced option. If you are doing
this, then you'll probably also need to use the spellcheck.reload command
mentioned later.

Warning: This option name is actually common to
both types of spellcheckers but is defined differently.

field: It is mandatory and refers to the name of the field within the index
that contains the dictionary. Furthermore, it must be indexed as the data
is taken from there, and not from the stored content, which is ignored.
Generally, this field exists expressly for spell correction purposes and
other fields are copied into it.

•

•

•

•

•

•

Chapter 6

[175]

thresholdTokenFrequency: Specifies a document frequency threshold,
which will exclude words that don't occur often. This is expressed as a
fraction in the range 0-1, defaulting to 0, which effectively disables the
threshold, letting all words through.

If there is a lot of data and lots of common words (as opposed to proper
nouns), then this threshold should be effective. If testing shows spelling
candidates including strange fluke words found in the index, then
introduce a threshold that is high enough to weed out such outliers. The
threshold will probably be less than 0.01 (1 percent of documents).

FileBasedSpellChecker options

The FileBasedSpellChecker gets the dictionary from a plain text file.

sourceLocation: Is mandatory and references a plain text file with each
word on its own line. Note that an option by the same name but different
meaning exists for the index-based spellchecker.
characterEncoding: This is optional but should be set. It is the
character encoding (example US-ASCII or UTF-8 or ISO-8601 or ...) of
sourceLocation, defaulting to that of your operating system, which is
probably not suitable.

We've not yet discussed the parameters to a search with the spellchecker component
enabled. But at this point of the configuration discussion, understand that you have a
choice of just letting the user query, q get processed or you can use spellcheck.q.

Processing of the q parameter
When a user query (q parameter) is processed by the spellcheck component to look
for spelling errors, Solr needs to determine what words are to be examined. This
is a two step process. The first step is to pull out the queried words from the query
string, ignoring any Solr/Lucene syntax such as AND. The next step is to process
the words with an analyzer so that, among other things, lowercasing is performed.
The analyzer chosen is through a field type specified directly within the search
component configuration with queryAnalyzerFieldType. It really should
be specified, but it's actually optional. If left unspecified, there would be no
text-analysis, which would in all likelihood be a misconfiguration.

This whole algorithm is implemented by a spellcheck query converter. The default
query converter, which is known as SpellingQueryConverter, is probably fine.
However, if you experience issues, then consult Solr's source and Wiki to see how
to write your own and configure it.

•

•

•

Search Components

[176]

Processing of the spellcheck.q parameter
If the spellcheck.q parameter is given (which really isn't a query per se), then the
string is processed with the text analysis referenced by the fieldType option of the
spellchecker being used. If a file-based spellchecker is being used, then you should
set this explicitly. Index-based spellcheckers will sensibly use the field type of the
referenced indexed spelling field. The dichotomy of the ways in which the analyzer
is configured between both q and spellcheck.q, arguably needs improvement.

Building the dictionary from its source
Each spellchecker requires it to be built, which is the process in which the dictionary
is read and is built into the spellcheckIndexDir. If it isn't built, then no corrections
will be offered, and you'll probably be very confused. You'll be even more confused
troubleshooting the results if it was built once but is far out of date and needs to be
built again.

The strategy that generally works with the least hassle is to
enable buildOnOptimize and to issue an optimize command
when the entire data set is committed. Furthermore, ensure that
spellcheckIndexDir is set so the results of the built spellcheck
index is persisted between restarts.

Generally, building is required if it has never been built before, and it should be built
periodically when the dictionary changes. It need not necessarily be built for every
change, but it obviously won't benefit from any such modifications.

In order to perform a build of a spellchecker, simply enable the component
(spellcheck=true), add a special parameter called spellcheck.build, and set
it to true:

http://localhost:8983/solr/select?&qt=mb_artists&rows=0&spellcheck=
true&spellcheck.build=true&spellcheck.dictionary=jarowinkler

The other spellcheck parameters will be explained shortly. It is important to note
that only one spellchecker (example: dictionary) was built. To build more than
one, separate requests must be issued. Anecdotally, the time it took to build
this dictionary of nearly 400K documents, each of which were very small, was
25 seconds on a mediocre machine.

Chapter 6

[177]

There is an additional related option similar to spellcheck.build called
spellcheck.reload. This doesn't rebuild the index, but it basically re-establishes
connections with the index (both sourceLocation for index-based spellcheckers and
spellcheckIndexDir for all types). If you've decided to have some external process
building the dictionary or simply another spellchecker as we've done, then Solr
needs to know how to reload it to see the changes—a quick operation.

Issuing spellcheck requests
At this point, we've covered how to configure the spellchecker and dictionaries
but not how to issue requests to actually use it. Let's do it! Fortunately there aren't
many search parameters governing this end of the component. The parameters are
explained as follows:

spellcheck: This boolean must be set to true to enable the component in
order to see suggested spelling corrections.
spellcheck.dictionary: It references which dictionary (spellchecker) to
use, configured in solrconfig.xml. It defaults to default.
spellcheck.q or q: The string containing words to be processed by this
component can be specified as the spellcheck.q parameter, and if not
present, then the q parameter. Please look for the information presented
earlier on how these are processed. But the gist of it is this: assuming you're
handling user queries to Solr that might contain some query syntax, then
the default q is right, as Solr will then know to filter out possible uses of
Lucene/Solr's syntax (example: AND,OR, fieldname:word, and so on.).
If not, then spellcheck.q is preferred, as it won't go through that
unnecessary processing. It also allows its parsing to be different on a
spellchecker-by-spellchecker basis, which we'll leverage in our example.
spellcheck.count: In order to see more candidate corrections other than
the top candidate, increase this beyond the default of 1. Corrections
are ordered by those closest to the original, as determined by the
distanceMeasure algorithm.

Although counter-intuitive, raising this number can actually affect the
result ordering. The results get better! The internal algorithm sees ~10
times as many as this number and then it orders them by closest match.
So raising this number to, let's say, 10 to balance performance with
quality can positively increase the quality of the results, even though
the Solr client may only be interested in the top result.

•

•

•

•

Search Components

[178]

spellcheck.onlyMorePopular: If this boolean option is enabled, then it will
additionally offer spelling suggestions against words that were found in the
index, so long as the suggestions occurred more often. If extendedResults
is also enabled, then looking for origFreq being greater than 0 will indicate
when this happens. This is disabled by default.

This parameter is named poorly and gives results
that are unlikely to be useful. Beware of using it!

spellcheck.extendedResults: This boolean option adds frequency
information (both for the original word, and for the suggestions). It defaults
to false and is helpful when debugging.
spellcheck.collate: This adds a revised query string to the output
that alters the original query (from spellcheck.q or q) to use the top
recommendation for each word offered. It defaults to false but should be
enabled in most circumstances, as the user interface will most likely want to
present a convenient link to use the spelling suggestions. It's smart enough
to leave other query syntax in place if it is there.

Example usage for a mispelled query
We'll try out both the conventional spellcheck configuration a_spell and the whole
name a_spellPhrase one. jarowinkler works identically, but simply has slightly
different results (better or worse is subjective), so we won't bother. In all cases,
we're going to enable spellcheck.collate, spellchecheck.extendedResults,
and use spellcheck.count of 3. I've disabled showing the query results with
rows=0, because the actual query results aren't the point of these examples. In these
examples, it is imagined that the user is searching for the band Smashing Pumpkins
but with misspellings.

Here is a search on a_spell for Smashinh Pumpkins:

<?xml version="1.0"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">124</int>
 <lst name="params">
 <str name="spellcheck">true</str>
 <str name="rows">0</str>
 <str name="indent">on</str>
 <str name="echoParams">explicit</str>

•

•

•

Chapter 6

[179]

 <str name="spellcheck.collate">true</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="q">Smashinh Pumpkins</str>

 <str name="spellcheck.count">3</str>
 <str name="qt">mb_artists</str>
 <str name="version">2.2</str>
 <str name="spellcheck.dictionary">a_spell</str>
 </lst>
 </lst>
 <result name="response" numFound="0" start="0"/>
 <lst name="spellcheck">

 <lst name="suggestions">

 <lst name="smashinh">

 <int name="numFound">3</int>

 <int name="startOffset">0</int>

 <int name="endOffset">8</int>

 <int name="origFreq">0</int>

 <lst name="suggestion">

 <int name="frequency">4</int>

 <str name="word">smashing</str>

 </lst>

 <lst name="suggestion">

 <int name="frequency">1</int>

 <str name="word">smashin</str>

 </lst>

 <lst name="suggestion">

 <int name="frequency">1</int>

 <str name="word">slashing</str>

 </lst>

 </lst>

 <bool name="correctlySpelled">false</bool>

 <str name="collation">smashing Pumpkins</str>

 </lst>

 </lst>

</response>

Search Components

[180]

Few of the output notes to take into consideration are as follows:

The order of the suggestions for words are always ordered by so-called
edit-distance (closest match), which is not displayed and isn't available. It
may seem here that it is ordered by frequency, which is a coincidence.
startOffset and endOffset are the index into the query of the
spellchecked word. This information can be used by the client to display
the query differently.
numFound is always the number of suggestions returned, not the total
number available if spellcheck.count were raised.
correctlySpelled is intuitively true or false, depending on whether all of
the query's words were found in the dictionary or not.

There are two very important caveats to understand about the
spellcheck component, as we've configured it in a typical way
(with a_spell):
Just because a spelling suggestion is offered does not mean that using
it will yield matching documents. It just means that the individual
corrected word is indeed in the index, and that's all. When there are
multiple words in the query that are both mandatory (as is typical) then
each word, after correction, might individually be in some document
but not the same document. Thus the collation query will not necessarily
work (numFound would be 0). Our first example figured out exactly what
the user wanted.
A query, which is comprised of multiple words that are all correctly
spelled, yet whose query returns no results, will not result in spelling
corrections. This should be obvious but it is worth stating.

It is plausible to imagine a future enhancement to the spellcheck component that
would only offer corrections which would yield non-zero results. For performance
reasons, such a feature would only be activated when one word is misspelled. In
the meantime, it is possible for a client to do this with the results, but it would be
much slower.

An alternative approach
Both problems mentioned in bold in the previous section can be fixed with an
alternative strategy in which the entire field contents comprise the dictionary term
like a phrase instead of each word individually. Scalability and practicality limit
this approach to short name-like fields as we have in MusicBrainz. Therefore, this
approach is preferred for a real-world use for MusicBrainz.

•

•

•

•

Chapter 6

[181]

The size on the disk of data/spellchecker_a_spell is ~19MB
compared to ~61MB for data/spellchecker_a_spellPhrase, which
is even larger than the main index itself (60MB). This is not necessarily a
problem, but is something to be aware of.

In order to use this technique, we must set spellcheck.q because the text analysis
configuration mentioned earlier allows us the same that is used for the indexed field
a_spellPhrase, which is non-tokenized.

Our search here is for Smacking Pumpkin. Boy, the user messed up here but it's close
enough. A query like this using the previous approach with a_spell would fail.

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">547</int>
 <lst name="params">
 <str name="spellcheck">true</str>
 <str name="rows">0</str>
 <str name="spellcheck.collate">true</str>
 <str name="q">Smacking Pumpkin</str>

 <str name="qt">mb_artists</str>
 <str name="version">2.2</str>
 <str name="spellcheck.dictionary">a_spellPhrase</str>

 <str name="spellcheck.q">Smacking Pumpkin</str>

 <str name="indent">on</str>
 <str name="echoParams">explicit</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.count">3</str>
 </lst>
 </lst>
 <result name="response" numFound="0" start="0"/>
 <lst name="spellcheck">
 <lst name="suggestions">
 <lst name="smacking pumpkin">
 <int name="numFound">3</int>
 <int name="startOffset">0</int>
 <int name="endOffset">16</int>
 <int name="origFreq">0</int>
 <lst name="suggestion">
 <int name="frequency">1</int>
 <str name="word">smahing pumpkins</str>
 </lst>

Search Components

[182]

 <lst name="suggestion">
 <int name="frequency">1</int>
 <str name="word">smashing pumpkins</str>
 </lst>
 <lst name="suggestion">
 <int name="frequency">1</int>
 <str name="word">smashing pumkins</str>
 </lst>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <str name="collation">smahing pumpkins</str>
 </lst>
 </lst>
</response>

All three corrections given are for the same document in the index, the Smashing
Pumpkins. The first and third suggestions given happen to be stored in SP's
a_alias field, which are not just aliases in the English sense of the word but
within MusicBrainz are misspellings too. In light of this, a_alias shouldn't be
added to the spelling index so that misspellings are not suggested.

The more-like-this search component
Have you ever searched for something and found a link that wasn't quite what you
were looking for but was reasonably close? If you were using an Internet search
engine like Google, then you may have tried the "more like this…" (or similar words
like "find similar...") link that came with the search result to have the search engine
show you pages similar to that one. This feature is also accessible from their web
browser toolbar, which when invoked uses your current page as the input for the
similarity search. Solr supports more-like-this (MLT) too.

The MLT capability in Solr can be used in the following three ways:

As a Solr component: The MLT search component is infrequently used
because it performs MLT analysis on each result returned in a search.
As a dedicated request handler: It is more common for applications to
request MLT to be performed on just one document when a user requests it,
which occurs at some point after a search. The key input to this option is aafter a search. The key input to this option is a
reference to the indexed document that you want similar results for.

•

•

Chapter 6

[183]

As a request handler with an external input document: What if you want
similarity results based on something that isn't in the index? A final option
that Solr supports is returning MLT results based on text data sent to the
MLT handler (through HTTP POST). For example, if you were to send a text
file to the handler, then Solr's MLT handler would return the documents
in the index that are most similar to it. This is atypical but an interesting
option nonetheless.

The essences of the internal workings of MLT operate like this:

1. Gather all of the terms with frequency information from the input document:
If the input document is a reference to a document within the
index, then loop over the fields listed in mlt.fl, and then the
term information needed is readily there for the taking, if the
field has the termVectors enabled. Otherwise get the stored
text, and re-analyze it to derive the terms.
If the input document is posted as text to the handler, then
analyze it to derive the terms. The analysis used is that
configured for the first field listed in mlt.fl.

2. Filter the terms based on configured thresholds. What remains are only the
"interesting terms".

3. Construct a query with these interesting terms across all of the fields listed in
mlt.fl.

Configuration parameters
In the configuration options below, the input document is either each search result
returned if MLT is used as a component, or it is the first document returned from a
query to the MLT request handler, or it is the bulk text sent to the request handler. It
simply depends on how you use it.

Parameters specific to the MLT search component
Using the MLT search component adorns an existing search with MLT results for
each document returned.

mlt: You must set this to true to enable MLT when using it as a search
component. It defaults to false.
mlt.count: The number of MLT results to be returned for each document
returned in the main query. It defaults to 5.

•

°

°

•

•

Search Components

[184]

Parameters specific to the MLT request handler
Using the MLT request handler is more like a regular search except that the results
are documents similar to the input document. Additionally, any filters (the fq
parameter) that are specified are also in effect.

q, start, rows: The MLT request handler uses the same standard parameters
for the query start offset, and row count as used for querying. But in this
case, start and rows is for paging into the MLT results instead of the results
of the query. The query is typically one that simply references one document
such as id:12345 (if your unique field looks like this). start defaults to 0
and rows to 10.
mlt.match.offset: This parameter is the offset into the results of q for
picking which document is the input document. It defaults to 0 so that the
first result from q is chosen. As q will typically search for one document, this
is rarely modified.
mlt.match.include: The input document is normally included in the
response if it is in the index (see the match element in the output of the
example) because this parameter defaults to true. Set this to false to
exclude this if that information isn't needed.
mlt.interestingTerms: If this is set to list or details, then the so-called
"interesting terms" that the MLT uses for the similarity query are returned
with the results in an interestingTerms element. If you enable mlt.boost,
then specifying details will additionally return the query boost value used
for each term. none or blank, the default, disables this. Aside from diagnostic
purposes, it might be useful to display these in the user interface, either listed
out or in a tag cloud.

Use mlt.interestingTerms while experimenting
with the results to get an insight into what the MLT
query is actually doing.

facet, ...: The MLT request handler supports faceting the MLT results.
See the previous chapter on how to use faceting.

Additionally, remember to configure the MLT request
handler in solrconfig.xml. An example of this is
shown later in the chapter.

•

•

•

•

•

Chapter 6

[185]

Common MLT parameters
These parameters are common to both the search component and request handler
MLT. Some of the thresholds here are for tuning which terms are "interesting" by
MLT. In general, expanding thresholds (that is, lowering minimums and increasing
maximums) will yield more useful MLT results at the expense of performance. The
parameters are explained as follows:

mlt.fl: A comma or space separated list of fields to consider in MLT. The
"interesting terms" are searched within these fields only.

These field(s) must be indexed. Furthermore, assuming
the input document is in the index instead of supplied
externally (as is typical), then each field should ideally
have termVectors set to true in the schema (best for
query performance although index size is a little larger).
If that isn't done, then the field must be stored so that
MLT can re-analyze the text at runtime to derive the
term vector information. It isn't necessary to use the
same strategy for each field.

mlt.qf: Different field boosts can optionally be specified with this parameter.
This uses the same syntax as the qf parameter used by the dismax handler
(for example: field1^2.0 field2^0.5). The fields referenced should also be
listed in mlt.fl. If there is a title/label field, then this field should probably
be boosted higher.
mlt.mintf: The minimum number of times (frequency) a term must be used
within a document (across those fields in mlt.fl anyway) for it to be an
"interesting term". The default is 2. For small documents, such as in the case
of our MusicBrainz data set, try lowering this to one.
mlt.mindf: The minimum number of documents that a term must be used
in for it to be an "interesting term". It defaults to 5, which is fairly reasonable.
For very small indexes, as little as 2 is plausible, and maybe larger for large
multi-million document indexes with common words.
mlt.minwl: The minimum number of characters in an "interesting term". It
defaults to 0, effectively disabling the threshold. Consider raising this to two
or three.
mlt.maxwl: The maximum number of characters in an "interesting term".
It defaults to 0 and disables the threshold. Some really long terms might be
flukes in input data and are out of your control, but most likely this threshold
can be skipped.

•

•

•

•

•

•

Search Components

[186]

mlt.maxqt: The maximum number of "interesting terms" that will be used in
an MLT query. It is limited to 25 by default, which is plenty.
mlt.maxntp: Fields without termVectors enabled take longer for MLT to
analyze. This parameter sets a threshold to limit the number of terms to
consider in a given field to further limit the performance impact. It defaults
to 5000.
mlt.boost: This boolean toggles whether or not to boost the "interesting
terms" used in the MLT query differently, depending on how interesting the
MLT module deems them to be. It defaults to false, but try setting it to true
and evaluating the results.

Usage advice
For ideal query performance, ensure that termVectors is enabled for
the field(s) used (those referenced in mlt.fl). In order to further increase
performance, use fewer fields, perhaps just one dedicated for use with
MLT. Using the copyField directive in the schema makes this easy. The
disadvantage is that the source fields cannot be boosted differently with
mlt.qf. However, you might have two fields for MLT as a compromise.
Use a typical full complement of analysis (Solr filters) including
lowercasing, synonyms, using a stop list (such as StopFilterFactory),
and stemming in order to normalize the terms as much as possible. The
field needn't be stored if its data is copied from some other field that is
stored. During an experimentation period, look for "interesting terms"
that are not so interesting for inclusion in the stop list. Lastly, some of
the configuration thresholds, which scope the "interesting terms", can be
adjusted based on experimentation.

MLT results example
Firstly, an important disclaimer on this example is in order. The MusicBrainz data
set is not conducive to applying the MLT feature, because it doesn't have any
descriptive text. If there were perhaps an artist description and/or widespread
use of user-supplied tags, then there might be sufficient information to make MLT
useful. However, to provide an example of the input and output of MLT, we will use
MLT with MusicBrainz anyway.

If you're using the request handler method (the recommended approach), which is
what we'll be using in this example, then it needs to be configured in sorlconfig.xml.
The important bit is the reference to the class, the rest of it is our prerogative.

<requestHandler name="mlt_tracks" class="solr.MoreLikeThisHandler">
 <lst name="defaults">
 <str name="mlt.fl">t_name</str>

•

•

•

Chapter 6

[187]

 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 </lst>
</requestHandler>

This configuration shows that we're basing the MLT on just track names. Let's now
try a query for tracks similar to the song "The End is the Beginning is the End" by
The Smashing Pumpkins. The query was performed with echoParams to clearly
show the options used:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">2</str>
 <str name="mlt.boost">true</str>
 <str name="mlt.fl">t_name</str>
 <str name="rows">5</str>
 <str name="mlt.interestingTerms">details</str>
 <str name="indent">on</str>
 <str name="echoParams">all</str>
 <str name="fl">t_a_name,t_name,score</str>
 <str name="q">id:"Track:1810669"</str>

 <str name="qt">mlt_tracks</str>

 </lst>
</lst>
<result name="match" numFound="1" start="0" maxScore="16.06509">

 <doc>
 <float name="score">16.06509</float>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">The End Is the Beginning Is the End</str>
 </doc>
</result>
<result name="response" numFound="853390" start="0"
 maxScore="6.352738">

 <doc>
 <float name="score">6.352738</float>
 <str name="t_a_name">In Grey</str>
 <str name="t_name">End Is the Beginning</str>
 </doc>

Search Components

[188]

 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Royal Anguish</str>
 <str name="t_name">The End Is the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Mangala Vallis</str>
 <str name="t_name">Is the End the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.6811075</float>
 <str name="t_a_name">Ape Face</str>
 <str name="t_name">The End Is the Beginning</str>
 </doc>
 <doc>
 <float name="score">5.052292</float>
 <str name="t_a_name">The Smashing Pumpkins</str>
 <str name="t_name">The End Is the Beginning Is the End</str>
 </doc>
</result>
<lst name="interestingTerms">

 <float name="t_name:end">1.0</float>
 <float name="t_name:is">0.7420872</float>
 <float name="t_name:the">0.6686879</float>
 <float name="t_name:beginning">0.6207893</float>
</lst>
</response>

The result element named match is there due to mlt.match.include defaulting to
true. The result element named response has the main MLT search results. The fact
that so many documents were found is not material to any MLT response; all it takes
is one interesting term in common. Perhaps the most objective number of interest to
judge the quality of the results is the top scoring hit's score (6.35). The "interesting
terms" were deliberately requested so that we can get an insight on the basis of the
similarity. The fact that is and the were included shows that we don't have a stop
list for this field—an obvious thing we'd need to fix. Nearly any stop list is going to
have such words.

Chapter 6

[189]

For further diagnostic information on the score computation, set
debugQuery to true. This is a highly advanced method but exposes
information invaluable to understand the scores. Doing so in our example
shows that the main reason the top hit was on top was not only because
it contained all of the interesting terms as did the others in the top 5,
but also because it is the shortest in length (a high fieldNorm). The #5
result had "Beginning" twice, which resulted in a high term frequency
(termFreq), but it wasn't enough to bring it to the top.

Stats component
This component computes some mathematical statistics of specified numeric fields in
the index. The main requirement is that the field be indexed. The following statistics
are computed over the non-null values (missing is an obvious exception):

min: The smallest value.
max: The largest value.
sum: The sum.
count: The quantity of non-null values accumulated in these statistics.
missing: The quantity of records skipped due to missing values.
sumOfSquares: The sum of the square of each value. This is probably the
least useful and is used internally to compute stddev efficiently.
mean: The average value.
stddev: The standard deviation of the values.

As of this writing, the stats component does not
support multi-valued fields. There is a patch added
to SOLR-680 for this.

Configuring the stats component
This component performs a simple task and so as expected, it is also simple
to configure.

stats: Set this to true in order to enable the component. It defaults to false.
stats.field: Set this to the name of the field in order to perform statistics
on. It is required. This parameter can be set multiple times in order to
perform statistics on more than one field.

•

•

•

•

•

•

•

•

•

•

Search Components

[190]

stats.facet: Optionally, set this to the name of the field in which you want
to facet the statistics over. Instead of the results having just one set of stats
(assuming one stats.field), there will be a set for each facet value found in
this specified field, and those statistics will be based on that corresponding
subset of data. This parameter can be specified multiple times to compute the
statistics over multiple field's values. As explained in the previous chapter,
the field used should be analyzed appropriately (that is, it is not tokenized).

Statistics on track durations
Let's look at some statistics for the duration of tracks in MusicBrainz at:

http://localhost:8983/solr/select/?rows=0&indent=on&qt=
mb_tracks&stats=true&stats.field=t_duration

And here are the results.

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5202</int>
</lst>
<result name="response" numFound="6977765" start="0"/>
<lst name="stats">
 <lst name="stats_fields">
 <lst name="t_duration">
 <double name="min">0.0</double>
 <double name="max">36059.0</double>
 <double name="sum">1.543289275E9</double>
 <long name="count">6977765</long>
 <long name="missing">0</long>
 <double name="sumOfSquares">5.21546498201E11</double>
 <double name="mean">221.1724348699046</double>
 <double name="stddev">160.70724790290328</double>
 </lst>
 </lst>
</lst>
</response>

This query shows that on an average, a song is 221 seconds (or 3 minutes 41 seconds)
in length. An example using stats.facet would produce a much longer result,
which won't be given here in order to leave space for more interesting components.
However, there is an example at http://wiki.apache.org/solr/StatsComponent.

•

Chapter 6

[191]

Field collapsing
If you apply the patch attached to issue SOLR-236, then Solr supports field collapsing
(that is result roll-up/aggregation). It is similar to an SQL group by query. In short,
this search component will filter out documents from the results where a preceding
document exists in the result that has the same value in a chosen field.

SOLR-236 is slated for Solr 1.5, but it's been incubating for years
and has received the most number of user votes in JIRA.

For an example of this feature, consider attempting to provide a search for tracks
where the tracks collapse to the artist. If a search matches multiple tracks produced
by the same artist, then only the highest scoring track will be returned for that artist.
That particular document in the results can be said to have rolled-up or collapsed
those that were removed.

An excerpt of a search for Cherub Rock using the mb_tracks request handler
collapsing on t_a_id (a track's artist) is as follows:

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">14</int>
 <lst name="params">
 <str name="collapse.field">t_a_id</str>

 <str name="rows">5</str>
 <str name="indent">on</str>
 <str name="echoParams">explicit</str>
 <str name="q">Cherub Rock</str>
 <str name="fl">score,id,t_a_id,t_a_name,t_name,t_r_name</str>
 <str name="qt">mb_tracks</str>
 </lst>
</lst>
<lst name="collapse_counts">

 <str name="field">t_a_id</str>

 <lst name="doc">

 <int name="Track:414903">68</int>

 <int name="Track:5358835">1</int>

 </lst>

 <lst name="count">

 <int name="11650">68</int>

 <int name="175552">1</int>

Search Components

[192]

 </lst>

 <str name="debug">HashDocSet(18) Time(ms): 0/0/0/0</str>

</lst>

<result name="response" numFound="18" start="0" maxScore="15.212023">
 <!-- omitted result docs for brevity -->
</result>
</response>

The number of results went from 87 (which was observed from a separate query
without the collapsing) down to 18. The collapse_counts section at the top of
the results summarizes any collapsing that occurs for those documents that were
returned (rows=5) but not for the remainder. Under the named doc section it shows
the IDs of documents in the results and the number of results that were collapsed.
Under the count section, it shows the collapsed field values—artist IDs in our case.
This information could be used in a search interface to inform the user that there
were other tracks for the artist.

Configuring field collapsing
Due to the fact that this component extends the built-in query component, it can be
registered as a replacement for it, even if a search does not need this added capability.
Put the following line by the other search components in solrconfig.xml:

<searchComponent name="query"
 class="org.apache.solr.handler.component.CollapseComponent"/>

Alternatively, you could name it something else like collapse, and then each
query handler that uses it would have to have its standard component list
defined (by specifying the components list) to use this component in place of
the query component.

The following are a list of the query parameters to configure this component (as of
this writing):

collapse.field: The name of the field to collapse on and is required for this
capability. The field requirements are the same as sorting—if text, it must
not tokenize to multiple terms. Note that collapsing on multiple fields is not
supported, but you can work around it by combining fields in the index.
collapse.type: Either normal (the default) or adjacent. normal collapsing
will filter out any following documents that share the same collapsing field
value, whereas adjacent will only process those that are adjacent.
collapse.facet: Either after (the default) or before. This controls whether
faceting should be performed afterwards (and thus be on the collapsed
results) or beforehand.

•

•

•

Chapter 6

[193]

collapse.threshold: By default, this is set to 1, which means that only one
document with the collapsed field value may be in the results—typical usage.
By setting this to, say, 3 in our example, there would be no more than three
tracks in the results by the Smashing Pumpkins. Any other track that would
normally be in the results collapses to the third one.

A possible use of this option is a search spanning
multiple types of documents (example: Artists, Tracks,
and so on), where you want no more than X (say 5) of
a given type in the results. The client might then group
them together by type in the interface. With faceting
on the type and performing faceting before collapsing,
the interface could tell the user the total of each type
beyond those on the screen.

collapse.maxdocs: This component will, by default, iterate over the entire
search results, and not just those returned, in order to perform the collapsing.
If many matched, then such queries might be slow. By setting this value to, say
200, it will stop at that point and not do more collapsing. This is a trade-off to
gain performance at the expense of an inaccurate total result count.
collapse.info.doc and collapse.info.count: These are two booleans
defaulting to true, which control whether to put the collapsing information
in the results.

It bears repeating that this capability is not officially in Solr yet, and so the
parameters and output, as described here, may change. But one would expect it to
basically work the same way. The public documentation for this feature is at Solr's
Wiki: http://wiki.apache.org/solr/FieldCollapsing. However, as of this
writing, it is out of date and has errors. For the definitive list of parameters, examine
CollapseParams.java in the patch, as that is the file that defines and documents
each of them.

Other components
There are some other Solr search components too. What follows is a basic summary
of a few of them.

•

•

•

Search Components

[194]

Terms component
This component is used to expose raw indexed term information, including term
frequency, for an indexed field. It has a lot of options for paging into this voluminous
data and filtering out terms by term frequency. A possible use of this component is
for implementing search auto-suggest. Recall that the faceting component described
in the last chapter can be used for this too. The faceting component does a better job
of implementing auto-suggest because it scopes the results to the user query and
filter queries and is most likely the desired effect, while the TermsComponent does
not. However, on the other hand, it is very fast as it is a more low-level capability
than the facet component.

http://wiki.apache.org/solr/TermsComponent

termVector component
This component is used to expose the raw term vector information for fields that have
this option enabled in the schema—termVectors set to true. It is false by default.
The term vector is per field and per document. It lists each indexed term in order with
the offsets into the original text, term frequency, and document frequency.

http://wiki.apache.org/solr/TermVectorComponent

LocalSolr component
LocalSolr is a third party search component. What it does is give Solr native abilities
to query by vicinity of a latitude and longitude given a radial distance. Naturally, the
documents in your schema need to have a latitude and longitude pair of fields. The
query requires a pair of these to specify the center point of the query plus a radial
distance. Results can be sorted by distance from the center. It's pretty straightforward
to use. Note that it is not necessary to have this component do a location-based
search in Solr. Given indexed location data, you can perform a query searching for a
document with latitudes and longitudes in a particular numerical range to search in
a box. This might be good enough, and it will be faster.

http://www.gissearch.com/geo_search_intro

Chapter 6

[195]

Summary
Consider what you've seen with Solr search components: highlighting search results,
editorially modifying query results for particular user queries, suggesting search
spelling corrections, suggesting documents "more like this", calculating mathematical
statistics of indexed numbers, collapsing/rolling-up search results. By now it should
be clear why the text search capability of your database is inadequate for all but basic
needs. Even Lucene-based solutions don't necessarily have the extensive feature-set
that you've seen here. You may have once thought that searching was a relatively
basic thing, but Solr search components really demonstrate how much more there is
to it.

The chapters thus far have aimed to show you the majority of the features in Solr
and to serve as a reference guide for them. The remaining chapters don't follow
this pattern. In the next chapter, you're going to learn about various deployment
concerns, such as logging, testing, security, and backups.

Deployment
Now that you have identified the data you want to search, defined the Solr schema
properly, and done the tweaks to the default configuration you need, you're ready to
deploy your new Solr based search to a production environment. While deployment
may seem simple after all of the effort you've gone through, it brings its own set
of challenges. In this chapter, we'll look at the following issues that come up when
going from "Solr runs on my desktop" to "Solr is ready for the enterprise".

Implementation methodology
Install Solr into a Servlet container
Logging
A SearchHandler per search interface
Solr cores
JMX
Securing Solr

Implementation methodology
There are a number of questions that you need to ask yourself in order to inform the
development of a smooth deployment strategy for Solr. The deployment process
should ideally be fully scripted and integrated into the existing Configuration
Management (CM) process of your application.

Configuration Management is the task of tracking and controlling
changes in the software. CM attempts to make the changes knowable
that occur in software as it evolves to mitigate mistakes caused due to
those changes.

•

•

•

•

•

•

•

Deployment

[198]

Questions to ask
The list of questions to be asked is as follows:

Is my deployment platform the same as my development and test
environments? If I develop on Windows but deploy on Linux have I, for
example, dealt with differences in file path delimiters?
Do I have an existing build tool such as Ant with which to integrate the
deployment process into?
How will I get the initial data into Solr? Is there a nightly process in the
application that will perform this step? Can I trigger the load process from
the deploy script?
Have I changed the source code for Solr? Do I need to version it in my own
source control repository?
Do I have full access to populate data in the production environment, or do
I have to coordinate with System Administrators who are responsible for
controlling access to production?
Do I need to define acceptance tests for proving Solr is returning the
appropriate results for a specific search?
What are the defined performance-targets that Solr needs to meet?
Have I projected the request rate to be served by Solr?
Do I need multiple Solr servers to meet the projected load? If so, then
what approach am I to use? Replication? Distributed Search? We cover
this in-depth in Chapter 9.
Will I need multiple indexes in a Multi Core configuration to support
the dataset?
Into what kind of Servlet container will Solr be deployed?
What is my monitoring strategy? What level of logging detail do I need?
Do I need to store data directories separately from application
code directories?
What is my backup strategy for my indexes, if any?
Are any scripted administration tasks required (index optimizations, old
snapshot removal, deletion of stale data, and so on)?

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 7

[199]

Installing into a Servlet container
Solr is deployed as a simple WAR (Web application archive) file that packages
up servlets, JSP pages, code libraries, and all of the other bits that are required to
run Solr. Therefore, Solr can be deployed into any Java EE Servlet Container that
meets the Servlet 2.4 specifications, such as Apache Tomcat, Websphere, JRun, and
GlassFish, as well as Jetty, which ships with Solr to run the example app.

Differences between Servlet containers
The key thing to resolve when working with Solr and the various Servlet containers
is that, technically you are supposed to compile a single WAR file and deploy that
into the Servlet container. It is the container's responsibility to figure out how to
unpack the components that make up the WAR file and deploy them properly. For
example, with Jetty you place the WAR file in the /webapps directory, but when you
start Jetty, it unpacks the WAR file in the /work directory as a subdirectory, with
a somewhat cryptic name that looks something like Jetty_0_0_0_0_8983_solr.
war__solr__k1kf17. In contrast, with Apache Tomcat, you place the solr.war file
into the /webapp directory. When you either start up Tomcat, or Tomcat notices the
new .war file, it unpacks it into the /webapp directory. Therefore, you will have the
original /webapp/solr.war and the newly unpacked (exploded) /webapp/solr
version. The Servlet specification carefully defines what makes up a WAR file.
However, it does not define exactly how to unpack and deploy the WAR files,
so your specific steps will depend on the Servlet container you are using.

If you are not strongly predisposed to choosing a particular Servlet
container, then consider Jetty, which is a remarkably lightweight, stable,
and fast Servlet container. While written by the Jetty project, they have
provided a reasonably unbiased summary of the differences in the
projects here at http://www.webtide.com/choose/jetty.jsp.

Defining solr.home property
Probably, the biggest thing that trips up folks deploying into different containers is
specifying the solr.home property. Solr stores all of its configuration information
outside of the deployed webapp, separating the data part from the code part for
running Solr. In the example app, while Solr is deployed and running from a
subdirectory in /work, the solr.home directory is pointing to the top level /solr
directory, where all of the data and configuration information is kept. You can think
of solr.home as being analogous to where the data and configuration is stored for a
relational database like MySQL. You don't package your MySQL database as part of
the WAR file, and nor do you package your Lucene indexes.

Deployment

[200]

By default, Solr expects the solr.home directory to be a subdirectory called /solr in
the current working directory. With both Jetty and Tomcat you can override that by
passing in a JVM argument that is somewhat confusingly namespaced under the solr
namespace as solr.solr.home:

-Dsolr.solr.home=/Users/epugh/solrbook/solr

Alternatively, you may find it easier to specify the solr.home property by
appending it to the JAVA_OPTS system variable. On Unix systems you would do:

export JAVA_OPTS=\"$JAVA_OPTS -Dsolr.solr.home=/Users/epugh/
 solrbook/solr"

Or lastly, you may choose to use JNDI with Tomcat to specify the solr.home
property as well as where the solr.war file is located. JNDI (Java Naming and
Directory Interface) is a very powerful, if somewhat difficult, to use directory
service that allows Java clients such as Tomcat to look up data and objects by name.

By configuring the stanza appropriately, I was able to load up the solr.war and
/solr directories from the example app shipped with Jetty under Tomcat. The
following stanza went in the /apache-tomcat-6-0.18/conf/Catalina/localhost
directory that I downloaded from http://tomcat.apache.org, in a file called
solr.xml:

<Context docBase="/Users/epugh/solr_src/example/webapps/solr.war"
debug="0" crossContext="true" >
<Environment name="solr/home" type="java.lang.String"
 value="/Users/epugh/solr_src/example/solr" override="true" />
</Context>

I had to create the ./Catalina/localhost subdirectories manually.

Note the somewhat confusing JNDI name for solr.home is solr/home.
This is because JNDI is a tree structure, with the home variable being
specified as a node of the Solr branch of the tree. By specifying multiple
different context stanzas, you can deploy multiple separate Solrs in a
single Tomcat instance.

Chapter 7

[201]

Logging
Solr's logging facility provides a wealth of information, from basic performance
statistics, to what queries are being run, to any exceptions encountered by Solr. The
log files should be one of the first places to look when you want to investigate any
issues with your Solr deployment. There are two types of logs:

the HTTP server request style logs, which record the individual web requests
coming into Solr
the application logging that uses SLF4J, which uses the built-in Java JDK
logging facility to log the internal operations of Solr

HTTP server request access logs
The HTTP server request logs record the requests that come in and are defined by the
Servlet container in which Solr is deployed. For example, the default configuration
for managing the server logs in Jetty is defined in jetty.xml:

<Ref id="RequestLog">
<Set name="requestLog">
<New id="RequestLogImpl" class="org.mortbay.jetty.NCSARequestLog">
<Arg><SystemProperty name="jetty.logs"
 default="./logs"/>/yyyy_mm_dd.request.log</Arg>
<Set name="retainDays">90</Set>
<Set name="append">true</Set>
<Set name="extended">false</Set>
<Set name="LogTimeZone">GMT</Set>
</New>
</Set>
</Ref>

The log directory is created in the subdirectory of the Jetty directory. If you have
multiple drives and want to store your data separately from your application
directory, then you can specify a different directory. Depending on how much traffic
you get, you can adjust the number of days to preserve the log files. I recommend
you keep the log files for as long as possible by archiving them. The search request
data in these files can be very valuable for tuning Solr. By using web analytics tools
such as a venerable commercial package WebTrends or the open source AWStats
package to parse your request logs, you can quickly visualize how often different
queries are run, and what search terms are frequently being used. This leads to
a better understanding of what your users are searching for, versus what you
expected them to search for initially.

•

•

Deployment

[202]

Tailing the HTTP logs is one of the best ways to keep an eye on a deployed
Solr. You'll see each request as it comes in and can gain a feel for what types of
transactions are being performed, whether it is frequent indexing of new data, or
different types of searches being performed. The request time data will let you
quickly see performance issues. Here is a sample of some requests being logged. You
can see the first request is a POST to the /solr/update URL from a browser running
locally (127.0.0.1) with the date. The request was successful, with a 200 HTTP status
code being recorded. The POST took 149 milliseconds. The second line shows a
request for the admin page being made, which also was successful and took a
slow 3816 milliseconds, primarily because in Jetty, the JSP page is compiled the
first time it is requested. The last line shows a search for dell being made to the
/solr/select URL. You can see that up to 10 results were requested and that it was
successfully executed in 378 milliseconds. On a faster machine with more memory
and a properly 'warmed' Solr cache, you can expect a few 10s of millisecond result
time. Unfortunately you don't get to see the number of results returned, as this log
only records the request.

127.0.0.1 - - [25/02/2009:22:57:14 +0000] "POST /solr/update HTTP/1.1"
200 149
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/ HTTP/1.1"
200 3816
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/
 solr-admin.css
 HTTP/1.1" 200 3846
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/
 solr_small.png
 HTTP/1.1" 200 7926
127.0.0.1 - - [25/02/2009:22:57:33 +0000] "GET /solr/admin/favicon.ico
 HTTP/1.1" 200 1146
127.0.0.1 - - [25/02/2009:22:57:36 +0000] "GET /solr/select/
?q=dell%0D%0A&version=2.2&start=0&rows=10&indent=on
 HTTP/1.1" 200 378

While you may not see things quite the same way Neo did in the Matrix, you will get
a good gut feeling about how Solr is performing!

AWStats is quite a full-featured open source request log file analyzer
under the GPL license. While it doesn't have the GUI interface that
WebTrends has, it performs pretty much the same set of analytics.
AWStats is available from http://awstats.sourceforge.net/.

Chapter 7

[203]

Solr application logging
Logging events is a crucial part of any enterprise system, and Solr uses Java's
built-in logging (JDK [1.4] logging or JUL) classes provided by the java.util.
logging package. However, this choice of a specific logging package has been seen
as a limitation by those who prefer other logging packages, such as Log4j. Solr 1.4
resolves this by using the Simple Logging Facade for Java (SLF4J) package, which
logs to another target logging package selected at runtime instead of at compile time.
The default distribution of Solr continues to target the built-in JDK logging, but now
alternative packages are easily supported.

Configuring logging output
By default, Solr's JDK logging configuration sends its logging messages to the
standard error stream:

2009-02-26 13:00:51.415::INFO: Logging to STDERR via org.mortbay.log.

StdErrLog

Obviously, in a production environment, Solr will be running as a service, which
won't be continuously monitoring the standard error stream. You will want the
messages to be recorded to a log file instead. In order to set up basic logging to a file,
create a logging.properties file at the root of Solr with the following contents:

Default global logging level:

.level = INFO

Write to a file:
handlers = java.util.logging.ConsoleHandler, java.util.logging.

FileHandler

Write log messages in human readable format:
java.util.logging.FileHandler.formatter = java.util.logging.

SimpleFormatter
java.util.logging.ConsoleHandler.formatter = java.util.logging.

SimpleFormatter

Log to the logs subdirectory, with log files named solrxxx.log

java.util.logging.FileHandler.pattern = ./logs/solr_log-%g.log

java.util.logging.FileHandler.append = true

java.util.logging.FileHandler.count = 10
java.util.logging.FileHandler.limit = 10000000 #Roughly 10MB

Deployment

[204]

When you start Solr, you need to pass the following code snippet in the location of
the logging.properties file:

>>java -Djava.util.logging.config.file=logging.properties -jar
 start.jar

By specifying two log handlers, you can send output to the console as well as log
files. The FileHandler logging is configured to create up to 10 separate logs, each
with 10 MB of information. The log files are appended, so that you can restart Solr
and not lose previous logging information. Note, if you are running Solr under
some sort of services tool, it is probably going to redirect the STERR output from
the ConsoleHandler to a log file as well. In that case, you will want to remove
the java.util.ConsoleHandler from the list of handlers. Another option is to
reduce how much is considered as output by specifying java.util.logging.
ConsoleHandler.level = WARNING.

Logging to Log4j
Most Java developers prefer Log4j over JDK logging. You might choose to configure
Solr to use it instead, for any number of reasons:

You're using a Servlet container that itself uses Log4j, such as JBoss. This
would result in a more simplified and integrated approach.
You wish to take advantage of the numerous Log4j appenders available,
which can log to just about anything, including Windows Event Logs, SNMP
(email), syslog, and so on.
To use a Log4j compatible logging viewer such as:

Chainsaw—http://logging.apache.org/chainsaw/

Vigilog—http://vigilog.sourceforge.net/

Familiarity—Log4j has been around since 1999 and is
very popular.

The latest supported Log4j JAR file is in the 1.2 series and can be downloaded here at
http://logging.apache.org/log4j/1.2/. Avoid 1.3 and 3.0, which are defunct.

Alternatively, you might prefer to use Log4j's unofficial successor
Logback at http://logback.qos.ch/, which improves upon
Log4j in various ways, notably configuration options and speed. It
was developed by the same person, Ceki Gülcü.

•

•

•

°

°

•

Chapter 7

[205]

In order to change Solr to use Log4j, just remove the slf4j-jdk14-1.5.5.jar from
the webapp/WEB-INF/lib directory and replace it with slf4j-log4j12-1.5.5.jar.
Of course, you must also place Log4j's JAR file in that directory. You can find the
various SLF4J distributions at http://www.slf4j.org/dist/. Make sure that you
download the distribution that matches the version of SLF4J packaged with Solr or
upgrade Solr's versions. Otherwise you may end up with JAR compatibility issues.
As one poster to the solr-dev mailing list memorably called it: JARmageddon.

For information on configuring Log4j, log in to the web site at
http://logging.apache.org/log4j/.

Jetty startup integration
Regardless of which logging solution you go with, you don't want to make the
startup arguments for Solr more complex. You can leverage Jetty's configuration
to specify these system properties during startup. Edit jetty.xml and add the
following stanza to the outermost <Configure id="Server" class="org.
mortbay.jetty.Server"/> element:

<Call class="java.lang.System" name="setProperty">
 <Arg>log4j.properties</Arg>
 <Arg>file:/Users/epugh/log4j.properties</Arg>
</Call>

Managing log levels at runtime
One of the challenges with most logging solutions is that you need to log enough
details to troubleshoot issues, but not so much that your log files become ridiculously
big and you can't winnow through all of the information to find what you are
looking for. Splunk is a commercial product for managing log files and making
actionable decisions on the information stored within.

Deployment

[206]

There is more information at http://www.splunk.com/.

Sometimes you need more information then you are typically logging to debug a
specific issue, so Solr provides an admin interface at http://localhost:8983/
solr/admin/logging to change the logging verbosity of the components in Solr.
Unfortunately, it only works with JDK logging.

While you can't change the overall setup of your logging strategy, such as the
appenders or file rollover strategies at runtime, you can change the level of detail to
log without restarting Solr. If you change a component like org.apache.solr.core.
SolrCore to a fine grain of logging, then make a search request to see more detailed
information. One thing to remember is that these customizations are NOT persisted
through restarts of Solr. If you find that you are reapplying log configuration
changes after every restart, then you should change your default logging setup to
specify custom logging detail levels.

Chapter 7

[207]

A SearchHandler per search interface
The two-fold questions to answer early on when configuring Solr is as follows:

Are you providing generic search services that may be consumed by a
variety of end user clients?
Are you providing search to specific end user applications?

If you are providing generic search functionality to an unknown set of clients,
then you may have just a single requestHandler handling search requests at
/solr/select, which provides full access to the index. However, it is more likely
that Solr is powering interfaces for one or more applications that are known to
make certain kinds of searches. For example, say you have an e-commerce site that
supports searching for products. In that case, you may want to only display products
that are available for purchase. A specifically named requestHandler that always
returns the stock products (using appends, as fq can be specified multiple times)
and limits the rows to 50 (using invariants) would be appropriate:

<requestHandler name="/products" class="solr.SearchHandler" >
<lst name="invariants">
 <int name="rows">50</int>
</lst>
<lst name="appends">
 <str name="fq">inStock:true</str>
</lst>
</requestHandler>

However, the administrators of the same site would want to be able to find all
products, regardless of if they are in stock or not. They would be using a different
search interface and so you would provide a different request handler that returns
all of the information available about your products:

<requestHandler name="/allproducts" class="solr.SearchHandler" />

Later on, if either your public site needs change, or if the internal searching site
changes, you can easily modify the appropriate request handler without impacting
other applications interacting with Solr.

You can always add new request handlers to meet new needs by
requiring the qt request parameter to be passed in the query like this:
/solr/select?qt=allproducts. However, this doesn't look quite as
clean as having specific URLs like /solr/allproducts. Fully named
requestHandler can also have access to them controlled by use of
Servlet security (see the Security section later in this chapter).

•

•

Deployment

[208]

Solr cores
Recall from Chapter 2 that you can either put different types of data in the same
index or use separate indexes. Up to this point, the only way you would know
how to use separate indexes is to actually run multiple instances of Solr. However,
adding another complete instance of Solr for each type of data you want to index is
more heavyweight than needed. Introduced in Solr 1.3 are Solr cores, the solution
to managing multiple indexes within a single Solr instance. As a result of hot core
reloading and swapping, it also makes administering a single core/index easier.
Each Solr core consists of its own configuration files and index of data. Performing
searches and indexing in a multicore setup is almost the same as using Solr without
cores. You just add the name of the core to the individual URLs. Instead of doing a
search through the URL:

http://localhost:8983/solr/select?q=dave%20matthews

in a multicore environment, you would access a core named mbartists through:

http://localhost:8983/solr/mbartists/select?q=dave%20matthews

Other than the introduction of the core name in the URL, you still perform all of your
management tasks, searches, and updates in the same way as you always did in a
single core setup.

Configuring solr.xml
When Solr starts up, it checks for the presence of a solr.xml file in the solr.home
directory. If one exists, then it loads up all the cores defined in solr.xml. We've
used multiple cores in the sample Solr setup shipped with this book to manage the
various indexes used in the examples. You can see the multicore configuration at
./examples/cores/solr.xml:

<solr persistent="false" sharedLib="lib">
 <cores adminPath="/admin/cores">
 <core name="mbtracks" instanceDir="mbtracks"
 dataDir="../../cores_data/mbtracks" />
 <core name="mbartists" instanceDir="mbartists"
 dataDir="../../cores_data/mbartists" />
 <core name="mbreleases" instanceDir="mbreleases"
 dataDir="../../cores_data/mbreleases" />
 <core name="crawler" instanceDir="crawler"
 dataDir="../../cores_data/crawler" />
 <core name="karaoke" instanceDir="karaoke"
 dataDir="../../cores_data/karaoke" />
 </cores>
</solr>

Chapter 7

[209]

Some of the key configuration values are:

persistent="false" specifies that any changes we make at runtime to the
cores, like copying them, are not persisted. If you want to persist between
restarting the changes to the cores, then set persistent="true". You would
definitely do this if your indexing strategy called for indexing into a virgin
core then swapping with the live core when done.
sharedLib="lib" specifies the path to the lib directory containing shared
JAR files for all the cores. If you have a core with its own specific JAR files,
then you would place them in the core/lib directory. For example, the
karaoke core uses Solr Cell (see Chapter 3) for indexing rich content, so the
JARs for parsing and extracting data from rich documents are located in
./examples/cores/karaoke/lib/.

Managing cores
While there isn't a nice GUI for managing Solr cores the way there is for some other
options, the URLs you use to issue commands to Solr Cores are very straightforward,
and they can easily be integrated into other management applications. If you specify
persistance="true" in solr.xml, then these changes will be preserved through
a reboot by updating solr.xml to reflect the changes. We'll cover a couple of the
common commands using the example Solr setup in ./examples. The individual
URLs listed below are stored in plain text files in ./examples/7/ to make it easier
to follow along in your own browser:

STATUS: Getting the status of the current cores is done through
http://localhost:8983/solr/admin/cores?action=STATUS.
You can select the status of a specific core, such as mbartists through
http://localhost:8983/solr/admin/cores?action=STATUS&core=
mbartists. The status command provides a nice summary of the various
cores, and it is an easy way to monitor statistics showing the growth of
your various cores.
CREATE: You can generate a new core called karaoke_test based on
the karaoke core, on the fly, using the CREATE command through
http://localhost:8983/solr/admin/cores?action=CREATE&name=kar
aoke_test&instanceDir=./examples/cores/karaoke_test&config=./
cores/karaoke/conf/solrconfig.xml&schema=./cores/karaoke/conf/
schema.xml&dataDir=./examples/cores_data/karaoke_test. If you
create a new core that has the same name as an old core, then the existing
core serves up requests until the new one is generated, and then the new
one takes over.

•

•

•

•

Deployment

[210]

RENAME: Renaming a core can be useful to when you have fixed names of
cores in your client, and you want to make a core fit that name. To rename
the mbartists core to the more explicit core name music_brainz_artists,
use the URL http://localhost:8983/solr/admin/cores?action=RENA
ME&core=mbartists&other=music_brainz_artists. This naming change
only happens in memory, as it doesn't update the filesystem paths for the
index and configuration directories and doesn't make much sense unless you
are persisting the name change to solr.xml.
SWAP: Swapping two cores is one of the key benefits of using Solr cores.
Swapping allows you to have an offline "on deck" core that is fully populated
with updated data. In a single atomic operation, you can swap out the
current live core that is servicing requests with your freshly populated
"on deck" core. As it's an atomic operation, your clients won't see any
delay, and there isn't any chance of mixed data being sent to the client.
As an example, we can swap the mbtracks core with the mbreleases core
through http://localhost:8983/solr/admin/cores?action=SWAP&core=
mbreleases&other=mbtracks. You can verify the swap occurred by going
to the mbtracks Admin page and verifying that Solr Home is displayed as
cores/mbreleases/.
RELOAD: As you make minor changes to a core's configuration through
solrconfig.xml or schema.xml, you don't want to be stopping and starting
Solr constantly. In an environment with even a couple of cores, it can take
some tens of seconds to restart all the cores and can go up to a couple of
minutes. By using the reload command, you can trigger just a reload of a
specific core without impacting the others. A good use of this is to configure
a Solr core to be optimized for bulk indexing data. Once data is fully
indexed, change the configuration to optimize for searching performance
and just reload the core! A simple example for mbartists is http://
localhost:8983/solr/admin/cores?action=RELOAD&core=mbartists.
MERGE: The merge command is new to Solr 1.4 and allows you to merge one
or more indexes into yet another core. This can be very useful if you've split
data across multiple cores and now want to bring them together without
re-indexing the data all over again. You need to issue commits to the
individual indexes that are sources for data. After merging, issue another
commit to make the searchers aware of the new data. The full set of
commands using curl is listed in ./7/MERGE_COMMAND.txt.

Why use multicore
Solr's support of multiple cores in a single instance does more than enabling serving
multiple indexes of data in a single Solr instance. Multiple cores also addresses some
key needs for maintaining Solr in a production environment:

•

•

•

•

Chapter 7

[211]

Rebuilding an index: While Solr has a lot of features to handle doing sparse
updates to an index with minimal impact on performance, occasionally you
need to bulk update significant amounts of your data. This invariable leads
to performance issues, as your searchers are constantly being reopened. By
supporting the ability to populate a separate index in a bulk fashion, you
can optimize the offline index for updating content. Once the offline index
has been fully populated, you can use the SWAP command to take the offline
index and make it the live index.
Testing configuration changes: Configuration changes can have very
differing impact depending on the type of data you have. If your production
Solr has massive amounts of data, moving that to a test or development
environment may not be possible. By using the CREATE and the MERGE
commands, you can make a copy of a core and test it in relative isolation
from the core being used by your end users. Use the RELOAD command to
restart your test core to validate your changes. Once you are happy with
your changes, you can either SWAP the cores or just reapply your changes to
your live core and RELOAD it.
Merging separate indexes together: You may find that over time you have
more separate indexes than you need, and you want to merge them together.
You can use the mergeindex command to merge two cores together into a
third core. However, note that you need to do a commit on both cores and
ensure that no new data is indexed while the merge is happening.
Renaming cores at runtime: You can build multiple versions of the same
basic core and control which one is accessed by your clients by using
the RENAME command to rename a core to match the URL the clients are
connecting to.

Why using multiple cores isn't the default approach?
Multi core support was first added in Solr 1.3 and has matured further
in Solr 1.4. We strongly encourage you to start out with the multiple core
approach, even if your solr.xml currently has a single core configured
in it! While slightly more complex than just having a single index, doing
this allows you to take advantage of all the administrative goodness for
cores. Perhaps one day some of the commands like RELOAD and STATUS
might eventually be supported in a single core, or perhaps the single core
configuration might become deprecated. Multiple cores will be the key
to Solr's future support for massively distributed indexes and/or huge
numbers of individualized indexes. Therefore, you can expect to see it
continue to evolve.

You can learn more about Solr core related features at http://wiki.apache.org/
solr/CoreAdmin.

•

•

•

•

Deployment

[212]

JMX
Java Management Extensions (JMX) is a Java standard API for monitoring and
managing applications and network services. Originally meant to help with server
administration, it was added to J2SE version 5 and is becoming more widely
supported. JMX enabled applications and services expose information and available
operations for resources such as MBeans (Managed Bean). MBeans can be managed
remotely by a wide variety of management consoles such as the JConsole GUI that
comes with Java and the web based JMX Console provided by JBoss. While fairly
bare bones, the JMX Console is easy to use and provides significant management
control over JBoss. More information on the JMX Console is available at
http://www.jboss.org/community/docs/DOC-10941.

As of version 1.4, Solr exposes information about its components through MBeans.
However, actual management operations, such as re-indexing information, are not
exposed through JMX. You can still leverage JMX to monitor the status of Solr, and
in large enterprise environments the JMX standard simplifies integrating monitoring
tasks into existing monitoring platforms. A great use for JMX is to find out how
many documents you've indexed in Solr.

Starting Solr with JMX
In solrconfig.xml, the stanza <jmx/> needs to be uncommented to enable JMX
support. In order to actually start up with JMX, you need to provide some extra
parameters to support remote connections, including the port to be connect to:

>>java -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.
port=3000 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.
management.jmxremote.authenticate=false -jar start.jar

However, this configuration is totally insecure. In a production environment, you
would want to require usernames and passwords for access. For more information,
please refer to the JMX documentation at http://java.sun.com/j2se/1.5.0/
docs/guide/management/agent.html#remote.

J2SE ships with JConsole, a GUI client for connecting to JMX servers. In order to start
it, run the following command:

>> [JDK_HOME]/bin/jconsole

In order to connect to Solr, choose the Remote tab, and enter localhost for the Host
or IP and 3000 for the Port. As we have started without requiring authentication, you
do not need to enter a username and password.

Chapter 7

[213]

For Solr, the key tabs to use in JConsole are Memory and MBeans. Memory provides
a visual charting of the consumption of memory and can help you monitor low
memory situations and when to start optimizing your indexes (as discussed in
Chapter 9).

Deployment

[214]

You can also monitor the various components of Solr by choosing the MBeans tab.
In order to find out how many documents you've indexed, you would look at the
SolrIndexSearch Mbean. Select solr from the tree listing on the left, and drill down
to the searcher folder and select the org.apache.solr.search.SolrIndexSearcher
component. You can see in the screenshot below that there are currently 15
documents indexed and the most ever was 25 documents. While you can pull this
type of information out of the admin statistics web page, the JMX standard provides
a much simpler method that can be easily integrated into other tools.

In order to save yourself typing in the extra startup parameters, see the previous
Jetty Startup Integration section for how to add these JMX startup parameters like
-Dcom.sun.management.jmxremote to your Jetty configuration.

Chapter 7

[215]

Take a walk on the wild side! Use JRuby to extract
JMX information
While JConsole is useful as a GUI application, it is hard to integrate into a larger
environment. However, by leveraging the standard nature of JMX, we can easily
script access to Solr components to use in our own monitoring systems. This makes
it easy to expose extra information to our users such as '15 documents are available
for searching'. There are a number of scripting packages for Java that you might look
at, including Jython, Groovy, and BeanShell. However, we are going to look at using
JRuby to access information.

JRuby is an implementation of the Ruby language running on the Java
Virtual Machine that blends the library support of Java with the simplicity of
the Ruby language in a winning combination. More information is available at
http://jruby.codehaus.org/. JRuby is very simple to install on Unix using
your operating system's package manager. Installation directions are available at
http://wiki.jruby.org/wiki/Getting_Started.

Once you have JRuby installed, you need to install the jmx4r gem that provides the
simple interface to JMX. The Ruby standard is to package functionality in gems,
which are similar to traditional Java JAR files.

>>jruby -S gem install jmx4r

Assuming you have started Solr with JMX enabled on port 3000, you are now ready
to interactively query Solr for status through JMX using the JRuby Interactive
Browser (JIRB) tool. JIRB allows you to type in a Ruby code and interactively
manipulate your environment.

Start JIRB from the command line by running the following command:

>> jirb

And enter the following commands at the interpreter prompts:

require 'rubygems'

require 'jmx4r'

JMX::MBean.establish_connection :port => 3000

You now have an interactive connection to the running Solr through JMX. In order to
find out how many queries have been issued, you just request the searcher MBean by
name solr:type=searcher,id=org.apache.solr.search.SolrIndexSearcher:

searcher = JMX::MBean.find_by_name
 "solr:type=searcher,id=org.apache.solr.search.SolrIndexSearcher"

Deployment

[216]

You may need to use JConsole to figure out the name of the MBean that you want.
Simply select the Info tab for a specific MBean, and use the MBean name attribute.
Once you have the MBean, you can view all available attributes in a hash data
structure by typing the following snippet of code:

irb(main):013:0> searcher.attributes
=> {"source_id"=>"sourceId", "category"=>"category", "description"=>"d
escription", "source"=>"source", "name"=>"name", "version"=>"version",
"searcher_name"=>"searcherName", "caching"=>"caching", "num_
docs"=>"numDocs", "max_doc"=>"maxDoc", "reader"=>"reader",
"reader_dir"=>"readerDir", "index_version"=>"indexVersion",
"opened_at"=>"openedAt", "registered_at"=>"registeredAt", "warmup_

time"=>"warmupTime"}

The attribute searcher.num_docs will return the current number of indexed
documents in Solr.

Returning to our previous example of finding out how many documents are in the
index, you just need to issue the following:

>> jirb

require 'rubygems'

require 'jmx4r'
JMX::MBean.find_by_name
 ("solr:type=searcher,id=org.apache.solr.search.

SolrIndexSearcher").num_docs

=> "15"

You can now integrate this Ruby script into some sort of regular process that saves
the number of documents in your database, so you can display that information to
your users.

You also can now start getting information about other parts of the system, like how
many search queries have been issued per second, and how long are they averaging,
by looking at the search handler MBean:

search_handler = JMX::MBean.find_by_name
 "solr:type=standard,id=org.apache.solr.handler.component.
 SearchHandler"
search_handler.avg_requests_per_second
=> .0043345
search_handler.avg_time_per_request
=> 45.0

Chapter 7

[217]

In order to see all the available Solr Mbean's and their JMX names, just issue:

puts JMX::MBean.find_all_by_name("solr:*").map{ |mbean| mbean.object_
name}

Ruby is a wonderful language for scripting utility tasks that interact with Solr and
other systems.

Jmx4r is hosted at http://github.com/jmesnil/jmx4r/ and has a
comprehensive suite of tests and example code. It's a good library to look
at for tips on using JRuby.

Securing Solr
Solr, by default, comes completely open. Anyone can make search requests,
anyone can upload documents, anyone can access the administration interface, and
anyone can delete data. Solr is built like this because it is designed to fit into any
environment, and if it is shipped with significant security functionality built-in, then
it wouldn't be as wonderfully flexible as it is. Having said this, it isn't difficult to lock
down Solr to use in any kind of environment. We can do this by making use of the
standard practices, which you would apply to any kind of web application.

Limiting server access
The single biggest thing you can do to secure Solr is to lock down who has access to
the server. Using standard firewall techniques, you can control what IP addresses are
allowed to connect to the Solr through the 8983 port. Unless you have very unusual
needs, you won't expose Solr to the Internet directly; instead users will access Solr
through some sort of web application, that in turn forwards requests to Solr, collects
the results, and displays them to your users. By limiting the IP addresses that
can connect to Solr to just those belonging to your web farm, you've ensured that
random Internet users and internal users don't mess with Solr.

If you lock down access through IP addresses, then don't forget that if you
have external processes uploading content, you need to make sure those
IP addresses are added.

Deployment

[218]

Using IP addresses to control access is like using a sledge hammer and doesn't help if
someone is connecting to Solr from one of the valid IP addresses. Fortunately, Solr is
just a WAR file deployed in a Servlet container, so you can use all of the capabilities
of Servlet containers to control access. In order to limit access to /solr/update* and
/solr/admin/* in Jetty by requiring BASIC authentication from your users, you
merely edit the web.xml for Solr by adding the following stanza at the bottom:

<security-constraint>
<web-resource-collection>
<web-resource-name>Solr Admin</web-resource-name>
<url-pattern>/admin/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>Solr Update</web-resource-name>
<url-pattern>/update*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
<role-name>content_updater</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>Test Realm</realm-name>
</login-config>

This specifies that access to the /update* URLs is limited to anyone in the roles of
admin or content_updater, although only admin users can access the /admin/*
URLs. The realm-name is what ties the security constraints to the users configured
in Jetty.

Customizing web.xml in Jetty
Sometimes cracking open a WAR file just to customize the web.xml can
be a pain. But if you are a Jetty user, then you can put the changes into
the ./etc/webdefault.xml file and Jetty will apply the changes to any
WAR file deployed. This is a nice trick if you have just a single webapp in
the Jetty container. See ./examples/solr/etc/webdefault.xml and
./examples/solr/etc/jetty.xml for an example.

Chapter 7

[219]

Edit the jetty.xml file and uncomment the <Set name="UserRealms"/> stanza so
that it looks like the following:

<Set name="UserRealms">
<Array type="org.mortbay.jetty.security.UserRealm">
<Item>
<New class="org.mortbay.jetty.security.HashUserRealm">
<Set name="name">Solr Realm</Set>
<Set name="config"><SystemProperty name="jetty.home" default="."/>
 /etc/realm.properties</Set>
</New>
</Item>
</Array>
</Set>

The ./etc/realm.properties file contains a list of users with their password and
roles to which they belong. We've specified that the user named administrator has
the roles of content_updater and admin, and therefore can access any /update and
/admin URLs. However, the user eric can only access the /update URLs:

administrator: $ecretpa$$word,content_updater,admin
eric: mypa$$word, content_updater
guest: guest,read-only

Adding authentication introduces an extra roadblock for automated scripts that
need to interact with Solr to upload information. However, if you use BASIC
authentication, then you can easily pass the username and password as part of
the URL request. The only downside is that the password is being transmitted in
cleartext, and you should wrap the entire request in SSL for maximum security:

http://USERNAME:PASSWORD@localhost:8080/solr/update

Normally you wouldn't want to store passwords in plain text on
the server in a file such as realm.properties, because they
can be obfuscated or encrypted. More information is available at
http://docs.codehaus.org/display/JETTY/Realms.

Securing public searches: Although you can get all access to Solr through a
controlled web application, you may want to expose Solr publicly, albeit in a limited
way. One scenario for this is exposing a search in an RSS/Atom feed made possible
with Solr's XSLT support (see Chapter 4 for more on XSLT). Another is using AJAX
from the end user's browser to perform search. Due to AJAX restrictions, that
scenario would require the web application and Solr to be on the same server.

Deployment

[220]

If using JavaScript to access Solr interests you, then check out SolrJS
which is a JavaScript API to Solr. It is currently in transition to becoming
a contrib module for eventual inclusion with Solr. In the mean time,
more information can be found at http://wiki.apache.org/
solr/SolrJS, including links to a demonstration site featuring faceted
search. SolrJS is a great example of how easy it is to integrate Solr in
new and interesting ways.

There may be other scenarios where firewall rules and/or passwords might still
be used to expose parts of Solr, such as for modifying the index, but some search
requests must be exposed to the public. In this case, you need to configure the
exposed request handlers with invariants and/or appends clauses as applicable.
For a limited example of this, see the A SearchHandler per search interface section
earlier in this chapter.

If there are certain records needed to be excluded, then you'll need to specify an
appropriate fq (filter query). If there are certain fields on documents that need to
be kept private, then this can be problematic to completely secure, especially if you
are working with sensitive data. It's simple enough to specify fl (field list) through
invariants, but there are a good number of other parameters that might expose
the data (for example, highlighting, maybe faceting) in ways you didn't realize.
Therefore, if you are working with sensitive data and you have private fields, then
exposing Solr in this way is not recommended.

Controlling JMX access
If you have started Solr with JMX enabled, then you should also have a JMX
username and password configured. While today the JMX interface only exposes
summary information about the Solr components and memory consumption, in
future versions actual management options like triggering optimizing indexes will
most likely be exposed through JMX. So, putting JMX access under lock and key is a
good idea.

Securing index data
One of the weaknesses of Solr due to the lack of a built-in security model is that
there aren't well defined approaches for controlling which users can manipulate
the indexes by adding, updating, and deleting documents, and who can search
what documents. Nevertheless, there are some approaches for controlling access
to documents being searched.

Chapter 7

[221]

Controlling document access
You can start off with some of the ideas talked about in the A SearchHandler per
search interface section to control search access to your index. However, if you need
to control access to documents within your index and must control it based on
the user accessing the content, then one approach is to leverage the faceted search
capabilities of Solr. You may want to look back at Chapter 5 to refresh your memory
on faceting. For example, you may have a variety of documents that have differing
visibility depending on if someone is a member of the public or an internal publicist.
The public can only see a subset of the data, but a publicist can see more information,
including information that isn't ready for public viewing. When indexing documents,
you should store in a separate multiValued field the roles that a user must belong to
in order to gain access to the document:

<field name="roles" type="text" indexed="true" stored="true"
multiValued="true" />

A document that was for everyone would be indexed with the role values Public and
Publicist. Another document that was for internal use would just have the Publicist
role. Then, at query time, you could append extra request parameters to limit what is
returned depending on the roles that someone belonged to by treating the roles as
a facet:

/solr/select/?q=music&start=0&facet=on&facet.field=roles&fq=role%3Apu
blic

In the example above, we are querying for music that is accessible by anyone with
the role public. Obviously, this requires significant logic to be implemented on the
client side interfacing with Solr, and is not as robust a solution as we may wish.

Other things to look at
Remote streaming is the ability to give Solr the URL to a remote resource or local
file and have Solr download the contents as a stream of data. This can be very useful
when indexing large documents as it reduces the amount of data that your updating
process needs to move around. However, it means that if you have the /debug/dump
request handler enabled, then the contents of any file can be exposed. Here is an
example of displaying to anyone my ~/.ssh/authorized_keys file:

http://localhost:8983/solr/debug/dump?stream.file=/Users/epugh/.ssh/
authorized_keys

Deployment

[222]

If you have this turned on, then make sure that you are monitoring the log files, and
also the access to Solr is tightly controlled. The example application has this function
turned on by default.

In addition, in a production environment, you want to comment out the
/debug/dump request handler, unless you are actively debugging an issue.

Summary
We briefly covered a wide variety of the issues that surround taking a Solr
configuration that works in a development environment and getting it ready for the
rigors of a production environment. Solr's modular nature and stripped down focus
on search allows it to be compatible with a broad variety of deployment platforms.
Solr offers a wealth of monitoring options, from log files, to HTTP request logs, to
JMX options. Nonetheless, for a really robust solution, you must define what the key
metrics are, and then implement automated solutions for tracking them.

Now that we have set up our Solr server, we need to take advantage of it to build
better applications. In the next chapter, we'll look at how to easily integrate Solr
search through various client libraries.

Integrating Solr
As the saying goes, if a tree falls in the woods and no one hears it, did it make a
sound? Therefore, if you have a wonderful search engine, but your users can't access
it, do you really have a wonderful search engine? Fortunately, Solr is very easy to
integrate into a wide variety of client environments by dint of its very modern,
easy-to-use RESTful interface. In this chapter, we will:

Look at accessing Solr results through various language based clients,
including Java, Ruby, PHP, and JavaScript.
Learn how you can meet the needs of new applications by leveraging Solr's
support for JSON.
Briefly cover building your own Google-like search engine by crawling the
MusicBrainz.org site with the Heritrix web crawler and indexing with Solr.
Talk about the advantages of replacing the direct use of the Lucene library
with an Embedded Solr.

We will look through a couple of examples using our MusicBrainz dataset. You can
download the full sample code for these integrations from the Packt Publishing web
site. This includes a prebuilt Solr instance and scripts to load mbtracks with seven
million records and mbartists with 400,000 records. When you have downloaded
the zipped file, you should follow the setup instructions in the README.txt file.

Structure of included examples
We have tried (where appropriate) to include a wide variety of sample integrations
that you can run as you work through this chapter. These various examples stored in
./examples/8/ are as self-contained as we could make them, and you shouldn't run
into any problems making them work. Check the support section of the book web
site for any errata.

•

•

•

•

Integrating Solr

[224]

Inventory of examples
This is a quick summary of the various examples of using Solr, available in
./examples/8/.

crawler is an example of doing web crawling and integrating Solr through
the Java SolrJ client.
jquery_autocomplete is an example of using the jQuery Autocomplete
library to populate suggestions based on Solr searches.
solrjs is an example of building a fully featured Solr Search UI using
just JavaScript.
php is a barebones example of PHP integration with Solr.
solr-php-client is a richer example of integrating Solr results into a PHP
based application.
myfaves is a Ruby on Rails application using acts_as_solr to search for
music artists.
blacklightopac is a demonstration of a full featured faceted search UI in
Ruby on Rails.

SolrJ: Simple Java interface
SolrJ is the simple Java interface to Solr that insulates you from the dirty details
of parsing and sending messages back and forth between your application and
Solr. Instead, you get to work in the familiar world of objects like SolrQuery,
QueryResponse, and SolrDocument. SolrJ is a core part of the Solr project, and
therefore is updated as soon as new features are added to Solr.

One of the interesting aspects of SolrJ is that because Solr and SolrJ are both
written in Java, you can directly access a Solr core without using HTTP through the
EmbeddedSolrServer class. While this does speed up indexing by removing the
cost of transporting data over the wire, it does tie you to running your client on the
same local box as Solr so that it can access the Solr configuration files and Lucene
indexes directly. It's also simpler to just use Solr's remote streaming feature (the
stream.file parameter) for this purpose. We'll take a look at an example of using
the SolrJ interface through both the EmbeddedSolrServer class and the more typical
CommonsHttpSolrServer in a small application that scrapes information from
MusicBrainz.org using a Java based web crawler called Heritrix.

•

•

•

•

•

•

•

Chapter 8

[225]

What about Nutch?
Nutch is a Lucene sub-project, focused on building Internet scale web
searches similar to Google with specifics such as a web crawler, link
graphing database, and parsers for HTML and other common formats
found on the Internet.
Nutch has gone through varying levels of activity and community
involvement and recently reached version 1.0. While many folks look
at Solr and Nutch as competitors, the projects actually target different
problems. Nutch is focused on the web search space, while Solr is a
generic search tool with features like spellcheck and faceting included.
Nutch natively understands web search concepts such as the value of
links towards calculating a page rank score, and how to factor in what
an HTML <title/> tag is, when building the scoring model to return
results. While you could build a web search tool with Solr, you would
have to teach it those concepts. This isn't to say that closer integration isn't
possible. In Nutch 1.x, support has been added to the crawler to index
data into Solr instead of Lucene directly. However, that support is still
very new.
In research done a few years ago by Oregon State University, Nutch did
very well in comparison to Google (http://nutch.sourceforge.
net/twiki/Main/Evaluations/OSU_Queries.pdf), the biggest
challenges reported revolved around the topic of crawling web sites. Most
of the complaints were that Nutch would sometimes end up in infinite
loops or miss certain pages because of redirecting while crawling. The
consensus is that Nutch is much stronger in providing good search results
once the web pages have been downloaded and indexed into Nutch. To
address this hole is the NutchWAX (Nutch + Web Archive eXtensions)
project. NutchWAX allows you to index archived web content in the
standard ARC format used by the InternetArchive. ARC is a very
compact format for storing web pages in an archived format produced by
Heritrix. It has been used to build full text Nutch indexes with over 500
million web pages in them by running on top of the Hadoop distributed
computing framework. The InternetArchive has published some good
practices for indexing with NutchWAX and Hadoop at http://
archive-access.sourceforge.net/projects/nutch/best-
practices.pdf. Both Nutch and Heritrix are constantly evolving
projects, so keep an eye on both to see if one suits your needs better than
the other.

Integrating Solr

[226]

Using Heritrix to download artist pages
Heritrix is an extremely full featured and extensible web crawler used by the
InternetArchive for archiving the contents of the Internet. The InternetArchive is a
non-profit organization established to preserve web sites by taking regular snapshots
of them. You may be more familiar with the site under the name The Wayback
Machine. By looking back at the original indexed version of the Solr homepage
taken on January 19th, 2007 at http://web.archive.org/web/*/http://lucene.
apache.org/solr, we learn that Solr had just graduated from the Apache
Incubator program!

Going into the full details of using Heritrix is outside the scope of this book.
However, you can play with a version configured for crawling only artist pages on
MusicBrainz.org in ./examples/8/crawler/heritrix-2.0.2/. Start Heritrix
by running:

>> ./bin/heritrix -a password

and then browsing to the web interface at http://localhost:8080/ and logging
in using the admin password you specified through the -a parameter. You will
see a web console with a single Engine configured. Click on it to see the profiles
configured for it. You should see a musicbrainz-only-artists profile; click on Copy,
and choose the default option of generating a new ready-to-run job.

You will now have a new job configured with a name similar to musicbrainz-
only-artists-20090501142451. Click on Launch to start the crawler covering the
MusicBrainz.org site. You will see the console interface of the crawler and can
monitor the progress of downloading content:

Chapter 8

[227]

The crawler can take a very long time to run, as it is designed to not overload the
sites being crawled and we only have 25 threads configured. MusicBrainz.org has
roughly 119,000 distinct pages, and running Heritrix for 10 hours only downloaded
6600 pages. The pages being crawled are stored in the compact text format called
an ARC file that contains multiple web resources individually compressed using
.gzip. There are various options for checkpointing the resulting ARC files, as
they are generated so that you can start using them while it continues to crawl.
Learn more about checkpointing and more advanced features at Heritrix's site
at http://crawler.archive.org/. The resulting ARC file is stored in the
./crawler/heritrix-2.0.2/jobs/[THE_NAME_OF_YOUR_JOB]/arcs/ directory.
For the rest of this example, we will work with the already generated ARC files in
the ./crawler/heritrix-2.0.2/jobs/completed-musicbrainz-only-artists-
20090707185058/arcs directory that contains 1532 downloaded pages.

You can view the basic meta information of the resources in an ARC file such as the
timestamp, MIME type, and URL by using the arcreader command line client:

>> ./bin/arcreader jobs/completed-music-brainz-only-artists-
20090707185058/arcs/IAH-20090707185106--00000-budapest.local.arc.gz

20090430202747 72.29.166.157 http://musicbrainz.org/show/artist/
?artistid=217990 text/html - - 3700547 28627 IAH-20090707185106 -00000-
budapest.local

20090430202755 72.29.166.157 http://musicbrainz.org/browseartists.
html?index=P&offset=50 text/html - - 3707421 35317 IAH-20090707185106 -
00000-budapest.local

Indexing HTML in Solr
Solr does provide some basic support for working with HTML documents that can
make indexing simpler. For example, if you look at ./examples/cores/crawler/
conf/schema.xml, you can see that the schema has been optimized for storing HTML
documents. There are two new field types defined: html-text and html-shingle.
Both field types leverage the HTMLStripStandardTokenizerFactory tokenizer to
strip out the various HTML related tags and just preserve the textual content of the
web page during indexing for searching against. However, html-shingle is designed
specifically for multiword phrase searches by using a technique called shingling that
results in faster phrase queries at the expense of more disk use and indexing time. The
html-text field is indexed in a more straightforward manner. We delve more into
shingling in general in Chapter 9.

Integrating Solr

[228]

The fields we are storing are:

<fields>
 <field name="url" type="string" />
 <field name="mimeType" type="string" />
 <field name="host" type="string" />
 <field name="path" type="string" />
 <field name="docText" type="html-text"/>
 <field name="docTextShingle" type="html-shingle" stored="false" />
</fields>

<copyField source="docText" dest="docTextShingle" />

<uniqueKey>url</uniqueKey>
<defaultSearchField>docText</defaultSearchField>

with the url being the unique key and the docText being the default field for
searches, Host and path fields give us something with which to facet our results.

There is a very simple Java application in ./examples/8/crawler/
SolrJforMusicBrainz that deletes any existing records, parses the individual
records from the ARC files, and inserts them into Solr if they have the MIME type
of text/html. SolrJforMusicBrainz is built using the Maven project management/
build tool. Maven is an Apache project at http://maven.apache.org/ that brings
a specific approach to structuring Java projects and introduced the concept of public
repositories for storing JAR dependencies. Maven has seen significant adoption
across the Java world.

Solr currently uses Ant for builds and publishes the resulting artifacts
for Maven users. However, a recurring thread on solr-dev is to move to
a Maven based build.

In order to compile the application yourself, assuming you have installed Maven 2,
execute the following command from the ./SolrJforMusicBrainz directory:

>> mvn package

You will download all of the JAR dependencies for both Solr and Heritrix, resulting
in a roughly 12 megabyte executable JAR file at ./SolrJforMusicBrainz/target/
SolrJForMusicBrainz-1.0-SNAPSHOT.jar.

Chapter 8

[229]

In order to index the web pages stored in the ARC format, execute the JAR file,
passing in the directory in which the ARC files are located, whether you are using a
remote or local Solr connection, and the specific connection information. In order to
connect to your already running Solr, run:

>> java -jar target/SolrJForMusicBrainz-1.0-SNAPSHOT.jar ../heritrix-
2.0.2/jobs/completed-musicbrainz-only-artists-20090707185058/arcs/ REMOTE
http://localhost:8983/solr/crawler

You should see a long list of URLs being indexed, along with how many milliseconds
it took to process all of the documents:

http://musicbrainz.org/show/artist/?artistid=317388

http://musicbrainz.org/show/artist/?artistid=593877

http://musicbrainz.org/show/artist/?artistid=419076

Execution time was 12454 ms for 210 documents

In order to index the ARC files into an embedded Solr, run:

>> java -jar target/SolrJForMusicBrainz-1.0-SNAPSHOT.jar ../heritrix-
2.0.2/jobs/completed-musicbrainz-only-artists-20090707185058/arcs/
EMBEDDED ../../../cores

You will see similar output as before, but interleaved with all of the logging
generated by the Embedded Solr instance as well:

http://musicbrainz.org/show/artist/?artistid=334589

May 4, 2009 9:06:45 PM org.apache.solr.update.processor.
LogUpdateProcessor finish

INFO: {add=[http://musicbrainz.org/show/artist/?artistid=334589]} 0 17

May 4, 2009 9:06:45 PM org.apache.solr.core.SolrCore execute

INFO: [crawler] webapp=null path=/update params={} status=0 QTime=17

The interesting thing about the embedded method for connecting to Solr is that you
can start it up while another Solr server instance is already running. Normally when
you accidentally start a second instance of Solr running, you get an exception like:

java.net.BindException: Address already in use

However, because the Embedded Solr instance is directly starting up Solr in a
separate JVM and not opening a connection to a server port, it won't have a conflict
with an already running Solr instance use of a port. You can actually start up an
Embedded Solr and write documents to it, while the main instance of Solr is running.
This can lead to somewhat indeterministic results, as you don't have a single Solr
acting as the traffic cop in coordinating reading and writing to the underlying
Lucene indexes. Moreover, because of the extensive caching that is performed
at the multiple layers of Solr, you may not realize that the data has changed.

Integrating Solr

[230]

Run mvn eclipse:eclipse to generate the .project and .classpath files
required to import the SolrJForMusicBrainz project into Eclipse as an Eclipse
project. You will need to configure a M2_REPO classpath variable in Eclipse pointing
at your local repository. Learn more at http://maven.apache.org/plugins/
maven-eclipse-plugin/.

If you don't use Eclipse, then please refer to the Maven web site's documentation for
IDE integration for your preferred IDE.

SolrJ client API
SolrJ has a very straightforward object model for representing interaction with
Solr. You can play with the basic methods for interacting with Solr by running the
BrainzSolrClient class in your IDE. BrainzSolrClient merely provides some
settings to pass into an instance of Indexer, the main class that parses ARC records
and indexes them into Solr. Regardless of whether you choose the remote or the
embedded approach for interacting with Solr, you use the same interface defined
in SolrServer.

Starting a connection to a remote Solr is very simple, with the only parameter being
the URL to the Solr instance. Note the inclusion of the crawler core in the URL:

public SolrServer startRemoteSolr() throws MalformedURLException,
 SolrServerException {
 CommonsHttpSolrServer solr = new
 CommonsHttpSolrServer("http://localhost:8983/solr/crawler");
 solr.setRequestWriter(new BinaryRequestWriter());
 return solr;
}

New to Solr 1.4 is the ability to specify requests and responses in a Java binary
format called javabin that is much smaller and faster than XML, as there isn't any
XML parsing, and the data being transmitted over the wire is much smaller. The
amount of XML required for submitting a request can be quite large if you have
numerous fields. Setting the request writer to use the BinaryRequestWriter turns this
on. By default, the SolrJ client performs updates using the binary javabin format.

Starting up an Embedded Solr is a bit more complex, as you are starting Solr instead
of running it in a separate servlet container:

public SolrServer startEmbeddedSolr() throws IOException,
 ParserConfigurationException, SAXException,
 SolrServerException {

Chapter 8

[231]

 File root = new File("../../../cores");
 container = new CoreContainer();

 SolrConfig config = new SolrConfig(root + "/crawler",
 "solrconfig.xml",null);
 CoreDescriptor descriptor = new CoreDescriptor(container,
 "crawler",root + "/solr");
 SolrCore core = new SolrCore("crawler", root +
 "/../cores_data/crawler", config, null, descriptor);

 container.register(core, false);
 EmbeddedSolrServer solr = new EmbeddedSolrServer(container,
 "crawler");
 return solr;
}

You need to specify a bit more when firing up the Embedded Solr, as you are
not starting up all of the cores, only a single specific one. Therefore, the SolrConfig
and CoreDescriptor classes wrap the information about solrconfig.xml
and your specific named core. Both of these are used to define the SolrCore,
which is then registered in a CoreContainer. Both EmbeddedSolrServer and
CommonsHtttpSolrServer implement the same SolrServer interface, so you can
change the connectivity method you choose at runtime.

Performing a query is very straightforward:

SolrQuery solrQuery = new SolrQuery("Smashing Pumpkins");
QueryResponse response = solr.query(solrQuery);

You can customize the query, for instance, by adding faceting to find out the most
popular hosts and paths indexed by the crawler:

SolrQuery solrQuery = new SolrQuery("*:*");
solrQuery.setRows(0);
solrQuery.setFacet(true);
solrQuery.addFacetField("host");
solrQuery.addFacetField("path");
solrQuery.setFacetLimit(10);
solrQuery.setFacetMinCount(2);
QueryResponse response = solr.query(solrQuery);

The query result in XML would be something similar to:

<result name="response" numFound="1446" start="0"/>
<lst name="facet_fields"
 <lst name="host">
 <int name="musicbrainz.org">1432</int>
 <int name="blog.musicbrainz.org">3</int>

Integrating Solr

[232]

 <int name="stats.musicbrainz.org">3</int>
 <int name="musicbrainz.uservoice.com">2</int>
 <int name="www.musicbrainz.org">2</int>
 </lst>
 <lst name="path">
 <int name="/showartist.html">473</int>
 <int name="/browseartists.html">381</int>
 <int name="/show/artist/">209</int>
 <int name="/show/user/">65</int>
 <int name="/mod/search/pre/editor-open.html">64</int>
 <int name="/browselabels.html">29</int>
 </lst>
</lst>

Any type of query that you would want to do with Solr is available through the
SolrJ client. SolrJ also makes deleting documents simple by providing two easy
methods: deleteByQuery() and deleteById(). deleteById() takes in the defined
uniqueKey field (in this case, the URL). Removing the Contact Us page is as simple
as running:

solr.deleteById("http://musicbrainz.org/doc/ContactUs")

As part of the indexing process, we want to clear out the existing index. So we
use the deleteByQuery, and specify the entire index. Obviously this can be very
dangerous, and if you have a really large Solr index it will take a while to actually
commit that change to the filesystem:

solr.deleteByQuery("*:*"); // delete everything!
solr.commit();

Of course, none of this matters if you can't index documents. In the example below,
you can see the heart of the loop for parsing through the list of ARC files and
extracting and indexing the information. As previously mentioned, we only want
HTML pages to be indexed, so we check for a MIME type of text/html. Every 100
documents that are added to Solr causes a commit to be issued to Solr. At the end of
the loop, a single optimize request is issued:

File arcFiles[] = arcDir.listFiles(new ArcFilenameFilter());
int hits = 1;
for (File arcFile : arcFiles) {
 System.out.println("Reading " + arcFile.getName());
 ArchiveReader r = ArchiveReaderFactory.get(arcFile);
 r.setDigest(true);

 for (ArchiveRecord rec : r) {
 if (rec != null) {
 ArchiveRecordHeader meta = rec.getHeader();
 if (meta.getMimetype().trim().startsWith("text/html")) {

Chapter 8

[233]

 ByteArrayOutputStream baos = new
 ByteArrayOutputStream();
 rec.dump(baos)
 if (indexIntoSolr) {
 SolrInputDocument doc = new SolrInputDocument();

 doc.addField("url", meta.getUrl(), 1.0f);
 doc.addField("mimeType", meta.getMimetype(),
 1.0f);
 doc.addField("docText", baos.toString());
 // should parse out HTML body and specify character encoding
 URL url = new URL(meta.getUrl());
 doc.addField("host", url.getHost());
 doc.addField("path", url.getPath());
 solr.add(doc);
 }
 hits++;
 }
 }
 rec.close();

 }
}
solr.commit();
solr.optimize();

Optimizing the performance of indexing content is often a matter of trial and error.
As we are streaming the HTML for each ARC record into the docText field data
from the filesystem, we ask ourselves: Is there a better way to convert that output
stream to a string rather than using a ByteArrayOutputStream? We could also
potentially optimize sending information to Solr by building a Collection of
SolrInputDocuments, and then adding them all at once:

Collection<SolrInputDocument> docs = new
 ArrayList<SolrInputDocument>();
// Loop through Archive Records and add documents
// docs.add(doc);
server.add(docs);

Of course, this requires more memory on the indexer side and means that
each add operation may take longer. Another option would be to use the
StreamingUpdateSolrServer where there is no performance penalty to calling
add() for each document, unlike the CommonsHttpSolrServer interface. You can
see the performance gain by running the following command:

>> java -jar target/SolrJForMusicBrainz-1.0-SNAPSHOT.jar ../heritrix-
2.0.2/jobs/completed-musicbrainz-only-artists-20090707185058/arcs/
STREAMING http://localhost:8983/solr/crawler

You should see a roughly 40 percent gain in performance by streaming the
documents using three threads processing a queue of 20 documents.

Integrating Solr

[234]

Indexing POJOs
POJOs (Plain Old Java Objects) typically follows the JavaBean pattern of having a
set of properties that have getter and setter methods for them. Moreover, in many
use cases, you are looking to index information that is exposed as Java objects, such
as a Product versus documents like the ARC records in the previous example. Often
these objects are backed by a relational database of some type, and you manage them
through object relational mapping tools such as Hibernate, JPA or JDO. Working
with objects can provide much richer types of manipulations than working with
documents and allows you to leverage the power of strong typing to validate
your code.

Annotations were introduced in JDK 1.5 to provide a richer means of supplying
extra information to tools and libraries beyond what is in the Java code itself. For
example, the classic JavaDoc tag @throws SolrServerException on a method such
as startEmbeddedSolr() can be thought of as a type of annotation that has meaning
to the JavaDoc tools. However, unlike JavaDoc tags, annotations can be read from
source files, class files, and reflectively at runtime. Solr leverages annotations to
markup a POJO with information that SolrJ needs to index it.

./SolrJForMusicBrainz/src/main/java/solrbook/RecordItem.java is an
example of a JavaBean that imports the Solr Field class and allows each property
to be annotated. In the example below, RecordItem has the properties id and html
mapped to the Solr fields url and docText:

import org.apache.solr.client.solrj.beans.Field;

public class RecordItem {

 @Field("url")
 String id;

 @Field
 String mimeType;

 @Field("docText")
 String html;

 @Field
 String host;

 @Field
 String path;

Indexing the RecordItem POJOs is very similar to using the SolrDocument directly:

RecordItem item = new RecordItem();

item.setId(meta.getUrl());
item.setMimeType(meta.getMimetype());

Chapter 8

[235]

item.setHtml(baos.toString());
URL url = new URL(meta.getUrl());
item.setHost(url.getHost());
item.setPath(url.getPath());
solr.addBean(item);

You can also index a collection of beans through solr.addBeans(collection).
Performing a query that returns results as POJOs is very similar to returning normal
results. You build your SolrQuery object the exact same way as you normally
would, and perform a search returning a QueryResponse object. However, instead
of calling getResults() and parsing a SolrDocumentList object, you would ask for
the results as POJOs:

public List<RecordItem> performBeanSearch(String query) throws
 SolrServerException {
 SolrQuery solrQuery = new SolrQuery(query);
 QueryResponse response = solr.query(solrQuery);
 List<RecordItem> beans = response.getBeans(RecordItem.class);
 System.out.println("Search for '" + query + "': found " +
 beans.size() + " beans.");
 return beans;
}
>> Perform Search for '*:*': found 10 beans.

You can then go and process the search results, for example rendering them in
HTML with JSP.

When should I use Embedded Solr
There has been extensive discussion on the Solr mailing lists on whether removing
the HTTP layer and using a local Embedded Solr is really faster than using the
CommonsHttpSolrServer. Originally, the conversion of Java SolrDocument
objects into XML documents and sending them over the wire to the Solr server
was considered fairly slow, and therefore Embedded Solr offered big performance
advantages. However, as of Solr 1.4, a binary format is used to transfer messages,
which is more compact and requires less processing than XML. In order to use the
SolrJ client with pre 1.4 Solr servers, you must explicitly specify that you wish to use
the XML response writer through solr.setParser(new XMLResponseParser()).
The common thinking is that storing a document in Solr is typically a much smaller
portion of the time spent on indexing compared to the actual parsing of the original
source document to extract its fields. Additionally, by putting both your data
importing process and your Solr process on the same computer, you are limiting
yourself to only the CPUs available on that computer. If your importing process
requires significant processing, then by using the HTTP interface you can have
multiple processes spread out on multiple computers munging your source data.

Integrating Solr

[236]

There are a couple of use cases where using Embedded Solr is really attractive:

Streaming locally available content directly into Solr indexes
Rich client applications
Upgrading from an existing Lucene search solution to a Solr based search

In-Process streaming
If you expect to stream large amounts of content from a single filesystem, which is
mounted on the same server as Solr in a fairly un-manipulated manner as quickly
as possible, then Embedded Solr can be very useful. This is especially if you don't
want to go through the hassle of firing up a separate process or have concerns about
having a servlet container, such as Jetty, running.

Consider writing a custom DIH DataSource instead.
Instead of using SolrJ for fast importing, consider using Solr's
DataImportHandler (DIH) framework. Like Embedded Solr,
it will result in an in-process import. Look at the org.apache.
solr.handler.dataimport.DataSource interface and existing
implementations like JdbcDataSource. Using DIH gives you
supporting infrastructure like starting and stopping imports, a debugging
interface, chained transformations, and the ability to integrate with data
available from other DIH data-sources (such as inlining reference data
from an XML file).

A good example of an open source project that took the approach of using Embedded
Solr is Solrmarc. Solrmarc (hosted at http://code.google.com/p/solrmarc/)
is a project to parse MARC records, a standardized machine format for storing
bibliographic information.

What is interesting about Solrmarc is that it heavily uses meta programming
methods to avoid binding to a specific version of the Solr libraries, allowing it to
work with multiple versions of Solr. So, for example, creating a Commit command
looks like:

Class<?> commitUpdateCommandClass =
 Class.forName("org.apache.solr.update.CommitUpdateCommand");
commitUpdateCommand = commitUpdateCommandClass
 .getConstructor(boolean.class).newInstance(false);

instead of

CommitUpdateCommand commitUpdateCommand = new
 CommitUpdateCommand();

•

•

•

Chapter 8

[237]

Solrmarc uses the Embedded Solr approach to locally index content. After it
is optimized, the index is moved to a Solr server that is dedicated to serving
search queries.

Rich clients
In my mind, the most compelling reason for using the Embedded Solr approach is
when you have a rich client application developed using technologies such as Swing
or JavaFX and are running in a much more constrained client environment. Adding
search functionality using the Lucene libraries directly is a more complicated
lower-level API and it doesn't have any of the value-add that Solr offers (for example,
faceting). By using Embedded Solr you can leverage the much higher-level API of Solr,
and you don't need to worry about the environment your client application exists in
blocking access to ports or exposing the contents of a search index through HTTP. It
also means that you don't need to manage spawning another Java process to run a
Servlet container, leading to fewer dependencies. Additionally, you still get to leverage
skills in working with the typically server based Solr on a client application. A win-win
situation for most Java developers!

Upgrading from legacy Lucene
Probably a more common use case is when you have an existing Java-based web
application that was architected prior to Solr becoming the well known and stable
product that it is today. Many web applications leverage Lucene as the search engine
with a custom layer to make it work with a specific Java web framework such as
Struts. As these applications become older, and Solr has progressed, revamping them
to keep up with the features that Solr offers has become more difficult. However,
these applications have many ties into their homemade Lucene based search engines.
Performing the incremental step of migrating from directly interfacing with Lucene
to directly interfacing with Solr through Embedded Solr can reduce risk. Risk is
minimized by limiting the impact of the change to the rest of the web application by
isolating change to the specific set of Java classes that previously interfaced directly
with Lucene. Moreover, this does not require a separate Solr server process to be
deployed. A future incremental step would be to leverage the scalability aspects
of Solr by moving away from the Embedded Solr to interfacing with a separate
Solr server.

Integrating Solr

[238]

Using JavaScript to integrate Solr
During the Web 1.0 epoch, JavaScript was primarily used to provide basic
client-side interactivity such as a roll-over effect for buttons in the browser on
what were essentially static pages generated wholly by the server. However, in
today's Web 2.0 environment, the rise of AJAX usage has led to JavaScript being
used to build much richer web applications that blur the line between client-side and
server-side functionality. Solr's support for the JavaScript Object Notation format
(JSON) for transferring search results between the server and the web browser client
makes it simple to consume Solr information by modern Web 2.0 applications. JSON
is a human-readable format for representing JavaScript objects, which is rapidly
becoming a defacto standard for transmitting language independent data with
parsers available to many languages, including Java, C#, Ruby, and Python, as well
as being syntactically valid JavaScript code! The eval() function will return a valid
JavaScript object that you can then manipulate:

var json_text = ["Smashing Pumpkins","Dave Matthews Band","The
 Cure"];
var bands = eval('(' + json_text + ')');
alert("Band Count: " + bands.length()); // alert "Band Count: 3"

While JSON is very simple to use in concept, it does come with its own set of
complexities related to security and browser compatibility. To learn more about the
JSON format, the various client libraries that are available, and how it is and is not
like XML, visit the homepage at http://www.json.org.

As you may recall from Chapter 3, you change the format of the response from Solr
from the default XML to JSON by specifying the JSON writer type as a parameter in
the URL: wt=json. The results are returned in a fairly compact, single long string of
JSON text:

{"responseHeader":{"status":0,"QTime":0,"params":{"q":"hills ro
lling","wt":"json"}},"response":{"numFound":44,"start":0,"docs
":[{"a_name":"Hills Rolling","a_release_date_latest":"2006-11-
30T05:00:00Z","a_type":"2","id":"Artist:510031","type":"Artist"}]}}

Chapter 8

[239]

If you add the indent=on parameter to the URL, then you will get some pretty
printed output that is more legible:

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "q":"hills rolling",
 "wt":"json",
 "indent":"on"}},
 "response":{"numFound":44,"start":0,"docs":[
 {
 "a_name":"Hills Rolling",
 "a_release_date_latest":"2006-11-30T05:00:00Z",
 "a_type":"2",
 "id":"Artist:510031",
 "type":"Artist"}
]
}}

You may find that you run into difficulties while parsing JSON in various client
libraries, as some are more strict in the format than others. Solr does output very
clean JSON, such as quoting all keys and using double quotes and offers some
formatting options for customizing handling of lists of data. If you run into
difficulties, a very useful web site for validating your JSON formatting is
http://www.jsonlint.com/. Paste in a long string of JSON and the site will
validate the code and highlight any issues in the formatting. This can be invaluable
for finding a trailing comma, for example.

Wait, what about security?
You may recall from Chapter 7 that one of the best ways to secure Solr is to limit
what IP addresses can access your Solr install through firewall rules. Obviously, if
users on the Internet are accessing Solr through JavaScript, then you can't do this.
However, if you look back at Chapter 7, there is information on how to expose
a read-only request handler that can be safely exposed to the Internet without
exposing the complete admin interface.

Integrating Solr

[240]

Building a Solr powered artists autocomplete
widget with jQuery and JSONP
Recently it has become de rigueur for any self-respecting Web 2.0 site to provide
suggestions when users type information into a search box. Even Google has joined
this trend:

Building a Web 2.0 style autocomplete text box that returns results from Solr is
very simple by leveraging the JSON output format and the very popular jQuery
JavaScript library's Autocomplete widget.

jQuery is a fast and concise JavaScript library that simplifies HTML
document traversing, event handling, animating, and Ajax interactions
for rapid web development. It has gone through explosive usage growth
in 2008 and is one of the most popular Ajax frameworks. jQuery provides
low level utility functions but also completes JavaScript UI widgets such
as the Autocomplete widget. The community is rapidly evolving, so stay
tuned to the jQuery.com blog at http://blog.jquery.com/. You
can learn more about jQuery at http://www.jquery.com/.

Chapter 8

[241]

The jQuery Autocomplete widget can use both local and remote datasets. Therefore, it
can be set up to display suggestions to the user based on results from Solr. A working
example is available in the /examples/8/jquery_autocomplete/index.html file
that demonstrates suggesting an artist as you type in his or her name. You can see a
live demo of Autocomplete online at http://view.jquery.com/trunk/plugins/
autocomplete/demo/ and read the documentation at http://docs.jquery.com/
Plugins/Autocomplete.

There are three major sections to the page:

the JavaScript script import statements at the top
jQuery JavaScript that actually handles the events around the text
being input
a very basic HTML for the form at the bottom

We start with a very simple HTML form that has a single text input box with the
id="artist":

<div id="content">

 <form autocomplete="off">
 <p>
 <label>Artist Name:</label>
 <input type="text" id="artist" size="30"/>
 Press "F2" key to see logging of events.
 </p>

 <input type="submit" value="Submit" />
 </form>

</div>

We then add a function that runs, after the page has loaded, to turn our basic text
field into a text field with suggestions:

$(function() {

 function formatForDisplay(doc) {
 return doc.a_name;
 }

 $("#artist").autocomplete(
 'http://localhost:8983/solr/mbartists/select/?wt=json&json.wrf=?', {
 dataType: "jsonp",
 width: 300,
 extraParams: {rows: 10, fq: "type:Artist", qt:
 "artistAutoComplete"},
 minChars: 3,

•

•

•

Integrating Solr

[242]

 parse: function(data) {
 log.debug("resulting documents count:" +
 data.response.docs.size);
 return $.map(data.response.docs, function(document) {
 log.debug("doc:" + doc.id);
 return {
 data: doc,
 value: doc.id.toString(),
 result: doc.a_name
 }
 });
 },
 formatItem: function(doc) {
 return formatForDisplay(doc);
 }
 }).result(function(e, doc) {
 $("#content").append("<p>selected " + formatForDisplay(doc)
 + "(" + doc.id + ")" + "</p>");
 log.debug("Selected Artist ID:" + doc.id);
 });
});

The $("#artist").autocomplete() function takes in the URL of our data source,
in our case Solr, and an array of options and custom functions and ties it to the text
field. The dataType: "jsonp" option that we supply informs Autocomplete that
we want to retrieve our data using JSONP. JSONP stands for JSON with Padding,
which is not a very obvious name. It means that when you call the server for JSON
data, you are specifying a JavaScript callback function that gets evaluated by the
browser to actually do something with your JSON objects. This allows you to work
around the web browser cross-domain scripting issues of running Solr on a different
URL and/or port from the originating web page. jQuery takes care of all of the low
level plumbing to create the callback function, which is supplied to Solr through the
json.wrf=? URL parameter.

Notice the extraParams data structure:

width: 400,
extraParams: {rows: 10, fq: "type:Artist"},

minChars: 3,

These items are tacked onto the URL, which is passed to Solr. Unfortunately,
Autocomplete uses the URL parameter limit with the value specified for the max
option to control the number of results to be returned, which doesn't work for Solr.
We work around this by specifying the rows parameter as an extraParams entry.

Chapter 8

[243]

Following the best practices, we have created a specific request handler called
artistAutoComplete, which is a dismax handler to search over all of the fields in
which an artists name might show up: a_name, a_alias, and a_member_name. The
handler is specified by appending qt=artistAutoComplete to the URL through
extraParams as well.

The parse: parameter defines a function that is called to handle the JSON result data
from Solr. It consists of a map() function that takes the response and calls another
anonymous function. This function deals with each document and builds the internal
data structure that Autocomplete needs to handle the searching and filtering in order
to match what the user has typed.

Once the user has selected a suggestion, the result() function is called, and the
selected JSON document is available to be used to show the appropriate user
feedback on the suggestion being selected. In our case, it is a message appended to
the <div id="content"> div.

By default, Autocomplete uses the parameter q to send what the user has entered
into the text field to the server, which matches up perfectly with what Solr expects.
Therefore, we don't see it but call it out as an explicit parameter.

You may have noticed the logging statements in the JavaScript. The example
leverages the very nice Blackbird JavaScript logging utility. Blackbird is an open
source JavaScript library that bills itself as saying goodbye to alert() dialogs and is
available from http://www.gscottolson.com/blackbirdjs/. By pressing F2,
you will see a console that displays some information about the processing being
done by the Autocomplete widget. You should now have a nice Solr powered text
autocomplete field so that when you enter Rolling, you get a list of all of the artists
including the Stones.

Integrating Solr

[244]

One thing that we haven't covered is the pretty common use case for an
Autocomplete widget that populates a text field with data that links back to a specific
row in a table in a database. For example, in order to store a list of My Favorite
Artists, I would want the Autocomplete widget to simplify the process of looking up
the artists but would need to store the list of favorite artists in a relational database.
You can still leverage Solr's superior search ability, but tie the resulting list of artists
to the original database record through a primary key ID, which is indexed as part
of the Solr document. If you try to lookup the primary key of an artist through the
artist's name, then you may run into problems, such as having multiple artists with
the same name or unusual characters that don't translate cleanly from Solr to the
web interface to your database record. Typically in this use case, you would add the
mustMatch: true option to the autocomplete() function to ensure that freeform
text that doesn't result in a match is ignored. You can add a hidden field to store the
primary key of the artist and use that in your server-side processing versus the name
in text box. Add an onChange event handler to blank out the artist_id hidden field
if any changes occur so that the artist and artist_id always matchup:

<input type="hidden" id="artist_id"/>
<input type="text" id="artist" size="30"/>

The parse() function is modified to clear out the artist_id field whenever new
text is entered into the autocomplete field. This ensures that the artist_id and
artist fields do not become out of sync:

parse: function(data) {
log.debug("resulting documents count:" + data.response.docs.size);
$("#artist_id").get(0).value = ""; // clear out hidden field

 return $.map(data.response.docs, function(doc) {

The result() function call is updated to populate the hidden artist_id field when
an artist is picked:

result(function(e, doc) {
 $("#content").append("<p>selected " + formatForDisplay(doc) +
 "(" + doc.id + ")" + "</p>");
 $("#artist_id").get(0).value = doc.id;

 log.debug("Selected Artist ID:" + doc.id);
});

Chapter 8

[245]

Look at /examples/8/jquery_autocomplete/index_with_id.html for a complete
example. Change the field artist_id from input type="hidden" to type="text" so
that you can see the ID changing more easily as you select different artists.

Keen readers may have noticed that, albeit similar, the example in this
section and what Google is doing are fundamentally different. Google
is doing a term suggest type of autocomplete, where as we are doing a
search result autocomplete. The difference is that Google (and Solr can
do this with a creative use of faceting, see Chapter 5) returns individual
search words for the response, whereas search result autocomplete
returns particular documents. Both are useful, and it depends on what
you want to do. For the MusicBrainz data, the search result autocomplete
makes the most sense. In order to do what Google does, you could do
autocompletion based on matching existing facets groupings. You can
expect Solr to become smarter about the terms indexed, which would
support term suggest autocompletion better.

SolrJS: JavaScript interface to Solr
 As previously mentioned in Chapter 7, SolrJS is also built on the jQuery library
and provides a full featured Solr search interface with the usual goodies such
as supporting facets and providing autocompletion of suggestions for queries.
SolrJS adds some interesting visualizations of result data, including widgets for
displaying tag clouds of facets, plotting country code-based data on a map of the
world, or filtering results by date fields. When it comes to integrating Solr into your
web application, if you are comfortable with the jQuery library and JavaScript,
then this can be a very effective way to add a really nice Ajax view of your search
results without changing the underlying web application. If you're working with an
older web framework that is brittle and hard to change, such as IBM's Lotus Notes
and Domino framework, then this keeps the integration from touching the actual
business objects, and keeps the modifications in the HTML and JavaScript layer.

The SolrJS project homepage is at http://solrjs.solrstuff.org/ and has a
great demo of displaying Reuters business news wire results from 1987. SolrJS is
currently migrating to the main Apache Solr project, so check the Wiki page at
http://wiki.apache.org/solr/SolrJS for updates.

Integrating Solr

[246]

A slightly tweaked copy of the homepage is stored in /examples/8/solrjs/
reuters.html. So let's go ahead and look at the relevant portions of the HTML
that drive SolrJS. You may see some patterns that look familiar to the previous
Autocomplete example, because SolrJS uses a slightly older version of jQuery and
integrates with Solr the same way using JSON.

SolrJS has a concept of widgets that provides rich UI functionality. It comes
with widgets that do autocomplete, tag cloud, facet view, country code, and
calendar based date ranges, as well as a results widget. They all inherit from an
AbstractClientSideWidget and follow pretty much the same pattern. You
configure them by passing in a set of options, such as what fields to read data
in for autocompletion, or what fields to display results in.

new $sj.solrjs.AutocompleteWidget({id:"search", target:"#search",
 fulltextFieldName:"allText", fieldNames:["topics", "organisations",
 "exchanges"]});

new $sj.solrjs.TagcloudWidget({id:"topics", target:"#topics",
 fieldName:"topics", size:50});

Chapter 8

[247]

A central SolrJS Manager object coordinates all of the event handling between
the various widgets, allowing them to update their display appropriately as
selections are made. Widgets are added to the solrjsManager object through
addWidget() method:

solrjsManager.addWidget(resultWidget);

A custom UI is quickly built by creating your own result widget based on the
ExtensibleResultWidget and customizing the renderResult() method.

Working with SolrJS and creating new widgets for your specific display purposes
comes easily to anyone who comes from an object-oriented background. The various
widgets that come with SolrJS serve more as a foundation and source of ideas rather
than as a finished set of widgets. You'll find yourself customizing them extensively to
meet your specific display needs.

Accessing Solr from PHP applications
There are a number of ways to access Solr from PHP based applications, and none of
them seem to have taken hold of the market as the best approach. So keep an eye on
the Wiki page at http://wiki.apache.org/solr/SolPHP for new developments.
While you can tie into Solr using the standard XML interface for handling results
(and that is what the listed standalone SolrUpdate.php and SolrQuery.php classes
do), you can also directly consume results by using one of the two PHP writer types:
php and phps. In order to access either of the writer types, you need to uncomment
them in solrconfig.xml:

<queryResponseWriter name="php"
 class="org.apache.solr.request.PHPResponseWriter"/>
<queryResponseWriter name="phps"
 class="org.apache.solr.request.PHPSerializedResponseWriter"/>

Adding the URL parameter wt=php produces simple PHP output in a typical array
data structure:

array(
 'responseHeader'=>array(
 'status'=>0,
 'QTime'=>0,
 'params'=>array(
 'wt'=>'php',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso')),

Integrating Solr

[248]

 'response'=>array('numFound'=>523,'start'=>0,'docs'=>array(
 array(
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'))
))

The same response using the Serialized PHP output specified by wt=phps URL
parameter is a much less human-readable format but much more compact to transfer
over the wire:

a:2:{s:14:"responseHeader";a:3:{s:6:"status";i:0;s:5:"QTime";i:1;s:6:"
params";a:5:{s:2:"wt";s:4:"phps";s:6:"indent";s:2:"on";s:4:"rows";s:1:
"1";s:5:"start";s:1:"0";s:1:"q";s:11:"Pete Moutso";}}s:8:"response";a:
3:{s:8:"numFound";i:523;s:5:"start";i:0;s:4:"docs";a:1:{i:0;a:4:{s:6:"
a_name";s:11:"Pete Moutso";s:6:"a_type";s:1:"1";s:2:"id";s:13:"Artist:
371203";s:4:"type";s:6:"Artist";}}}}

solr-php-client
Showing a lot of progress towards becoming the dominant solution for PHP
integration is the solr-php-client, a project on Google Code: http://code.
google.com/p/solr-php-client/. Interestingly enough, this project leverages
the JSON writer type to communicate with Solr instead of the PHP writer type,
showing the prevalence of JSON for facilitating inter-application communication
in a language agnostic manner. The developers chose JSON over XML because
they found that JSON parsed much quicker than XML in most PHP environments.
Moreover, using the native PHP format requires using the eval() function, which
has a performance penalty and opens the door for code injection attacks.

solr-php-client can both create documents in Solr as well as perform queries for
data. In /examples/8/solr-php-client/demo.php, there is a demo of creating a
new artist document in Solr for the singer Susan Boyle, and then performing some
queries. Susan Boyle was a contestant on the TV show Britain's Got Talent and may
be a major artist in the future. You can learn more about her from her Wikipedia
entry at http://en.wikipedia.org/wiki/Susan_Boyle.

Installing the demo in your specific local environment is left as an exercise for
the reader. On a Macintosh, you would place the solr-php-client directory in
/Library/WebServer/Documents/.

Chapter 8

[249]

An array data structure of key value pairs that match your schema can be easily
created and then used to create an array of Apache_Solr_Document objects to be sent
to Solr. Notice that we are using the artist ID value -1. Solr doesn't care what the ID
field contains, just that it is present. Using -1 ensures that we can find Susan Boyle
by ID later!

 $artists = array(
 'suan_boyle' => array(
 'id' => 'Artist:-1',
 'type' => 'Artist',
 'a_name' => 'Susan Boyle',
 'a_type' => 'person',
 'a_member_name' => array('Susan Boyle')
)
);

The value for a_member_name is an array, because a_member_name is a
multi-valued property.

Sending the documents to Solr and triggering the commit and optimize operations is
as simple as:

 $solr->addDocuments($documents);
 $solr->commit();
 $solr->optimize();

If you are not running Solr on the default port, then you will need to tweak the
Apache_Solr_Service configuration:

$solr = new Apache_Solr_Service('localhost', '8983',
 '/solr/mbartists');

Queries can be issued using one line of code. The variables $query, $offset, and
$limit contain what you would expect them to.

$response = $solr->search($query, $offset, $limit);

Displaying the results is very straightforward as well. Here we are looking for the
artist Susan Boyle based on her ID of -1 to highlight the result using a blue font:

foreach ($response->response->docs as $doc) {

 $output = "$doc->a_name ($doc->id)
";

 // highlight Susan Boyle if we find her.
 if ($doc->id == 'Artist:-1') {
 $output = "" . $output . "";
 }

 echo $output;
}

Integrating Solr

[250]

Successfully running the demo creates Susan Boyle and issues a number of queries,
producing a page similar to the one below. Notice that if you know the ID of the artist,
it's almost like using Solr as a relational database to select a single specific row of data.
Instead of select * from artist where id=-1 we did q=id:"Artist:-1", but the
result is the same!

Drupal options
Drupal is a very successful open source Content Management System (CMS)
that has been used for building everything from the Recovery.gov site to political
campaigns to university web sites. Drupal, written in PHP, is notable for its rich
wealth of modules that provide integration with many different systems, and now
Solr! Drupal's built-in search has always been considered adequate, but not great.
So Solr, now being an option for Drupal developers, is going to be very popular.

Chapter 8

[251]

Apache Solr Search integration module
The Apache Solr Search integration module, hosted at http://drupal.org/
project/apachesolr, builds on top of the core search services provided by Drupal,
but provides extra features such as faceted search and better performance by
offloading servicing search requests to another server. The module seems to have
had significant adoption and is the basis for some other Drupal modules.

Incidentally, it uses the source code of the solr-php-client internally with one
of the installation steps for checking out revision 6 of the solr-php-client. The
Drupal project is scrupulous about maintaining only GPL licensed code in their
source control repository. Therefore, you need to manually install the BSD licensed
solr-php-client:

>>svn checkout -r6 http://solr-php-client.googlecode.com/svn/trunk/
 SolrPhpClient

In order to see the Apache Solr module in action, just visit the Drupal.org and
perform a search to see the faceted results. In the screenshot below, you can see that
they have facets by Author and Type, as well as sorting by Relevancy, Title, Type,
Author, and Date.

Integrating Solr

[252]

Hosted Solr by Acquia
Acquia is a company providing commercially supported Drupal distributions that
contain some proprietary modules to make managing Drupal easier. As of early
2009, they have a hosted search system in beta, which is based on Lucene and Solr for
Drupal sites. Acquia's adoption of Solr as a better solution for Drupal then Drupal's
own search shows the rapid maturing of the Solr community and platform.

Acquia maintains "in the cloud" (Amazon EC2), a large infrastructure of Solr servers
saving individual Drupal administrators from the overhead of maintaining their
own Solr server. A module provided by Acquia is installed into your Drupal and
monitors for content changes. Every five or 10 minutes, the module sends content
that either hasn't been indexed, or needs to be re-indexed, up to the indexing servers
in the Acquia network. When a user performs a search on the site, the query is sent
up to the Acquia network, where the search is performed, and then Drupal is just
responsible for displaying the results. Acquia's hosted search option supports all
of the usual Solr goodies including faceting. Drupal has always been very database
intensive, with only moderately complex pages performing 300 individual SQL
queries to render. Moving the load of performing searches off one's Drupal server
into the cloud drastically reduces the load of indexing and performing searches
on Drupal.

Acquia has developed some slick integration beyond the standard Solr features
based on their tight integration into the Drupal framework, which include:

The Content Construction Kit (CCK) allows you to define custom fields for
your nodes through a web browser. For example, you can add a select field
onto a blog node such as oranges/apples/peaches. Solr understands those
CCK data model mappings and actually provides a facet of oranges/apples/
peaches for it.
Turn on a single module and instantly receive content recommendations
giving you more like this functionality based on results provided by Solr.
Any Drupal content can have recommendations links displayed with it.
Multi-site search: A strength of Drupal is the support of running multiple
sites on a single codebase, such as drupal.org, groups.drupal.org, and
api.drupal.org. Currently, part of the Apache Solr module is the ability to
track where a document came from when indexed, and as a result, add the
various sites as new filters in the search interface.

•

•

•

Chapter 8

[253]

I think that Acquia's hosted search product is a very promising idea, and I can
see hosted Solr search becoming a very common integration approach for many
sites that don't wish to manage their own Java infrastructure or need to customize
the behavior of Solr drastically. Acquia is currently evaluating many other
enhancements to their service that take advantage of the strengths of the Drupal
platform and the tight level of integration they are able to perform. So expect to
see more announcements. You can learn more about what is happening here at
http://acquia.com/products-services/acquia-search.

Ruby on Rails integrations
There has been a lot of churn in the Ruby on Rails world for adding Solr support,
with a number of competing libraries and approaches attempting to add Solr
support in the most Rails-native way. Rails brought to the forefront the idea of
Convention over Configuration. In most traditional web development software,
from ColdFusion, to Java EE, to .NET, the framework developers went with the
approach that their framework should solve any type of problem and work with
any kind of data model. This led to these frameworks requiring massive amounts of
configuration, typically by hand. It wasn't unusual to see that adding a column to a
user record would require modifying the database, a data access object, a business
object, and the web tier. Four changes in four different files to add a new field! While
there were many attempts to streamline this, from using annotations to tooling like
IDE's and Xdoclet, all of them were band-aids over the fundamental problem of
too much configurability. The Rails sweet spot for development is exposing an SQL
database to the web. Add a column to the database and it is now part of your object
relational model with no additional coding. The various libraries for integrating
Solr in Ruby on Rails applications attempt to follow this idea of Convention over
Configuration in how they interact with Solr. However, often there are a lot of
mysterious rules (conventions!) to learn, such as prefixing String schema fields with
_s when developing the Solr schema.

The classic plugin for Rails is acts_as_solr that allows Rails ActiveRecord objects
to be transparently stored in a Solr index. Other popular options include Solr Flare
and rsolr. An interesting project is Blacklight, a tool oriented towards libraries
putting their catalogs online. While it attempts to meet the needs of a specific
market, it also contains many examples of great Ruby techniques to leverage in
your own projects.

Integrating Solr

[254]

Similar to the PHP integrations discussed previously, you will need to turn on the
Ruby writer type in solrconfig.xml:

<queryResponseWriter name="ruby"
 class="org.apache.solr.request.RubyResponseWriter"/>

The Ruby hash structure looks very similar to the JSON data structure with some
tweaks to fit Ruby, such as translating nulls to nils, using single quotes for escaping
content, and the Ruby => operator to separate key-value pairs in maps. Adding
a wt=ruby parameter to a standard search request returns results in a Ruby hash
structure like this:

{
 'responseHeader'=>{
 'status'=>0,
 'QTime'=>1,
 'params'=>{
 'wt'=>'ruby',
 'indent'=>'on',
 'rows'=>'1',
 'start'=>'0',
 'q'=>'Pete Moutso'}},
 'response'=>{'numFound'=>523,'start'=>0,'docs'=>[
 {
 'a_name'=>'Pete Moutso',
 'a_type'=>'1',
 'id'=>'Artist:371203',
 'type'=>'Artist'}]
}}

acts_as_solr
A very common naming pattern for plugins in Rails that manipulate the database
backed object model is to name them acts_as_X. For example, the very popular
acts_as_list plugin for Rails allows you to add list semantics, like first, last,
move_next to an unordered collection of items. In the same manner, acts_as_solr
takes ActiveRecord model objects and transparently indexes them in Solr. This
allows you to do fuzzy queries that are backed by Solr searches, but still work
with your normal ActiveRecord objects. Let's go ahead and build a small Rails
application that we'll call MyFaves that both allows you to store your favorite
MusicBrainz artists in a relational model and allows you to search for them
using Solr.

Chapter 8

[255]

acts_as_solr comes bundled with a full copy of Solr 1.3 as part of the plugin,
which you can easily start by running rake solr:start. Typically, you are starting
with a relational database already stuffed with content that you want to make
searchable. However, in our case we already have a fully populated index available
in /examples, and we are actually going to take the basic artist information out of
the mbartists index of Solr and populate our local myfaves database with it.
We'll then fire up the version of Solr shipped with acts_as_solr, and see how
acts_as_solr manages the lifecycle of ActiveRecord objects to keep Solr's indexed
content in sync with the content stored in the relational database. Don't worry, we'll
take it step by step! The completed application is in /examples/8/myfaves for you
to refer to.

Setting up MyFaves project
We'll start with the standard plumbing to get a Rails application set up with our
basic data model:

>>rails myfaves
>>cd myfaves
>>./script/generate scaffold artist name:string group_type:string
 release_date:datetime image_url:string
>>rake db:migrate

This generates a basic application backed by an SQLite database. Now we need to
install the acts_as_solr plugin.

acts_as_solr has gone through a number of revisions, from the
original code base done by Erik Hatcher and posted to the solr-user
mailing list in August of 2006, which was then extended by Thiago Jackiw
and hosted on Rubyforge. Today the best version of acts_as_solr
is hosted on GitHub by Mathias Meyer at http://github.com/
mattmatt/acts_as_solr/tree/master. The constant migration
from one site to another leading to multiple possible 'best' versions of a
plugin is unfortunately a very common problem with Rails plugins
and projects, though most are settling on either RubyForge.org or
GitHub.com.

In order to install the plugin, run:
>>script/plugin install git://github.com/mattmatt/acts_as_solr.git

We'll also be working with roughly 399,000 artists, so obviously we'll need some
page pagination to manage that list, otherwise pulling up the artists /index listing
page will timeout:
>>script/plugin install git://github.com/mislav/will_paginate.git

Integrating Solr

[256]

Edit the ./app/controllers/artists_controller.rb file, and replace in the
index method the call to @artists = Artist.find(:all) with:

@artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'

Also add to ./app/views/artists/index.html.erb a call to the view helper to
generate the page links:

<%= will_paginate @artists %>

Start the application using ./script/server, and visit the page
http://localhost:3000/artists/. You should see an empty listing page for all
of the artists. Now that we know the basics are working, let's go ahead and actually
leverage Solr.

Populating MyFaves relational database from Solr
Step one will be to import data into our relational database from the mbartists Solr
index. Add the following code to ./app/models/artist.rb:

class Artist < ActiveRecord::Base
 acts_as_solr :fields => [:name, :group_type, :release_date]
end

The :fields array of hashes maps the attributes of the Artist ActiveRecord object
to the artist fields in Solr's schema.xml. Because acts_as_solr is designed to store data
in Solr that is mastered in your data model, it needs a way of distinguishing among
various types of data model objects. For example, if we wanted to store information
about our User model object in Solr in addition to the Artist object then we need to
provide a type_field to separate the Solr documents for the artist with the primary
key of 5 from the user with the primary key of 5. Fortunately the mbartists schema
has a field named type that stores the value Artist, which maps directly to our
ActiveRecord class name of Artist and we are able to use that instead of the default
acts_as_solr type field in Solr named type_s.

There is a simple script called populate.rb at the root of /examples/8/myfaves that
you can run that will copy the artist data from the existing Solr mbartists index into
the MyFaves database:

>>ruby populate.rb

Chapter 8

[257]

populate.rb is a great example of the types of scripts you may need to develop
to transfer data into and out of Solr. Most scripts typically work with some sort of
batch size of records that are pulled from one system and then inserted into Solr. The
larger the batch size, the more efficient the pulling and processing of data typically
is at the cost of more memory being consumed, and the slower the commit and
optimize operations are. When you run the populate.rb script, play with the batch
size parameter to get a sense of resource consumption in your environment. Try a
batch size of 10 versus 10000 to see the changes. The parameters for populate.rb
are available at the top of the script:

MBARTISTS_SOLR_URL = 'http://localhost:8983/solr/mbartists'
BATCH_SIZE = 1500
MAX_RECORDS = 100000 # the maximum number of records to load,
 or nil for all

There are roughly 399,000 artists in the mbartists index, so if you are impatient,
then you can set MAX_RECORDS to a more reasonable number.

The process for connecting to Solr is very simple with a hash of parameters that
are passed as part of the GET request. We use the magic query value of *:* to
find all of the artists in the index and then iterate through the results using the
start parameter:

connection = Solr::Connection.new(MBARTISTS_SOLR_URL)
 solr_data = connection.send(Solr::Request::Standard.new({
 :query => '*:*',
 :rows=> BATCH_SIZE,
 :start => offset,
 :field_list =>['*','score']
 }))

In order to create our new Artist model objects, we just iterate through the results
of solr_data. If solr_data is nil, then we exit out of the script knowing that we've
run out of results. However, we do have to do some parsing translation in order to
preserve our unique identifiers between Solr and the database. In our MusicBrainz
Solr schema, the ID field functions as the primary key and looks like Artist:11650
for The Smashing Pumpkins. In the database, in order to sync the two, we need
to insert the Artist with the ID of 11650. We wrap the insert statement a.save!
in a begin/rescue/end structure so that if we've already inserted an artist with a
primary key, then the script continues. This just allows us to run the populate script
multiple times:

solr_data.hits.each do |doc|
 id = doc["id"]
 id = id[7..(id.length)]
 a = Artist.new(:name => doc["a_name"], :group_type => a["a_type"],
 :release_date => doc["a_release_date_latest"])

Integrating Solr

[258]

 a.id = id
 begin
 a.save!
 rescue ActiveRecord::StatementInvalid => ar_si
 raise ar_si unless ar_si.to_s.include?("PRIMARY KEY must be
 unique") #sink duplicates
 end
end

Now that we've transferred the data out of our mbartists index and used
acts_as_solr according to the various conventions that it expects, we'll
change from using the mbartists Solr instance to the version of Solr shipped
with acts_as_solr.

Solr related configuration information is available in ./myfaves/config/solr.xml.
Ensure that the default development URL doesn't conflict with any existing Solr's
you may be running:

development:
 url: http://127.0.0.1:8982/solr

Start the included Solr by running rake solr:start. When it starts up, it will report
the process ID for Solr running in the background. If you need to stop the process,
then run the corresponding rake task: rake solr:stop. The empty new Solr indexes
are stored in ./myfaves/solr/development.

Build Solr indexes from relational database
Now we are ready to trigger a full index of the data in the relational database into
Solr. acts_as_solr provides a very convenient rake task for this with a variety
of parameters that you can learn about by running rake -D solr:reindex. We'll
specify to work with a batch size of 1500 artists at a time:

>>rake solr:start
>>% rake solr:reindex BATCH=1500
(in /examples/8/myfaves)
Clearing index for Artist...
Rebuilding index for Artist...
Optimizing...

This drastic simplification of configuration in the Artist model object is because
we are using a Solr schema that is designed to leverage the Convention over
Configuration ideas of Rails. Some of the conventions that are established by
acts_as_solr and met by Solr are:

Primary key field for model object in Solr is always called pk_i.
Type field that stores the disambiguating class name of the model object is
called type_s.

•

•

Chapter 8

[259]

Heavy use of the dynamic field support in Solr. The data type of
ActiveRecord model objects is based on the database column type. Therefore,
when acts_as_solr indexes a model object, it sends a document to Solr
with the various suffixes to leverage the dynamic column creation. In
/examples/8/myfaves/vendor/plugins/acts_as_solr/solr/solr/conf/
schema.xml, the only fields defined outside of the management fields are
dynamic fields:
<dynamicField name="*_t" type="text" indexed="true"
 stored="false"/>

The default search field is called text. And all of the fields ending in _t are
copied into the text search field.
Fields to facet on are named _facet and copied into the text search field
as well.

The document that gets sent to Solr for our Artist records creates the dynamic
fields name_t, group_type_s and release_date_d, for a text, string, and date field
respectively. You can see the list of dynamic fields generated through the schema
browser at http://localhost:8982/solr/admin/schema.jsp.

Now we are ready to perform some searches. acts_as_solr adds some new
methods such as find_by_solr() that lets us find ActiveRecord model objects
by sending a query to Solr. Here we find the group Smash Mouth by searching for
matches to the word smashing:

% ./script/console
Loading development environment (Rails 2.3.2)
>> artists = Artist.find_by_solr("smashing")
=> #<ActsAsSolr::SearchResults:0x224889c @solr_data={:total=>9,
 :docs=>[#<Artist id: 364, name: "Smash Mouth"...
>> artists.docs.first
=> #<Artist id: 364, name: "Smash Mouth", group_type: 1,
 release_date: "2006-09-19 04:00:00", created_at: "2009-04-17
 18:02:37", updated_at: "2009-04-17 18:02:37">

Let's also verify that acts_as_solr is managing the full lifecycle of our objects.
Assuming Susan Boyle isn't yet entered as an artist, let's go ahead and create her:

>> Artist.find_by_solr("Susan Boyle")
=> #<ActsAsSolr::SearchResults:0x26ee298 @solr_data={:total=>0,
 :docs=>[]}>
>> susan = Artist.create(:name => "Susan Boyle", :group_type => 1,
 :release_date => Date.new)
=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2009-04-21
 13:11:09", updated_at: "2009-04-21 13:11:09">

•

•

•

Integrating Solr

[260]

Check the log output from your Solr running on port 8982, and you should also have
seen an update query triggered by the insert of the new Susan Boyle record:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=24

Now, if we delete Susan's record from our database:

>> susan.destroy

=> #<Artist id: 548200, name: "Susan Boyle", group_type: 1,
 release_date: "-4712-01-01 05:00:00", created_at: "2009-04-21
 13:11:09", updated_at: "2009-04-21 13:11:09">

Then there should be another corresponding update issued to Solr to remove
the document:

INFO: [] webapp=/solr path=/update params={} status=0 QTime=57

You can verify this by doing a search for Susan Boyle directly, which should return
no rows at http://localhost:8982/solr/select/?q=Susan+Boyle.

Complete MyFaves web site
Now, let's go ahead and put in the rest of the logic for using our Solr-ized model
objects to simplify finding our favorite artists. We'll store the list of favorite artists
in the browser's session space for convenience. If you are following along with your
own generated version of MyFaves application, then the remaining files you'll want
to copy over from /examples/8/myfaves are as follows:

./app/controller/myfaves_controller.rb contains the controller logic
for picking your favorite artists.
./app/views/myfaves/ contains the display files for picking and showing
the artists.
./app/views/layouts/myfaves.html.erb is the layout for the MyFaves
views. We use the Autocomplete widget again, so this layout embeds the
appropriate JavaScript and CSS files.
./public/javascripts/blackbirdjs/ contains everything required to use
the Blackbird logging library.
./public/stylesheets/jquery.autocomplete.css and ./public/
stylesheets/indicator.gif are stored locally in order to fix pathing
issues with the indicator.gif showing up when the autocompletion
search is running.

•

•

•

•

•

Chapter 8

[261]

The only other edits you should need to make are:

Edit ./config/routes.rb by adding map.resources :myfaves and
map.root :controller => "myfaves".
Delete ./public/index.html to use the new root route.
Copy the index method out of ./app/controllers/artists_controllers.
rb, because we want the index method to respond with both HTML and
JSON response types.
Run rake db:sessions:create to generate a sessions table, then rake db:
migrate to update the database with the new sessions table. Edit ./config/
environment.rb and add config.action_controller.session_store
= :active_record_store. As we are storing Artist model objects in our
session, we need to store them in the database versus in a cookie for
space reasons.

You should now be able to run ./script/server and browse to
http://localhost:3000/myfaves. You will be prompted to enter an artist's name
to search for. If you don't receive any results, then make sure you have started Solr
using rake solr:start. Also, if you have only loaded a subset of the full 399,000
artists, then your choices may be limited. You can load all of the artists through
the populate.rb script and then run rake solr:reindex, it will take a long time.
Something good to do just before you head out for lunch or home for the evening!

If you look at ./app/views/myfaves/index.rhtml, then you can see the jQuery
autocomplete call is a bit different:

$("#artist_name").autocomplete('/artists.json?callback=?', {

The URL we are hitting is /artists.json, with the .json suffix telling Rails that we
want JSON data back instead of normal HTML. If we ended the URL with .xml, then
we would have received XML formatted data about the artists. We provide a slightly
different parameter to Rails to specify the JSONP callback to use. Unlike the previous
example, where we used json.wrf, which is Solr's parameter name for the callback
method to call, we use the more standard parameter name callback. We changed
the ArtistController index method to handle the autocomplete widgets data
needs through JSONP. If there is a q parameter, then we know the request was from
the autocomplete widget, and we ask Solr for the @artists to respond with. Later
on, we render @artists into JSON objects, returning only the name and id attributes
to keep the payload small. We also specify that the JSONP callback method is what
was passed when using the callback parameter:

def index
 if params[:q]

 @artists = Artist.find_by_solr(params[:q], :limit =>

•

•

•

•

Integrating Solr

[262]

 params[:limit]).docs
 else
 @artists = Artist.paginate :page => params[:page], :order =>
 'created_at DESC'
 end

 respond_to do |format|
 format.html # index.html.erb
 format.xml { render :xml => @artists }
 format.json { render :json => @artists.to_json(:only => [:name,
 :id]), :callback => params[:callback] }
 end
end

At the end of all of this, you should have a nice interface for quickly picking artists:

When you are selecting acts_as_solr as your integration method, you are
implicitly agreeing to the various conventions established for indexing data into
Solr. acts_as_solr is a wonderful solution if you are indexing just a few unrelated
models and don't have multiple data sources feeding your Solr indexes. While
acts_as_solr has evolved to support more complex solutions (for example, by
adding faceting support or the ability to perform more complex mappings with
custom logic), it has its limits.

Chapter 8

[263]

If you have a very complex data model with lots of inter-relationships that do not
more or less map one-to-one with what you'd expect from search results, then you
may find yourself running into edge cases that acts_as_solr doesn't support
cleanly—especially if you are doing searches against specific fields in Solr versus the
default text field. However, if your requirement is to quickly get your ActiveRecord
model objects searchable, then acts_as_solr
can't be beat!

Blacklight OPAC
Blacklight is an open source Online Public Access Catalog (OPAC) that
demonstrates the power of a highly configurable Ruby on Rails frontend paired
with Solr. OPACs are the modern web enabled version of the classic card catalog
that allow libraries to easily put their collections online. Blacklight supports parsing
of various standard library catalog storage formats including MARC records and
TEI XML format. Blacklight 2.0 was released in March of 2009 as a Rails Engine
plugin. Rails Engine plugins allow users to integrate the rich functionality of the
plugin, while keeping the plugin related code and assets, such as JavaScript, CSS
and images, separate from the hosting application, thus facilitating upgrades to the
Blacklight Engine. You may find that Blacklight provides an excellent starting point
for your own Solr/Ruby on Rails development.

Let's go ahead and index information from MusicBrainz.org into Blacklight,
just to see how easy it is. Please refer to the sample application in /examples/8/
blacklightopac/blacklight/. Blacklight project is releasing frequent updates,
so you should refer to the main web site at http://www.blacklightopac.org/.

Almost all of the dependencies are included in the blacklight sample application.
You will need to install a couple of gems:

>>sudo gem install curb
>>sudo gem install bcrypt-ruby

Indexing MusicBrainz data
Blacklight builds on top of the rsolr library for communicating back and forth
with the Solr server and adds some concepts around mapping data into Solr. Unlike
acts_as_solr, Blacklight doesn't require the source data to be in a database. Instead
you build a custom Mapper to fetch the data for Blacklight.

Integrating Solr

[264]

Blacklight requires some synchronization between the Solr and Ruby on Rails
sides to make things work. Blacklight expects a search handler called search to
be configured, while specifying which schema fields are facets and which are just
straight fields of data to be returned. We are going to index various artists and
their music releases from the MusicBrainz.org site, while creating facets for the
languages, scripts, and types of releases. For example, The Dave Matthews Band's
album Under the Table and Dreaming is in English, using the standard Latin script for
the album notes, and is an Album. We are going to be indexing many artists from
non-Western countries. Fortunately, Solr and Blacklight support alternative character
sets such as Cyrillic, Kanji, and Chinese characters. You can see that we are still using
conventions for how we name the schema fields, with _t signifying text, and _facet
signifying a field for faceting on:

<requestHandler name="search" class="solr.SearchHandler" >
 <lst name="defaults">
 <str name="fl">id, format_code_t, language_facet, script_facet,
 type_facet, releases_t, title_t, score</str>
 <str name="facet">on</str>
 <str name="facet.mincount">1</str>
 <str name="facet.limit">10</str>
 <str name="facet.field">language_facet</str>
 <str name="facet.field">script_facet</str>
 <str name="facet.field">type_facet</str>
 </lst>
 </requestHandler>

We also need to tell Blacklight through the ./config/solr.xml which facets and
fields to display in the UI. We are using the field title_t to store the artist's name:

facet_fields:
- type_facet
- language_facet
- script_facet

index_view_fields:
- title_t
- language_facet
- script_facet
- type_facet
- releases_t

Chapter 8

[265]

One of the nice features about Blacklight is that it provides an architectural pattern
for mapping information from any data source into Solr that you can mimic for your
own use. We added ./lib/tasks/brainz.rake to give us the ability to load the
information from MusicBrainz by running a simple Rake task: rake app:index:
brainz. The Rake task is defined in ./lib/tasks/brainz.rake. The core of the task
instantiates a BrainzMapper class (that we developed) that provides a collection of
documents related to Artists and their music Releases for Solr to index. In order to
reduce memory usage, we index artists alphabetically, while committing the results
to Solr periodically:

solr = Blacklight.solr
mapper = BrainzMapper.new

('A' .. 'Z').each do |char|
 mapper.from_brainz("#{char}*") do |doc,index|
 puts "#{index} -- adding doc w/id : #{doc[:id]} to Solr"
 solr.add(doc)
 end

 puts "Sending commit to Solr..."
 solr.commit
end
puts "Complete."

The real magic of the Blacklight mapper pattern is in the BrainzMapper class in
./lib/brainz_mapper.rb. While the class may look a little hairy, it is actually quite
simple. The pattern is defined by the base class BlockMapper. BlockMapper expects
us to define a series of map methods for each field that we want to store in Solr. For
example, to store the artist's name in the previously mentioned title_t field, we
define it this way:

map :title_t do |rec,index|
 rec[:artist].name
end

This says that to map the :title_t field, we are handed our record object and the
index of that record in our overall collection of records to be stored in Solr. In our
case, we have populated the record object as a hash with two keys, :artist and
:releases, whose values are an artist and their releases. In the :title_t mapping
case, we ask the record hash for the artist object and call the .name() method.

How about a slightly more complex example, mapping all of the releases for
an artist:

map :releases_t do |rec, index|
 rec[:releases].collect {|release|release.entity.title}.compact.uniq
end

Integrating Solr

[266]

In this case, when we map the releases_t field, we obtain the releases object, which
is an array of MusicBrainz::Model::Release objects. From each one we get the
title of the release. The resulting array is compacted to remove any nil objects, and
then only unique release titles are returned, as sometimes we have multiple releases
listed with the same name. Blacklight properly handles storing a single value or
an array of values in the releases_t field, as any field ending in _t is specified as
multiValued="true" in schema.xml.

Very similar logic is used for mapping our facets as well. In this case, we are using
the MusicBrainz::Utils.get_language_name method to translate from three
letter language codes like "ENG" to "English" in order to have a prettier display in
our facets:

map :language_facet do |rec,index|
rec[:releases].collect {|release| MusicBrainz::Utils.get_language_
name(release.entity.text_language)}.
 compact.uniq
end

Okay, we've seen the mapping logic, but where does the data come from? How
are we populating the individual record hash object with :artist and :releases
values? Web services to the rescue! MusicBrainz has an XML based web service
that follows the REST design pattern that you can learn more about at http://
musicbrainz.org/doc/XMLWebService. Even by using the web service directly,
you still need to parse and manipulate XML documents. Fortunately, there is the
very nice rbrainz Ruby gem available from http://rbrainz.rubyforge.org/ that
abstracts away all of the plumbing for communicating with MusicBrainz through
XML. Instead, we work with higher level abstractions like Query and Artist objects.
In the query below, we are asking for all of the artists similar to Dave Matthews
Band, returning records 50 through 100.

require 'rbrainz'
query = MusicBrainz::Webservice::Query.new
results = query.get_artists({:name => 'Dave Matthews Band', :limit =>
 50, :offset => 50})

MusicBrainz uses Lucene for its search engine, and it permits you to use Lucene's
syntax (see Chapter 4 of this book) in your queries. So, to find every band except the
Dave Matthews Band we would execute:

results = query.get_artists({:name => 'Dave Matthews NOT Band'})

The method create_records_from_music_brainz(query_string) in ./lib/
brainz_mapper.rb returns a collection of record hashes containing artist and release
data downloaded from MusicBrainz through rbrainz.

Chapter 8

[267]

In order to run Blacklight, first start the included Solr in ./examples/8/
blacklightopac/blacklight/jetty through

>>java -jar start.jar

Then, run the indexing process in ./examples/8/blacklightopac/blacklight/
rails which downloads artists alphabetically from A to Z:

>>rake app:index:brainz

Indexing is very slow due to all of the HTTP requests being made to MusicBrainz
web site. Artists are downloaded in batches of 100, with up to 1000 artists per letter,
and then each artist requires a separate HTTP request to find their music releases.
So indexing a thousand artists for the letter P requires roughly 1010 HTTP queries
((1000 / 100) + 1000). Additionally, you'll notice that the query parameter using
just a single alphabetical character, such as D*, leads to somewhat odd matches.
Records are only indexed into Solr once all of the artist/release data for a letter is
downloaded, so you need to wait for a complete letter to finish. However, soon you
will have thousands of artists and their releases in Solr that you can browse through.

Customizing display
The user interface for Blacklight is fairly clean but pretty bland and displays every
type of information the same way. However, based on the format_code_t field, you
can easily customize the display. If you are indexing records with different types,
such as Artists, Record Labels, and so on, then you can have a different display by
populating format_code_t differently. We've chosen to just index Artists in this
example, and defined :format_code_t to be brainz. As every record indexed uses
the same value, we populate the shared_field_data parameter when calling the
from_brainz method of the mapper:

mapper.from_brainz("#{char}*", {:format_code_t => 'brainz'})
 do |doc,index|

def from_brainz(query_string, shared_field_data={}, &blk)

 shared_field_data.each_pair do |k,v|
 # map each item in the hash to a solr field
 map k.to_sym, v
 end

Integrating Solr

[268]

Any values put into the shared_field_data hash will be set on every field. A
common use case for the shared_field_data hash is to set an :indexed_by_s
property that specifies the name of the user who invoked the indexing process.

There are two ways of customizing the display of fields. One of them is the above
mentioned ./config/solr.xml that allows us to filter the list of fields to display on
the index page and the details page. However, that is a one-size-fits-all solution and
still doesn't let you tweak the actual user interface depending on the data to display.
There is another option that leverages the dynamic pathing of Rails to specify that
view files should first be loaded from ./app/views, and if not found, then load them
from the Blacklight plugin. For example, we created a custom partial, which is to be
rendered for the detailed view of an artist that incorporates the MusicBrainz logo
and some photos of the artist. By placing the partial in ./app/views/catalog/_
show_partials/_brainz.html.erb, the name of the partial is mapped directly
to the format_code_t value of brainz. So, if you indexed multiple entities, then./
app/views/catalog/_show_partials/_artists.html.erb and ./app/views/
catalog/_show_partials/_releases.html.erb map onto format_code_t of
artists and releases respectively. Sometimes, you don't want to override

Chapter 8

[269]

Blacklight's UI. For example, we don't have a custom display partial when displaying
listings for a search. Blacklight checks for the existence of ./app/views/catalog/_
index_partials/_brainz.html.erb. If it doesn't find that file, then it defaults to
the _default.html.erb partial stored in ./vendor/plugins/blacklight/app/
views/catalog/_index_partials/_default.html.erb. This makes it very easy
to override the default behaviors of Blacklight without requiring changes to the
underlying plugin. This facilitates the upgrade of the plugin, as new Blacklight
versions are released.

solr-ruby versus rsolr
For a lower-level client interface to Solr from Ruby environments, there are two
libraries duking it out to be the client of choice. In one corner you have solr-ruby,
which is the client library officially supported by the Apache Solr project. solr-ruby
is fairly widely used, including providing the API to Solr used by the acts_as_solr
Rails plugin we looked at previously. The new kid on the block is rsolr, which is a
re-imagining of what a proper DSL (Domain Specific Language) would look like for
interacting with Solr. rsolr is used by Blacklight OPAC as its interface to Solr. Both
of these solutions are solid. However, rsolr is currently gaining more attention, has
better documentation, and nice features such as a direct Embedded Solr connection
through JRuby. rsolr also has support for using either curb (Ruby bindings to
curl, a very fast HTTP library) or the standard Net::HTTP library for the HTTP
transport layer.

In order to perform a select using solr-ruby, you would issue:

response = solr.query('washington', {
 :start =>0,
 :rows=>10
 })

In order to perform a select using rsolr, you would issue:

response = solr.select({
 :q=>'washington',
 :start=>0,
 :rows=>10
 })

So you can see that doing a basic search is pretty much the same in either library.
Differences do crop up more as you dig into the details on parsing and indexing
records. Both libraries are evolving, with neither having a dominant position at
this point. You can learn more about solr-ruby on the Solr Wiki at http://wiki.
apache.org/solr/solr-ruby and learn more about rsolr at http://github.com/
mwmitchell/rsolr/tree.

Integrating Solr

[270]

Summary
As you've seen, Solr offers a plethora of integration options, from its ability
to customize its output using the various writer types to the large number of
different clients that provide powerful frontends for both indexing content as
well as providing a jump start in developing the search frontend user interface.
The simplicity of using HTTP GET to request actions to be performed by Solr and
responding with simple documents makes it very straightforward to integrate Solr
based search into your applications regardless of what your preferred development
environment is.

In the next chapter, we are going to look at how to scale Solr to meet growing
demand by covering approaches for scaling an individual Solr server as well as
scaling out by leveraging multiple Solr servers working cooperatively.

Scaling Solr
You've deployed Solr, and the world is beating a path to your door, drastically
increasing the average queries per minute, and meanwhile you've indexed tenfold
the amount of information you originally expected. You'll discover that Solr is
beginning to respond to queries slower and slower and indexing new content is
taking longer and longer. When that happens, it's time to start looking at what
configuration changes you can make to Solr to support more load. We'll look at a
series of changes/optimizations that you can make, going from simplest changes
giving most bang for your buck to more complex changes that require more analysis
and system changes.

In this chapter, we will cover the following topics:

Tuning complex systems
Optimizing a single Solr server (Scale High)
Moving to multiple Solr servers (Scale Wide)
Combining replication and sharding (Scale Deep)

Tuning complex systems
Tuning any complex system, whether it's a database, a message queuing system,
or the deep dark internals of an operating system, is something of a black art.
Researchers and vendors have spent decades figuring out how to measure the
performance of systems and coming up with approaches for maximizing the
performance of those systems. For some systems that have been around for decades,
such as databases, you can just search online for "Tuning Tips for X Database" and
find explicit rules that suggest what you need to do to gain performance. However,
even with those well researched systems, it still can be a matter of trial and error.

•

•

•

•

Scaling Solr

[272]

In order to measure the impact of your changes, you should look at a couple of
metrics and optimize for these three parameters:

Transactions Per Second (TPS): In the Solr world, how many search queries
and document updates are you able to perform per second? You can get a
sense of that by using the Statistics page at http://localhost:8983/solr/
mbtracks/admin/stats.jsp and looking at the avgTimePerRequest and
avgRequestsPerSecond parameters for your request handlers.
CPU usage: To quickly gain a sense of CPU usage on Windows, use
PerfMon, and on Unix based systems, use top. PerfMon allows you to
quickly graph the CPU utilization of your various processes. top is a
command line tool that displays the current system load of the various
processes running. It is very powerful, and you may want to run
man top to learn the various options available for customizing the
display. Unfortunately, top doesn't do graphing, so you'll need to do
that on your own.
Memory usage: When tuning for memory management, you are looking to
ensure that the amount of memory allocated to Solr doesn't constantly grow.
While it's okay for the memory consumption to go up a bit, letting it grow
unconstrained eventually means you will receive out-of-memory errors!
Balance increases in memory consumption with significant increases in TPS.
You can use PerfMon, top, and JConsole to keep an eye on memory usage.

In order to get a sense of what the Steady State is for your application, you can
gather the statistics by downloading the values exposed through JMX over a period
of time. Look back at the JMX section of Chapter 7. You can also develop a script
that loads a set of documents and then issues queries to define your Steady State.
Developing a script that accurately mirrors the real world interactions with Solr
can be challenging. However, it gives you something that can be run over and
over quickly that allows more of an apple-to-apple comparison of the impact of
your changes.

Solr's architecture has benefited from its heritage, as the search engine developed
in-house from 2004 to 2006 that powers CNET.com, a site that is ranked 77th in traffic
by Alexa.com today. Solr, right out of the box, is already very performant, with
extensive effort spent by the community to ensure that there are no bottlenecks, and
leveraging best practices for using Lucene for search. But the tuning of Solr hasn't
matured to where there are hard and fast rules for optimizing it that you should
follow by rote step to increase scalability. Many of the options enhance performance
for certain operations, but hinder performance for other operations. However, the
three system changes to perform in increasing complexity are:

•

•

•

Chapter 9

[273]

Scale High: Optimize a single instance of Solr. Look at things such as
caching and memory configuration. Run Solr on a dedicated server with
very fast CPUs and hard drives. In the scale high approach, you are trying
to maximize what you can get from a single server.
Scale Wide: Look at moving to multiple Solr servers. If your queries
run quickly with an acceptable avgTimePerRequest, then replicate your
complete index across multiple Solr servers in a master/slave configuration.
If your queries are running slowly, then use sharding to split the load of
processing a single query across multiple sharded Solr servers. Both these
are approaches that can be considered as scaling wider.
Scale Deep: If you need both sharding for query performance and multiple
replicated indexes to support the query load, then move to each shard being
a master server with multiple slave servers. This is the scale deep approach
and is the most complex architecture to implement.

There is some great research being performed on measuring the limits
of scaling Solr. This is being done by a consortium of libraries called
HathiTrust. You can follow their research (and others working in this
space) by following links from http://wiki.apache.org/solr/
SolrPerformanceData.

Using Amazon EC2 to practice tuning
Amazon EC2 is a cloud computing service provided by Amazon that provides
a great environment to practice tuning techniques. We have published an image
of a Linux server called solrbook-packtpub that you can use to try out some of
the techniques that we'll talk about in this chapter. You can spin up as many Solr
instances as you want, spread across multiple servers, and run the testing scripts as
well. Amazon currently charges a mere 10 cents US for an hour of server usage. So
by using the same server image that we used you should receive similar results to
what we've received. For a couple of dollars, using EC2 will let you have as close to
apple-to-apples comparison with our results as possible! We've put together a set of
Ruby scripts in ./examples/9/amazon that exercise the Solr server, and you can use
them against your own local copy of Solr or run them against the Amazon image.

These scripts that we use are obviously only one approach to testing an
application and don't reflect real world usage that a site might undergo.
Instead, they attempt to make it easy to play around with various
parameters and get a better sense of what scaling high, wide, and deep
will result in. If you were doing real world testing, then you might want
to record/playback actual search requests.

•

•

•

Scaling Solr

[274]

Firing up Solr on Amazon EC2
In order to start using Solr on Amazon EC2, we assume that you have set up an
account with Amazon Web Services, available from http://aws.amazon.com/.
Firstly, we use the AWS Management Console web app at https://console.aws.
amazon.com to create a Security Group for Solr that opens up ports, which the Solr
master and slaves will communicate over. Just click on Security Groups and create
a new Solr security group with ports 8983 through 8999 open:

Then click on AMIs and search for solr-packtpub/solrbook to find the Amazon
Machine Instance (AMI) prepared for this book. Just right-click on it and choose
Launch instance:

Chapter 9

[275]

You will then be prompted to fill in some information about the instances you want
to launch, similar to the screenshot below:

In a couple of minutes, you'll have a Linux server configured with all of the apps
and code required for the scaling demos running in the cloud! In order to connect
through SSH to the new instances, click on the Connect button for specifics.

In the solrbook image, a copy of the Solr trunk branch has been checked out in
~/asf_solr_src/ for you to use, and the example app already compiled. The
Ruby scripts for testing are stored in ~/examples/9/amazon/.

In order to start up an instance SSH into your instance, go to ~/examples/.
Run java -jar start.jar. You can browse the running Solr by connecting
to the Public DNS URL listed in the Console webapp:

http://ec2-174-129-98-167.compute-1.amazonaws.com:8983/solr

Scaling Solr

[276]

Amazon provides a Firefox plugin called Elasticfox that duplicates much of what the
Management Console does, but has additional functionality such as pop-up console
log viewing and simplifying SSH'ing into your instances by remembering what
private keys go with which instances:

Don't forget to terminate your EC2 instances when you are
done! You are charged hourly regardless of whether they are
actively used or not.

Optimizing a single Solr server
(Scale High)
There are a large number of different options that Solr gives you for enhancing
performance of a specific Solr instance, and for most of these options, deciding to
modify them depends on the specific performance result you are trying to tune for.
This section is structured from most generally useful to more specific optimizations.

Chapter 9

[277]

JVM configuration
Solr runs inside a Java Virtual Machine (JVM), an environment that abstracts your
Java based application from the underlying operating system. There are many
different parameters that you can tune the JVM for. However, most of them are
"black magic", and changing them from the defaults can quickly cause problems if
you don't know what you're doing. Additionally, the folks who write JVMs spend a
lot of time coming up with sophisticated algorithms that mean the JVM will usually
tune itself better than you can. However, there is a fairly simple configuration change
that most Java server applications benefit from (not just Solr), which is to increase
the amount of minimum and maximum memory allocated to the JVM and specify
that you are running a server application, so the JVM can optimize its optimization
strategy for a long running process:

java -Xms512M -Xmx1024M -server -jar start.jar

You want to make sure that you don't specify a higher Xmx value than the actual
memory you have and leave plenty of memory left over for the operating system
as well as any other processes that may be running on the server simultaneously.
However, if you have a 4 GB index and can allocate 6 GB of RAM (and specify
large caches, see the Solr caching section explained later in the chapter), then you
will gain more query performance.

If you can, use the latest released Java version. At this time, that is a 1.6 based
release. Java VMs have gotten faster with each release. You might even investigate a
third party VM like JRockit if you are willing to pay for one: http://www.oracle.
com/technology/products/jrockit/.

HTTP caching
Solr has great support for using HTTP caching headers to enable down-stream
HTTP software to cache results. Web browsers, intermediate proxy servers, and
web servers can decide if they need to re-query for updated results by using various
rules. For example, often applications allow a user to take a query and make it an
Alert that will email them results if there is a match. This leads to the same search
running over and over, even if the results are almost always the same. Placing an
intermediate caching server, such as Squid, in front of Solr should reduce the load on
Solr and potentially reduce Solr's internal "query cache" requirements, thus freeing
up more RAM. When a request uses certain caching headers, Solr can then indicate
whether the content has changed by either sending back an HTTP 200 status code
if it has, or a 304 Not Modified code when the content hasn't changed since the last
time the request asked for it.

Scaling Solr

[278]

In order to specify that you want Solr to do HTTP caching, you need to configure
the <httpCaching/> stanza in solrconfig.xml. By default, Solr is configured to
never return 304 codes to instead always return a 200 response (a normal non-cached
response) with the full body of the results. Change httpCaching to:

<httpCaching lastModifiedFrom="openTime"
 etagSeed="Solr" never304="false">
 <cacheControl>max-age=43200, must-revalidate</cacheControl>
</httpCaching>

We have specified that sending back 304 messages is okay and specified in the
cacheControl that the max time to store responses is 43200 seconds, which is half a
day. We've also specified through must-revalidate that any shared cache, such as a
Squid proxy, needs to check back with Solr to see if anything has changed, even if
the max-age hasn't expired, which acts as an extra check.

By running curl with the mbartists core, we can see additional cache related
information in the header, as well as the full XML response from Solr (not listed):

>> curl -v http://localhost:8983/solr/mbartists/select/
?q=Smashing+Pumpkins
< HTTP/1.1 200 OK
< Cache-Control: max-age=43200
< Expires: Thu, 11 Jun 2009 15:02:00 GMT
< Last-Modified: Thu, 11 Jun 2009 02:55:39 GMT
< ETag: "YWFkZWIyNjVmODgwMDAwMFNvbHI="
< Content-Type: text/xml; charset=utf-8
< Content-Length: 1488
< Server: Jetty(6.1.3)

So let's look at what we get back if we take advantage of the Last-Modified header
information by specifying that we have downloaded the content after the last
modified time:

>>curl -v -z "Thu, 11 Jun 2009 02:55:40 GMT" http://localhost:8983/
solr/mbartists/select/?q=Smashing+Pumpkins
* About to connect() to localhost port 8983 (#0)
* Trying ::1... connected
* Connected to localhost (::1) port 8983 (#0)
> GET /solr/mbartists/select/?q=Smashing+Pumpkins HTTP/1.1
> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.7l zlib/1.2.3
> Host: localhost:8983
> Accept: */*
> If-Modified-Since: Thu, 11 Jun 2009 02:55:40 GMT
>
< HTTP/1.1 304 Not Modified

Chapter 9

[279]

< Cache-Control: max-age=43200
< Expires: Thu, 11 Jun 2009 15:13:43 GMT
< Last-Modified: Thu, 11 Jun 2009 02:55:39 GMT
< ETag: "YWFkZWIyNjVmODgwMDAwMFNvbHI="
< Server: Jetty(6.1.3)

Specifying an If-Modified-Since time just one second after the Last-Modified time
means that Solr gives us back a 304 Not Modified code and doesn't have to return
all of the XML results over the wire, which is much faster and puts less load on
the server.

Entity tags are a newer method for uniquely identifying responses that are more
robust and flexible than using last modified date. An ETag is a string that identifies a
specific version of a component. In the case of Solr, they are generated by combining
the current version of the index with the ETag seed value specified in httpCaching
configuration. Every time the index is modified, the current ETag value will change. If
we add the fake artist "Eric's Band" to mbartists, and then run our previous query, we'll
see that the ETag has changed because the version of the Solr index has changed:

>> curl http://localhost:8983/solr/mbartists/update -H "Content-
Type: text/xml" --data-binary '<add><doc><field name="a_name">Eric's
Band</field><field name="id" boost="2.0">Fake:99999</field><field
name="type">Artist</field></doc></add>'

>> curl http://localhost:8983/solr/mbartists/update/ -H "Content-Type:
text/xml" --data-binary '<commit waitFlush="false"/>'

>>curl -v -z "Thu, 11 Jun 2009 03:55:40 GMT" http://localhost:8983/
solr/mbartists/select/?q=Smashing+Pumpkins
>
< HTTP/1.1 304 Not Modified
< Cache-Control: max-age=43200
< Expires: Thu, 11 Jun 2009 15:35:58 GMT
< Last-Modified: Thu, 11 Jun 2009 03:26:33 GMT
< ETag: "NmFkZWIyNjVmODgwMDAwMFNvbHI="
< Server: Jetty(6.1.3)

Squid is one of the most popular caching proxy servers available, and the setup and
configuration of it as a proxy server is beyond the scope of this book. You can learn
more about Squid from its site http://www.squid-cache.org/.

Remember, the fastest query response possible from Solr's perspective
is the query that it doesn't have to make!

Scaling Solr

[280]

Solr caching
Caching is a key part of what makes Solr fast and scalable, and the proper
configuration of caches is a common topic on the solr-user mailing list! Solr uses
multiple Least Recently Used in-memory caches. The caches are associated with
individual Index Searchers, which represent a snapshot view of the data. Following
a commit, new index searchers are opened and then auto-warmed. Auto-warming is
where the cached values of the former searcher are copied over to the new searcher.
Following auto-warming, predefined searches are run as configured in solrconfig.
xml. Put some representative queries in the newSearcher and firstSearcher
listeners, particularly for queries that need sorting on fields. Finally, the new
searcher can serve new incoming requests.

New to Solr 1.4 is the FastLRUCache, which is faster than LRUCache because
it doesn't require a separate thread for managing the removal of unused items.
The obverse of this is that storing data is a bit slower because the calling thread is
responsible for making sure that the cache hasn't grown too large.

There are a number of different caches configured in solrconfig.xml:

filterCache: This stores unordered lists of documents that match a query.
This is primarily used for storing filter queries (the fq parameter) for re-use,
but it's also used in faceting under certain circumstances. It is arguably the
most important cache. The filter cache can optionally be used for queries
(the q parameter) that are not score-sorted if useFilterForSortedQuery is
enabled in solrconfig.xml. However, unless testing reveals performance
gains, it is best left disabled—the default setting.
queryResultCache: This stores ordered lists of documents. The order is
defined by any sorting parameters passed. This cache should be large enough
to store the results of the most common searches, which you can identify by
looking at your server logs. This cache doesn't use much memory, as only
the ID of the documents is stored in the cache. The queryResultWindowSize
setting allows you to preload document IDs into the cache if you expect
users to request documents that bound the ordered list. So, if a user asks for
products 20 through 29, then there is a good chance they will next look for
30 through 39. If the queryResultWindowSize is 50, then the documents
bounding the initial request from 0 to 50 will be returned and cached. When
the user asks for 30 through 39, they will have their data cached and won't
have to access the Lucene indexes!

•

•

Chapter 9

[281]

documentCache: This caches field values that have been defined in schema.
xml as being stored, so that Solr doesn't have to go back to the filesystem
to retrieve the contents when needed. Fields are stored by default. The
documented wisdom on sizing this cache is to be larger than the max results
* max concurrent queries being executed by Solr to prevent documents
from being re-fetched during a query. As this cache contains the fields
being stored, it can grow large very quickly.

These caches are all configured the same way:

class: Defines whether to use LRUCache or FastLRUCache. The current
wisdom is that for caches that don't have a high hit ratio, and therefore have
more churn, you should use LRUCache. If you have a high hit ratio, then the
benefits of FastLRUCache kick in.
size: Defines the maximum items that the cache can support and is mostly
dependent on how much RAM is available to the JVM.
autowarmCount: Specifies how many items should be copied from an old
search to a new one during the auto-warming process. Set the number too
high and you slow down commits; set it too low and the new searches
following those commits won't gain the benefits of the previously cached
data. Look at the warmupTime statistic for your searches to balance
these needs. There are some other options too, such as initialSize,
acceptableSize, minSize, showItems, and cleanupThread specific to
FastLRUCache, but specifying these are uncommon. There is a wealth of
specific information available on the Wiki at http://wiki.apache.org/
solr/SolrCaching that covers this constantly evolving topic.

Tuning caches
Using the statistics admin page, you can get a sense of how large you need to make
your caches. If the hit ratio for your caches is low, then it may be that they aren't
caching enough to be useful. However, if you find that the caches have a significant
number of evictions, then that implies they are filling up too quickly and need to be
made larger. Caches can be increased in size as long as Solr has sufficient RAM to
operate in.

If your hit ratio for a cache is very low, then you should evaluate reducing
its size, perhaps turning it off altogether by commenting out the cache
configuration sections in solrconfig.xml. This will reduce memory
needs that aren't being used effectively and may also help improve
performance by removing the overhead of managing the caches.

•

•

•

•

Scaling Solr

[282]

Schema design considerations
Good schema design is probably one of the most important things you can do to
enhance the scalability of Solr. You should refer to Chapter 2 for a refresher on many of
the design questions that are inextricably tied to scalability. The biggest schema issue
to look at for maximizing scalability is: Are you storing the minimum information you
need to meet the needs of your users? There are a number of attributes in your schema
field definitions which inform us about what is being indexed:

omitNorms: Norms yield better scores of analyzed text content. They are
also where index-time boosts are stored. If you have a field such as an ID or
a string value that isn't a text field or needs boosting, then by skipping the
norms, you can reduce the RAM required to perform a search as well as the
time it takes to merge segments and optimize the index size.
omitTermFreqAndPositions: This new Solr 1.4 feature allows you to skip
indexing term related data such as the frequency and payload. If your
schema version is at least 1.2, then this will be set appropriately already.
The version is specified in schema.xml in the XML stanza:

 <schema name="example" version="1.2">

indexed: You may find that you have fields of data that you don't ever
search against. By specifying that they are NOT indexed, you can reduce
the number of fields that require indexing.
stored: Storing field values in the index simplifies and speeds search results,
because results need not be cross-referenced and retrieved from original
sources. It is also required for features such as highlighting. But storing
field values will obviously increase the index size and indexing time. A
quick thing to check is to do a simple search with fl=* as a parameter; the
fields in the result are the stored fields. Some fields will probably not need
to be stored. It is likely that your index has some data repeated but indexed
differently for specialized indexing purposes like faceting or sorting—only
one of those, if any, needs to be stored.

Another thing to look at is: If you need to store lots of data in a document, are you
appropriately loading it? For example, if you have very large text fields being stored in
the index, then it may make sense to compress those fields using the compressed field
option to reduce the index size. If you don't always read all the fields, then enabling
lazy field loading in solrconfig.xml via <enableLazyFieldLoading>true</
enableLazyFieldLoading> can be very helpful.

•

•

•

•

Chapter 9

[283]

If you are using compression, then you probably should be using the
lazy loading feature of fields and reducing the cost of uncompressing the
content to only when you need it. Otherwise, you are probably better off
with a larger index size and faster querying.
Lastly, reduce to the minimum the amount of text analysis you perform
in schema.xml. Text analysis can be very expensive in CPU time and can
balloon up the size of your index.

Indexing strategies
Indexing documents into Solr is often a major bottleneck, either because your content
is constantly changing or because you need to load a large volume of data initially.
However, one way to speed up indexing is to index documents in batches. Solr
supports sending multiple documents in a single add operation, and this can lead
to a drastic speedup in performance.

However, as the size of your individual documents increase, performance may start
to decrease. A reasonable rule of thumb is doing document add operations in batches
of 10 for large documents, and 100 for small documents.

If we look at some basic indexing, the script simple_test.rb has a constant
BATCH_SIZE that specifies the number of documents added at tone time. In the
following examples, I ran the script and Solr on the same Amazon EC2 in order to
avoid network overhead skewing the repeatability of the results. With one thread
that adds documents one at a time, it took almost an hour to load 347,240 releases:

>> time ruby simple_test.rb http://localhost:8983/solr/mbreleases
 ../mb_releases.csv
real 59m4.350s
user 14m51.680s
sys 2m6.300s

But if we change the number of documents to be added from 1 to be in batches of
100 by changing BATCH_SIZE and running the same test, then we get a time of 22
minutes (almost three times faster):

>> time ruby simple_test.rb http://localhost:8983/solr/mbreleases
 ../mb_releases.csv
real 22m18.082s
user 7m21.576s
sys 0m33.934s

Scaling Solr

[284]

This shows that sending the documents in batches certainly helps the performance.
However, if we can work with multiple threads and submit documents, then we
should see a real increase. The threaded_test.rb script supports passing in the
number of separate processes that are submitting documents (4 in this example):

>> time ruby threaded_test.rb 4 http://localhost:8983/solr/mbreleases
 ../mb_releases.csv

You may want to have commits happen more frequently than at the very end of the
indexing process. Uncomment the line by removing the leading # to have commits
happen every 200 documents during the indexing process:

rsolr.commit if row_counter % 200 == 0 # uncomment this to see
 impact of frequent commits! W

However, you may find that you are starting to see this error message instead of
completing the indexing:

<h2>HTTP ERROR: 503</h2><pre>Error opening new searcher. exceeded
limit of maxWarmingSearchers=2, try again later.</pre>

threaded_test.rb is committing every 200 documents, and with 4 threads
submitting 10 documents at a time, commits are happening very frequently. Every
time a commit happens, a new searcher is created, which invokes the searcher
warmup process where the cache is populated, which can take a while. While you
can bump the maxWarmingSearchers by changing the value in solrconfig.xml,
you are likely to still hit the new limit because each additional warming searcher
slows things down for the rest. In order to deal with this, reduce how often commits
are happening. You can reduce the amount of time auto-warming takes by reducing
the autowarmCount and removing the newSearch query. Of course, this will lead to
slower queries as well! Commits are only required to make the changes to the index
visible to users. If you are bulk loading data, then you don't need real-time display of
the changes.

StreamingUpdateSolrServer
If you are comfortable with Java and looking to optimize bulk adding of
documents, then look at the StreamingUpdateSolrServer that is new
to Solr 1.4 and is part of the SolrJ client. StreamingUpdateSolrServer
extends CommonsHttpSolrServer by streaming document
additions to Solr, which makes it pointless for your code to do
batching. Additions are performed in an asynchronous manner, and a
configurable number of threads can send data to Solr simultaneously.
StreamingUpdateSolrServer is meant only for bulk adding/
updating documents and doesn't provide immediate error messaging
feedback the way CommonsHttpSolrServer does. Look back at
Chapter 8's crawler example to learn more.

Chapter 9

[285]

Disable unique document checking
By default, when indexing content, Solr checks the uniqueness of the primary keys
being indexed so that you don't end up with multiple documents sharing the same
primary key. If you bulk load data into an index that you know does not already
contain the documents being added, then you can disable this check. For XML
documents being posted, add the parameter allowDups=true to the URL. For CSV
documents being uploaded, there is a similar option overwrite that can be set
to false.

Commit/optimize factors
There are some other factors that can impact how often you want commit and
optimize operations to occur. If you are using Solr's support for scaling wide through
replication of indexes, either through the legacy Unix scripts invoked by the post
commit/post optimize hooks or the newer pure Java replication, then each time
a commit or optimize happens you are triggering the transfer of updated indexes
to all of the slave servers. If transfers occur frequently, then you can find yourself
needlessly using up network bandwidth to move huge numbers of index files.

A similar issue is that if you are using the hooks to trigger backups and are
frequently doing commits, then you may find that you are needlessly using up
CPU and disk space by generating backups.

Think about if you can have two strategies for indexing your content.
One that is used during bulk loads that focuses on minimizing commits/
optimizes and indexes your data as quickly as possible, and then a second
strategy used during day-to-day routine operations that potentially
indexes documents more slowly, but commits and optimizes more
frequently to reduce the impact on any search activity being performed.

Another setting that causes a fair amount of debate is the mergeFactor setting,
which controls how many segments Lucene should build before merging them
together on disk. The rule of thumb is that the more static your content is, the lower
the merge factor you want. If your content is changing frequently, or if you have a
lot of content to index, then a higher merge factor is better. So, if you are doing
sporadic index updates, then a merge factor of 2 is great, because you will have
fewer segments which lead to faster searching. However, if you expect to have
large indexes (> 10 GB), then having a higher merge factor like 25 will help with
the indexing time.

Scaling Solr

[286]

Enhancing faceting performance
There are a few things to look at when ensuring that faceting performs well. First of
all, faceting and filtering (the fq parameter) go hand-in-hand, thus monitoring the
filter cache to ensure that it is adequately sized. The filter cache is used for faceting
itself as well. In particular, any facet.query or facet.date based facets will store
an entry for each facet count returned. You should ensure that the resulting facets
are as reusable as possible from query-to-query. For example, it's probably not a
good idea to have direct user input to be involved in either a facet.query or in
fq because of the variability. As for dates, try to use fixed intervals that don't
change often or round NOW relative dates to a chunkier interval (for example,
NOW/DAY instead of just NOW). For text faceting (example facet.field), the
filter-cache is basically not used unless you explicitly set facet.method to enum,
which is something you should do when the total distinct values in the field are
somewhat small, say less than 50. Finally, you should add representative faceting
queries to firstSearcher in solrconfig.xml. So that when Solr executes its first
user query, the relevant caches are warmed up.

Using term vectors
A term vector is a list of terms resulting from the text analysis of a field's value. It
optionally contains the term frequency, document frequency, and numerical offset
into the text. In Solr 1.4, it is now possible to tell Lucene that a field should store
these for efficient retrieval. Without them, the same information can be derived at
runtime but that's slower. While disabled by default, enabling term vectors for a
field in schema.xml enhances:

MoreLikeThis queries, assuming that the field is referenced in mlt.fl
and the input document is a reference to an existing document (that is not
externally posted)
Highlighting search results

Enabling term vectors for a field does increase the index size and indexing time, and
isn't required for either MoreLikeThis or highlighting search results. Typically, if
you are using these features, then the enhanced results gained are worth the longer
indexing time and greater index size.

•

•

Chapter 9

[287]

Term vectors are very exciting when you look at clustering documents
together. Clustering allows you to identify documents that are most
similar to other documents. Currently, you can use facets to browse
related documents, but they are tied together explicitly by the facet.
Clustering allows you to link together documents by their contents.
Think of it as dynamically generated facets.
Currently, there is ongoing work in the contrib/cluster source
tree on integrating the Carrot2 clustering platform. Learn more about
this evolving capability at http://wiki.apache.org/solr/
ClusteringComponent.

Improving phrase search performance
For large indexes exceeding perhaps a million documents, phrase searches can be
slow. What slows down phrase searches are the presence of terms in the phrase
that show up in a lot of documents. In order to ameliorate this problem, the
particularly common and uninteresting words like "the" can be filtered out through
a stop filter. But this thwarts searches for a phrase like "to be or not to be" and
prevents disambiguation in other cases where these words, despite being common,
are significant. Besides, as the size of the index grows, this is just a band-aid for
performance as there are plenty of other words that shouldn't be considered for
filtering out yet are reasonably common.

The solution: Shingling
Shingling is a clever solution to this problem, which reduces the frequency of
terms by indexing consecutive words together instead of each word individually.
It is similar to the n-gram family of analyzers described in Chapter 2 in order to
do substring searching, but operates on terms instead of characters. Consider the
text "The quick brown fox jumped over the lazy dog". Depending on the shingling
configuration, this could yield these indexed terms: "the quick", "quick brown",
"brown fox", "fox jumped", "jumped over", "over the", "the lazy", "lazy dog".

In our MusicBrainz data set, there are nearly seven million tracks, and that is a lot!
These track names are ripe for shingling. Here is a field type shingle, a field using
this type, and a copyField directive to feed the track name into this field:

<fieldType name="shingle" class="solr.TextField"
 positionIncrementGap="100" stored="false" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>

Scaling Solr

[288]

 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ShingleFilterFactory" maxShingleSize="2"
 outputUnigrams="false"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <!-- potentially word delimiter, synonym filter, stop words,
 NOT stemming -->
 <filter class="solr.LowerCaseFilterFactory"/>
 <!-- outputUnigramIfNoNgram only honored if SOLR-744 applied.
 Not critical; just means single-words not looked up. -->
 <filter class="solr.ShingleFilterFactory" maxShingleSize="2"
 outputUnigrams="false"/>
 </analyzer>
</fieldType>

<field name="t_shingle" type="shingle" stored="false" />

<copyField source="t_name" dest="t_shingle" />

Shingling is implemented by ShingleFilterFactory and is performed in a similar
manner at both index-time and query-time. Every combination of consecutive terms
of one term in length up to the configured maxShingleSize (defaulting to 2) is
emitted. outputUnigrams controls whether or not each original term (a single word)
passes through and is indexed on its own as well. When false, this effectively sets a
minimum shingle size of 2.

For the best performance, a shingled query needs to emit few terms for it to work.
As such, outputUnigrams should be false on the query side, because multi-term
queries would result in not just the shingles but each term passing through as well.
Admittedly, this means that a search against this field with a single word will fail.
However, a shingled field is best used solely for phrase queries alongside non-phrase
variations. The dismax handler can be configured this way by using the pf parameter
to specify t_shingle, and qf to specify t_name. A single word query would not need
to match t_shingle because it would be found in t_name.

In order to fix ShingleFilterFactory for finding single word
queries, it is necessary to apply patch SOLR-744, which gives an
additional boolean option outputUnigramIfNoNgram. You would
set that to true at query-time only, and set outputUnigrams to
true at index-time only.

Chapter 9

[289]

Evaluating the performance improvement of this addition proved to be tricky
because of Solr's extensive caching. By configuring Solr for nearly non-existent
caching, some rough (non-scientific) testing showed that a search for Hand in my
Pocket against the shingled field versus the non-shingled field was two to three
times faster.

Moving to multiple Solr servers
(Scale Wide)
Once you've optimized Solr running on a single server, and reached the point of
diminishing returns for optimizing further, the next step is to split the querying
load over multiple slave instances of Solr. The ability to scale wide is a hallmark
of modern scalable Internet systems, and Solr 1.4 shares that ability.

Replication
Master Solr

Indexes Replicated

Slave Instances

Inbound Queries

Script versus Java replication
Prior to Solr 1.4, replication was performed by using some Unix shell scripts that
transferred data between servers through rsync, scheduled using cron. This replication
was based on the fact that by using rsync, you could replicate only Lucene segments
that had been updated from the master to the slave servers. The script-based solution
has worked well for many deployments, but suffers from being relatively complex,
requiring external shell scripts, cron jobs, and rsync daemons in order to be setup. You
can get a sense of the complexity by looking at the Wiki page http://wiki.apache.
org/solr/CollectionDistribution and looking at the various rsync and snapshot
related scripts in ./examples/cores/crawler/bin directory.

Scaling Solr

[290]

Introduced in Solr 1.4 is an all-Java-based replication strategy that has an advantage
of not requiring complex external shell scripts and is faster. Configuration is done
through the already familiar solrconfig.xml, and the configuration files such as
solrconfig.xml can now be replicated, allowing specific configurations for master
and slave Solr servers. Replication can now work across both Unix and Windows
environments, and is integrated into the existing Admin interface for Solr. The admin
interface now controls replication—for example, to force the start of replication or
aborting a stalled replication. The simplifying concept change between the script
approach and the Java approach was to remove the need to move snapshot files
around by exposing metadata about the index through a REST API supplied by
the ReplicationHandler in Solr. As the Java approach is the way forward for Solr's
replication needs, we are going to focus on it.

Starting multiple Solr servers
We'll test running multiple separate Solr servers by firing up multiple copies of
the solr-packtpub/solrbook image on Amazon EC2. The images contain both the
server-side Solr code as well as the client-side Ruby scripts. Each distinct Solr server
runs on its own virtualized server with its own IP address. This lets you experiment
with multiple Solr's running on completely different servers. Note: If you are sharing
the same solrconfig.xml for both master and slave servers, then you also need to
configure at startup what role a server is playing.

-Dslave=disabled specifies that a Solr server is running as a master server.
The master server is responsible for pushing out indexes to all of the slave
servers. You will store documents in the master server, and perform queries
against the pool of slave servers.
-Dmaster=disabled specifies that a Solr server is running as a slave server.
Slave servers either periodically poll the master server for updated indexes,
or you can manually trigger updates by calling a URL or using the Admin
interface. A pool of slave servers, managed by a load balancer of some type,
performs searches.

If you don't have access to multiple servers for testing Solr or want to use the EC2
service, then you can still follow along by running multiple Solr servers on the same
server, say maybe on your local computer. Then you can use the same configuration
directory and just specify separate data directories and ports.

-Djetty.port=8984 will start up Solr on port 8984 instead of the usual port
8983. You'll need to do this if you have multiple Servlet engines on the same
physical server.

•

•

•

Chapter 9

[291]

-Dsolr.data.dir=./solr/data8984 specifies a different data directory
from the default one, configured in solrconfig.xml. You wouldn't want
two Solr servers on the same physical server attempting to share the same
data directory! I like to put the port number in the directory name to help
distinguish between running Solr servers, assuming different servlet
engines are used.

Configuring replication
Configuring replication is very easy. We have already configured the replication
handler for the mbreleases core through the following stanza in ./examples/
cores/mbreleases/solrconfig.xml:

<requestHandler name="/replication" class="solr.ReplicationHandler" >
 <lst name="${master:master}">
 <str name="replicateAfter">startup</str>
 <str name="replicateAfter">commit</str>
 <str name="confFiles">stopwords.txt</str>
 </lst>
 <lst name="${slave:slave}">
 <str name="masterUrl">http://localhost:8983/solr/replication</str>
 <str name="pollInterval">00:00:60</str>
 </lst>
</requestHandler>

Notice the use of ${} values for doing configuration of solrconfig.xml at
runtime. This allows us to configure a single request handler for replication, and pass
-Dmaster=disabled and -Dslave=disabled to control which list of parameters
are used. The master server has been set to trigger replication on startup of Solr and
when commits are performed. Configuration files can also be replicated to the slave
servers through the list of confFiles. Replicating configuration files is useful when
you modify them during runtime and don't want to go through a full redeployment
process of Solr. Just update the configuration file on the master Solr, and they will
be pushed down to the slave servers on the next pull. The slave servers are smart
enough to pick up the fact that a configuration file was updated and reload the core.
Java based replication is still very new, so check for updated information on setting
up replication on Wiki at http://wiki.apache.org/solr/SolrReplication.

Distributing searches across slaves
Assuming you are working with the Amazon EC2 instance, go ahead and fire up
three separate EC2 instances. Two of the servers will serve up results for search
queries, while one server will function as the master copy of the index. Make sure
to keep track of the various IP addresses!

•

Scaling Solr

[292]

Indexing into the master server
You can log onto the master server by using SSH with two separate terminal
sessions. In one session, start up the server while specifying that -Dslave=disabled:

>> cd ~/examples
>> java -Dslave=disabled -Xms512M -Xmx1024M -Dfile.encoding=UTF8
 -Dsolr.solr.home=cores -Djetty.home=solr -Djetty.logs=solr/logs
 -jar solr/start.jar

In the other terminal session, we're going to take a CSV file of the MusicBrainz
album release data to use as our sample data. The CSV file is stored in a ZIP format
in ./examples/9/mb_releases.csv.zip. Unzip the file so you have the full
69 megabyte dataset with over 600 thousand releases running:
>> unzip mb_releases.csv.zip

You can index the CSV data file through curl from either your desktop or locally on
the Amazon EC2 instance. By doing it locally, we avoid the cost of transferring the
69 megabytes over the Internet:

>> curl http://localhost:8983/solr/mbreleases/update/csv -F f.r_
attributes.split=true -F f.r_event_country.split=true -F f.r_event_
date.split=true -F f.r_attributes.separator=' ' -F f.r_event_country.
separator=' ' -F f.r_event_date.separator=' ' -F commit=true -F stream.
file=/root/examples/9/mb_releases.csv

You can monitor the progress of streaming the release data by using the statistics
page at http://[MASTER URL]:8983/solr/mbreleases/admin/stats.jsp#update
and looking at the docPending value. Refresh the page, and it will count up to the
total 603,090 documents!

Configuring slaves
Once the indexing is done, and it can take a while to complete, check the number of
documents indexed; it should be 603,090. Now you are ready to push the indexes to
the slaves. Log into each slave server through SSH, and edit the ./examples/cores/
mbreleases/conf/solrconfig.xml file to update the masterUrl parameter in the
replication request handler to point to the IP address of the master Solr server:

<lst name="${slave:slave}">
 <str name="masterUrl">http://ec2-67-202-19-216
 .compute-1.amazonaws.com:8983/solr/mbreleases/replication</str>
 <str name="pollInterval">00:00:60</str>
</lst>

Chapter 9

[293]

Then start each one by specifying that it is a slave server by passing
-Dmaster=disabled:
>> cd ~/examples

>> java -Dmaster=disabled -Xms512M -Xmx1024M -Dfile.encoding=UTF8 -Dsolr.
solr.home=cores -Djetty.home=solr -Djetty.logs=solr/logs -jar solr/start.
jar

If you are running multiple Solr's on your local server instead, don't forget to
distinguish between Solr slaves by passing in a separate port and data directory,
by adding -Djetty.port=8984 -Dsolr.data.dir=./solr/data8984.

You can trigger a replication by using the Replication admin page for each slave. The
page will reload showing you how much of the data has been replicated from your
master server to the slave server. In the following screenshot, you can see that 71 of
128 megabytes of data have been replicated:

Typically, you would want to use a proper DNS name for the masterUrl, such as
master.solrsearch.mycompany.com, so you don't have to edit each slave server.
Alternatively, you can specify the masterUrl as part of the URL and manually
trigger an update:

>> http://[SLAVE_URL]:8983/solr//mbreleases/replication?
 command=fetchindex&masterUrl=[MASTER_URL]

Distributing search queries across slaves
We now have three Solr's running, one master and two slaves in separate SSH
sessions. We don't have a single URL that we can provide to clients, which
leverages the pool of slave Solr servers. We are going to use HAProxy, a simple
and powerful HTTP proxy server to do a round robin load balancing between our
two slave servers running on the master server. This allows us to have a single
IP address, and have requests redirected to one of the pool of servers, without
requiring configuration changes on the client side. Going into the full configuration
of HAProxy is out of the scope of this book; for more information visit HAProxy's
homepage at http://haproxy.1wt.eu/.

Scaling Solr

[294]

On the master Solr server, edit the /etc/haproxy/haproxy.cfg file, and put your
slave server URL's in the section that looks like:

listen solr-balancer 0.0.0.0:80
 balance roundrobin
 option forwardfor
 server slave1 ec2-174-129-87-5.compute-1.amazonaws.com:8983
 weight 1 maxconn 512 check
 server slave2 ec2-67-202-15-128.compute-1.amazonaws.com:8983
 weight 1 maxconn 512 check

The solr-balancer process will listen to port 80, and then redirect requests to each
of the slave servers, equally weighted between them. If you fire up some small and
medium capacity EC2 instances, then you would want to weigh the faster servers
higher to get more requests. If you add the master server to the list of servers, then
you might want to weigh it low. Start up HAProxy by running

>> service haproxy start

You should now be able to hit port 80 of the IP address of the master Solr,
http://ec2-174-129-93-109.compute-1.amazonaws.com, and be transparently
forwarded to one of the slave servers. Go ahead and issue some queries and you
will see them logged by whichever slave server you are directed to. If you then stop
Solr on one slave server and do another search request, you will be transparently
forwarded to the other slave server!

If you aren't using the solrbook AMI image, then you can look at
haproxy.cfg in ./examples/9/amazon/.

There is a SolrJ client side interface that does load balancing as well.
LBHttpSolrServer requires the client to know the addresses
of all of the slave servers and isn't as robust as a proxy, though it
does simplify the architecture. More information is on the Wiki at
http://wiki.apache.org/solr/LBHttpSolrServer.

Chapter 9

[295]

Sharding indexes
Sharding is the process of breaking a single logical index in a horizontal fashion
across records versus breaking it up vertically by entities. It is a common database
scaling strategy when you have too much data for a single database. In Solr terms,
sharding is breaking up a single Solr core across multiple Solr servers versus
breaking up a single Solr core over multiple cores through a multi core setup.
Solr has the ability to take a single query and break it up to run over multiple Solr
shards, and then aggregate the results together into a single result set. You should
use sharding if your queries take too long to execute on a single server that isn't
otherwise heavily taxed, by combining the power of multiple servers to work
together to perform a single query. You typically only need sharding when you
have millions of records of data to be searched.

Sharding
A collection of Shards

Aggregate Query
Results

Inbound Queries

If running a single query is fast enough, and if you are just looking
for capacity increase to handle more users, then use the whole index
replication approach instead!

Scaling Solr

[296]

Sharding isn't a completely transparent operation the way that replicating whole
indexes is. The key constraint is when indexing the documents, you need to decide
which Solr shard gets which documents. Solr doesn't have any logic for distributing
indexed data over shards. Then when querying for data, you supply a shards
parameter that lists which Solr shards to aggregate results from. This means a lot
of knowledge of the structure of the Solr architecture is required on the client side.
Lastly, every document needs a unique key (ID), because you are breaking up the
index based on rows, and these rows are distinguished from each other by their
document ID.

Assigning documents to shards
There are a number of approaches you can take for splitting your documents across
servers. Assuming your servers share the same hardware characteristics, such as if
you are sharding across multiple EC2 servers, then you want to break your data up
more or less equally across the servers. We could distribute our mbreleases data
based on the release names. All release names that start between A and M would go
to one shard, the remaining N through Z would be sent to the other shard. However,
the chance of an even distribution of release names isn't very likely! A better
approach to evenly distribute documents is to perform a hash on the unique ID and
take the mod of that value to determine which shard it should be distributed to:

SHARDS = ['http://ec2-174-129-178-110
 .compute-1.amazonaws.com:8983/solr/mbreleases',
 'http://ec2-75-101-213-59
 .compute-1.amazonaws.com:8983/solr/mbreleases']
unique_id = document[:id]
if unique_id.hash % SHARDS.size == local_thread_id
 # index to shard
end

As long as the number of shards doesn't change, every time you index the same
document, it will end up on the same shard! With reasonably balanced documents,
the individual shards calculation of what documents are relevant should be good
enough. If you have many more documents on one server versus another, then the
one with fewer documents will seem as relevant as the one with many documents, as
relevancy is calculated on a per-server basis.

You can test out the script shard_indexer.rb in ./examples/9/amazon/ to
index the mb_releases.csv across as many shards as you want by using the
hashing strategy. Just add each shard URL to the SHARDS array defined at the
top of shard_indexer.rb:

>> ruby shard_indexer.rb ../mbreleases.csv

Chapter 9

[297]

You might want to change this algorithm if you have a pool of servers
supporting your shards that are of varying capacities and if relevance
isn't a key issue for you. For your higher capacity servers, you might
want to direct more documents to be indexed on those shards. You can
do this by using the existing logic, and then by just listing your higher
capacity servers in the SHARDS array multiple times.

Searching across shards
The ability to search across shards is built into the query request handlers. You
do not need to do any special configuration to activate it. In order to search across
two shards, you would issue a search request to Solr, and specify in a shards URL
parameter a comma delimited list of all of the shards to distribute the search across
as well as the standard query parameters:

>> http://[SHARD_1]:8983/solr/select?shards=ec2-174-129-178-110.
compute-1.amazonaws.com:8983/solr/mbreleases,ec2-75-101-213-59.compute-
1.amazonaws.com:8983/solr/mbreleases&indent=true&q=r_a_name:Joplin

You can issue the search request to any Solr instance, and the server will in
turn delegate the same request to each of the Solr servers identified in the
shards parameter. The server will aggregate the results and return the
standard response format:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">697</int>
 <lst name="params">
 <str name="indent">true</str>
 <str name="q">r_a_name:Joplin</str>
 <str name="shards">
 ec2-174-129-178-110.compute-1.amazonaws.com
 :8983/solr/mbreleases,ec2-75-101-213-59.compute-
 1.amazonaws.com:8983/solr/mbreleases
 </str>
 </lst>
 </lst>
 <result name="response" numFound="15" start="0"/>
</response>

Scaling Solr

[298]

The URLs listed in the shards parameter do not include the transport
protocol, just the plain URL with the port and path attached. You will
get no results if you specify http:// in the shard URLs. You can pass
as many shards as you want up to the length a GET URI is allowed,
which is at least 4000 characters.

You can verify that the results are distributed and then combined by issuing the
same search for r_a_name:Joplin to each individual shard and then adding up
the numFound values.

There are a few key points to keep in mind when using shards to support
distributed search:

Sharding is only supported by certain components such as Query, Faceting,
Highlighting, Stats, and Debug.
Each document must have a unique ID. This is how Solr figures out how to
merge the documents back together.
If multiple shards return documents with the same ID, then the first
document is selected and the rest are discarded. This can happen if you
have issues in cleanly distributing your documents over your shards.

Combining replication and sharding
(Scale Deep)
Once you've scaled wide by either replicating indexes across multiple servers or
sharding a single index, and then discover that you still have performance issues
it's time to combine both approaches to provide a deep structure of Solr servers to
meet your demands. This is conceptually quite simple, and getting it set up to test
is fairly straight forward. The challenge typically is keeping all of the moving pieces
up-to-date, and making sure that you are keeping your search indexes up-to-date.
These operational challenges require a mature set of processes and sophisticated
monitoring tools to ensure that all shards and slaves are update to date and
are operational.

•

•

•

Chapter 9

[299]

In order to tie the two approaches together, you continue to use sharding to spread
out the load across multiple servers. Without sharding, it doesn't matter how large
your pool of slave servers is because you need more CPU power than what just one
slave server has to handle an individual query. Once you have sharded across the
spectrum of shard servers, you treat each one as a Master Shard server, configured
in the same way as we did in the previous replication section. This develops a tree of
a master shard server with a pool of slave servers. Then, to issue a query, you have
multiple small pools of one slave server per shard that you issue queries against. You
can even have dedicated Solr, which don't have their own indexes, to be responsible
for delegating out the queries to the individual shard servers and then aggregate
the results before returning them to the end user.

Slave
Pool 1

Slave
Pool 2

A AB B

C C

Replicated Shards

Master Shards

Individual
Shards

Replicated

A B

C

Inbound Queries sent to pools of slave shards

Scaling Solr

[300]

Data updates are handled by updating the top Master Shard servers and then
replicated down to the individual slaves, grouped together into small groups of
distributed sharded servers.

Obviously, this is a fairly complex setup and requires a fairly sophisticated load
balancer to frontend this whole collection, but it does allow Solr to handle extremely
large data sets.

Where next for Solr scaling?
There has been a fair amount of discussion on Solr mailing lists about
setting up distributed Solr on a robust foundation that adapts to changing
environment. There has been some investigation regarding using Apache
Hadoop, a platform for building reliable, distributing computing as a
foundation for Solr that would provide a robust fault-tolerant filesystem.
Another interesting sub project of Hadoop is ZooKeeper, which aims
to be a service for centralizing the management required by distributed
applications. There has been some development work on integrating
ZooKeeper as the management interface for Solr. Keep an eye on
the Hadoop homepage for more information about these efforts
at http://hadoop.apache.org/ and Zookeeper at
http://hadoop.apache.org/zookeeper/.

Summary
Solr offers many knobs and levers for increasing performance. From turning the
simpler knobs for enhancing the performance of a single server, to pulling the big
levers of scaling wide through replication and sharding, performance and scalability
with appropriate hardware are issues that can be solved fairly easily. Moreover, for
those projects where truly massive search infrastructure is required, the ability to
shard over multiple servers and then delegate to multiple slaves provides an almost
linear scalability capacity.

Index
Symbols
$("#artist").autocomplete() function 242
* fallback 46
-Djetty.port=8984 290
-Dmaster=disabled 290
-Dslave=disabled 290
-Dsolr.data.dir=./solr/data8984 291
<dataSource/> element 77
<response /> element 93
<types/> tag 40
@throws SolrServerException 234
[FULL INTERFACE] link 89
val pseudo-field hack 117, 118

A
a_name field + a_ngram field, n-gramming

costs 61
a_name field, n-gramming costs 61
a_spell, spellchecker 172
a_spellPhrase, spellchecker 172
abs(x), mathematical primitives 121
accuracy, spellchecker option 174
acts_as_solr, Ruby On Rails integrations

:fields array 256
about 255, 256
MyFaves, project setting up 255, 256
MyFaves relational database, popularity

from Solr 256-258
MyFaves web site, completing 260-263
Solr indexes, building from relational

database 258-260
allowDups 69
alphabetic range bucketing (A-C, D-F, and

so on), faceting 148, 149

Amazon EC2
about 273
Solr, using on 274-276

Amazon Machine Instance. See AMI
AMI 274
analyzer chains

CharFilterFactory 49
index type 49
query type 49
tokenizer 50
types 49

analyzers
miscellaneous 62, 63

AND *:*need for 135
AND operator 100
AND operator, combining with OR

operator 101
AND or && operator 101
Apache ant

about 13
URL 11

Apache Lucene. See Lucene
Apache Tomcat 199
appends 111
arr, XML element 92
artist_startDate field 33
artistAutoComplete 243
auto-complete. See term-suggest
Auto-warming 280
automatic phrase boosting

about 132, 133
configuring 133
phrase slop, configuring 134

AWStats 202

[302]

B
batchSize 78
bf parameter 117
Blacklight Online Public Access Catalog.

See Blacklight OPAC, Ruby On Rails
integrations

Blacklight OPAC, Ruby On Rails
integrations

about 263
data, indexing 263-267

Boolean operators
AND 100
AND operator, combining with OR

operator 101
AND or && operator 101
NOT 100
NOT operator 101
OR 100
OR or || operator 101

bool element 92
boost functions

boosting 137, 138
r_event_date_earliest field 138

boosting 70, 107
boost queries

boosting 134-137
bq parameter(s) 134
bucketFirstLetter 148
buildOnCommit 174
buildOnCommit, spellchecker option 174
buildOnOptimize, spellchecker option 174

C
caches

tuning 281
CapitalizationFilterFactory filter 63
CCK 252
Chainsaw

URL 204
characterEncoding, FileBasedSpellChecker

option 175
CharFilterFactory 62
CI 128
classname 173
CM 197

CMS 250
Co-ordination Factor. See coord
collapse.facet, field collapsing 192
collapse.field, field collapsing 192
collapse.info.doc, field collapsing 193
collapse.maxdocs, field collapsing 193
collapse.threshold, field collapsing 193
collapse.type, field collapsing 192
combined index 32
CommonsHttpSolrServer 235
complex systems, tuning

about 271
CPU usage 272
memory usage 272
scale deep 273
scale high 273
scale wide 273
system changes 272

components
about 111, 159
solrconfig.xml 159

compressed, field option 41
configuration files, Solr

<requestHandler> tag 25
solrconfig.xml file 25
standard request handler 26

Configuration Management. See CM
ConsoleHandler 204
Content Construction Kit 252
Content Management System. See CMS
Continuous Integration. See CI
coord 112
copyField directive

about 46
uses 46

CoreDescriptor classes 231
core, managing 209, 210
count, Stats component 189
CPU usage 272
cron 289
CSV, sending to Solr

about 72
configuration options 73, 74

curl
using, to interact with Solr 66, 68

[303]

D
data, indexing

stream.body parameter 67
stream.file parameter 67
stream.url parameter 67
through HTTP POST 67
ways 67

database
and Lucene search index, differences 9, 10

DataImportHandler. See DIH
dataSource attribute 78
date element 93
date facet, parameters

facet.date 151
facet.date.end 151
facet.date.gap 151
facet.date.hardend 151
facet.date.other 152
facet.date.start 151

dates, Faceting 146
debugQuery, diagnostic parameter

about 98
explainOther 98

defaults 111
defaultSearchField, schema.xml settings 47
defType, query parameter 95
defType parameter 128
deleteById() 232
deleteByQuery() 232
denormalizing

one to many associated data 36, 37
one to one associated data 36

deployment process, Solr 197, 198
df, query parameter 95
diagnostic query parameters

debugQuery 98
echoHandler 98
echoParams 98
indent 98

dictionary
about 169
building, from source 176, 177

DIH
about 74, 236
capabilities 74

dataSource attribute 78
development console 76, 77
documents, entities 78
entity 78
getting started 75
mb-dih-artists-jdbc.xml file 75, 76
query attribute 78
reference document, URL 74
Solr, registering with 75
solrconfig.xml 75

DIH, development console
DataSources, JdbcDataSource type 77, 78
DIH control form 77
documents, entities 79
fields 79
importing with 80

DIH, transformers
dateTimeFormat attributes 79
splitBy attributes 79
template attributes 79

DIH fields
column attribute 79
name attribute 79

directory structure, Solr
build 13
client 13
dist 13
example 14
example/etc 14
example/multicore 14
example/solr 14
example/webapps 14
lib 14
site 14
src 14
src/java 14
src/scripts 14
src/solrj 14
src/test 14
src/webapp 14

Disjunction-Max. See dismax
DisjunctionMaxQuery

about 130
boosts, configuring 131
queried fields, configuring 131

dismax 113

[304]

dismax handler. See Dismax Solr request
handler

dismax query handler 131
dismax request handler 128
Dismax Solr request handler

about 128
automatic phrase boosting 132, 133
boost functions, boosting 137, 138
boost queries, boosting 134-137
debugQuery option used 129
default search 140, 141
DisjunctionMaxQuery 130
features, over standard handler 129
limited query syntax 131
min-should-match 138
mm query parameter 138
phrase slop, configuring 134

distanceMeasure, spellchecker option 174
distributed search 32
div(x,y), mathematical primitives 121
doc element 93
docText field data 233
document

deleting 70
documentCache 281
Domain Specific Language. See DSL
double element 92
DoubleMetaphone, phonetic encoding

algorithms 58
DoubleMetaphoneFilterFactory analysis

filter, options
inject 59
maxCodeLength 59

Drupal, options
Apache Solr Search integration module 251
Solr, hosted by Acquia 252

DSL 269
dynamic fields

* fallback 46
about 45

E
echoHandler, diagnostic parameter 98
echoParams 152
echoParams, diagnostic parameter 98

EdgeNGram analyzer 61
EdgeNGramFilterFactory 61
EdgeNGramTokenizerFactory 61
Elasticfox 276
Embedded-Solr 65
embedded Solr

legacy Lucene, upgrading from 237
using for rich clients 237
using in in-process streaming 236, 237

EmbeddedSolrServer class 224
encoder attribute 59
EnglishPorterFilter Factory, stemming 54
Entity tags 279
ETag 279
ETL 78
eval() function 238
existence (and non-existence) queries 107
explicit mapping 56
Extract Transform and Load. See ETL
extraParams entry 242

F
facet 146
facet.date 151, 286

examples 151
facet.date.end 151
facet.date.gap 151
facet.date.hardend 151
facet.date.other 152
facet.date.start 151
facet.field 147
facet.limit 147
facet.method 148
facet.mincount 147
facet.missing 148
facet.missing parameter 143
facet.offset 147
facet.prefix 148, 156
facet.query 286
facet.query parameter 152, 153
facet.sort 147
facet_counts 143
faceted navigation 7, 141, 145, 153
faceted search 149, 220, 221

[305]

faceting
about 141
alphabetic range bucketing (A-C, D-F, and

so on) 148, 149
date facet parameters 151, 152
dates 146, 149, 150
example 142, 143
facet.field 147
facet.limit 147
facet.method 148
facet.mincount 147
facet.missing 148
facet.missing parameter 143
facet.offset 147
facet.prefix 148
facet.sort 147
facet_counts 143
facet prefixing (term suggest) 156-158
field, requisites 146
field values (text) 146
filters, excluding 153-155
Local Params 155
on arbitrary parameters 152, 153
queries 146
release types, exampleexample 142, 143
schema changes, MusicBrainz example 144,

145
text 147
types 146

faceting, dates
about 149
examples 150

Facet prefixing 156
Familiarity

URL 204
FastLRUCache 280
fetchSize 78
field, attributes

default (optional) 42
name 42
required (optional) 42
type 42

field, IndexBasedSpellChecker option 174
field collapsing, search components

about 191, 192
collapse.facet 192
collapse.field 192

collapse.info.count 193
collapse.info.doc 193
collapse.maxdocs 193
collapse.threshold 193
collapse.type 192
configuring 192, 193
SOLR-236 191

field definitons, schema.xml file
attributes 42
copyField, using 46
copyField directive, using 46
default (optional) 42
dynamic fields 45
name 42
required (optional) 42
schema.xml, settings 47
sorting 44
sorting, limitations 44, 45
type 42

field length. See fieldNorm
field list. See fl
fieldNorm 112
field options, schema.xml file

compresses 41
indexed 41
multiValued 41
omitNorms (advanced) 41
positionIncrementGap (advanced) 42
sortMissingFirst 41
sortMissingLast 41
stored 41
termVectors (advanced) 41

field qualifier 102, 103
field references, function queries 120
fieldType, spellchecker option 174
field types, schema.xml file

<fields/> tag 40
<types/> tag 40
class attribute 40

field values (text), Faceting 146
file, spellchecker 172
FileBasedSpellChecker options

characterEncoding 175
sourceLocation 175

FileHandler logging 204
filterCache 280
filter element 50

[306]

filtering 108, 109
filters, Faceting

excluding 153, 155
first-components 111
fl 220
fl, output related parameter 96
float element 92
fq, query parameter 95
function argument

limitations 120
function queries

val pseudo-field hack 117
about 117
bf parameter 117
Daydreaming search example 119
example 118
field references 120
function references 120
incorporating, to searches 117
t_trm_lookups 118

function query, tips 128
function references

mathematical primitives 121
function references, function queries 120

G
g, query parameter 95
g.op, query parameter 95
generic XML data structure

about 92
appends 111
arr, XML element 92
bool element 92
components 111
date element 93
defaults 111
double element 92
first-components 111
float element 92
int element 92
invariants 111
last-components 111
long element 92
lst, XML element 92
str element 92

Git
URL 11

H
Hadoop 225
HathiTrust 273
Heritrix

using, to download artist pages 226, 227
highlighted field list. See hl.fl
highlighting component, search

components
about 161
configuring 163
example 161, 163
hl 164
hl.fl 164
hl.fragsize 164
hl.highlightMultiTerm 164
hl.mergeContiguous 165
 hl.requireFieldMatch 164
hl.snippets 164
hl.usePhraseHighlighter 164
hl alternateField 165
hl formatter 165
hl fragmenter 165
hl maxAnalyzedChars 165
parameters 164

hl, highlighting component 164
hl.fl 161
hl.fl, highlighting component 164
hl.fragsize, highlighting component 164
hl.highlightMultiTerm, highlighting

component 164
hl.increment, regex fragmenter 166
hl.mergeContiguous, highlighting

component 165
hl.regex.maxAnalyzedChars, regex

fragmenter 166
hl.regex.pattern, regex fragmenter 166
hl.regex.slop, regex fragmenter 166
hl.requireFieldMatch, highlighting

component 164
hl.snippets, highlighting component 164
hl.usePhraseHighlighter, highlighting

component 164
hl alternateField, highlighting component

165
hl formatter, highlighting component

about 165
hl.simple.pre and hl.simple.post 165

[307]

hl fragmenter, highlighting component 165
hl maxAlternateFieldLength, highlighting

component 165
hl maxAnalyzedChars, highlighting

component 165
home directory, Solr

bin 15
conf 15
conf/schema.xml 15
conf/solrconfig.xml 15
conf/xslt 15
data 15
lib 15

HTML, indexing in Solr 227
HTMLStripStandardTokenizerFactory 52
HTMLStripStandardTokenizerFactory

tokenizer 227
HTMLStripWhitespaceTokenizerFactory 52
HTTP caching 277-279
HTTP server request access logs, logging

about 201, 202
log directory, creating 201
Tailing 202

I
IDF 33
idf 112
ID field 44
indent, diagnostic parameter 98
index 31
index-time

and query-time, boosting 113
versus query-time 57

index-time boosting 70
IndexBasedSpellChecker options

field 174
sourceLocation 174
thresholdTokenFrequency 175

index data
document access, controlling 221
securing 220

indexed, field option 41
indexed, schema design 282
indexes

sharding 295
indexing strategies

about 283

factors, committing 285
factors, optimizing 285
unique document checking, disabling 285

Index Searchers 280
Information Retrieval. See IR
int element 92
InternetArchive 226
invariants 111
Inverse Document Frequency. See IDF
inverse reciprocals 125
IR 8
ISOLatin1AccentFilterFactory filter 62
issue tracker, Solr 27

J
J2SE

with JConsole 212
JARmageddon 205
jarowinkler, spellchecker 172
java.util.logging package 203
Java class names

abbreviated 40
org.apache.solr.schema.BoolField 40

Java Development Kit (JDK)
URL 11

JavaDoc tags 234
Java Management Extensions. See JMX
Java Naming and Directory Interface. See

JNDI
Java replication

versus script 289
JavaScript Object Notation. See JSON
Java Server Pages. See JSPs
JConsole GUI

about 212
URL 212

JDK [1.4] logging 203
JDK logging 203
Jetty

startup integration 205
web.xml, customizing 218

jetty.xml 201
JIRB tool 215
JMX

about 212
access, controlling 220

[308]

information extracting, JRuby used 215
Solr, starting with 212-215

Jmx4r 217
JMX Console 212
JNDI 16, 200
JNDI name 200
jQuery 240
jQuery Autocomplete widget 241, 242
JRuby

using, to extract JMS information 215
JRuby Interactive Browser tool. See JIRB

tool
JSON 238
JSONP 242
JSON with Padding. See JSONP
JSPs 17
JUL 203
JVM

configuration 277

K
KeepWordFilterFactory filter 62
KeywordTokenizerFactory 52
KStem, stemming 55

L
last-components 111
LengthFilterFactory 145
LengthFilterFactory filter 62
LetterTokenizerFactory 52
limited query syntax 131

disabling 132
linear(x,m,c), miscellaneous math 122
Local Params 155
LocalSolr component 194
log(x), mathematical primitives 121
Log4j

configuring, URL 205
logging to 204

Log4j JAR file
URL 204

logarithms 123, 124
Logback

URL 204
logging

about 201

HTTP server request access logs 201, 202
levels. managing at runtime 205, 206
Solr application logging 203
types 201

logging.properties file 204
long element 92
LowerCaseFilterFactory filter 62
LRUCache 280
lst, XML element 92
Lucene

about 8
DisjunctionMaxQuery 130
features 8
scoring 112

Lucene’s query syntax
URL 44

LUCENE-1435 45
Lucene search index

and database, differences 9, 10
Lucene syntax

query expression 100
query syntax 99
sub-expressions 101

M
mailing lists, Solr

URL 26
Managed Bean. See MBeans
mandatory clause, expression query 100
map() function 243
map(x,min,max,target), miscellaneous math

121
master server

indexing into 292
mathematical primitives, function

references
abs(x) 121
div(x,y) 121
log(x) 121
pow(x,y) 121
product(x,y,z,...) 121
sqrt(x) 121
sum(x,y,z, ...) 121

Maven 228
max(x,c), miscellaneous math 121
max, Stats component 189
maxGramSize 60

[309]

maxScore 93
maxWarmingSearchers 284
mb-dih-artists-jdbc.xml file 75, 76
mb_attributes.txt

content 145
MBeans 212
mean, Stats component 189
member_id field 36
memory usage 272
Metaphone, phonetic encoding algorithms

58
min, Stats component 189
min-should-match

about 138
basic rules 139
multiple rules 139
rules 139
rules, choosing 140

minGramSize 60
miscellaneous math, function references

linear(x,m,c) 122
map(x,min,max,target) 121
max(x,c) 121
recip(x,m,a,c) 122
scale(x,minTarget,maxTarget) 121

missing, Stats component 189
MLT, search components

as dedicated request handler 182
as request handler, with external input

document 183
as Solr component 182
configuration parameters 183
mlt 183
mlt.boost 186
mlt.count 183
mlt.fl 185
mlt.maxntp 186
mlt.maxqt 186
mlt.maxwl 185
mlt.mindf 185
mlt.mintf 185
mlt.minwl 185
mlt.qf 185
parameters 185, 186
parameters, specific to MLT request handler

184
results, example 186, 188

specific parameters 183
using, ways 182

mlt.boost 186
mlt.fl 185
mlt.maxntp 186
mlt.maxqt 186
mlt.maxwl 185
mlt.mindf 185
mlt.mintf 185
mlt.minwl 185
mlt.qf 185
mm query parameter 138
mm specification formats

as examples 139
more-like-this search component. See MLT,

search components
more like this plugin 9
multi-word synonyms 56
multicore

need for 210, 211
multiple indices 32
multiple Solr servers

documents, assigning to shards 296
indexes, sharding 295
master server, indexing into 292
replication, configuring 291
script versus Java replication 289
searches, distributing 291
search queries, distributing across slaves

293, 294
shards, searching across 297, 298
slaves, configuring 292, 293
starting 290, 291

multiValued, field option 41
multiValued field 221
MusicBrainz.org 30, 31

N
n-gramming costs

Edge n-gramming costs 62
tokenizer based n-gramming costs 62

N-gramming costs, substring indexing
a_name field 61
a_name field + a_ngram field 61
minGramSize 62

name 173
name attribute 143

[310]

name field 33
newSearch query 284
NOT operator 100, 101
numFound 93
Nutch 225
Nutch + Web Archive eXtensions. See

NutchWAX
NutchWAX 225

O
OLTP 78
omitNorms (advanced), field option 41
omitNorms, schema design 282
omitTermFreqAndPositions, schema design

282
Online Transaction Processing systems. See

OLTP
optional clause, expression query 100
ord() function 120, 122
ord(fieldReference) 122
ord/rord 122
ord and rord, function references

ord(fieldReference) 122
rord(fieldReference) 122

OR operator 100
OR or || operator 101
output related parameters, query parameters

fl 96
sort 96
version 98
wt 97

outputUnigrams controls 288

P
parse

 parameter 243
parse() function 244
partial indexing. See substring indexing
PatternReplaceFilterFactory filter 63
PatternTokenizerFactory 53
pf, tips 134
pf parameter 133
phoneme 58
phonetic encoding algorithms

DoubleMetaphone 58
encoder attribute 59

Metaphone 58
RefinedSoundex 58
Soundex 58

PhoneticFilterFactory filter 59
phonetic sounds-like

about 58
phonetic encoding algorithms 58

phrase queries 103
phrase search performance

improving 287
shingling, solution 287, 288

phrase slop
configuring 134

Plain Old Java Objects. See POJOs
POJOs

indexing 234
PorterStemFilterFactory, stemming 54
positionIncrementGap (advanced), field

option 42
pow(x,y), mathematical primitives 121
product(x,y,z, ...), mathematical primitives

121
prohibited clause, expression query 100
PRONOM Unique Identifier. See PUID
public searches

securing 219, 220
PUID 31

Q
q parameter

processing 175
qt, miscellaneous parameter 95
QTime 93
queries, Faceting 146
query-time

and index-time, boosting 113
versus index-time 57

query-time boosting 70
query attribute 78
query converter 175
query elevation, search components

about 166
config-file 167, 168
configuration parameters 167
configuring 167
elevateArtists.xml 168

[311]

forceElevation 168
queryFieldType 168

query expression, clauses
mandatory clause 100
optional clause 100
prohobited clause 100

query parameters
about 95
defType 95
df 95
diagnostic 98
fq 95
output related parameters 96
q 95
q.op 95
qt 95
result paging 96
rows 96
start 96

query parser plugin 128
QueryResponse object 235
queryResultCache 280
query spell checker

indexed content based 8, 9
query syntax

about 99
boosting 107
documents, matching 99
existence (and non-existence) queries 107
field qualifier 102, 103
fuzzy queries 105
phrase queries 103
query expression, clauses 100
special characters 108
sub-expressions 101
term proximity 103
wildcard queries 103, 104

R
r_a_name 42
r_attributes 144
r_event_date_earliest field 138
r_name_facetLetter 148
r_official 144
r_type 144
range queries

[and] brackets 106

{ and } brackets 106
about 105, 106
date math 106, 107

readOnly 77
recip(x,m,a,c), miscellaneous math 122
reciprocals and rord, with dates 126, 127
RecordItem 234
RefinedSoundex, phonetic encoding

algorithms 58
regex fragmenter, options

hl.increment 166
hl.regex.pattern 166
hl.regex.slop 166
hl regex.maxAnalyzedChars 166

release’s artist’s name. See r_a_name
remote streaming

about 68, 221
disabling 69
enabling 69

remote streaming feature 224
RemoveDuplicatesTokenFilterFactory filter

62
renderResult() method 247
replication

and sharding, combining 298-300
configuring 291

requestHandler 207
request handler

about 110
configuration, creating 110
configuring 110

result() function 243, 244
right field type/analysis, using 109
rOfficial 144
rord() 122
rord(fieldReference) 122
rows parameter 96, 242
rsolr

versus solr-ruby 269
Ruby On Rails integrations

acts_as_solr 254-259
acts_as_solr plugin 253
Blacklight OPAC 263
Convention over Configuration 253
display, customizing 267
fields display, customizing 268, 269
solr-ruby versus rsolr 269
solr_data 257

[312]

S
scale() function

example 123
inverse reciprocals, using 124, 125
logarithms, using 123, 124
reciprocals and rord with dates, using

126, 127
scale(x,minTarget,maxTarget),

miscellaneous math 121
scale deep 298
scale high 276
scale wide 289
schema, Solr

<copyField> tag 25
<fields> tag 25
<types> tag 25
primary key 25
text, field name 25

schema.xml, settings
defaultSearchField 47
solrconfig.xml 47
solrQueryParser 47
uniqueKey 47

schema.xml file
<fields/> tag 40
<types/> tag 40
field definitions 42, 43
field options 40
field types 40
sample 45

schema design
about 34
compressed field option 282
data, denormalizing 36
entities returned from search, determining

35
inclusion of fields used in search results,

omitting 38, 39
indexed 282
omitNorms 282
omitTermFreqAndPositions 282
one to many associated data, denormalizing

36, 37
one to one associated data, denormalizing

36
Solr powered search, determining 35

stored 282
score boosting. See boosting
scoring

about 112
co-ordination factor (coord) 112
factors 112
field length (fieldNorm) 112
Inverse Document Frequency (idf) 112
query-time and index-time, boosting 113
term frequency (tf) 112
troubleshooting 113, 114

script
versus Java replication 289

search, distributing across slaves
about 291
master server, indexing into 292
slaves, configuring 292, 293

search components
about 161
field collapsing 191, 192
highlighting component 161
MLT (more-like-this) 182
query elevation 166
spellcheck 169
Stats component 189
terms component 194
termVector component 194

search engine 161, 223, 237, 266, 272
searcher.num_docs attribute 216
SearchHandler

per search interface 207
search handler 128
searching 89, 90
server access

limiting 217, 219
Servlet container

and Solr, differences 199
installing in 199
solr.home property, defining 199

sharding
and replication, combining 298-300
documents, assigning 296
indexes 295, 296
searching across 297, 298

ShingleFilterFactory 288
shingling 133, 127, 287

[313]

Simple Java interface. See SolrJ
Simple Logging Facade for Java package.

See SLF4J package
single combined index

issues 34
schema.xml snippet, sample 32
using, issues 33

single Solr server
optimizing 276

single Solr server, optimizing
faceting performance, enhancing 286
HTTP caching 277-279
indexing strategies 283, 284
JVM configuration 277
phrase search performance, improving 287
schema design considerations 282
Solr caching 280, 281
term vectors, using 286, 287
tuning caches 281

slaves
configuring 292
search queries, distributing across slaves

293, 294
SLF4j 20
SLF4J package 203
SnowballPorterFilterFactory, stemming 54
Solr

about 7, 10
and Servlet container, differences 199
building 13
communicating with 65
complex systems, tuning 271, 272
configuration files 25, 26
cores, managing 209, 210
CSV, sending to 72
deploying 17
deployment process 197, 198
directory structure 13
disjunction-max query handler 9
Faceting 141
features 8, 9
filtering 108, 109
function query, incorporating to searches

117
generic XML data structure 92
home directory 15
interacting with, curl used 66, 68

issue tracker 27
local file accessing, example 68
logging 201
mailing list 26
official site, URL 11
powered artists building, autocomplete

widget with jQuery used 240, 241, 242
powered artists building, autocomplete

widget with JSONP used 243
prerequisites 11
query parameters 95
query syntax 99
remote streaming 68, 69
request handlers 110
resources 26
running 17-19
sample data, loading 20, 21
schema 25
search request handler 128
securing 217
simple query, running 22-24
solr.solr.home, searching for 16
sorting 109
spell check plugin 9
starting 15, 16
starting, with JMX 212-215
statistics page 24
system changes 272
testing 13
tools 58
XML, sending to 69, 70
XML response format 93

Solr’s DIH DataImportHandler contrib
add-on 66

Solr’s Wiki 26
Solr, accessing from PHP applications

about 247, 248
Drupal, options 250
solr-php-client 248-250

Solr, communicating with
convenient client API 65
data formats 66
data streamed remotely 66
Direct HTTP 65
Solr’s filesystem 66

Solr, data formats
rich documents 66

[314]

Solr-binary 66
Solr-XML 66

Solr, examples
structure 223
summary 224

Solr, filters
CapitalizationFilterFactory 63
CharFilterFactory 62
ISOLatin1AccentFilterFactory 62
KeepWordFilterFactory 62
LengthFilterFactory 62
LowerCaseFilterFactory 62
PatternReplaceFilterFactory 63
RemoveDuplicatesTokenFilterFactory 62
StandardFilterFactory 62
write your own 63

Solr, integrating
JavaScript used 238, 239

Solr, prerequisites
Apache ant 11
Java Development Kit (JDK) 11
Subversion or Git 11

Solr, securing
document access, controlling 221
index data, securing 220
JMX access, controlling 220
server access, limiting 217, 219, 220

SOLR-236 191
solr-balancer 294
Solr-binary 66
solr-php-client

a_member_name array 249
about 248, 249, 250
Apache_Solr_Service, configuration 249

solr-ruby
versus rsolr 269

Solr-XML 66
solr.body feature 68
solr.home property

defining 199
JNDI (Java Naming and Directory Interface)

200
solr.war file 200

solr.setParser(new XMLResponseParser())
235
solr.solr.home

searching for 16

solr.TextField 48
Solr 1.3 11
Solr 1.4 11
Solr admin

Assistance area 20
example 19
Make a Query text box 20
navigation menu 19

Solr application logging, logging 203
Jetty, startup integration 205
Log4j, logging to 204
logging output, configuring 203
log levels, managing at runtime 205, 206

solrbook-packtpub 273
Solr caching

autowarmCount 281
class 281
configuring 281
documentCache 281
filterCache 280
queryResultCache 280
size 281

Solr cell
binary content, extracting 81, 82
documents, indexing with 81
karaoke lyrics, extracting 83-85
richer documents, indexing 85-87
Solr, configuring 83

Solr cores
cores, managing 209, 210
multicore, need for 210, 211
solr.xml, configuring 208, 209

solrconfig.xml
<requestHandler /> elements 159
about 75

solrconfig.xml, schema.xml settings 47
Solr DIH Wiki page

URL 79
SolrDocumentList object 235
SolrDocument object 235
Solr home 16
SolrIndexSearch Mbean 214
SolrJ

about 65, 224
client API 230-233
CommonsHttpSolrServer 224
embedded Solr, need for 235, 236

[315]

EmbeddedSolrServer class 224
Heritrix using, to download artist pages

226, 227
HTML, indexing 227-230
HTMLStripStandardTokenizerFactory

tokenizer 227
POJOs, indexing 234, 235
stream.file parameter 224

Solr JIRA
URL 12

SolrJS
about 245, 246
addWidget() method 247
project homepage, URL 245
SolrJS Manager object 247
URL 220

Solrmarc 236
SolrQuery object 235
solrQueryParser, schema.xml settings 47
Solr resources

about 26
issue tracker 27
mailing lists 26
Solr’s Wiki 26

Solr search components
LocalSolr component 194
terms component 194
termVector component 194

sort, output related parameter 97
sorting

about 44, 109
limitations 44
string type 45
title_sort type 45

sortMissingFirst, field option 41
sortMissingLast, field option 41
Soundex, phonetic encoding algorithms 58
sourceLocation, FileBasedSpellChecker

option 175
sourceLocation, IndexBasedSpellChecker

option 174
spellcheck 177
spellcheck, search components

a_spell, spellchecker 172
a_spellPhrase, spellchecker 172
about 169
alternative approach 180, 182

classname 173
dictionary, building from source 176
file, spellchecker 172
FileBasedSpellChecker options 175
IndexBasedSpellChecker options 174
indexed content 169
jarowinkler, spellchecker 172
mispelled query, example 178, 180
name 173
q parameter, processing 175
requests, issuing 177, 178
schema configuration 169-171
solrconfig.xml, configuration in 171, 172
Solr configuring, ways 169
spellcheck.q parameter, processing 176
spellchecker, index and file based 173
spellcheckers (dictionaries), configuring

173
spellcheckIndexDir 173
text file of words 169

spellcheck.collate 178
spellcheck.count 177
spellcheck.dictionary 177
spellcheck.extendedResults 178
spellcheck.onlyMorePopular 178
spellcheck.q 177
spellcheck.q parameter

processing 176
spellchecker, index and file based

accuracy 174
buildOnCommit 174
buildOnOptimize 174
classname 173
distanceMeasure 174
fieldType 174
name 173
spellcheckIndexDir 173

spellcheckIndexDir 173
spell check plugin 9
Splunk 205
sqrt(x), mathematical primitives 121
Squid

URL 279
standard component list 160
StandardFilterFactory filter 62
StandardTokenizerFactory 52
start 93

[316]

startEmbeddedSolr() 234
start parameter 96
stats, Stats component 189
stats.facet, Stats component 190
stats.field, Stats component 189
Stats component, search components

about 189
configuring 189
count 189
max 189
mean 189
min 189
missing 189
statistics, for track durations 190
stats 189
stats.facet 190
stats.field 189
stddev 189
sum 189
sumOfSquares 189

status 93
stddev, Stats component 189
stemming

about 54
EnglishPorterFilterFactory 54
implementations 54
KStem 55
PorterStemFilterFactory 54
SnowballPorterFilterFactory 54

StopFilterFactory 186
used, for stop words filtering 57

stop words
filtering, StopFilterFactory used 57

stored, field option 41
stored, schema design 282
stream.body parameter 67
stream.file parameter 67, 224
stream.url parameter 67
StreamingUpdateSolrServer 284
str element 92
string type 45
sub-expressions

about 101
prohibited clause, limitations 102

substring indexing
about 60
analyzer configuration, n-grams used 60

EdgeNGramFilterFactory 61
EdgeNGramTokenizerFactory 61
n-gramming costs 61
NGramFilterFactory, configuring with min-

GramSize of 2 60
NGramFilterFactory, configuring with min-

GramSize of 5 60
Subversion

URL 11
sum(x,y,z, ...), mathematical primitives 121
sum, Stats component 189
sumOfSquares, Stats component 189
synonyms

=> 56
about 55
ignoreCase, setting true 56
index-time versus query-time 57
WordNet, thesarus 55

T
t_duration 152
t_shingle 288
t_trm_lookups 118
Tailing 202
term-suggest 141, 156
term frequency. See tf
term proximity 103
terms component 194
termVector component 194
termVectors 186
term vectors 286, 287
termVectors (advanced), field option 41
text analysis

about 47
experimenting with 50, 51
highlight matches 51
index box 51
multi-word synonyms 56
n-gram 60
n-gramming costs 61, 62
partial indexing 60
phonetic sounds-like 58
query box 51
stemming 54, 55
stop words 58
substring indexing 60
synonyms 55

[317]

term text 51
text field type 50
text field type definition, configuration 48
text field type definition, configuring 49
tokenizer 52
verbose output 51
WordDelimiter analyzer 53
WordDelimiterFilterFactory 53
WorkDelimiterFilterFactory 54

text field type 50
tf 112
threaded_test.rb script 283, 284
thresholdTokenFrequency,

IndexBasedSpellChecker option 175
title_sort type 45
tokenizer

about 50
HTMLStripStandardTokenizerFactory 52
HTMLStripWhitespaceTokenizerFactory 52
KeywordTokenizerFactory 52
LetterTokenizerFactory 52
PatternTokenizerFactory 53
StandardTokenizerFactory 52
WhitespaceTokenizerFactory 52

Tomcat 199
TPS 272
track_PUID field 33
Transactions Per Second. See TPS

U
uniqueKey, schema.xml settings 47
uniqueKey field 232, 233

V
version, output related parameter 98
Vigilog

URL 204

W
WAR 199
web.xml

customizing, in Jetty 218
Web application archive. See WAR
WebTrends 202
WhitespaceTokenizerFactory 52

wildcard queries
about 103, 104
fuzzy queries 105

WordDelimeterFilterFactory 51
WordDelimeterFilterFactory,

tokenizer action 50
WordDelimiter analyzer

splitting, ways 53, 54
tokenizing, ways 53, 54

WordDelimiterFilterFactory 53
WordNet thesarus 55
write your own filter 63
wt, output related parameter 97

X
XML, sending to Solr

about 69, 70
changes, committing 71
commit and optimize 71
documents, deleting 70
rollback command 71
uncommitted changes, withdrawing 71

XML response format
<lst name=”response header”> 93
<result name="response"

numFound="1002272" start="0"
maxScore="1.0"> 93

about 93
maxScore 93
numFound 93
QTime 93
start 93
status 93
URL, parsing 94

Y
y, argument 120

Z
zip format 292

	Cover
	Table of Contents
	Preface
	Chapter 1: Quick Starting Solr
	An introduction to Solr
	Lucene, the underlying engine
	Solr, the Server-ization of Lucene

	Comparison to database technology
	Getting started
	The last official release or fresh code from source control
	Testing and building Solr
	Solr's installation directory structure
	Solr's home directory
	How Solr finds its home
	Deploying and running Solr

	A quick tour of Solr!
	Loading sample data
	A simple query
	Some statistics

	The schema and configuration files
	Solr resources outside this book
	Summary

	Chapter 2: Schema and Text Analysis
	MusicBrainz.org
	One combined index or multiple indices
	Problems with using a single combined index

	Schema design
	Step 1: Determine which searches are going to be powered by Solr
	Step 2: Determine the entities returned from each search
	Step 3: Denormalize related data
	Denormalizing—"one-to-one" associated data
	Denormalizing—"one-to-many" associated data

	Step 4: (Optional) Omit the inclusion of fields only used in search results

	The schema.xml file
	Field types
	Field options
	Field definitions
	Sorting
	Dynamic fields
	Using copyField
	Remaining schema.xml settings

	Text analysis
	Configuration
	Experimenting with text analysis
	Tokenization
	WorkDelimiterFilterFactory
	Stemming
	Synonyms
	Index-time versus Query-time, and to expand or not

	Stop words
	Phonetic sounds-like analysis
	Partial/Substring indexing
	N-gramming costs

	Miscellaneous analyzers

	Summary

	Chapter 3: Indexing Data
	Communicating with Solr
	Direct HTTP or a convenient client API
	Data streamed remotely or from Solr's filesystem
	Data formats

	Using curl to interact with Solr
	Remote streaming
	Sending XML to Solr
	Deleting documents
	Commit, optimize, and rollback

	Sending CSV to Solr
	Configuration options

	Direct database and XML import
	Getting started with DIH
	The DIH development console
	DIH documents, entities
	DIH fields and transformers

	Importing with DIH

	Indexing documents with Solr Cell
	Extracting binary content
	Configuring Solr
	Extracting karaoke lyrics
	Indexing richer documents

	Summary

	Chapter 4: Basic Searching
	Your first search, a walk-through
	Solr's generic XML structured data representation
	Solr's XML response format
	Parsing the URL

	Query parameters
	Parameters affecting the query
	Result paging
	Output related parameters
	Diagnostic query parameters

	Query syntax
	Matching all the documents
	Mandatory, prohibited, and optional clauses
	Boolean operators

	Sub-expressions (aka sub-queries)
	Limitations of prohibited clauses in sub-expressions

	Field qualifier
	Phrase queries and term proximity
	Wildcard queries
	Fuzzy queries

	Range queries
	Date math

	Score boosting
	Existence (and non-existence) queries
	Escaping special characters

	Filtering
	Sorting
	Request handlers
	Scoring
	Query-time and index-time boosting
	Troubleshooting scoring

	Summary

	Chapter 5: Enhanced Searching
	Function queries
	An example: Scores influenced by a lookupcount
	Field references
	Function reference
	Mathematical primitives
	Miscellaneous math
	ord and rord

	An example with scale() and lookupcount
	Using logarithms
	Using inverse reciprocals
	Using reciprocals and rord with dates

	Function query tips

	Dismax Solr request handler
	Lucene's DisjunctionMaxQuery
	Configuring queried fields and boosts

	Limited query syntax
	Boosting: Automatic phrase boosting
	Configuring automatic phrase boosting
	Phrase slop configuration

	Boosting: Boost queries
	Boosting: Boost functions
	Min-should-match
	Basic rules
	Multiple rules
	What to choose

	A default search

	Faceting
	A quick example: Faceting release types
	MusicBrainz schema changes

	Field requirements
	Types of faceting
	Faceting text
	Alphabetic range bucketing (A-C, D-F, and so on)
	Faceting dates
	Date facet parameters

	Faceting on arbitrary queries
	Excluding filters
	The solution: Local Params

	Facet prefixing (term suggest)

	Summary

	Chapter 6: Search Components
	About components
	The highlighting component
	A highlighting example
	Highlighting configuration

	Query elevation
	Configuration

	Spell checking
	Schema configuration
	Configuration in solrconfig.xml
	Configuring spellcheckers (dictionaries)
	Processing of the q parameter
	Processing of the spellcheck.q parameter

	Building the dictionary from its source
	Issuing spellcheck requests
	Example usage for a mispelled query
	An alternative approach

	The more-like-this search component
	Configuration parameters
	Parameters specific to the MLT search component
	Parameters specific to the MLT request handler
	Common MLT parameters

	MLT results example

	Stats component
	Configuring the stats component
	Statistics on track durations

	Field collapsing
	Configuring field collapsing

	Other components
	Terms component
	termVector component
	LocalSolr component

	Summary

	Chapter 7: Deployment
	Implementation methodology
	Questions to ask

	Installing into a Servlet container
	Differences between Servlet containers
	Defining solr.home property

	Logging
	HTTP server request access logs
	Solr application logging
	Configuring logging output
	Logging to Log4j
	Jetty startup integration
	Managing log levels at runtime

	A SearchHandler per search interface
	Solr cores
	Configuring solr.xml
	Managing cores
	Why use multicore

	JMX
	Starting Solr with JMX
	Take a walk on the wild side! Use JRuby to extract JMX information

	Securing Solr
	Limiting server access
	Controlling JMX access

	Securing index data
	Controlling document access
	Other things to look at

	Summary

	Chapter 8: Integrating Solr
	Structure of included examples
	Inventory of examples

	SolrJ: Simple Java interface
	Using Heritrix to download artist pages
	Indexing HTML in Solr
	SolrJ client API
	Indexing POJOs

	When should I use Embedded Solr
	In-Process streaming
	Rich clients
	Upgrading from legacy Lucene

	Using JavaScript to integrate Solr
	Wait, what about security?
	Building a Solr powered artists autocomplete widget with jQuery and JSONP
	SolrJS: JavaScript interface to Solr

	Accessing Solr from PHP applications
	solr-php-client
	Drupal options
	Apache Solr Search integration module
	Hosted Solr by Acquia

	Ruby on Rails integrations
	acts_as_solr
	Setting up MyFaves project
	Populating MyFaves relational database from Solr
	Build Solr indexes from relational database
	Complete MyFaves web site

	Blacklight OPAC
	Indexing MusicBrainz data

	Customizing display
	solr-ruby versus rsolr

	Summary

	Chapter 9: Scaling Solr
	Tuning complex systems
	Using Amazon EC2 to practice tuning
	Firing up Solr on Amazon EC2

	Optimizing a single Solr server (Scale High)
	JVM configuration
	HTTP caching
	Solr caching
	Tuning caches

	Schema design considerations
	Indexing strategies
	Disable unique document checking
	Commit/optimize factors

	Enhancing faceting performance
	Using term vectors
	Improving phrase search performance
	The solution: Shingling

	Moving to multiple Solr servers (Scale Wide)
	Script versus Java replication
	Starting multiple Solr servers
	Configuring replication

	Distributing searches across slaves
	Indexing into the master server
	Configuring slaves

	Distributing search queries across slaves
	Sharding indexes
	Assigning documents to shards
	Searching across shards

	Combining replication and sharding (Scale Deep)
	Summary

	Index

