
[1]

Scaling Big Data with Hadoop
and Solr
Second Edition

Understand, design, build, and optimize your big data
search engine with Hadoop and Apache Solr

Hrishikesh Vijay Karambelkar

BIRMINGHAM - MUMBAI

Scaling Big Data with Hadoop and Solr
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Second edition: April 2015

Production reference: 1230415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-339-6

www.packtpub.com

www.packtpub.com

Credits

Author
Hrishikesh Vijay Karambelkar

Reviewers
Ramzi Alqrainy

Walt Stoneburner

Ning Sun

Ruben Teijeiro

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Nikhil Chinnari

Reshma Raman

Content Development Editor
Susmita Sabat

Technical Editor
Aman Preet Singh

Copy Editors
Sonia Cheema

Tani Kothari

Project Coordinator
Milton Dsouza

Proofreader
Simran Bhogal

Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Hrishikesh Vijay Karambelkar is an enterprise architect who has been
developing a blend of technical and entrepreneurial experience for more than
14 years. His core expertise lies in working on multiple subjects, which include
big data, enterprise search, semantic web, link data analysis, analytics, and he also
enjoys architecting solutions for the next generation of product development for IT
organizations. He spends most of his time at work, solving challenging problems
faced by the software industry. Currently, he is working as the Director of Data
Capabilities at The Digital Group.

In the past, Hrishikesh has worked in the domain of graph databases; some of his
work has been published at international conferences, such as VLDB, ICDE, and
others. He has also written Scaling Apache Solr, published by Packt Publishing. He
enjoys travelling, trekking, and taking pictures of birds living in the dense forests
of India. He can be reached at http://hrishikesh.karambelkar.co.in/.

I am thankful to all my reviewers who have helped me organize this
book especially Susmita from Packt Publishing for her consistent
follow-ups. I would like to thank my dear wife, Dhanashree, for her
constant support and encouragement during
the course of writing this book.

http://hrishikesh.karambelkar.co.in/

About the Reviewers

Ramzi Alqrainy is one of the most well-recognized experts in the Middle East in
the fields of artificial intelligence and information retrieval. He's an active researcher
and technology blogger who specializes in information retrieval.

Ramzi is currently resolving complex search issues in and around the Lucene/Solr
ecosystem at Lucidworks. He also manages the search and reporting functions at
OpenSooq, where he capitalizes on the solid experience he's gained in open source
technologies to scale up the search engine and supportive systems there.

His experience in Solr, ElasticSearch, Mahout, and the Hadoop stack have
contributed directly to business growth through their implementation. He also
did projects that helped key people at OpenSooq slice and dice information easily
through dashboards and data visualization solutions.

Besides the development of more than eight full-stack search engines, Ramzi was
also able to solve many complicated challenges that dealt with agglutination and
stemming in the Arabic language.

He holds a master's degree in computer science, was among the top 1 percent in his
class, and was part of the honor roll.

Ramzi can be reached at http://ramzialqrainy.com. His LinkedIn profile can
be found at http://www.linkedin.com/in/ramzialqrainy. You can reach him
through his e-mail address, which is ramzi.alqrainy@gmail.com.

http://ramzialqrainy.com
http://www.linkedin.com/in/ramzialqrainy

Walt Stoneburner is a software architect and engineer with over 30 years of
commercial application development and consulting experience. He holds a degree
in computer science and statistics and is currently the CTO for Emperitas Services
Group (http://emperitas.com/), where he designs predictive analytical and
modeling software tools for statisticians, economists, and customers. Emperitas
shows you where to spend your marketing dollars most effectively, how to target
messages to specific demographics, and how to quantify the hidden decision-making
process behind customer psychology and buying habits.

He has also been heavily involved in quality assurance, configuration management,
and security. His interests include programming language designs, collaborative and
multiuser applications, big data, knowledge management, mobile applications, data
visualization, and even ASCII art.

Self-described as a closet geek, Walt also evaluates software products and consumer
electronics, draws comics (NapkinComics.com), runs a freelance photography
studio that specializes in portraits (CharismaticMoments.com), writes humor pieces,
performs sleight of hand, enjoys game mechanic design, and can occasionally be
found on ham radio or tinkering with gadgets.

Walt may be reached directly via e-mail at wls@wwco.com or Walt.Stoneburner@
gmail.com.

He publishes a tech and humor blog called the Walt-O-Matic at http://www.
wwco.com/~wls/blog/ and is pretty active on social media sites, especially the
experimental ones.

Some more of his book reviews and contributions include:

• Anti-Patterns and Patterns in Software Configuration Management by William J.
Brown, Hays W. McCormick, and Scott W. Thomas, published by Wiley

• Exploiting Software: How to Break Code by Greg Hoglund, published by
Addison-Wesley Professional

• Ruby on Rails Web Mashup Projects by Chang Sau Sheong, published by
Packt Publishing

• Building Dynamic Web 2.0 Websites with Ruby on Rails by A P Rajshekhar,
published by Packt Publishing

• Instant Sinatra Starter by Joe Yates published by Packt Publishing
• C++ Multithreading Cookbook by Miloš Ljumović, published by

Packt Publishing

http://emperitas.com/
http://www.wwco.com/~wls/blog/
http://www.wwco.com/~wls/blog/

• Learning Selenium Testing Tools with Python by Unmesh Gundecha,
published by Packt Publishing

• Trapped in Whittier (A Trent Walker Thriller Book 1) by Michael W. Layne,
published by Amazon Digital South Asia Services, Inc

• South Mouth: Hillbilly Wisdom, Redneck Observations & Good Ol' Boy Logic by
Cooter Brown and Walt Stoneburner, published by CreateSpace Independent
Publishing Platform

Ning Sun is a software engineer currently working for LeanCloud, a Chinese
start-up, which provides a one-stop Backend-as-a-Service for mobile apps. Being a
start-up engineer, he has to come up with solutions for various kinds of problems
and play different roles. In spite of this, he has always been an enthusiast of open
source technology. He has contributed to several open source projects and learned
a lot from them.

Ning worked on Delicious.com in 2013, which was one of the most important
websites in the Web 2.0 era. The search function of Delicious is powered by Solr
Cluster and it might be one of the largest-ever deployments of Solr.

He was a reviewer for another Solr book, called Apache Solr Cookbook, published by
Packt Publishing.

You can always find Ning at https://github.com/sunng87 and on Twitter
at @Sunng.

https://github.com/sunng87
@Sunng

Ruben Teijeiro is an active contributor to the Drupal community, a speaker at
conferences around Europe, and a mentor in code sprints, where he helps initiate
people to contribute to an open source project, such as Drupal. He defines himself
as a Drupal Hero.

After 2 years of working for Ericsson in Sweden, he has been employed by
Tieto, where he combines Drupal with different technologies to create complex
software solutions.

He has loved different kinds of technologies since he started to program in QBasic
with his first MSX computer when he was about 10. You can find more about him
on his drupal.org profile (http://dgo.to/@rteijeiro) and his personal blog
(http://drewpull.com).

I would like to thank my parents since they helped me develop my
love for computers and pushed me to learn programming. I am the
person I've become today solely because of them.

I would also like to thank my beautiful wife, Ana, who has stood
beside me throughout my career and been my constant companion
in this adventure.

http://dgo.to/@rteijeiro
http://drewpull.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface v
Chapter 1: Processing Big Data Using Hadoop and MapReduce 1

Apache Hadoop's ecosystem 2
Core components 4
Understanding Hadoop's ecosystem 6

Configuring Apache Hadoop 8
Prerequisites 9
Setting up ssh without passphrase 10
Configuring Hadoop 11

Running Hadoop 14
Setting up a Hadoop cluster 17
Common problems and their solutions 19
Summary 20

Chapter 2: Understanding Apache Solr 21
Setting up Apache Solr 22

Prerequisites for setting up Apache Solr 22
Running Apache Solr on jetty 23
Running Solr on other J2EE containers 25
Hello World with Apache Solr! 25

Understanding Solr administration 27
Solr navigation 27

Common problems and solutions 28
The Apache Solr architecture 29
Configuring Solr 31

Understanding the Solr structure 32
Defining the Solr schema 32

Solr fields 33
Dynamic fields in Solr 34
Copying the fields 35

Table of Contents

[ii]

Dealing with field types 35
Additional metadata configuration 36
Other important elements of the Solr schema 37

Configuration files of Apache Solr 37
Working with solr.xml and Solr core 38
Instance configuration with solrconfig.xml 38
Understanding the Solr plugin 40
Other configuration 41

Loading data in Apache Solr 42
Extracting request handler – Solr Cell 42
Understanding data import handlers 43
Interacting with Solr through SolrJ 44
Working with rich documents (Apache Tika) 46

Querying for information in Solr 47
Summary 48

Chapter 3: Enabling Distributed Search using Apache Solr 49
Understanding a distributed search 50

Distributed search patterns 50
Apache Solr and distributed search 52

Working with SolrCloud 53
Why ZooKeeper? 53
The SolrCloud architecture 54
Building an enterprise distributed search using SolrCloud 57

Setting up SolrCloud for development 58
Setting up SolrCloud for production 60
Adding a document to SolrCloud 64
Creating shards, collections, and replicas in SolrCloud 65

Common problems and resolutions 66
Sharding algorithm and fault tolerance 68

Document Routing and Sharding 68
Shard splitting 70
Load balancing and fault tolerance in SolrCloud 71

Apache Solr and Big Data – integration with MongoDB 72
What is NoSQL and how is it related to Big Data? 73
MongoDB at glance 73
Installing MongoDB 75
Creating Solr indexes from MongoDB 77

Summary 79
Chapter 4: Big Data Search Using Hadoop and Its Ecosystem 81

Understanding NoSQL 82
Working with the Solr HDFS connector 82

Table of Contents

[iii]

Big data search using Katta 86
How Katta works? 86
Setting up the Katta cluster 87
Creating Katta indexes 88

Using Solr 1045 Patch – map-side indexing 89
Using Solr 1301 Patch – reduce-side indexing 91
Distributed search using Apache Blur 93

Setting up Apache Blur with Hadoop 94
Apache Solr and Cassandra 96

Working with Cassandra and Solr 98
Single node configuration 98
Integrating with multinode Cassandra 100

Scaling Solr through Storm 101
Getting along with Apache Storm 102

Advanced analytics with Solr 104
Integrating Solr and R 105

Summary 107
Chapter 5: Scaling Search Performance 109

Understanding the limits 110
Optimizing search schema 111

Specifying default search field 111
Configuring search schema fields 111
Stop words 112
Stemming 112

Index optimization 114
Limiting indexing buffer size 115
When to commit changes? 115
Optimizing index merge 117

Optimize option for index merging 118
Optimizing the container 119
Optimizing concurrent clients 119
Optimizing Java virtual memory 120

Optimizing search runtime 121
Optimizing through search query 122

Filter queries 122
Optimizing the Solr cache 122

The filter cache 124
The query result cache 124
The document cache 124
The field value cache 124
The lazy field loading 125

Optimizing Hadoop 125

Table of Contents

[iv]

Monitoring Solr instance 128
Using SolrMeter 130

Summary 131
Appendix: Use Cases for Big Data Search 133

E-Commerce websites 133
Log management for banking 134

The problem 134
How can it be tackled? 135
High-level design 136

Index 139

[v]

Preface
With the growth of information assets in enterprises, the need to build a rich, scalable
search application that can handle a lot of data has becomes critical. Today, Apache
Solr is one of the most widely adapted, scalable, feature-rich, and best performing
open source search application servers. Similarly, Apache Hadoop is one of the most
popular Big Data platforms and is widely preferred by many organizations to store
and process large datasets.

Scaling Big Data with Hadoop and Solr, Second Edition is intended to help its readers
build a high performance Big Data enterprise search engine with the help of Hadoop
and Solr. This starts with a basic understanding of Hadoop and Solr, and gradually
develops into building an efficient, scalable enterprise search repository for Big Data,
using various techniques throughout the practical chapters.

What this book covers
Chapter 1, Processing Big Data Using Hadoop and MapReduce, introduces you to
Apache Hadoop and its ecosystem, HDFS and MapReduce. You will also learn
how to write MapReduce programs, configure Hadoop clusters, configuration files,
and administrate your cluster.

Chapter 2, Understanding Apache Solr, introduces you to Apache Solr. It explains how
you can configure the Solr instance, how to create indexes and load your data in
the Solr repository, and how you can use Solr effectively to search. It also discusses
interesting features of Apache Solr.

Chapter 3, Enabling Distributed Search using Apache Solr, takes you through various
aspects of enabling Solr for a distributed search, including with the use of SolrCloud.
It also explains how Apache Solr and Big Data can come together to perform a
scalable search.

Preface

[vi]

Chapter 4, Big Data Search Using Hadoop and Its Ecosystem, explains the NoSQL and
concepts of distributed search. It then explains how to use different algorithms for
Big Data search, and includes covering shards and indexing. It also talks about
integration with Cassandra, Apache Blur, Storm, and search analytics.

Chapter 5, Scaling Search Performance, will guide you in improving the performance
of searches with Scaling Big Data. It covers different levels of optimization that you
can perform on your Big Data search instance as the data keeps growing. It discusses
different performance improvement techniques that can be implemented by users for
the purposes of deployment.

Appendix, Use Cases for Big Data Search, discusses some of the most important
business cases for high-level enterprise search architecture with Big Data and Solr.

What you need for this book
This book discusses different approaches; each approach needs a different
set of software. Based on the requirements for building search applications, the
respective software can be used. However, to run a minimal setup, you need
the following software:

• JDK 1.8 and above
• Solr 4.10 and above
• Hadoop 2.5 and above

Who this book is for
Scaling Big Data with Hadoop and Solr, Second Edition provides step-by-step guidance
for any user who intends to build high-performance, scalable, enterprise-ready
search application servers. This book will appeal to developers, architects, and
designers who wish to understand Apache Solr/Hadoop and its ecosystem, design
an enterprise-ready application, and optimize it based on their requirements. This
book enables you to build a scalable search without prior knowledge of Solr or
Hadoop, with practical examples and case studies.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[vii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"By deleting the DFS data folder, you can find the location from hdfs-site.xml
and restart the cluster."

A block of code is set as follows:

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://master-server:9000</value>
 </property>
</configuration>

Any command-line input or output is written as follows:

$ $HADOOP_PREFIX/sbin/mr-jobhistory-daemon.sh start historyserver

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
validate the content created by your new MongoDB DIH by accessing the Solr
Admin page, and running a query".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Processing Big Data Using
Hadoop and MapReduce

Continuous evolution in computer sciences has enabled the world to work in a faster,
more reliable, and more efficient manner. Many businesses have been transformed
to utilize electronic media. They use information technologies to innovate the
communication with their customers, partners, and suppliers. It has also given birth
to new industries such as social media and e-commerce. This rapid increase in the
amount of data has led to an "information explosion." To handle the problems of
managing huge information, the computational capabilities have evolved too, with a
focus on optimizing the hardware cost, giving rise to distributed systems. In today's
world, this problem has multiplied; information is generated from disparate sources
such as social media, sensors/embedded systems, and machine logs, in either a
structured or an unstructured form. Processing of these large and complex data
using traditional systems and methods is a challenging task. Big Data is an umbrella
term that encompasses the management and processing of such data.

Big data is usually associated with high-volume and heavily growing data with
unpredictable content. The IT advisory firm Gartner defines big data using 3Vs (high
volume of data, high velocity of processing speed, and high variety of information).
IBM has added a fourth V (high veracity) to this definition to make sure that the data
is accurate and helps you make your business decisions. While the potential benefits
of big data are real and significant, there remain many challenges. So, organizations
that deal with such a high volumes of data, must work on the following areas:

• Data capture/acquisition from various sources
• Data massaging or curating
• Organization and storage

Processing Big Data Using Hadoop and MapReduce

[2]

• Big data processing such as search, analysis, and querying
• Information sharing or consumption
• Information security and privacy

Big data poses a lot of challenges to the technologies in use today. Many
organizations have started investing in these big data areas. As per Gartner,
through 2015, 85% of the Fortune 500 organizations will be unable to exploit
big data for a competitive advantage.

To handle the problem of storing and processing complex and large data,
many software frameworks have been created to work on the big data problem.
Among them, Apache Hadoop is one of the most widely used open source software
frameworks for the storage and processing of big data. In this chapter, we are going
to understand Apache Hadoop. We will be covering the following topics:

• Apache Hadoop's ecosystem
• Configuring Apache Hadoop
• Running Apache Hadoop
• Setting up a Hadoop cluster

Apache Hadoop's ecosystem
Apache Hadoop enables the distributed processing of large datasets across a
commodity of clustered servers. It is designed to scale up from a single server to
thousands of commodity hardware machines, each offering partial computational
units and data storage.

The Apache Hadoop system comes with the following primary components:

• Hadoop Distributed File System (HDFS)
• MapReduce framework

The Apache Hadoop distributed file system or HDFS provides a file system that can
be used to store data in a replicated and distributed manner across various nodes,
which are part of the Hadoop cluster. Apache Hadoop provides a distributed data
processing framework for large datasets by using a simple programming model
called MapReduce.

Chapter 1

[3]

A programming task that takes a set of data (key-value pair) and
converts it into another set of data, is called Map Task. The results of
map tasks are combined into one or many Reduce Tasks. Overall, this
approach towards computing tasks is called the MapReduce approach.

The MapReduce programming paradigm forms the heart of the Apache Hadoop
framework, and any application that is deployed on this framework must comply
with MapReduce programming. The following figure demonstrates how MapReduce
can be used to sort input documents with the MapReduce approach:

MapReduce can also be used to transform data from a domain into the corresponding
range. We are going to look at these in more detail in the following chapters.

Processing Big Data Using Hadoop and MapReduce

[4]

Hadoop has been used in environments where data from various sources needs
to be processed using large server farms. Hadoop is capable of running its cluster
of nodes on commodity hardware, and does not demand any high-end server
configuration. With this, Hadoop also brings scalability that enables administrators
to add and remove nodes dynamically. Some of the most notable users of Hadoop
are companies like Google (in the past), Facebook, and Yahoo, who process petabytes
of data every day, and produce rich analytics to the consumer in the shortest possible
time. All this is supported by a large community of users who consistently develop
and enhance Hadoop every day. Apache Hadoop 2.0 onwards uses YARN (which
stands for Yet Another Resource Negotiator).

The Apache Hadoop 1.X MapReduce framework used concepts of job
tracker and task tracker. If you are using the older Hadoop versions,
it is recommended to move to Hadoop 2.x, which uses advanced
MapReduce (also called 2.0). This was released in 2013.

Core components
The following diagram demonstrates how the core components of Apache Hadoop
work together to ensure distributed exaction of user jobs:

Chapter 1

[5]

The Resource Manager (RM) in a Hadoop system is responsible for globally managing
the resources of a cluster. Besides managing resources, it coordinates the allocation of
resources on the cluster. RM consists of Scheduler and ApplicationsManager. As the
names suggest, Scheduler provides resource allocation, whereas ApplicationsManager
is responsible for client interactions (accepting jobs and identifying and assigning them
to Application Masters).

The Application Master (AM) works for a complete application lifecycle, that is, the
life of each MapReduce job. It interacts with RM to negotiate for resources.

The Node Manager (NM) is responsible for the management of all containers that
run on a given node. It keeps a watch on resource usage (CPU, memory, and so on),
and reports the resource health consistently to the resource manager.

All the metadata related to HDFS is stored on NameNode. The NameNode is
the master node that performs coordination activities among data nodes, such as
data replication across data nodes, naming system such as filenames, and the disk
locations. NameNode stores the mapping of blocks on the Data Nodes. In a Hadoop
cluster, there can only be one single active NameNode. NameNode regulates access
to its file system with the use of HDFS-based APIs to create, open, edit, and delete
HDFS files.

Earlier, NameNode, due to its functioning, was identified as the single point
of failure in a Hadoop system. To compensate for this, the Hadoop framework
introduced SecondaryNameNode, which constantly syncs with NameNode
and can take over whenever NameNode is unavailable.

DataNodes are nothing but slaves that are deployed on all the nodes in a Hadoop
cluster. DataNode is responsible for storing the application's data. Each uploaded
data file in HDFS is split into multiple blocks, and these data blocks are stored on
different data nodes. The default file block size in HDFS is 64 MB. Each Hadoop file
block is mapped to two files in the data node; one file is the file block data, while the
other is checksum.

When Hadoop is started, each DataNode connects to NameNode informing it of its
availability to serve the requests. When the system is started, the namespace ID and
software versions are verified by NameNode and DataNode sends the block report
describing all the data blocks it holds for NameNode on startup. During runtime,
each DataNode periodically sends a heartbeat signal to NameNode, confirming its
availability. The default duration between two heartbeats is 3 seconds. NameNode
assumes the unavailability of DataNode if it does not receive a heartbeat in 10 minutes
by default; in which case, NameNode replicates the data blocks of that DataNode to
other DataNodes.

Processing Big Data Using Hadoop and MapReduce

[6]

When a client submits a job to Hadoop, the following activities take place:

1. Application manager launches AM to a given client job/application after
negotiating with a specific node.

2. The AM, once booted, registers itself with the RM. All the client
communication with AM happens through RM.

3. AM launches the container with help of NodeManager.
4. A container that is responsible for executing a MapReduce task reports the

progress status to the AM through an application-specific protocol.
5. On receiving any request for data access on HDFS, NameNode takes

the responsibility of returning to the nearest location of DataNode from
its repository.

Understanding Hadoop's ecosystem
Although Hadoop provides excellent storage capabilities along with the MapReduce
programming framework, it is still a challenging task to transform conventional
programming into a MapReduce type of paradigm, as MapReduce is a completely
different programming paradigm. The Hadoop ecosystem is designed to provide a
set of rich applications and development framework. The following block diagram
shows Apache Hadoop's ecosystem:

Chapter 1

[7]

We have already seen MapReduce, HDFS, and YARN. Let us look at each of the blocks.

HDFS is an append-only file system; it does not allow data modification. Apache
HBase is a distributed, random-access, and column-oriented database. HBase directly
runs on top of HDFS and allows application developers to read-write the HDFS data
directly. HBase does not support SQL; hence, it is also called a NoSQL database.
However, it provides a command line-based interface, as well as a rich set of APIs to
update the data. The data in HBase gets stored as key-value pairs in HDFS.

Apache Pig provides another abstraction layer on top of MapReduce. It's a
platform for the analysis of very large datasets that runs on HDFS. It also provides
an infrastructure layer, consisting of a compiler that produces sequences of
MapReduce programs, along with a language layer consisting of the query language
Pig Latin. Pig was initially developed at Yahoo! Research to enable developers to
create ad-hoc MapReduce jobs for Hadoop. Since then, many big organizations such
as eBay, LinkedIn, and Twitter have started using Apache Pig.

Apache Hive provides data warehouse capabilities using big data. Hive runs on
top of Apache Hadoop and uses HDFS for storing its data. The Apache Hadoop
framework is difficult to understand, and requires a different approach from
traditional programming to write MapReduce-based programs. With Hive,
developers do not write MapReduce at all. Hive provides an SQL-like query
language called HiveQL to application developers, enabling them to quickly
write ad-hoc queries similar to RDBMS SQL queries.

Apache Hadoop nodes communicate with each other through Apache ZooKeeper.
It forms a mandatory part of the Apache Hadoop ecosystem. Apache ZooKeeper is
responsible for maintaining co-ordination among various nodes. Besides coordinating
among nodes, it also maintains configuration information and the group services to the
distributed system. Apache ZooKeeper can be used independent of Hadoop, unlike
other components of the ecosystem. Due to its in-memory management of information,
it offers distributed co-ordination at a high speed.

Apache Mahout is an open source machine learning software library that can
effectively empower Hadoop users with analytical capabilities, such as clustering
and data mining, over a distributed Hadoop cluster. Mahout is highly effective over
large datasets; the algorithms provided by Mahout are highly optimized to run the
MapReduce framework over HDFS.

Processing Big Data Using Hadoop and MapReduce

[8]

Apache HCatalog provides metadata management services on top of Apache Hadoop. It
means that all the software that runs on Hadoop can effectively use HCatalog to store the
corresponding schemas in HDFS. HCatalog helps any third-party software to create, edit,
and expose (using REST APIs) the generated metadata or table definitions. So, any users
or scripts can run on Hadoop effectively without actually knowing where the data is
physically stored on HDFS. HCatalog provides DDL (which stands for Data Definition
Language) commands with which the requested MapReduce, Pig, and Hive jobs can be
queued for execution, and later monitored for progress as and when required.

Apache Ambari provides a set of tools to monitor the Apache Hadoop cluster,
hiding the complexities of the Hadoop framework. It offers features such as
installation wizard, system alerts and metrics, provisioning and management
of the Hadoop cluster, and job performances. Ambari exposes RESTful APIs to
administrators to allow integration with any other software. Apache Oozie is a
workflow scheduler used for Hadoop jobs. It can be used with MapReduce as well
as Pig scripts to run the jobs. Apache Chukwa is another monitoring application for
distributed large systems. It runs on top of HDFS and MapReduce.

Apache Sqoop is a tool designed to load large datasets into Hadoop efficiently.
Apache Sqoop allows application developers to import/export easily from specific
data sources, such as relational databases, enterprise data warehouses, and custom
applications. Apache Sqoop internally uses a map task to perform data import/export
effectively on a Hadoop cluster. Each mapper loads/unloads a slice of data across
HDFS and a data source. Apache Sqoop establishes connectivity between non-Hadoop
data sources and HDFS.

Apache Flume provides a framework to populate Hadoop with data from
non-conventional data sources. Typical usage of Apache Fume could be for
log aggregation. Apache Flume is a distributed data collection service that
extracts data from the heterogeneous sources, aggregates the data, and stores
it into the HDFS. Most of the time, Apache Flume is used as an ETL (which
stands for Extract-Transform-Load) utility at various implementations of the
Hadoop cluster.

Configuring Apache Hadoop
Setting up a Hadoop cluster is a step-by-step process. It is recommended to start
with a single node setup and then extend it to the cluster mode. Apache Hadoop
can be installed with three different types of setup:

• Single node setup: In this mode, Hadoop can be set up on a single
standalone machine. This mode is used by developers for evaluation,
testing, basic development, and so on.

Chapter 1

[9]

• Pseudo distributed setup: Apache Hadoop can be set up on a single machine
with a distributed configuration. In this setup, Apache Hadoop can run with
multiple Hadoop processes (daemons) on the same machine. Using this mode,
developers can do the testing for a distributed setup on a single machine.

• Fully distributed setup: In this mode, Apache Hadoop is set up on a cluster
of nodes, in a fully distributed manner. Typically, production-level setups
use this mode for actively using the Hadoop computing capabilities.

In Linux, Apache Hadoop can be set up through the root user, which
makes it globally available, or as a separate user, which makes it
available to only that user (Hadoop user), and the access can later be
extended for other users. It is better to use a separate user with limited
privileges to ensure that the Hadoop runtime does not have any impact
on the running system.

Prerequisites
Before setting up a Hadoop cluster, it is important to ensure that all prerequisites are
addressed. Hadoop runs on the following operating systems:

• All Linux Flavors are supported for development as well as production.
• In the case of Windows, Microsoft Windows 2008 onwards are supported.

Apache Hadoop version 2.2 onwards support Windows. The older versions
of Hadoop have limited support through Cygwin.

Apache Hadoop requires the following software:

• Java 1.6 onwards are all supported; however, there are compatibility
issues, so it is best to look at Hadoop's Java compatibility wiki page
at http://wiki.apache.org/hadoop/HadoopJavaVersions.

• Secure shell (ssh) is needed to run start, stop, status, or other such scripts
across a cluster. You may also consider using parallel-ssh (more information is
available at https://code.google.com/p/parallel-ssh/) for connectivity.

Apache Hadoop can be downloaded from http://www.apache.org/dyn/closer.
cgi/Hadoop/common/. Make sure that you download and choose the correct release
from different releases, that is, one that is a stable release, the latest beta/alpha release,
or a legacy stable version. You can choose to download the package or download the
source, compile it on your OS, and then install it. Using operating system package
installer, install the Hadoop package. This software can be installed directly by
using apt-get/dpkg for Ubuntu/Debian or rpm for Red Hat/Oracle Linux from the
respective sites. In the case of a cluster setup, this software should be installed on all
the machines.

http://wiki.apache.org/hadoop/HadoopJavaVersions
https://code.google.com/p/parallel-ssh/
http://www.apache.org/dyn/closer.cgi/Hadoop/common/
http://www.apache.org/dyn/closer.cgi/Hadoop/common/

Processing Big Data Using Hadoop and MapReduce

[10]

Setting up ssh without passphrase
Apache Hadoop uses ssh to run its scripts on different nodes, it is important to make
this ssh login happen without any prompt for password. If you already have a key
generated, then you can skip this step. To make ssh work without a password, run
the following commands:

$ ssh-keygen -t dsa

You can also use RSA-based encryption algorithm (link to know about RSA:
http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29) instead of DSA
(Digital Signature Algorithm) for your ssh authorization key creation. (For more
information about differences between these two algorithms, visit http://security.
stackexchange.com/questions/5096/rsa-vs-dsa-for-ssh-authentication-
keys. Keep the default file for saving the key, and do not enter a passphrase. Once
the key generation is successfully complete, the next step is to authorize the key by
running the following command:

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

This step will actually create an authorization key with ssh, bypassing the passphrase
check as shown in the following screenshot:

http://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
http://security.stackexchange.com/questions/5096/rsa-vs-dsa-for-ssh-authentication-keys
http://security.stackexchange.com/questions/5096/rsa-vs-dsa-for-ssh-authentication-keys
http://security.stackexchange.com/questions/5096/rsa-vs-dsa-for-ssh-authentication-keys

Chapter 1

[11]

Once this step is complete, you can ssh localhost to connect to your instance
without password. If you already have a key generated, you will get a prompt
to overwrite it; in such a case, you can choose to overwrite it or you can use the
existing key and put it in the authorized_keys file.

Configuring Hadoop
Most of the Hadoop configuration is specified in the following configuration files,
kept in the $HADOOP_HOME/etc/Hadoop folder of the installation. $HADOOP_HOME
is the place where Apache Hadoop has been installed. If you have installed the
software by using the pre-build package installer as the root user, the configuration
can be found at /etc/Hadoop.

File Name Description
core-site.xml In this file, you can modify the default properties of

Hadoop. This covers setting up different protocols for
interaction, working directories, log management, security,
buffers and blocks, temporary files, and so on.

hdfs-site.xml This file stores the entire configuration related to HDFS. So,
properties like DFS site address, data directory, replication
factors, and so on are covered in these files.

mapred-site.xml This file is responsible for handling the entire configuration
related to the MapReduce framework. This covers the
configuration for JobTracker and TaskTracker properties
for Job.

yarn-site.xml This file is required for managing YARN-related
configuration. This configuration typically contains
security/access information, proxy configuration, resource
manager configuration, and so on.

httpfs-site.xml Hadoop supports REST-based data transfer between
clusters through an HttpFS server. This file is responsible
for storing configuration related to the HttpFS server.

fair-scheduler.xml This file contains information about user allocations and
pooling information for the fair scheduler. It is currently
under development.

capacity-scheduler.
xml

This file is mainly used by the RM in Hadoop for setting up
the scheduling parameters of job queues.

Hadoop-env.sh or
Hadoop-env.cmd

All the environment variables are defined in this file; you
can change any of the environments: namely the Java
location, Hadoop configuration directory, and so on.

mapred-env.sh or
mapred-env.cmd

This file contains the environment variables used by
Hadoop while running MapReduce.

Processing Big Data Using Hadoop and MapReduce

[12]

File Name Description
yarn-env.sh or yarn-
env.cmd

This file contains the environment variables used by the
YARN daemon that starts/stops the node manager and the
RM.

httpfs-env.sh or
httpfs-env.cmd

This file contains environment variables required by the
HttpFS server.

Hadoop-policy.xml This file is used to define various access control lists for
Hadoop services. It controls who can use the Hadoop
cluster for execution.

Masters/slaves In this file, you can define the hostname for the masters
and the slaves. The masters file lists all the masters, and
the slaves file lists the slave nodes. To run Hadoop in the
cluster mode, you need to modify these files to point to the
respective master and slaves on all nodes.

log4j.properties You can define various log levels for your instance; this is
helpful while developing or debugging Hadoop programs.
You can define levels for logging.

common-logging.
properties

This file specifies the default logger used by Hadoop; you
can override it to use your logger.

The file names marked in pink italicized letters will be modified while setting up your
basic Hadoop cluster.

Now, let's start with the configuration of these files for the first Hadoop run. Open
core-sites.xml, and add the following entry in it:

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://localhost:9000</value>
 </property>
</configuration>

Chapter 1

[13]

This snippet tells the Hadoop framework to run inter-process communication on
port 9000. Next, edit hdfs-site.xml and add the following entries:

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
</configuration>

This tells HDFS to have the distributed file system's replication factor as 1. Later
when you run Hadoop in the cluster configuration, you can change this replication
count. The choice of replication factor varies from case to case, but if you are not
sure about it, it is better to keep it as 3. This means that each document will have a
replication of factor of 3.

Let's start looking at the MapReduce configuration. Some applications such as
Apache HBase use only HDFS for storage, and they do not rely on the MapReduce
framework. This means that all they require is the HDFS configuration, and the next
configuration can be skipped.

Now, edit mapred-site.xml and add the following entries:

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
</configuration>

This entry points to YARN as the MapReduce framework used. Further, modify
yarn-site.xml with the following entries:

<configuration>
 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
</configuration>

Processing Big Data Using Hadoop and MapReduce

[14]

This entry enables YARN to use the ShuffleHandler service with nodemanager.
Once the configuration is complete, we are good to start the Hadoop. Here are the
default ports used by Apache Hadoop:

Particular Default Port
HDFS Port 9000/8020
NameNode – Web Application 50070
Data Node 50075
Secondary NameNode 50090
Resource Manager Web Application 8088

Running Hadoop
Before setting up the HDFS, we must ensure that Hadoop is configured for the
pseudo-distributed mode, as per the previous section, that is, Configuring Hadoop.
Set up the JAVA_HOME and HADOOP_PREFIX environment variables in your profile
before you proceed. To set up a single node configuration, first you will be required
to format the underlying HDFS file system; this can be done by running the
following command:

 $ $HADOOP_PREFIX/bin/hdfs namenode –format

Once the formatting is complete, simply try running HDFS with the following command:

 $ $HADOOP_PREFIX/sbin/start-dfs.sh

The start-dfs.sh script file will start the name node, data node, and secondary
name node on your machine through ssh. The Hadoop daemon log output is
written to the $HADOOP_LOG_DIR folder, which by default points to $HADOOP_HOME/
logs. Once the Hadoop daemon starts running, you will find three different
processes running when you check the snapshot of the running processes. Now,
browse the web interface for the NameNode; by default, it is available at http://
localhost:50070/. You will see a web page similar to the one shown as follows
with the HDFS information:

http://localhost:50070/
http://localhost:50070/

Chapter 1

[15]

Once the HDFS is set and started, you can use all Hadoop commands to perform file
system operations. The next job is to start the MapReduce framework, which includes
the node manager and RM. This can be done by running the following command:

 $ $HADOOP_PREFIX/bin/start-yarn.sh

Processing Big Data Using Hadoop and MapReduce

[16]

You can access the RM web page by accessing http://localhost:8088/.
The following screenshot shows a newly set-up Hadoop RM page.

We are good to use this Hadoop setup for development now.

Safe Mode
When a cluster is started, NameNode starts its complete functionality
only when the configured minimum percentage of blocks satisfies
the minimum replication. Otherwise, it goes into safe mode. When
NameNode is in the safe mode state, it does not allow any modification
to its file systems. This mode can be turned off manually by running the
following command:
$ Hadoop dfsadmin – safemode leave

You can test the instance by running the following commands:

This command will create a test folder, so you need to ensure that this folder is not
present on a server instance:

$ bin/Hadoop dfs –mkdir /test

This will create a folder. Now, load some files by using the following command:

$ bin/Hadoop dfs -put <file-location> test/input

Now, run the shipped example of wordcount that is packaged with the
Hadoop deployment:

$ bin/Hadoop jar share/Hadoop/mapreduce/Hadoop-mapreduce-examples-
2.5.1.jar test/input test/output

http://localhost:8088/

Chapter 1

[17]

A successful run will create the output in HDFS's test/output/part-r-00000 file.
You can view the output by downloading this file from HDFS to a local machine.

Setting up a Hadoop cluster
In this case, assuming that you already have a single node setup as explained in
the previous sections, with ssh being enabled, you just need to change all the slave
configurations to point to the master. This can be achieved by first introducing the
slaves file in the $HADOOP_PREFIX/etc/Hadoop folder. Similarly, on all slaves, you
require the master file in the $HADOOP_PREFIX/etc/Hadoop folder to point to your
master server hostname.

While adding new entries for the hostname, one must ensure that the
firewall is disabled to allow remote nodes access to different ports.
Alternatively, specific ports can be opened/modified by modifying
the Hadoop configuration files. Similarly, all the names of nodes that
are participating in the cluster should be resolvable through DNS
(which stands for Domain Name System), or through the /etc/
host entries of Linux.

Once this is ready, let us change the configuration files. Open core-sites.xml, and
add the following entry in it:

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://master-server:9000</value>
 </property>
</configuration>

All other configuration is optional. Now, run the servers in the following order: First,
you need to format your storage for the cluster; use the following command to do so:

$ $HADOOP_PREFIX/bin/Hadoop dfs namenode -format <Name of Cluster>

This formats the name node for a new cluster. Once the name node is formatted, the
next step is to ensure that DFS is up and connected to each node. Start namenode,
followed by the data nodes:

$ $HADOOP_PREFIX/sbin/Hadoop-daemon.sh start namenode

Similarly, the datanode can be started from all the slaves.

$ $HADOOP_PREFIX/sbin/Hadoop-daemon.sh start datanode

Processing Big Data Using Hadoop and MapReduce

[18]

Keep track of the log files in the $HADOOP_PREFIX/logs folder in order to see that
there are no exceptions. Once the HDFS is available, namenode can be accessed
through the web as shown here:

The next step is to start YARN and its associated applications. First, start with the RM:

$ $HADOOP_YARN_HOME/sbin/yarn-daemon.sh start resourcemanager

Each node must run an instance of one node manager. To run the node manager, use
the following command:

$ $HADOOP_YARN_HOME/sbin/yarn-daemon.sh start nodemanager

Optionally, you can also run Job History Server on the Hadoop cluster by using the
following command:

$ $HADOOP_PREFIX/sbin/mr-jobhistory-daemon.sh start historyserver

Chapter 1

[19]

Once all instances are up, you can see the status of the cluster on the web through
the RM UI as shown in the following screenshot. The complete setup can be tested
by running the simple wordcount example.

This way, your cluster is set up and is ready to run with multiple nodes. For advanced
setup instructions, do visit the Apache Hadoop website at http://Hadoop.apache.org.

Common problems and their solutions
The following is a list of common problems and their solutions:

• When I try to format the HDFS node, I get the exception java.
io.IOException: Incompatible clusterIDs in namenode and datanode?
This issue usually appears if you have a different/older cluster and you are
trying to format a new namenode; however, the datanodes still point to older
cluster ids. This can be handled by one of the following:

1. By deleting the DFS data folder, you can find the location from
hdfs-site.xml and restart the cluster

2. By modifying the version file of HDFS usually located at <HDFS-
STORAGE-PATH>/hdfs/datanode/current/

3. By formatting namenode with the problematic datanode's cluster ID:
 $ hdfs namenode -format -clusterId <cluster-id>

http://Hadoop.apache.org

Processing Big Data Using Hadoop and MapReduce

[20]

• My Hadoop instance is not starting up with the ./start-all.sh script? When I
try to access the web application, it shows the page not found error?
This could be happening because of a number of issues. To understand
the issue, you must look at the Hadoop logs first. Typically, Hadoop logs
can be accessed from the /var/log folder if the precompiled binaries are
installed as the root user. Otherwise, they are available inside the Hadoop
installation folder.

• I have setup N node clusters, and I am running the Hadoop cluster
with ./start-all.sh. I am not seeing many nodes in the YARN/NameNode
web application?
This again can be happening due to multiple reasons. You need to verify
the following:

1. Can you reach (connect to) each of the cluster nodes from namenode
by using the IP address/machine name? If not, you need to have an
entry in the /etc/hosts file.

2. Is the ssh login working without password? If not, you need to put
the authorization keys in place to ensure logins without password.

3. Is datanode/nodemanager running on each of the nodes, and can
you connect to namenode/AM? You can validate this by running
ssh on the node running namenode/AM.

4. If all these are working fine, you need to check the logs and see if
there are any exceptions as explained in the previous question.

5. Based on the log errors/exceptions, specific action has to be taken.

Summary
In this chapter, we discussed the need for Apache Hadoop to address the challenging
problems faced by today's world. We looked at Apache Hadoop and its ecosystem,
and we focused on how to configure Apache Hadoop, followed by running it.
Finally, we created Hadoop clusters by using a simple set of instructions. The next
chapter is all about Apache Solr, which has brought a revolution in the search and
analytics domain.

[21]

Understanding Apache Solr
In the previous chapter, we discussed how big data has evolved to cater to the needs
of various organizations, in order to deal with a humongous data size. There are
many other challenges while working with data of different shapes. For example,
the log files of any application server have semi-structured data or Microsoft Word
documents, making it difficult to store the data in traditional relational storage. The
challenge to handling such data is not just related to storage: there is also the big
question of how to access the required information. Enterprise search engines are
designed to address this problem.

Today, finding the required information within a specified timeframe has become
more crucial than ever. Enterprises without information retrieval capabilities suffer
from problems such as lost productivity of employees, poor decisions based on
faulty/incomplete information, duplicated efforts, and so on. Given these scenarios,
it is evident that Enterprise searches are absolutely necessary in any enterprise.

Apache Solr is an open source enterprise search platform, designed to handle these
problems in an efficient and scalable way. Apache Solr is built on top of Apache
Lucene, which provides an open source information search and retrieval library.
Today, many professional enterprise search market leaders, such as LucidWorks and
PolySpot, have built their search platform using Apache Solr. We will be learning
more about Apache Solr in this chapter, and we will be looking at the following
aspects of Apache Solr:

• Setting up Apache Solr
• Apache Solr architecture
• Configuring Solr
• Loading data in Apache Solr
• Querying for information in Solr

Understanding Apache Solr

[22]

Setting up Apache Solr
We will be going through the Apache Solr architecture in the next section; for
now, let's install Apache Solr on our machines. Apache Solr is a Java Servlet web
application that runs on Apache Lucene, Tika, and other open source libraries.
Apache Solr ships with a demo server on jetty, so one can simply run it through the
command line. This helps users to run the Solr instance quickly. However, you can
choose to customize it and deploy it in your own environment. Apache Solr does not
ship with any installer; it has to be run as a part of J2EE Application.

Prerequisites for setting up Apache Solr
Apache Solr requires Java 1.6 or more to run, so it is important to make sure
you have the correct version of Java by calling java –version, as shown in
the following screenshot:

With the latest version of Apache Solr (4.0 or more), JDK 1.5 is not
supported anymore. Apache Solr 4.0+ runs on JDK 1.6 + version.
Instead of going for the pre-shipped JDK with your default
operating system, go for the full version of JDK by downloading
it from http://www.oracle.com/technetwork/java/
javase/downloads/index.html?ssSourceSiteId=otnjp.
This will enable full support for an international charset. Apache
Solr 4.10.1 version requires a minimum of JDK 7.

Once you have the correct Java version, you need a servlet container such as Tomcat,
Jetty, Resin, Glassfish, or Weblogic installed on your machine. If you intend to use a
jetty-based demo server, then you would not require a container.

http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp

Chapter 2

[23]

Running Apache Solr on jetty
The Apache Solr distribution comes as a single zipped folder. You can download the
stable installer from http://lucene.apache.org/solr/ or from its nightly builds
running on the same site. To run Solr in Windows, download the zip file from the
Apache mirror site for Linux, UNIX, and other such flavors; you can download the
.gzip/.tgz version. In Windows, you can simply unzip your file, and in UNIX,
you can run the following command:

$ tar –xvzf solr-<major-minor version>.tgz

Another way is to build Apache Solr from a source. This will be required if you are
going to modify or extend the Apache Solr source for your own handler, plugin,
and others. You need Java SE 7 JDK (which stands for Java Development Kit) or JRE
(which stands for Java Runtime Environment), Apache Ant distribution (1.8.2 or
more), and Apache Ivy (2.2.0+). You can compile the source by simply navigating to
the Solr folder and running ant from there.

More information can be found at https://wiki.apache.org/
solr/HowToCompileSolr

When you unzip Solr, it extracts the following folders:

• contrib/: This folder contains all the libraries that are additional to Solr,
and they can be included on demand. They provide libraries for data import
handler, MapReduce, Apache UIMA, velocity template, and so on.

• dist/: This folder provides the distributions of Solr and other useful
libraries such as SolrJ, UIMA, and MapReduce. We will be looking at
this in the next chapter.

• docs/: This folder contains documentation for Apache Solr.
• example/: This folder provides jetty-based Solr web apps that can be directly

used. We are going to use this folder for running Apache Solr.
• licenses/: This folder contains all the licenses of the underlying libraries

used by Solr.

Now, declare $JAVA_HOME to point to your JDK/JRE. You will find the jetty server
in the solr<version>/example folder. Once you unzip solr-<major-minor
version>.tgz, all you need to do is go to solr<version>/example and run the
following command:

$ $JAVA_HOME/bin/java –jar start.jar

http://lucene.apache.org/solr/
https://wiki.apache.org/solr/HowToCompileSolr
https://wiki.apache.org/solr/HowToCompileSolr

Understanding Apache Solr

[24]

If you are using the latest release of Solr (Solr 5.0), you need to go to
the solr-5.0.0 folder and run the following command:
$ bin/slor start

The instructions for Solr 5.0 are available at:
https://cwiki.apache.org/confluence/display/solr/
Solr+Start+Script+Reference

The default jetty instance will run on port 8983, and you can access the Solr instance
by visiting the following URL: http://localhost:8983/Solr/browse. It shows a
default search screen as shown in the following screenshot:

https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference

Chapter 2

[25]

If your system default is Locale, or character set is non-English (that is, en/en-US),
for the sake of safety you can override your system defaults for Solr by passing –
Duser.language=en –Duser.country=US in your jetty to ensure smooth running
of Solr.

Running Solr on other J2EE containers
It is relatively easy to set up Apache Solr on any J2EE container. It requires
deployment of the Apache Solr application war file using the standard J2EE
application deployment of any container. Another additional step that the Apache
Solr application needs is the location of the Apache Solr home folder. This can
either be set through Java options by setting the following environment variables
or updating the container start up script:

$ export JAVA_OPTS="$JAVA_OPTS -Dsolr.solr.home=/opt/solr/example"

Alternatively, you can configure JNDI lookup for the java:comp/env/solr/home
resource by pointing it to the Solr home folder. In Tomcat, this can be done by
creating a context XML file with a chosen name (context.xml) in $CATALINA_HOME/
conf/Catalina/localhost/context.xml, and adding the following entries:

<?xml version="1.0" encoding="utf-8"?>
<Context docBase="<solr-home>/example/solr/solr.war" debug="0"
crossContext="true">
 <Environment name="solr/home" type="java.lang.String" value="<solr-
home>/example/solr" override="true"/>
</Context>

Hello World with Apache Solr!
Once you are done with the installation of Apache Solr, you can simply run examples
by going to the examples/exampledocs folder and running:

java -jar post.jar solr.xml monitor.xml

Understanding Apache Solr

[26]

post.jar is a utility provided by Solr to upload the data to Apache Solr for
indexing. When it is run, the post.jar file simply uploads all the files that are
passed as a parameter to Apache Solr for indexing, and Solr indexes these files
and stores them in its repository. Now, try accessing your instance by typing
http://localhost:8983/solr/browse; you should find a sample search
interface with some information in it, as shown in the following screenshot:

Chapter 2

[27]

Understanding Solr administration
Apache Solr provides an excellent user interface for administrating the server and can
be accessed by calling http://localhost:8983/solr. Apache Solr has the concepts
of Collections and Core. A collection in Apache Solr is a collection of Solr documents
that represent one complete logical index. Solr Core is an execution unit of Solr that
can run on its own configuration and other metadata. Apache Solr collections can be
created for each index. Similarly, you can run Solr in multiple core modes.

Option Purpose
Dashboard This shows information related to version, memory consumption,

JVM, and so on.
Logging Shows log outputs with the latest logs on top
Logging | Level Shows the current log configuration for packages, that is, for which

packages the logs are enabled
Core Admin Shows information about core, and allows its administration
Java Properties Shows different Java properties set when Solr is running
Thread Dump Describes the stack trace with information on CPU and user time; also

enables a detailed stack trace
collection1 Demonstrates different parameters of collection, and all the activities

you can perform, such as running queries and ping status

Solr navigation
The following table shows some of the important URLs configured with Apache Solr
by default:

URL Purpose
/select For processing search queries, the primary request handler

provided with Solr is "SearchHandler." It delegates to a sequence
of search components.

/query Same SearchHandler for JSON-based requests.
/get Real-time get handler, guaranteed to return the latest stored fields

of any document, without the need to commit or open a new
searcher. The current implementation relies on the updateLog
feature being enabled in the JSON format.

/browse This URL provides a faceted web-based search, primary interface.
/update/extract Solr accepts posted XML messages that Add/Replace, Commit,

Delete, and Delete by query, by using the /update URL
(ExtractingRequestHandler).

/update/csv This URL is specific for CSV messages, CSVRequestHandler.

Understanding Apache Solr

[28]

URL Purpose
/update/json This URL is specific for messages in the JSON format,

JsonUpdateRequestHandler.
/analysis/field This URL provides an interface for analyzing the fields. It provides

the ability to specify multiple field types and field names in the
same request, and outputs index-time and query-time analysis for
each of them. It also uses FieldAnalysisRequestHandler internally.

/analysis/
document

This URL provides an interface for analyzing the documents.

/admin AdminHandler for providing the administration of Solr.
AdminHandler has multiple sub-handlers defined. /admin/ping
is for the health checkup.

/debug/dump DumpRequestHandler—Echoes the request content back to the
client.

/replication Supports replicating indexes across different Solr servers, used by
masters and slaves for data sharing. Uses ReplicationHandler.

Common problems and solutions
In this section, we will try and understand the common problems faced while
running Solr instances:

• When we run Apache Solr, I get the following error:
Java.lang.UnsupportedClassError: org.apache.solr.servlet.
SolrDispatchFilter : Org.eclipse.jetty.Unsupported Major-Minor
version 51

This error is seen due to a Java version mismatch with an Apache
Solr-compiled Java version. In this case, you need Java Version 7 or more.
The following values are the Java versions with class version mapping:
J2SE 8 = 52,
J2SE 7 = 51,
J2SE 6.0 = 50,
J2SE 5.0 = 49,
JDK 1.4 = 48,
JDK 1.3 = 47,
JDK 1.2 = 46,
JDK 1.1 = 45

Chapter 2

[29]

So, you need to use Java Version 7 to run Apache Solr. If you have any
other Java run-time setup on your machine for the existing applications,
and do not wish to disturb it, simply download JRE in a folder and run the
Solr start command (as explained in the previous section) by calling Java of
the new JRE.

• While running Solr, I got java.lang.OutOfMemoryError. How to fix it?
The Out-of-Memory error is thrown by the Java Virtual Machine (JVM)
running Apache Solr when there is not enough memory available for heap,
or for PermGen (Permanent Generation Space holds metadata regarding user
classes and methods). When you get such an error, you need to restart the
container. However, while restarting the container, you must make sure that
you increase the memory of JVM. This can be done by adding the following
JVM arguments for PermGen:
export JVM_ARGS="-Xmx1024m -XX:MaxPermSize=256m"

For correcting the heap space error, you can specify the following
JVM arguments:
export JVM_ARGS="-Xms1024m -Xmx1024m"

Please note that the size of memory should be specified by the user. Visit
http://jvmmemory.com/ to create these JVM arguments for setting the
correct JVM variables.

The Apache Solr architecture
An Apache Solr instance can run as a single core or multicore; it is a client server
model. A Solr core is nothing but the running instance of a Solr index along with
its configuration. Earlier, Apache Solr had a single core that in turn limited the
consumers to run Solr on one application, through a single schema and configuration
file. Later, support for creating multiple cores was added. With this support one can
now run one Solr instance for multiple schemas and configurations with unified
administrations. You can run Solr in multicore with the following command:

java -Dsolr.solr.home=multicore -jar start.jar

http://jvmmemory.com/

Understanding Apache Solr

[30]

Apache Solr is composed of multiple modules, some of them being separate projects
in themselves. Let's understand the different components of the Apache Solr
architecture. The following diagram depicts the Apache Solr conceptual architecture:

Apache Solr can run in a master-slave mode. Index replicator is responsible for
distributing indexes across multiple slaves. The master server maintains index
updating, and slaves are responsible for talking with the master to get them replicated
for high availability. Apache Lucene core gets packages as a library with the Apache
Solr application. It provides the core functionalities for Solr, such as index, query
processing, searching data, ranking matched results, and returning them.

Apache Lucene comes with a variety of query implementations. Query Parser is
responsible for parsing the queries passed by the end search as the search string.
Lucene provides TermQuery, BooleanQuery, PhraseQuery, PrefixQuery, RangeQuery,
MultiTermQuery, FilteredQuery, SpanQuery, and so on as query implementations.

Index Searcher is a basic component of Solr searched with a default base searcher
class. This class is responsible for returning ordered matched results of the searched
keyword ranked, as per the computed score. Index Reader provides access to indexes
stored in the file system. It can be used for searching for an index. Similar to Index
Searcher, Index Writer allows you to create and maintain indexes in Apache Lucene.

Chapter 2

[31]

Analyzer is responsible for examining the fields and generating tokens. Tokenizer
breaks field data into lexical units or tokens. Filter examines a field of tokens from
Tokenizer and either keeps them, transforms them, discards them, or creates new
ones. Tokenizers and Filters together form a chain or pipeline of Analyzers. There
can only be one Tokenizer per Analyzer. The output of one chain is fed to another.
The Analyzer process is used for indexing as well as querying by Solr. They play an
important role in speeding up the query as well as index time and finding the right
set of matches; they also reduce the amount of data that gets generated out of these
operations. You can define your own customer as Analyzers depending upon your
use case.

Query Parser is responsible for parsing the queries and converting them into Lucene
Query Objects. There are different types of parsers available, such as lucene, DisMax,
and edismax. Each parser offers different functionalities and can be used on the basis
of particular requirements. Once a query is parsed, it hands it over to index searcher.
The job of index reader is to run the queries on index store, gather the results, and send
them to response writer. Response Writer is responsible for responding to the client; it
formats the query response on the basis of search outcomes from the Lucene engine.

Index Handler is a type of update handler, handling the tasks of add, update, and
delete documents for indexing. Apache Solr supports updates through index handler
in the JSON, XML, and plaintext formats.

Data Import Handler (DIH) provides a mechanism for integrating different
data sources with Apache Solr for indexing. The data sources could be relational
databases or web-based sources (for example, RSS, ATOM feeds, and e-mails).

Although DIH is a part of Solr development, the default installation does not include
it in the Solr application; it needs to be included in the application explicitly. We will
be looking at Apache Tika in detail in the following sections.

Configuring Solr
Apache Solr allows extensive configuration to meet the needs of the consumer.
Configuring the instance revolves around the following:

• Defining a schema
• Configuring Solr parameters

First, let's try and understand the Apache Solr structure, and then, look at all these
steps to understand the configuration of Apache Solr.

Understanding Apache Solr

[32]

Understanding the Solr structure
The Apache Solr home folder mainly contains the configuration and index-related
data. These are the following major folders in the Solr collection:

Directory Purpose
conf/ This folder contains all the configuration files of Apache Solr and is

mandatory. Among them, solrconfig.xml, and schema.xml are
important configuration files.

data/ This folder stores the data related to indexes generated by Solr. This is
a default location for Solr to store this information. This location can be
overridden by modifying conf/solrconfig.xml.

lib/ This folder is optional. If it exists, Solr will load any Jars found in this
folder and use them to resolve any "plugins" if provided in solrconfig.
xml (Analyzers, RequestHandlers, and so on.) Alternatively, you can
use the <lib> syntax in conf/solrconfig.xml to direct Solr to your
plugins.

Defining the Solr schema
In an enterprise, the data is generated from all the software systems that participate
in day-to-day operations. This data has different formats, and bringing in this
data for big-data processing requires a storage system that is flexible enough to
accommodate the data with varying data models. Traditional relational databases
allow users to define a strict data structure and an SQL-based querying mechanism.

By design, Solr supports any data to be loaded in a search engine through
different handlers, making it a data format agnostic. Solr can easily be scaled
on top of commodity hardware; hence, it becomes one of the most efficient eligible
NoSQL-based search programs available today. The data can be stored in Solr
indexes and can be queried through Lucene search APIs. Solr does perform joins
because of its denormalization of data. The overall schema file (schema.xml) is
structured in the following manner:

<schema>
 <types>
 <fields>
 <uniqueKey>
 <defaultSearchField>
 <solrQueryParser defaultOperator>
 <copyField>
</schema>

Chapter 2

[33]

Solr fields
Apache Solr's basic unit of information is a document, which is a set of data that
describes something. Each document in Solr is composed of Fields. Apache Solr
allows you to define the structure of your data to extend support for searching across
the traditional keyword searching. You can allow Solr to understand the structure of
your data (coming from various sources) by defining fields in the schema definition
file. These fields, once defined, will be made available at the time of data import
or data upload. The schema is stored in the schema.xml file in the conf/ folder of
Apache Solr.

Apache Solr ships with a default schema.xml file, which you have to change to fit
your needs.

If you change schema.xml in a Solr instance running on some data,
the impact of this change requires regeneration of the Solr index with
the new schema.

In the schema configuration, you can define field types (for example, string, integer,
and date) and map them to their respective Java classes:

<field name="id" type="integer" indexed="true" stored="true"
required="true"/>

This enables users to define the custom type, should they wish to. Then, you can
define the fields with the name and type pointing to one of the defined types.
A field in Solr will have the following major attributes:

Name Description
Default This sets default value, if not read while importing a document.
Indexed This is true, when it has to be indexed (that is, can be searched and

sorted, and have facets created).
Stored When true, a field is stored in the index store, and it will be accessible

while displaying results.
compressed When true, the field will be zipped (using gzip). This is applicable for

text-based fields.
multiValued If a field contains multiple values in the same import cycle of the

document/row.

Understanding Apache Solr

[34]

Name Description
omitNorms When true, it omits the norms associated with a field (such as

length normalization, and index boosting). Similarly, it has
omitTermFreqAndPositions (if true, omits term frequency,
positions, and payloads from postings for this field. This can be a
performance boost for fields that don't require this information. It also
reduces the storage space required for the index) and omitPositions.

termVectors When true, it stores metadata related to a document and returns this
metadata when queried.

With Solr 4.2, the team has introduced a new feature called DocValue for fields.
DocValues are a way of building an index that is more efficient for purposes like
sorting and faceting. While Apache Solr relies on an inverted index mechanism,
the DocValue storage focuses on efficiently indexing the document, in order to
index the storage mechanism by using a column-oriented field structure, using a
document-to-value mapping built at index time. This approach (column-oriented
field) results in a reduction of memory usage and the overall search speed. DocValue
can be enabled on specific fields in Solr in the following fashion:

<field name="test_outcome" type="string" indexed="false"
stored="false" docValues="true" />

If the data is indexed before applying DocValue, it has to be re-indexed to utilize the
gains of DocValue indexing.

Dynamic fields in Solr
In addition to static fields, you can also use Solr dynamic fields for getting flexibility,
in case you do not know the schema upfront. Use the <dynamicField> declaration
for creating a field rule to allow Solr to understand which datatype is to be used.
In the following sample, any field imported, and suffixed with *_no (For example,
id_no and vehicle_no) will in turn be read as an integer by Solr. In this case,
* represents a wildcard.

The following code snippet shows how you can create a dynamic field:

<dynamicField name="*_no" type="integer" indexed="true"
stored="true"/>

Although it is not a mandatory condition, it is recommended for
each Solr instance to have a unique identifier field for the data.
Similarly, the ID name-specified unique key cannot be multivalued.

Chapter 2

[35]

Copying the fields
You can also index the same data into multiple fields by using the <copyField>
directive. This is typically needed when you want to have multi-indexing for the same
data type. For example, if you have data for a refrigerator with the company name
followed by the model number (WHIRLPOOL-1000LTR, SAMSUNG-980LTR, and
others), you can have these indexed separately by applying your own Tokenizers to
different fields. You might generate indexes for two different fields: namely Company
Name and Model Number. You can define Tokenizers specific to your field types.
Here is the sample copyField from schema.xml:

<copyField source="cat" dest="text"/>
<copyField source="name" dest="text"/>
<copyField source="manu" dest="text"/>
<copyField source="features" dest="text"/>

Dealing with field types
You can define your own field types in Apache Solr that cater to your requirements
for data processing. The field type includes four types of information:

• Name
• Implementation class name (implemented on org.apache.solr.schema.

FieldType)
• If the field type is TextField, a description of the field analysis for the

field type
• Field attributes

The following XML snippet shows a sample field type:

<fieldType name="text_ws" class="solr.TextField"
 positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 </analyzer>
</fieldType>

Understanding Apache Solr

[36]

The class attribute indicates which Java class the given field type is associated with.
PositionIncrementGap determines the spacing between two words. It's useful
for multivalued fields where the space between multiple values of the fields is
determined. For example, if the author field has "John Doe" and "Jack Williams" as
values, when PositionIncrementGap is zero, a search for Doe Jack will match with
these fields because Solr treats this field as John Doe Jack Williams. To separate these
multivalued fields, you can specify a high PositionIncrementGap value. The name
attribute indicates the name of the field type; later when a field is defined, it uses the
type attribute to denote the associated field type as shown in following code snippet:

<field name="name" type="text_ws" indexed="true" stored="true"/>

Additional metadata configuration
There are other files where metadata can be specified. These files again appear in the
conf folder of Apache Solr. These files are given in the following table:

File Name Description
Protwords.txt In this file, you can specify protected words that you do not wish

to get stemmed. So, for example, a stemmer might stem the word
catfish to cat or fish.

Currency.txt Stores current mapping of exchange rates between different
countries; this is helpful when you have your application accessed
by people from different countries.

Elevate.txt With this file, you can influence the search results and get your
own results to rank among the top-ranked results. This overrides
Lucene's standard ranking scheme, taking into account elevations
from this file.

Spellings.txt In this file, you can provide spelling suggestions to the end user.
Synonyms.txt Using this file, you can specify your own synonyms. For example,

cost => money, money => dollars.
Stopwords.txt Stopwords are those that will not be indexed and used by Solr in

the applications; this is particularly helpful when you really wish
to get rid of certain words; for example: In the string "Jamie and
Joseph," the word "and" can be marked as a stopword.

Chapter 2

[37]

Other important elements of the Solr schema
The following table describes the different elements in schema.xml:

Name Description Example
Unique key The uniqueKey element specifies

which field is a unique identifier
for documents. For example,
uniqueKey should be used if you
ever update a document in the index.

<uniqueKey>id</uniqueKey>

Default
search field

If you are using the Lucene
query parser, queries that don't
specify a field name will use the
defaultSearchField. The use of
default search has decreased from
Apache Solr 3.6 or higher.

<defaultSearchField></
defaultSearchField>

Similarity Similarity is a Lucene class
responsible for scoring the matched
results. Solr allows you to override
the default similarity behavior
through the <similarity>
declaration. Similarity can be
configured at the global level;
however, Solr 4.0 extends similarity
to be configured at the field level.

<similarity class="solr.
DFRSimilarityFactory">

 <str
name="basicModel">P</str>

 <str
name="afterEffect">L</str>

 <str
name="normalization">H2</
str>

 <float name="c">7</
float>

</similarity>

Configuration files of Apache Solr
The storage of Apache Solr is mainly used for storing metadata and the actual index
information. It is typically a file stored locally, configured in the configuration of
Apache Solr. The default Solr installation package comes with a Jetty server, whose
configuration can be found in the solr.home/conf folder of Solr install. There are
three major configuration files in Solr:

File name Description
Solrconfig.xml This is the main configuration file of your Solr install. Using

this, you can control everything possible, right from caching and
specifying customer handlers to codes and commit options.

Understanding Apache Solr

[38]

File name Description
Schema.xml This file is responsible for defining a Solr schema for your

application. For example: Solr implementation for log management
would have a schema with Log-related attributes, that is, log levels,
severity, message type, container name, application name, and so
on.

Solr.xml Using Solr.xml, you can configure Solr cores (single or multiple)
for your setup. It also provides additional parameters such as
ZooKeeper timeout and transient cache size.

Apache Solr (underlying Lucene) indexing is a specially designed data structure,
stored in the file system as a set of index files. The index is designed with a specific
format in such a way as to maximize the query performance.

Once the schema is configured, the immediate next step is to configure the instance
itself to work with your enterprise. There are two major configurations that comprise
the Solr configuration, namely solrconfig.xml and solr.xml. Let's look at them
one by one.

Working with solr.xml and Solr core
The solr.xml configuration resides in the $SOLR_HOME folder and mainly focuses on
maintaining the configuration for logging, cloud setup, and Solr core. The Apache
Solr 4.X code line uses solr.xml for identifying the cores defined by the users. In the
newer versions of Solr 5.x (planned), the current solr.xml structure (which contains
the <core> element and so on) will not be supported, and there will be an alternative
structure used by Solr.

Instance configuration with solrconfig.xml
The solrconfig.xml file primarily provides you access to request handlers,
listeners, and request dispatchers. Let's look at the solrconfig.xml file and
understand all the important declarations you'd be using frequently:

Directive Description
luceneMatchVersion Tells which version of Lucene/Solr this configuration file

is set to. When upgrading your Solr instances, you need to
modify this attribute.

Chapter 2

[39]

Directive Description
Lib In case you create any plugins for Solr, you need to put

a library reference here, so that it gets picked up. The
libraries are loaded in the same sequence as that of the
configuration order. The paths are relative; you can also
specify regular expressions. For example:
<lib dir=".../../../contrib/velocity/lib"
regex=".*\.jar" />.

dataDir By default, Solr uses the ./data folder for storing
indexes; however, this can be overrided by changing the
folder for data by using this directive.

indexConfig This directive is of the complex type, and it allows you
to change the settings of some of the internal indexing
configuration of Solr.

Filter You can specify different filters to be run at the time of
index creation.

writeLockTimeout This directive denotes the maximum time to wait for the
write lock for IndexWriter.

maxIndexingThreads Denotes the maximum number of indexes and threads that
can run in the IndexWriter; if more threads arrive, they
have to wait. The default value is 8.

ramBufferSizeMB The maximum RAM you need in the buffer while index
creation, before the files are flushed to filesystem.

maxBufferedDocs Limits the number of documents buffered.
lockType When indexes are generated and stored in the file, this

mechanism decides which file-locking mechanism should
be used to manage concurrent read-writes. There are three
types of file locking mechanisms: single (one process at a
time), native (native operating system driven), and simple
(based on locking using plain files).

unlockOnStartup When true, it will release all the write locks held in past.
Jmx Solr can expose runtime statistics through MBeans. It can

be enabled or disabled through this directive.

updateHandler Update handler is responsible for managing the updates to
Solr. The entire configuration for updateHandler forms a
part of this directive.

updateLog You can specify the folder and other configuration for
transaction logs while the index updates.

Understanding Apache Solr

[40]

Directive Description
autoCommit Enables automatic commit, when updates are happening.

This could be based on documents or time before an
automatic commit is triggered.

Listener Using this directive, you can subscribe to update
events when IndexWriters are updating the index. The
listeners can either be run at the time of "postCommit" or
"postOptimize"

Query This directive is mainly responsible for controlling
different parameters at the query time.

requestDispatcher By setting parameters in this directive, you can control
how a request will be processed by SolrDispatchFilter.

requestHandler Request handlers are responsible for handling different
types of requests with a specific logic for Apache Solr.
These are described in a separate section.

searchComponent Search components in Solr enable additional logic that can
be used by the search handler to provide a better searching
experience. These are described in Appendix, Use Cases for
Big Data Search.

updateRequestProcessor
Chain

Update request processor chain defines how update
requests are processed; you can define your own
updateRequestProcessor to perform tasks such as
cleaning up data and optimizing text fields.

queryResponseWriter Each request for query is formatted and written back to the
user through queryResponseWriter. You can extend
your Solr instance to have responses for XML, JSON, PHP,
Ruby, Python, csvs, and so on by enabling the respective
pre-defined writers. If you have a custom requirement for
a certain type of response, it can easily be extended.

queryParser The query parser directive tells Apache Solr which query
parser to be used for parsing the query and creating
Lucene Query Objects. Apache Solr contains pre-defined
query parsers such as lucene (default), DisMax (based on
weights of fields), edismax (similar to DisMax with some
additional features), and others.

Understanding the Solr plugin
Apache Solr provides easy extensions to its current architecture through Solr plugins.
Using Solr plugins, one can load his or her own code to perform a variety of tasks
within Solr: from custom Request Handlers to process searches, to custom Analyzers
and Token Filters for the text field. Typically, the plugins can be developed in Solr by
using any IDE by importing apache-solr*.jar as the library.

Chapter 2

[41]

The following types of plugins can be created with Apache Solr:

Component Description
Search components These plugins operate on a result set of a query. The results that

they produce typically appear at the end of the search request.

Request handler Request handlers are used to provide a REST endpoint from the
Solr instance to get some work done.

Filters Filters are the chain of agents that analyze the text for various
filtering criteria, such as lower case and stemming. Now you can
introduce your own filter and package it along with the plugin
jar file.

Once the plugin is developed, it has to be defined as a part of solrconfig.xml by
pointing the library to your jar.

Other configuration
Request handlers in Solr are responsible for handling requests. Each request handler
can be associated with one relative URL: for example, /search, /select. A request
handler that provides search capabilities is called a search handler. There are more
than 25 request handlers available with Solr by default, and you can see the complete
list here: http://lucene.apache.org/solr/api/org/apache/solr/request/
SolrRequestHandler.html.

There are search handlers that provide searching capabilities on a Solr-based index
(For example, DisMaxRequestHandler and SearchHandler); similarly, there are
update handlers that provide support for uploading documents to Solr (For example,
DataImportHandler and CSVUpdateRequestHandler). RealTimeGetHandler
provides the latest stored fields of any document. UpdateRequestHandlers are
responsible to process the updating of an index. Similarly, CSVRequestHandler and
JsonUpdateRequestHandler take the responsibility of updating the indexes with the
CSV and JSON formats. ExtractingRequestHandler uses Apache Tika to extract the
text from different file formats.

http://lucene.apache.org/solr/api/org/apache/solr/request/SolrRequestHandler.html
http://lucene.apache.org/solr/api/org/apache/solr/request/SolrRequestHandler.html

Understanding Apache Solr

[42]

Loading data in Apache Solr
Once Apache Solr is configured, the next step is to load data in Apache Solr and
run queries. There are different ways to load data into Apache Solr. The following
diagram depicts most of the used ones:

We have already seen the simple post tool earlier while setting up Apache Solr. We
are going to understand Extracting Request Handler.

Extracting request handler – Solr Cell
Solr Cell is one of the most powerful handlers for uploading any type of data. This
is particularly useful if you wish to run Solr on a set of files/unstructured data
containing different formats such as office, pdf, eBook, emails, and text. In Apache
Tika, text extraction is based purely on file type and content. So, if you have a PDF
of scanned images containing text, Apache Tika won't be able to extract any of the
text from it. In such cases, you need to use OCR-based software to bring in such
functionality for Solr. You can simply try this by downloading the curl utility and
then by running it on your document.

curl 'http://localhost:8983/solr/update/extract?literal.
id=doc1&commit=true' -F "myfile=@<your document name with extension>"

Chapter 2

[43]

Index handlers such as Simple Post Tool, Update Request Handler, and SolrJ provide
the add, update, and delete of documents to the index for the XML, JSON, and CSV
formats. Update Request Handler provides a web-based URL for uploading the
document. This can be done through the curl utility.

curl/wget utilities can be used for uploading data to Solr in your
environment. They are command line based; you can also use the
FireCURL plugin to upload data through your Firefox browser.

The simple post tool is a command line tool for uploading the raw data to
Apache Solr. You can simply run it on any file or type in your input through
STDIN (which stands for standard input stream, that is, through keyboard)
to load it in Apache Solr.

Understanding data import handlers
Apache Solr provides DataImportHandler to deal with this type of data source.
With DataImportHandler, you can also load only the deltas, instead of the complete
dataset again and again. Often, this can be set as an off-time scheduled job activity to
minimize the impact of indexing on day-to-day work. In case of real-time updates,
this activity should be scheduled with a fixed frequency.

One of the important steps before importing data from a database to Apache Solr is
to configure the data source. A data source is pointed to the location where the data
resides. In this case, it could be a relational database such as Oracle, MySQL, SQL
Server, and HTTP URL.

A data source can be defined in solrconfig.xml or it can simply point to another
file containing the configuration (in our case, data-config.xml). Each data source
configuration has the <dataSource> and <document> elements. <dataSource>
focuses more on establishing contact with data through different protocols such as
JNDI, JDBC, and HTTP. Each <document> has <entity>. Each entity represents
one dataset. An entity can contain entities or multiple fields. When the import
handler is run, it generates a set of documents, containing multiple fields, which
(after optionally being transformed in various ways) are sent to Solr for indexing.
For an RDBMS data source, an entity is a view or table, which would be processed
by one or more SQL statements to generate a set of rows (documents) with one
or more columns (fields). You can create a custom data source by writing a class
that extends org.apache.solr.handler.dataimport.DataSource. An import
operation can be started from the following URL: http://<host>:<port>/solr/
dataimport?command=full-import.

Understanding Apache Solr

[44]

There are two different modes available for importing data from a
database through DataImportHandler. The full import mechanism
is useful where it is required to read the data source snapshots at any
given point of time. Delta import is similar to full import, but it offers
the change of state of your data source to get reflected in Apache Solr.
This import focuses on incremental updates and change detection.

Interacting with Solr through SolrJ
Apache Solr is a web application; it can be directly used by its customers for
searching. The search interface can be modified and enhanced to work as an end
user search tool for searching in an enterprise. Solr clients can directly access the Solr
URL through HTTP to search and read data through various formats such as JSON
and XML. Moreover, Apache Solr allows administration through these HTTP-based
services. Queries are executed by generating a URL that Solr would understand.

SolrJ or SolrJava is a tool that can be used by your Java-based application to
connect to Apache Solr for indexing. SolrJ allows Java wrappers and adaptors to
communicate with Solr and translate its results to Java objects. Using SolrJ is much
more convenient than using raw HTTP and JSON. Internally, SolrJ uses Apache
HttpClient to send HTTP requests. It provides a user-friendly interface, hiding
connection details from consumer applications. Using SolrJ, you can index your
documents and execute your queries.

There are two major ways to do this; one is by using the EmbeddedSolrServer
interface. If you are using Solr in an embedded application, this is the recommended
interface for you. It does not use an HTTP-based connection. Here is the sample code:

System.setProperty("solr.solr.home", "/home/hrishi/work/scaling-solr/
example/solr");
CoreContainer.Initializer initializer = new CoreContainer.
Initializer();
CoreContainer coreContainer = initializer.initialize();
EmbeddedSolrServer server = new EmbeddedSolrServer(coreContainer, "");
ModifiableSolrParams params = new ModifiableSolrParams();
params.set("q", "Scaling");
QueryResponse response = server.query(params);
System.out.println("response = " + response);

Chapter 2

[45]

The other way is to use the HTTPSolrServer interface, which talks with the
Solr server through the HTTP protocol; this is suitable if you have a remote
client-server-based application. It uses Apache commons HTTP client to
connect to Solr. Here is the sample code for the same:

String url = "http://localhost:8983/solr";
SolrServer server = new HttpSolrServer(url);
ModifiableSolrParams params = new ModifiableSolrParams();
params.set("q", "Scaling");
QueryResponse response = server.query(params);
System.out.println("response = " + response);

You can use ConcurrentUpdateSolrServer for bulk uploads, whereas
CloudSolrServer communicates with a Solr instance running in a cloud setup.
SolrJ is available in the official Maven repository. You can simply add the following
dependency to your pom.xml to use SolrJ:

 <dependency>
 <artifactId>solr-solrj</artifactId>
 <groupId>org.apache.solr</groupId>
 <version>1.4.0</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>

To use EmbeddedSolrServer, you need to add the Solr-core dependency too:

 <dependency>
 <artifactId>Solr-core</artifactId>
 <groupId>org.apache.Solr</groupId>
 <version>1.4.0</version>
 <type>jar</type>
 <scope>compile</scope>
 </dependency>

Apache Solr also provides access to its services for different technologies, such as
JavaScript, Python, and Ruby, given in the following table:

Technology Interaction with Solr
JavaScript Apache Solr can work with JavaScript in a client-server model through

XMLHTTP/Standard Web Interface; you can use libraries such as
ajax-Solr and SolrJS for interaction.

Ruby For Ruby, there is a project called sunspot (http://sunspot.
github.io/) that enables a Solr-powered search for Ruby Objects.
You can also use DelRuby through APIs and SolrRuby libraries.

http://sunspot.github.io/
http://sunspot.github.io/

Understanding Apache Solr

[46]

Technology Interaction with Solr
PHP PHP can talk with Solr in many ways. For example: PHP can consume

Solr services through its handlers.
Java Java can directly talk, with Solr through SolrJ APIs or through

standard HTTP calls since Solr supports the HTTP interface.
Python Python can utilize the Solr-Python Client API library to contact Solr

for searching.
Perl CPAN provides Solr libraries (http://search.cpan.

org/~garafola/Solr-0.03/) for utilizing Solr search. However,
you can also use a HTTP-based lightweight client to talk with Solr.

.NET There are many implementations available for consuming Solr in a
.Net-based application SolrNET (https://github.com/mausch/
SolrNet) or Solr Contrib on CodePlex (http://solrcontrib.
codeplex.com/).

Working with rich documents (Apache Tika)
Apache Tika is an SAX-based parser for extracting the metadata from different types
of documents. Apache Tika uses the org.apache.tika.parser.Parser interface for
extracting metadata and structured text content from various documents, by using
the existing parser libraries. Apache Tika provides a single parse method with the
following signature:

void parse(InputStream stream, ContentHandler handler, Metadata
metadata)
 throws IOException, SAXException, TikaException;

This method takes the stream of documents as input and generates an XHTML
SAX event as the outcome. Thus, Tika provides a simple yet powerful interface for
dealing with different types of documents. Apache Tika supports the following types
of document formats: Rich Text format (RTF), HTML, XHTML, Microsoft Office
formats (Excel, Word, PowerPoint, Visio, and Outlook), Portable Document Format
(PDF), all types of text files, different types of compression formats (zip, gzip, bzip,
bzip2, tarball, and so on), and audio formats (MP3, MIDI, and wave formats). The
lyrics, title, and subject can be extracted from these formats.

Apache Tika will automatically attempt to determine the input document type
(Word, PDF, and so on) and extract the content appropriately. Alternatively, you
can specify the MIME type for Tika with the stream.type parameter. Apache Tika
generates the XHTML stream through an SAX parser. Apache Solr then reacts to the
SAX events by creating fields for indexing. Tika produces metadata information such
as Title, Subject, and Author for the documents parsed.

http://search.cpan.org/~garafola/Solr-0.03/
http://search.cpan.org/~garafola/Solr-0.03/
https://github.com/mausch/SolrNet
https://github.com/mausch/SolrNet
http://solrcontrib.codeplex.com/
http://solrcontrib.codeplex.com/

Chapter 2

[47]

Querying for information in Solr
We have already seen how Apache Solr effectively uses different request handlers
to provide consumers with extensive ways of getting search results. Each Request
Handler uses its own query parser, which extracts the parameters and their values
from the query string and forms Lucene Query Objects. The standard query parser
allows greater precision over search data; DisMaxQueryParser and Extended
DisMaxQueryParser provide a Google-like searching syntax while searching.
Depending upon which request handler called, the query syntax is changed.
Let's look at some of the important terms:

Term Meaning
q?<string> The query string <String> can

support wildcards (*:*); for example,
title:Scaling*

fl=id,book-name The field list that a search response will return
sort=author asc Results/facets to be sorted by authors in an

ascending order
price[* TO 100]&rows=10&start=5 Looks for price between 0 and 100; limits the

result to 10 rows at a time, starting at the 5th
matched result

hl=true&hl.fl=name,features Enable highlighting by field list name and
features

&q=*:*&facet=true&facet.
field=year

Enables faceted search by the field "year"

Publish-date:[NOW-1YEAR/DAY TO
NOW/DAY]

Published date between last year (same day)
and today

description:"Java sql"~10 This is called proximity search. Searches for
the descriptions containing Java and SQL in a
single document with a proximity of 10 words
maximum

"open jdk" NOT "Sun JDK" Will search for an Open JDK term in the
document

&q=id:938099893&mlt=true Searches for a specific ID and similar results

Understanding Apache Solr

[48]

Summary
This chapter was focused on making us aware of the Apache Solr enterprise search
engine. We started with setting up Apache Solr, along with common problems and
solutions, followed by the architecture and configuration of Apache Solr. We also
looked at loading data in Apache Solr through different handlers. We explored
how SolrJ can be used for interacting with Apache Solr. Now that we have a good
understanding of Apache Hadoop and Apache Solr, the next step is to understand
how to work with a distributed search with Apache Solr and Hadoop. In the next
chapter, we will see how Apache Hadoop and Solr can complement each other.

[49]

Enabling Distributed Search
using Apache Solr

With the growth of data for searching, it becomes necessary to scale up the
performance of search applications, to cater to the increasing needs of indexing and
searching quickly over large datasets. Distributed search can be used when a single
index store becomes difficult to operate in terms of its size (large to fit in memory or
disk). As more number of users start using enterprise search, single node searches
have limitations in terms of response time and parallel sessions for users. For smaller
data sizes, standalone search architecture performs better compared to distributed
searches, due to single index availability. However, with the growth in the data size,
its performance degrades eventually. The Distributed Search application increases
the operation and maintenance cost. It also increases the complexity of overall
landscape. However, with the scaling of information for searching, distributed search
is the way to forward.

In Chapter 2, Understanding Apache Solr, we covered various aspects of Apache Solr,
and looked at how it can be used in a search application. In this chapter, we will
be looking at how to scale Apache Solr based search application, in order to work
with a distributed environment. This chapter mainly focuses on using Apache Solr's
capabilities to scale with growing data while keeping high performance. We will be
covering the following topics in this chapter:

• Understanding Distributed Search and Scaling
• Working with Apache SolrCloud
• Sharding Algorithm and Fault Tolerance
• Apache Solr and Big Data: Integration with MongoDB

Enabling Distributed Search using Apache Solr

[50]

Understanding a distributed search
The decision to move to a distributed search from a standalone system should
be driven by the needs of enterprises, because distributed search applications
are not always efficient in terms of performance. In this section, we will focus on
understanding distributed search patterns and how Apache Solr supports distributed
search. There have been efforts made to enable Apache Solr work with Apache
Hadoop platform in the past, and we will look at more details in coming chapters.

Distributed search patterns
There are two important functions of any enterprise search: creation of indexes
and run-time searching on indexes. Any or either of these functions can run in
distributed mode, depending upon the requirements from an enterprise. To utilize
the distributed search, the indexing must be split into multiple shards and should be
kept across multiple nodes of a distributed system.

Sharding is a process of breaking one index into multiple logical
units called "shards" across multiple records. In case of Solr, the
results will be aggregated and returned.

The shard is a complete index, and it can be queried independently. The search
application has to be smart enough to query multiple nodes, collect and combine
the results and return to the client. The following architecture diagram depicts the
overall scenario:

Chapter 3

[51]

In distributed search, the index is divided among various shards, and they are stored
locally on each node. Whenever a search query is fired by the user, load balancer
effectively balances the load on each node, and the query is redirected to a node that
tried to get the results. Some distributed searches such as Apache Solr do not use
load balancer and, instead, each participating node handles the load balancing on
its own by distributing the queries to respective shards. This pattern offers ample
flexibility in terms of processing, due to multiple nodes participating in the cluster
or distributed search setup. The results are collected and merged. Another aspect
of distributed search is the replication. Using replication of enterprise search index,
one can ensure high availability of instance. This kind of pattern is most suitable for
situations where data size is finite and predictable, and the customer is looking for
high availability features.

Based on the distributed architecture requirements, the following different types of
enterprise distributed search implementation scenarios can be found:

• Master/slave: Where there is one master and multiple slaves. The Master
is responsible for routing, and slaves perform the search on the index
shards. This kind of setup is good for cases when users would like to have
centralized control and routing strategy. This strategy has a risk of the master
being a single point of failure. Earlier distributed Solr releases introduced
master-slave configuration.

• Multi-nodes: All nodes are masters and index is divided among them. The
search is assigned to any one of the nodes based on the load by balancer. This
strategy is used by some of the most advanced distributed system, as it gets
rid of the issue of master being the single point of failure. Current distributed
Apache Solr supports multi-node clustering through SolrCloud. We are
going to look at it in detail in this chapter.

• Multi-tenant: When multiple index/shards are part of enterprise search
application. This is used by the service that provides search capabilities
to different tenants. This can use multi-node or master-slave approach. In
this approach, you can utilize same resources like CPU, memory, storage,
and so on, for multiple tenants by means of sharing. This is particularly
used in cloud-based deployments such as Amazon EC2, and private cloud
deployments. Multi-tenant architecture enables organizations to focus their
effort on one cluster due to its shared resources concept.

Enabling Distributed Search using Apache Solr

[52]

Apache Solr and distributed search
By design, Apache Lucene and Solr are designed to support large scale
implementation. Apache Solr-based distributed environment is useful in
the following instances:

• High sost of servers: When a Solr based server demands more resources for
faster performance—an increase in memory or CPU is required that impacts
the overall application cost.

• Index generation time: The incremental generation of indexes at faster speeds
is an important part of the lifecycle of enterprise search. Distributed Solr can
add faster performance to this.

• Large indexes: In cases when you have large indexes, a distribution of search
index by means of partitioning adds a lot of value in terms of performance.
Imagine a case when you are using Solr with terabytes of data (For Example:
US patents database has terabytes of data): the index size would grow with
more data getting in, and it would be difficult to fit on a single node.

At the same time, having your search distributed can address the following problems:

• There should be no single point of failure for your search engine. With effective
replication of indexes, this can be achieved. This requires ensuring additional
systems such as load balancer(For example: Nginx, haproxy) or DNS to
provide high availability on top of your search application. Commercial
Amazon ELBs (Elastic Load Balancing) provides such capabilities (More
information: http://aws.amazon.com/elasticloadbalancing/).

• High Availability of the system in spite of multiple nodes failing. Thanks to
high replication factor.

Apache Solr started support for distributed search since the release of 1.3 onwards.
This approach had a straightforward way of creating shards and their replicas out of
document index, keeping it on different nodes in the distributed system, and finally
running search with parameter shards to run the search in a distributed manner.
This system had its own limitations in terms of functionalities and feature support.
We will not be covering the legacy of distributed search support of Apache Solr here:
the information about this can be found on Solr wiki (http://wiki.apache.org/
solr/DistributedSearch or https://cwiki.apache.org/confluence/display/
solr/Legacy+Scaling+and+Distribution).

Lets start looking at Apache SolrCloud which is one of the most widely used
distributed search for Apache Solr.

http://aws.amazon.com/elasticloadbalancing/
http://wiki.apache.org/solr/DistributedSearch
http://wiki.apache.org/solr/DistributedSearch
https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution
https://cwiki.apache.org/confluence/display/solr/Legacy+Scaling+and+Distribution

Chapter 3

[53]

Working with SolrCloud
SolrCloud provides a new way to enable distributed enterprise search using a
Apache Solr in enterprises. Previously, with the standard distributed Solr support,
lot of the manual work had been automated by SolrCloud. With the introduction of
SolrCloud, the manual steps like configuring solr-config.xml to talk with shards,
adding documents to the shards, and so on, work became automatic. Unlike the
traditional approach of master-slave based distributed Solr, SolrCloud provides
a leader-replica-based approach as its implementation. SolrCloud runs on top of
Apache ZooKeeper. First, let's understand the ZooKeeper.

Why ZooKeeper?
SolrCloud contains a cluster of nodes, which use Apache ZooKeeper to talk with
each other. Apache ZooKeeper is responsible for maintaining co-ordination among
various nodes. Besides co-ordinating among nodes, it also maintains configuration
information, and group services to the distributed system. Due to its in-memory
management of information; it offers the distributed co-ordination at high speed.

Apache ZooKeeper itself is replicated over a set of nodes called an
ensemble. They all form a set called ZooKeeper service. Each node
that runs a ZooKeeper and stores its data is also called Znode.

Each ZooKeeper ensemble has one leader and many followers. The process
of choosing a leader starts with the initialization of ZooKeeper cluster through
election. Apache ZooKeeper nodes contain information related to distributed cluster,
changes in the data, timestamp, and ACLs (Access Control List) as well as uploaded
client information. ZooKeeper maintains a hierarchical metadata system similar
to conventional UNIX file system. The following diagram depicts the structure of
ZooKeeper in a distributed environment:

Enabling Distributed Search using Apache Solr

[54]

When the cluster is started, one of the nodes is elected as a leader. All others are
followers. Each follower preserves the read-only copy of the leader's metadata
in itself. Followers keep their metadata in sync with the leader by listening to the
leader's atomic broadcast messages. Once broadcasted, the leader ensures that
the majority of followers commit to the changes made, and informs the client of
the transaction completion. This means that Apache ZooKeeper ensures eventual
consistency. Clients are allowed to upload their own information on ZooKeeper
and distribute it across the cluster. Clients can collect to followers for reading
the information. ZooKeeper maintains a sequential track of updates through its
transaction logs; hence it guarantees the sequential updates as they are received
from different clients by the leader.

Running ZooKeeper in standalone mode is convenient for development
and testing. But in production, you should run ZooKeeper in replication.
A replicated group of servers in the same application is called a quorum.

In case a leader fails, the next leader is chosen and clients are expected to connect
to it. Apache Solr utilizes ZooKeeper to enable distributed capabilities. By default it
provides the embedded ZooKeeper along with its default install. Apache ZooKeeper
is being used by many distributed systems, including (in the past) Apache Hadoop.

The SolrCloud architecture
We have already seen the concepts of shards and indexing. It is important to
understand some of the terminology used in SolrCloud. Unlike Apache ZooKeeper,
SolrCloud has a similar concept of leaders and replicas. Let's assume we have to
create a SolrCloud for documents database. Right now, document database has a
total of three documents:

Document [1] = "what are you eating"
Document [2] = "are you eating pie"
Document [3] = "I like apple pie"

The inverted index for these documents will be:

what(1,1),are(1,2)(2,1),you(1,3)(2,2),eating(1,4)(2,3), pie(2,4)(3,4),
I(3,1),like(3,2), apple(3,3)

In this case, what (1, 1) represents word(document-identifier, offset). A collection is
a complete set of indices in the SolrCloud cluster of nodes. So Solr will have the same
information as mentioned in the preceding example of invested index.

Chapter 3

[55]

A Shard Leader in this case will be a piece of complete index. A shard replica
contains a copy of the same shard. Together Shard Leader and Shard Replica form a
complete shard index or slice. Let's say we divide the index into three shards, they
will look like following:

Shard1: what(1,1),are(1,2)(2,1),you(1,3)(2,2)
Shard2: eating (1,4)(2,3), pie(2,4)(3,4)
Shard3: I (3,1),like(3,2), apple(3,3)

If we assume that all shards are replicated on two machines, each node participating
in the SolrCloud will contain one or more shards and their replicas of the index. An
example setup will look as shown in the following table:

Machine/VM Solr Instance: Port*
M1 M1:8983/solr/ - Solr – Shard1

M1:9983 – ZooKeeper – Leader
M1:8883/solr/ - Solr – Shard3-Replica

M1 M1:8883/solr/ - Solr Shard2
M1:9983 – ZooKeeper Follower
M1:8883/solr/ - Solr Shard1-Replica

M2 M1:8983/solr/ - Solr Shard2-Replica
M1:9983/solr/ - Solr Shard3

* The decision of follower/replica is made automatically by Apache ZooKeeper
and Solr by default. In this case, Machine M1 holds two instances of Apache Solr at
different ports, while machine M2 has a single instance.

A Solr core represents an instance of Apache Solr with complete configuration (such
as solrconfig.xml, schema files, stop words, and others) that is required to run
itself. In the preceding table, we can see a total of six Solr cores each with a machine
running two different cores.

Enabling Distributed Search using Apache Solr

[56]

The organization and interaction between multiple Solr Cores and ZooKeeper can be
seen in the following system context diagram:

Chapter 3

[57]

SolrCloud lets you create a cluster of Solr nodes, each of them running one or more
collections. A collection holds one or more shards which are hosted on one or more
(in case of replication) nodes. Any updates to any nodes participating in SolrCloud
can in turn sync the rest of the nodes. SolrCloud uses Apache ZooKeeper in order
to bring in distributed co-ordination and configuration among multiple nodes. This,
in turn, enables near-real time searching on SolrCloud, due to an active sync of
indexes. Apache ZooKeeper loads all the configuration files of Apache Solr in its own
repository from file system and allows nodes to get access it in a distributed manner.
With this, even if the instance goes away, the configuration will still be accessible
to all other nodes. When a new core is introduced in SolrCloud, it registers with a
ZooKeeper server, by sharing information regarding core, detailing how to contact.
SolrCloud may run one or more collections.

SolrCloud does index distribution to the appropriate shard; it also takes care of
distributing search across multiple shards. Search is possible with near-real time,
after a document is committed. ZooKeeper provides load-balancing and failover to
the Solr cluster, making the overall setup more robust. The index partitioning can be
done in the following ways using Apache Solr:

• Simple: Use of hashing function to a fixed number of shards.
• Prefix based: Partitioning based on the document ID that is Red!12345,

White! 22321. Red and White are example prefix names used for partitioning.
• Custom: Based on custom-defined partitioning, such as document

creation time.

Building an enterprise distributed search
using SolrCloud
In this section, we will try to build a Solr cluster using Apache Solr's SolrCloud.
SolrCloud can be built for development and for production. Development would contain
an easy, smaller version, whereas production would have a complex configuration.

Enabling Distributed Search using Apache Solr

[58]

Setting up SolrCloud for development
Development Environment typically does not require a fully-fledged production-level
landscape. Developers can simply set up a single machine proxy cluster of nodes
on their development server. Each Solr instance can run on any J2EE container like
Jetty, Tomcat, or JBoss, and so on. In this mode, SolrCloud runs along with internal
ZooKeeper provided by Solr installation. To start this, simply start your jetty server
with the following command:

1. Download latest version of Apache Solr from http://lucene.apache.org/
solr/downloads.html.

2. Unzip the instance, and go $SOLR_HOME/example directory.
3. Now run the following command:

$ java –jar start.jar

4. Stop the server. This step of running Solr in a non-cloud mode is required to
unpack the jar files required for SolrCloud.

5. Modify the schema and other configuration files, as per your requirements.
6. Now start the Solr in cluster configuration with the following command:

java -DzkRun -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/
conf -Dcollection.configName=solrconf -jar start.jar

Let's understand the different parameters in this process

Parameter Description
zkRun Runs an instance of embedded ZooKeeper as a part of Solr

Server. Run this on one of the nodes, which will serve as a
central node for all of the coordination.

collection.configName Set the configuration to be used for Collection (Optional).
bootstrap_confdir=<dir-
name>

The given directory name should contain the complete
configuration for SolrCloud, which will include all of the
configuration files such as solrconfig.xml, schema.xml,
and others. When Solr runs, the configuration is loaded in
ZooKeeper as the name given in collection.configName.

zkHost=<host>:<port> This parameter points to the instance of ZooKeeper
(ZooKeeper ensemble) containing the cluster state and
configuration.

numShards=<number> Solr cloud can be run on one or multiple indexes, the no.
of shards denote no. of partitions to be carried out on these
indexes.

http://lucene.apache.org/solr/downloads.html
http://lucene.apache.org/solr/downloads.html

Chapter 3

[59]

You are required to run this command only for the first time, in order to push
the necessary configuration on ZooKeeper. From that point onwards, you can
simply run
java –DzkRun -jar start.jar

7. You will find on the console, the ZooKeeper selection for a leader, followed
by all the configurations getting loaded in ZooKeeper. Apache ZooKeeper
stores the metadata at $SOLR_HOME/example/solr/zoo_data/

8. You can also validate the Solr configuration loaded in ZooKeeper by going to
$SOLR_HOME\ example\scripts\cloud-scripts and running the following
command to get schema.xml from the ZooKeeper metadata store:
zkcli.sh -zkhost localhost:9983 -cmd get /configs/solrconf/schema.
xml

9. Now create another Solr node, either by copying $SOLR_HOME/example
directory to $SOLR_CORE/example1, or creating another instance from
downloaded solr.zip. You can do this on the same machine, or on a
different machine.

10. Now run the following command:
java -Djetty.port=8888 -DzkHost=myhost:9983 -jar start.jar

Enabling Distributed Search using Apache Solr

[60]

11. This will start another node with shard. Now access http://
localhost:8983/solr/#/~cloud and, you will find the shards, with the
collection seeing how they are linked, as shown in the following screenshot:

In the screenshot, Apache Solr administration user interface introspects among
the nodes participating in the cloud, and provides a graphical representation of
leaders, active status. By default, cluster continues in round robin fashion adding
shards, followed by replicas as-and-when a node is added. The Round Robin
algorithm ensures equal sharding for all of the nodes that are participating (for more
information visit http://en.wikipedia.org/wiki/Round-robin_scheduling).
Replicas are assigned automatically, unless their role is stated specifically by passing
parameter –DshardId=1.

Setting up SolrCloud for production
To run a SolrCloud instance with multi-node, it is recommended that you run it by
using a separate ZooKeeper instead of using with an embedded ZooKeeper. A fully
distributed setup will require the Apache ZooKeeper ensemble setup. Let's set up
Apache ZooKeeper first using the following steps:

1. Download latest version of Apache ZooKeeper from http://zookeeper.
apache.org/releases.html#download.

2. Copy and unzip it on all the nodes that are expected to participate in
ZooKeeper ensemble.

3. Create a directory $ZK_HOME/zkdata, and run the following command:
$cat 1 > $ZK_HOME/zkdata/myid

The number here denotes the ID of the server. Similarly, all the participating
nodes should be assigned a unique identifier in this fashion.

http://en.wikipedia.org/wiki/Round-robin_scheduling
http://zookeeper.apache.org/releases.html#download
http://zookeeper.apache.org/releases.html#download

Chapter 3

[61]

4. Now create $ZK_HOME/conf/zoo.cfg with the following entries:
dataDir=$ZK_HOME/zkdata
server.1=node1:2888:3888
server.2=node2:2888:3888
clientPort=2181
tickTime=2000
syncLimit=5
initLimit=10

Here, server.N provides a list of servers that participate in ZooKeeper Service.
The ports: 2888 and 3888 in case of server.1 denote port for communication
with peers, and port for leader selection respectively. The initLimit entry
is the maximum time in which ZooKeeper in quorum should connect to the
leader. The syncLimit entry denotes the maximum time of sync with the
leader. While initLimit and syncLimit are units of tick, tickTime denotes
the time of tick. In this case, tickTime is 2000 milliseconds, which means that
the server will perform syncing every 10000 ms. In this case, ZooKeeper will
run a replicated mode, that is, node1 and node2 are replicated.

5. You need to make sure that node1 and node2 entries are the names of the
nodes, and ensure that your host or DNS resolves them to appropriate IP
addresses. You can find the host file in /etc/host in Unix, and in Windows
you will find it at %System Root%\system32\drivers\etc\hosts.

6. Run all ZooKeeper nodes by running:
$ZK_HOME/bin/zkServer.cmd or zkServer.sh

7. Check if the instance is available by connecting to ZooKeeper server. You can
do this by running the following command:
bin\zkCli.cmd -server node1:2181

8. Now connect to ZooKeeper by running:
[zk:] connect node1:2181

9. Now, it will show that it is connected in the next command prompt.
[zk: node1:2181(CONNECTED) 2]

10. Run ZooKeeper client commands, such as ls (list directory) to validate
the current metadata of Apache ZooKeeper, you can enter the following
command in shell:
[zk: node1:2181(CONNECTED) 2] ls

Enabling Distributed Search using Apache Solr

[62]

You may also choose to configure logger for ZooKeeper in the log4j.properties
file. This will in turn help you quickly detect any find out issues for the initial start.

Now your Apache ZooKeeper ensemble is set up, we can configure Apache Solr
in the recommended setup for production using jetty. In case of Apache Tomcat
or any other container, the parameters are to be passed through the standard J2EE
parameter container:

1. You need to follow the steps you performed while setting up the
development environment. Download and unzip the instance at
every node that is participating in the SolrCloud.

2. Now identify the number of shards, and accordingly set the parameters. Start
with on one of these node:
java -DnumShards=2 -Dbootstrap_confdir=./solr/collection1/conf
-Dcollection.configName=testconf -DzkHost=node1:2181,node2:2181
-jar start.jar

Please note that all the ZooKeeper nodes in the replicated phase have to be
passed to –DzkHost parameters in the comma separated manner.

3. Once this server is up, the other nodes can be started using the
following command:
java -Djetty.port=<your-choice-of-port> -DzkHost=<zkeeper-
leader>:2183 -jar start.jar

Chapter 3

[63]

Once the nodes are started, you can validate them through administration
user interface. Solr Admin provides additional information. The Tree view
provides directory browsing of Cloud based configuration, which, is part of
ZooKeeper, and you can access it by browsing http://localhost:8983/
solr/#/~cloud?view=tree.

The admin UI shows information related to cluster, the current shards along with
leaders, status of a cluster and Solr cluster configuration. You can also use the utility
zkCLI (ZooKeeper command-line interface) to read/write the data to and from
ZooKeeper store.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Enabling Distributed Search using Apache Solr

[64]

Adding a document to SolrCloud
To add a document in Solr, you can simply choose any node part of your cluster and
run the following command:

curl http://node1:8983/solr/update/json -H 'Content-type:application/
json' -d

'

[

{"id" : "1", "text" : "This is a test document"}]'

You can also load files from the example directory as shown here:

curl http://node1:8983/solr/update/csv --data-binary @books.csv -H
'Content-type:text/plain; charset=utf-8'

This command uploads CSV file. Once this is complete, validate the uploaded
document by running the query through browser/administration window, or simply
typing in browser http://localhost:8983/solr/collection1/select?q=*%3A*&
wt=json&indent=true.

When node1 in the Solr cluster receives a request for indexing the document, if the
document is a replica, it forwards it to the leader of the shard. Each leader performs
hashing on the document ID, based on its prefix or automatically, and if the leader
does not own the responsibility of that shard, it has to forward it to the leader of the
shard. Once the correct leader receives the document, it updates its transactional log,
and forwards the document to its replica for replication. When the document is first
received, it is assigned version ID, and the leader first tries to see if it has a higher
version. If it does, then the leader will simply ignore the uploaded document.

The Solr Transactional Log is an append-only log of write
operations per node in a cluster. Solr records all the write operations
before the write commit, and marks it post commit. If the indexing
process is stopped for some reason, next time, Solr will first review
transaction logs, and then completes the pending indexing.

Chapter 3

[65]

Creating shards, collections, and replicas in
SolrCloud
You can create shards, collections, and their replicas on SolrCloud through the
web-based handlers provided by Solr, by uploading them using CURL utility. Now,
let's try an exercise of creating a distributed search index (shard) with replicas on one
collection for SolrCloud. First, we need to start with the creation of a collection (that
is, clusterCollection) assuming the replication of 3, and max shards per node = 2:

curl 'http://node1:8983/solr/admin/collections?action=CREATE&name=clus
terCollection&numShards=3&replicationFactor=3&maxShardsPerNode=2'

This will create a collection with name clusterCollection on Solr. We have
already linked its configuration through ZooKeeper earlier.

Now, let's create replicas of the shards by running the following command (this
command has to run for each replica that you intend to create in your Solr instance).

curl 'http://node1:8983/solr/admin/cores?action=CREATE&name=shardA-Rep
lica1&collection=clusterCollection&shard=shardA'

curl 'http://node2:8983/solr/admin/cores?action=CREATE&name=shardB-Rep
lica2&collection=clusterCollection&shard=shardB'

The following example shows how the admin UI will show the shard distribution of
your indexes:

Enabling Distributed Search using Apache Solr

[66]

Now the documents can directly be posted to any of the nodes hosting Solr index.
The following example shows uploading of default documents shipped with Solr on
this cloud instance:

cd $SOLR_HOME/example/exampledocs/
java -Durl=http://node1:8983/solr/clusterCollection/update -jar post.
jar ipod_video.xml
java -Durl=http://node2:8983/solr/clusterCollection/update -jar post.
jar monitor.xml

You can simply verify this it by accessing Solr instance with wildcard query:

http://node1:8983/solr/clusterCollection/select?q=*:*

Common problems and resolutions
Now the installation is successful, let's try to address some of the common problems
and their solutions that you may face during set up:

• I have been using SolrCloud for a long time, and today when I ran it,
it showed me some of the old nodes in the current cluster landscape.
How do I fix this?
This can be fixed by cleaning ZooKeeper metadata. However, first you
need to back-up the existing ZooKeeper metadata using zkCLI command
(get/getfile calls). Once you back-up the ZooKeeper, shut down all the
instances, and rename $SOLR_HOME/example/solr/zoo_data directory to a
different name, and then restart SolrCloud, and ZooKeeper. This will recreate
the ZooKeeper configuration again and add configuration directories. You
can validate the new cluster configuration of Apache ZooKeeper by running
zkCLI with
[zk: node1:2181(CONNECTED) 4] get /clusterstate.json

Chapter 3

[67]

This will show the complete details of the cluster. You can also validate this
through the administration console by browsing the /clusterstate.json
file as shown in the following screenshot:

• I am getting lot of exceptions from Solr with connection time out as the
error description.
Since the connections are timing out, one possibility is that the leader itself
is going down, or the responses are slow due to network latency. This can
be fixed by increasing the timeout of Apache ZooKeeper. The Zoo.cfg file
contains a tick time (usually 2 seconds): this should not be touched, instead
modify property zkClientTimeout in solrconfig.xml to work with more
ticks for ZooKeeper.

• I have a single node Solr instance with information indexed as of now, can
I migrate this index to SolrCloud anyway?
There is no support for this kind of problem in Apache Solr (Version 4.6), so
in this case, you need to re-parse all the documents, and re-index them one
more time.

Enabling Distributed Search using Apache Solr

[68]

Sharding algorithm and fault tolerance
We have already seen the sharding, collection and replicas. In this section we
will look at some of the important aspects of sharding, and how it plays a role in
scalability and high availability. The strategy for creating new shards is highly
dependent upon the hardware and the shard size. Let's say, you have two machines
M1 & M2, of, the same configuration, each with one shard. Shard A is loaded with 1
million index documents, and shard B is loaded with 100 documents. When a query
is fired, the query response to any Solr queries is determined by the query response
of slowest node (in this case shard A). Hence having a shard with near to equal shard
sizes can perform better in this case.

Document Routing and Sharding
Typically, when any enterprise search is deployed, the size of documents to be
indexed keeps growing over time. Since SolrCloud provides a way to create a
cluster of Solr nodes running on index shards, it becomes feasible to scale up the
enterprise search infrastructure with time. However, as the shard size grows, it
becomes difficult to manage them on a single shard. SolrCloud can be started with
numOfShards controlling how many shards are run in the cloud. To route the newly
indexed documents, take a look at the following flowchart:

Chapter 3

[69]

When a Solr instance is started, it firstly registers itself with ZooKeeper, creating
Ephemeral Node or Znodes. A ZooKeeper provides a shared hierarchical namespace
for processes to co-ordinate with each other. The namespace consists of the data
registered, called Znodes. Apache Solr provides you with two ways to distribute Solr
documents across shards. Auto-sharding distributes the documents automatically
through its own hashing algorithm. Each shard is allocated with a range for hashing,
and it can be seen in /clusterstate.json as shown in the following screenshot:

Another way of distributing the document across a shard is to use custom sharding.
With custom sharding, client applications that pass documents for indexing to
Apache Solr are primarily responsible for placing them in a shard. Each document
has a unique ID attribute, and a shard key can be prefixed to this ID, for example:
shard1!docId55. The ! operator acts as a separator. Custom Sharding helps users in
influence the storage for his document indexes.

Enabling Distributed Search using Apache Solr

[70]

Users can choose various strategies for distributing the shards across different nodes
for efficient usage. Similarly, a query can be performed on a specific shard (instead of
a complete index) by passing shard.keys=shard1!,shard2! as a query parameter.
These features enable Apache Solr to work in a multi-tenancy environment, or as a
regional distributed search. You can also spread tenants across multiple shards by
introducing another prefix for the unique ID. The syntax for this looks like:

Shard_key/number!doc_id

Shard splitting
The feature of Shard splitting was introduced in Apache Solr 4.3. It is designed
to work with Apache Solr's auto-sharding. It allows users to split shards without
breaking the search runtime or even the indexing. A shard can be split into two by
running the following URL on your browser:

http://localhost:8983/solr/admin/collections?collection=collection1&s
hard=[shard_name]&action=SPLITSHARD

As you split the shards, the average query performance tends to slow down. The call
to SPLITSHARD will create two new shards (shard1_1, and shard1_2 out of shard1)
as shown in the following screenshot:

Chapter 3

[71]

The numbers of documents are divided equally across these two sub-shards. Once
the split is complete, shard1 will be made inactive. The new subshards get created
in construction state, and the index updates on shard start getting forwarded to new
subshards. Once the splitting is complete, the parent shard becomes inactive. The old
shard can be deleted by calling DELETESHARD in the following way:

http://localhost:8983/solr/admin/
collections?collection=collection1&shard=shard1&action=DELETESHARD

With large index sizes, the search performance can become slow. Auto-sharding in
Solr lets you start with a fixed number of shards, and shard splitting, offers an easy
way to reduce the size of each shard across Solr cores as the index size grows.

Although the parent shard is inactive, Solr Admin UI does
not become aware of the states, and shows the parent shard
in green (active) state.

Load balancing and fault tolerance in
SolrCloud
SolrCloud provides built-in load balancing capabilities to its clients. So, when a
request is sent to one of the servers, it is re-directed to the respective leader to
get all the information. If your client application is Java based, you can rely on
CloudSolrServer and LbHttpSolrServer (load balanced HTTP server) classes of
SolrJ to perform indexing and search across SolrCloud. CloudSolrServer will load
balance queries across all operational servers automatically. The Java code through
SolrJ for searching on SolrCloud is as follows:

CloudSolrServer server = new CloudSolrServer("localhost:9983");
server.setDefaultCollection("collection1");
SolrQuery solrQuery = new SolrQuery("*.*");
QueryResponse response = server.query(solrQuery);
SolrDocumentList dList = response.getResults();
for (int i = 0; i < dList.getNumFound(); i++)
{
 for (Map.Entry mE : dList.get(i).entrySet())
 {
 System.out.println(mE.getKey() + ":" + mE.getValue());
 }
}

Enabling Distributed Search using Apache Solr

[72]

Fault tolerance is the ability to keep the system functions working with degraded
support, even in the case of failure of a system components. Fault tolerance in
SolrCloud is managed at different levels.

Since SolrCloud performs its own load balancing, a call to any one of the nodes
participating in the cloud can be made. The applications that do not rely on a
Java-based client may require a load balancer to fire queries. The intent of the load
balancer is not to balance the load, but enable the removal of a single point of failure
for the calling party. So in case of a failure of node1, the load balancer can forward
the query to node2, thus enabling fault tolerance in Apache Solr.

When a search request is fired on SolrCloud, the request gets executed on all leaders
of that shard (unless a user chooses a shard in their query). If one of the nodes is
failing to respond to a Solr query due to an error, the wait for the final search result
can be avoided by enabling support for partial results. This support can be enabled
by passing shards.tolerant=true. This read-side fault tolerance ensures that the
system returns the results, in spite of the unavailability of the node.

Apache Solr also supports write-side fault tolerance that makes the instance durable,
even in the instance of power failures, restarts, JVM crash, and so on. Each node
participating in Solr maintains a transaction log, tracking all the changes to the node.
This logging helps Solr node to recover in case of failures or interruption during the
indexing operation.

Apache Solr and Big Data – integration
with MongoDB
In an enterprise, data is generated from all the software that is participating in
day-to-day operations. This data has different formats, and bringing in this data for
big-data processing requires a storage system that is flexible enough to accommodate
a data with varying data models. A NoSQL database, by its design, is best suited
for this kind of storage requirements. One of the primary objectives of NoSQL
is horizontal scaling, that is, the P in CAP theorem, but this works at the cost of
sacrificing Consistency or Availability. Visit http://en.wikipedia.org/wiki/CAP_
theorem to understand more about CAP theorem.

http://en.wikipedia.org/wiki/CAP_theorem
http://en.wikipedia.org/wiki/CAP_theorem

Chapter 3

[73]

What is NoSQL and how is it related to Big
Data?
As we have seen, data models for NoSQL differ completely from that of a relational
database. With the flexible data model, it becomes very easy for developers to quickly
integrate with the NoSQL database, and bring in large sized data from different data
sources. This makes the NoSQL database ideal for Big Data storage, since it demands
that different data types be brought together under one umbrella. NoSQL also has
different data models, like KV store, document store and Big Table storage.

In addition to flexible schema, NoSQL offers scalability and high performance,
which is again one of the most important factors to be considered while running big
data. NoSQL was developed to be a distributed type of database. When traditional
relational stores rely on the high computing power of CPUs and the high memory
focused on a centralized system, NoSQL can run on your low-cost, commodity
hardware. These servers can be added or removed dynamically from the cluster
running NoSQL, making the NoSQL database easier to scale. NoSQL enables most
advanced features of a database, like data partitioning, index sharding, distributed
query, caching, and so on.

Although NoSQL offers optimized storage for big data, it may not be able to replace
the relational database. While relational databases offer transactional (ACID),
high CRUD, data integrity, and a structured database design approach, which are
required in many applications, NoSQL may not support them. Hence it is most
suited for Big Data where there is less possibility of need for data to be transactional.

MongoDB at glance
MongoDB is one of the popular NoSQL databases, (just like Cassandra). MongoDB
supports the storing of any random schemas in the document oriented storage of its
own. MongoDB supports the JSON-based information pipe for any communication
with the server. This database is designed to work with heavy data. Today, many
organizations are focusing on utilizing MongoDB for various enterprise applications.

MongoDB provides high availability and load balancing. Each data unit is replicated
and the combination of a data with its copes is called a replica set. Replicas in
MongoDB can either be primary or secondary. Primary is the active replica, which is
used for direct read-write operations, while the secondary replica works like a backup
for the primary. MongoDB supports searches by field, range queries, and regular
expression searches. Queries can return specific fields of documents and also include
user-defined JavaScript functions. Any field in a MongoDB document can be indexed.
More information about MongoDB can be read at https://www.mongodb.org/.

https://www.mongodb.org/

Enabling Distributed Search using Apache Solr

[74]

The data on MongoDB is eventually consistent. Apache Solr can be used to work with
MongoDB, to enable database searching capabilities on a MongoDB-based data store.
Unlike Cassandra, where the Solr indexes are stored directly in Cassandra through
solandra, MongoDB integration with Solr brings in the indexes in the Solr-based
optimized storage.

There are various ways in which the data residing in MongoDB can be analyzed
and searched. MongoDB's replication works by recording all operations made on a
database in a log file, called the oplog (operation log). Mongo's oplog keeps a rolling
record of all operations that modify the data stored in your databases. Many of the
implementers suggest reading this log file using a standard file IO program to push
the data directly to Apache Solr, using CURL, SolrJ. Since oplog is a collection of data
with an upper limit on maximum storage, it is feasible to synch such querying with
Apache Solr. Oplog also provides tailable cursors on the database. These cursors can
provide a natural order to the documents loaded in MongoDB, thereby, preserving
their order. However, we are going to look at a different approach. Let's look at the
schematic following diagram:

In this case, MongoDB is exposed as a database to Apache Solr through the custom
database driver. Apache Solr reads MongoDB data through the DataImportHandler,
which in turns calls the JDBC-based MongoDB driver for connecting to MongoDB
and running data import utilities. Since MongoDB supports replica sets, it manages
the distribution of data across nodes. It also supports Sharding just like Apache Solr.

Chapter 3

[75]

Installing MongoDB
To install MongoDB in your development environment, please follow the
following steps:

1. Download the latest version of MongoDB from https://www.mongodb.org/
downloads for your supported operating system.

2. Unzip the zipped folder.
3. MongoDB comes up with a default set of different command-line

components and utilities:
 ° bin/mongod: The database process.
 ° bin/mongos: Sharding controller.
 ° bin/mongo: The database shell (uses interactive JavaScript).

4. Now, create a directory for MongoDB, which it will use for user data
creation and management, and run the following command to start the
single node server:
$ bin/mongod –dbpath <path to your data directory> --rest

In this case, --rest parameter enables support for simple rest APIs that can
be used for getting the status.

5. Once the server is started, access http://localhost:28017 from your favorite
browser, you should be able to see following administration status page:

https://www.mongodb.org/downloads
https://www.mongodb.org/downloads

Enabling Distributed Search using Apache Solr

[76]

Now that you have successfully installed MongoDB, try loading a sample data set
from the book on MongoDB by opening a new command-line interface. Change the
directory to $MONGODB_HOME and run the following command:

$ bin/mongoimport --db solr-test --collection zips --file "<file-dir>/
samples/zips.json"

Please note that the database name is solr-test. You can see the stored data using
the MongoDB-based CLI by running the following set of commands from your shell:

$ bin/mongo

MongoDB shell version: 2.4.9

connecting to: test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

> use test

Switched to db test

> show dbs

exampledb 0.203125GB

local 0.078125GB

test 0.203125GB

> db.zips.find({city:"ACMAR"})

{ "city" : "ACMAR", "loc" : [-86.51557, 33.584132], "pop" : 6055,
"state" :"AL", "_id" : "35004" }

Congratulations! MongoDB is installed successfully

Chapter 3

[77]

Creating Solr indexes from MongoDB
To run MongoDB as a database, you will need a JDBC driver built for MongoDB.
However, the Mongo-JDBC driver has certain limitations, and it does not work
with the Apache Solr DataImportHandler. So, I have extended Mongo-JDBC to
work under the Solr-based DataImportHandler. The project repository is available
at https://github.com/hrishik/solr-mongodb-dih. Let's look at the setting-up
procedure for enabling MongoDB based Solr integration:

1. You may not require a complete package from the solr-mongodb-dih
repository, but just the jar file. This can be downloaded from https://
github.com/hrishik/solr-mongodb-dih/tree/master/sample-jar.
The compiled jar file is also available with this book for easy access.
You will also need the following additional jar files:

 ° jsqlparser.jar

 ° mongo.jar

These jars are made available with this book as well as, and you will find
them in the lib directory of the solr-mongodb-dih repository.

2. In your Solr setup, copy these jar files into the library path, that is, the
$SOLR_WAR_LOCATION/WEB-INF/lib folder. Alternatively, point your
container classpath variable to link them up.

3. Using simple Java source code DataLoad.java (link https://github.com/
hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java),
populate the database with some sample schema and tables that you will use
to load in Apache Solr.

4. Now create a data source file (data-source-config.xml) as follows:
<dataConfig>
 <dataSource name="mongod" type="JdbcDataSource" driver="com.
mongodb.jdbc.MongoDriver" url="mongodb://localhost/solr-test"/>
 <document>
 <entity name="nameage" dataSource="mongod" query="select name,
price from grocery">
 <field column="name" name="name"/>
 <field column="name" name="id"/>
 <!-- other files -->
 </entity>
 </document>
</dataConfig>

https://github.com/hrishik/solr-mongodb-dih
https://github.com/hrishik/solr-mongodb-dih/tree/master/sample-jar
https://github.com/hrishik/solr-mongodb-dih/tree/master/sample-jar
https://github.com/hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java
https://github.com/hrishik/solr-mongodb-dih/blob/master/examples/DataLoad.java

Enabling Distributed Search using Apache Solr

[78]

5. Copy the solr-dataimporthandler-*.jar from your contrib directory to
a container/application library path.

6. Modify $SOLR_COLLECTION_ROOT/conf/solr-config.xml with DIH entry:
 <!-- DIH Starts -->
 <requestHandler name="/dataimport" class="org.apache.solr.
handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config"><path to config>/data-source-config.xml</
str>
 </lst>
 </requestHandler>
 <!-- DIH ends -->

7. Once this configuration is done, you are ready to test it out. Access http://
localhost:8983/solr/dataimport?command=full-import from your
browser to run the full import on Apache Solr, where you will see that your
import handler has successfully ran, and has loaded the data in Solr store, as
shown in the following screenshot:

Chapter 3

[79]

You can validate the content created by your new MongoDB DIH by accessing the
Solr Admin page, and running a query:

Using this connector, you can perform operations for full-import on various data
elements. Since MongoDB is not a relational database, it does support join queries.
However, it supports selects, order by, and so on.

Summary
In this chapter, we have understood the distributed aspects of any enterprise search.
We understood distributed search patterns, and how Apache Solr can be used as a
distributed search. We started working with Apache SolrCloud, by understanding
its architecture, and building a SolrCloud instance of development and production.
We also looked at sharding strategies and fault tolerance. Finally, we went through
Apache Solr and MongoDB together. In the coming chapter, we will see how Apache
Hadoop and Solr can complement each other, alongside the various implementations
of Solr with Hadoop.

[81]

Big Data Search Using
Hadoop and Its Ecosystem

Sometime back, Gartner (http://www.gartner.com/newsroom/id/2304615)
published an executive program survey report, which revealed that big data and
analytics are among the top 10 business priorities for CIOs; similarly, analytics
and BI are also at the top of CIO's Technical Priorities. Big data presents three
major concerns for any organization: namely the storage of big data, data access or
querying, and data analytics. Apache Hadoop provides an excellent implementation
framework for the organizations looking to solve these problems. Similarly, there is
other software that provides efficient storage and access to big data, such as Apache
Cassandra and R Statistical. In this chapter, we will explore the possibilities of
Apache Solr in working with big data.

We have already discussed a scaling search with SolrCloud in the previous chapters.
In this chapter, we will be focusing on the following topics:

• Understanding NoSQL
• Working with Solr HDFS Connector
• Big data Search using Katta
• Solr 1045 Patch: Map Side Indexing
• Solr 1301 Patch: Reduce Side Indexing
• Distributed Search using Apache Blur
• Apache Solr and Cassandra
• Scaling Solr through Storm
• Advanced Analytics with Solr

http://www.gartner.com/newsroom/id/2304615

Big Data Search Using Hadoop and Its Ecosystem

[82]

Understanding NoSQL
Traditional relational databases allow users to define a strict data structure, and use
an SQL-based querying mechanism. NoSQL databases, rather than confining users to
define the data structures, allow an open database with which they can store any kind
of data and retrieve it by running queries that are not SQL based. In an enterprise,
data is generated from all the software used in day-to-day operations. This data has
different formats, and bringing in this data for big-data processing requires for a
storage system that is flexible enough, to accommodate data with varying data models.
The NoSQL database, by design is best suited for such storage.

The CAP theorem or Brewer's theorem talks about distributed consistency.
It states that it is impossible to achieve all of the following in a distributed
system:

• Consistency: Every client sees the most recently updated data
state.

• Availability: The distributed system functions as expected, even if
there are node failures.

• Partition tolerance: Intermediate network failure among nodes
does not impact system functioning.

Achieving all three of these capabilities is a difficult task, so most
databases focus on achieving any two. You can read more information on
the CAP theorem at http://en.wikipedia.org/wiki/CAP_theorem.

One of the primary objectives of NoSQL is horizontal scaling, that is, achieving the P
in the CAP theorem at the cost of sacrificing Consistency or Availability. As we have
seen, data models for NoSQL differ completely from those of relational databases.
With the flexible data model, it becomes very easy for developers to quickly integrate
the NoSQL database and bring in heavy data from different data sources. This makes
NoSQL databases ideal for big data storage, since it demands different data types to
be brought together under one umbrella.

In addition to flexible schema, NoSQL offers scalability and high performance, which
is again one of the most important factors to be considered while running big data.

Working with the Solr HDFS connector
Apache Solr can utilize HDFS for indexing and storing its indices on the Hadoop
system. It does not utilize a MapReduce-based framework for indexing. The following
diagram shows the interaction pattern between Solr and HDFS. You can read more
details about Apache Hadoop at http://hadoop.apache.org/docs/r2.4.0/.

http://en.wikipedia.org/wiki/CAP_theorem
http://hadoop.apache.org/docs/r2.4.0/

Chapter 4

[83]

Let's understand how this can be done.

1. To start with, the first and most important task is getting Apache
Hadoop set up on your machine (proxy node configuration), or setting
up a Hadoop cluster. You can download the latest Hadoop tarball or zip
from http://hadoop.apache.org. The newer generation Hadoop uses
advanced MapReduce (also known as YARN).

2. Based on the requirement, you can set up a single node (Documentation:
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/
hadoop-common/SingleCluster.html) or a cluster (Documentation:
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/
hadoop-common/ClusterSetup.html).

3. Typically, you will be required to set up the Hadoop environment and
modify different configurations (yarn-site.xml, hdfs-site.xml, master,
slaves, and others). Once it is set up, restart the Hadoop cluster.

http://hadoop.apache.org
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/r<version>/hadoop-project-dist/hadoop-common/ClusterSetup.html

Big Data Search Using Hadoop and Its Ecosystem

[84]

4. Once Hadoop is setup, verify the installation of Hadoop by accessing
http://host:port/cluster. You will see the following Hadoop
cluster status:

5. Now, using the HDFS command, create a folder in HDFS to keep your Solr
index and Solr logs:
$ $HADOOP_HOME/bin/hdfs.sh dfs -mkdir /Solr

$ $HADOOP_HOME/bin/hdfs.sh dfs -mkdir /Solr-logs

This call will create folders in the root folder, that is , /, on HDFS. You can
verify these by running:
$ $HADOOP_HOME/bin/hdfs.sh dfs –ls /

Found 2 items

drwxr-xr-x - hrishi supergroup 0 2014-05-11 11:29 /Solr

drwxr-xr-x - hrishi supergroup 0 2014-05-11 11:27 /
Solr-logs

You can also browse the folder structure by accessing
http://<host>:50070/.

Chapter 4

[85]

6. Once the folders are created, the next step will be to point Apache Solr
to run with Hadoop HDFS. This can be done by passing JVM arguments
for DirectoryFactory. If you are running Solr on a jetty, you can use the
following command:
java -Dsolr.directoryFactory=HdfsDirectoryFactory -Dsolr.lock.
type=hdfs -Dsolr.data.dir=hdfs://<host>:19000/solr -Dsolr.
updatelog=hdfs:// <host>:19000/Solr-logs -jar start.jar

You can validate the Solr on HDFS by accessing the Solr admin UI, to see it
running on HDFS as shown in following screenshot:

7. In case you are using Apache SolrCloud, you can point solr.hdfs.home to
your HDFS folder, and keep the data and logs on the local machine.
java -Dsolr.directoryFactory=HdfsDirectoryFactory -Dsolr.lock.
type=hdfs -Dsolr.hdfs.home=hdfs://<host>:19000/solrhdfs -jar
start.jar

Big Data Search Using Hadoop and Its Ecosystem

[86]

Big data search using Katta
Katta provides highly scalable, fault-tolerant information storage. It is an open source
project and uses the underlying Hadoop infrastructure (to be specific, HDFS) for
storing its indices and providing access to them. Katta has been in the market for the
last few years and while recently, the development on Katta has been stalled, there
are still many users who go with Solr-Katta-based integration for big data search.
Some organizations customize Katta as per their needs and utilize its capabilities
for highly scalable search. Katta brings Apache Hadoop and Solr together, bringing
search across a completely distributed MapReduce-based cluster. You can read more
information about Katta on http://katta.sourceforge.net/.

How Katta works?
Katta can be primarily used with two different functions. The first is generating
the Solr index, and the second is by running a search on the Hadoop cluster. The
following diagram depicts what the Katta architecture looks like:

The Katta cluster has a master node called Katta Master. All other nodes are
participants and are responsible for storing the data in their own local store by using
HDFS or any other file system (if Katta is not used with Hadoop). Katta concepts
are similar to Hadoop; each index is divided into multiple shards, and these shards
are stored on the participating nodes. Each node also contains a content server to
determine which type of shard is supported by a given Katta participating node.

 http://katta.sourceforge.net/

Chapter 4

[87]

Katta Master is responsible for communicating with nodes. Apache ZooKeeper
communicates between Katta Master and the other participating nodes. All the nodes
share a common folder (virtual folder) as supported by Apache ZooKeeper. This is
where all the participating nodes keep the updated status of each node. This way,
the Katta cluster does not require heartbeats, which are typically used by ZooKeeper
clients for keeping the status of each node. The Katta cluster provides a blocking
queue through which the overall work is divided among the nodes. Each node holds
one queue, and the work is pushed to this queue. The node, after completing a task,
looks at its queue for the next assignments one by one. The operations, such as shard
deployment are supported by these queues.

Katta uses the multicasting concept for a search. The multicasting scope is
determined by Katta Master based on the placement of shards, so when a search is
requested, the client multicasts the query to the selected nodes through the use of the
Hadoop Remote Procedure Calls (RPC) mechanism for faster direct communication.
Each node then runs the query on its own shard and provides matching results with
the scores. The scores are calculated across the Katta cluster node by node, so the
merging of the result becomes easier. After merging them, ordering them as per the
score, they are then returned to the client application.

Setting up the Katta cluster
Setting up the Katta cluster requires either downloading the distribution from
http://sourceforge.net/project/showfiles.php?group_id=225750 or
building the source available on http://katta.sourceforge.net/documentation/
build-katta/. If you are building the source, you need to run the following
commands once you untar the source on Apache Ant version 1.6:

ant dist

The source will compile, and once it is completed, you will find the distributed
folder created in the $KATTA_ROOT/build folder. You need to untar and copy katta-
core-VERSION.tar.gz to all the participating nodes as well as master. Once copied,
validate the deploy policy in the katta.master.properties file. Similarly, update
the katta.zk.properties file as per your ZooKeeper configuration (ensemble or
embedded). For embedded ZooKeeper, you need to modify the zookeeper.servers
attribute for all nodes. You need to point to the master node. Now, you can start the
master by running the following command:

bin/katta startMaster

http://sourceforge.net/project/showfiles.php?group_id=225750
http://katta.sourceforge.net/documentation/build-katta/
http://katta.sourceforge.net/documentation/build-katta/

Big Data Search Using Hadoop and Its Ecosystem

[88]

This will start the master at first. You should start the individual nodes on all
machines by using the following command:

bin/katta startNode

Once all the nodes are started, you can start adding indexes to Katta.

Creating Katta indexes
Using Katta, you can either create a Hadoop map file-based index or use the Lucene
index. You can also create your own type of shard. The Lucene index can be loaded
on HDFS by importing the index in the Hadoop cluster. This is applicable to the
exiting or already generated indexes.

You can alternatively use Hadoop's MapReduce capabilities to create an index
out of normal documents. This is feasible by first transforming your data into
the Hadoop sequential format with the help of the net.sf.katta.indexing.
SequenceFileCreator class. You can also use Katta's sample creator script
(http://katta.sourceforge.net/documentation/how-to-create-a-katta-
index). Please note that Katta runs on older versions of Hadoop (0.20). Once the
index is created, you can deploy them by using the addIndex call as shown here:

bin/katta addIndex <index-name> hdfs://<location-of-index>

Once the index is created, you can validate the availability of the index by running a
search with the following command:

bin/katta search <index-name> <field:search-string>

Katta also provides a web-based interface for monitoring and administration
purposes. It can be started by running:

bin/katta startGui

It provides masters, node information, shards, and indexes on the administration UI.
This application is developed using the Grails technology.

Although Katta provides a completely Hadoop-based distributed search, it lacks
the speed, and users frequently have to customize the Katta code as per their
requirements. Katta provides an excellent failover for the master and the slaves nodes
that are replicated, making it eligible for an enterprise-level big data search. However,
the search cannot be used in real time, due to limits on speed. Katta is also not actively
developed by the developers. The Apache Solr development community initially tried
to incorporate Katta in Solr, but due to the focus on and advancements in SolrCloud,
it was not merged in Apache Solr. Apache Solr created a JIRA for integrating Katta in
Solr (Please refer to https://issues.apache.org/jira/browse/SOLR-1395).

http://katta.sourceforge.net/documentation/how-to-create-a-katta-index
http://katta.sourceforge.net/documentation/how-to-create-a-katta-index
https://issues.apache.org/jira/browse/SOLR-1395

Chapter 4

[89]

Using Solr 1045 Patch – map-side
indexing
Apache Solr 1045 patch provides Solr users a way to build Solr indexes using the
MapReduce framework of Apache Hadoop. Once created, this index can be pushed
to Solr storage. The following diagram depicts the Mapper and Reducer in Hadoop:

Each Apache Hadoop mapper transforms the input records into a set of (key, value)
pairs, which then get transformed into SolrInputDocument. The Mapper task then
ends up creating an index from SolrInputDocument.

The focus of Reducer is to perform de-duplication of different indexes and merge
them if needed. Once the indexes are created, you can load them on your Solr
instance and use them for searching. You can read more about this patch at
https://issues.apache.org/jira/browse/SOLR-1045.

The patch follows the standard process of patching up your label through svn
(Subversion). To apply a patch to your Solr instance, first, you need to build your
Solr instance using source. The instance should be supported by Solr-1045 patch.
Now, download the patch from Apache JIRA site (https://issues.apache.org/
jira/secure/attachment/12401278/SOLR-1045.0.patch). Before running the
patch, first do a dry run, which does not actually apply a patch. You can do it with
the following command:

cd <Solr-trunk-dir>

svn patch <name-of-patch> --dry-run

https://issues.apache.org/jira/browse/SOLR-1045.
https://issues.apache.org/jira/secure/attachment/12401278/SOLR-1045.0.patch
https://issues.apache.org/jira/secure/attachment/12401278/SOLR-1045.0.patch

Big Data Search Using Hadoop and Its Ecosystem

[90]

If the dry run works without any failure, you can apply the patch directly. You can
also perform the dry run by using a simple patch command:

patch <name-of-patch> --dry-run

Once it is successful you can run the patch without the –dry-run option to apply the
patch. On Windows, you can apply the patch with the right click:

On Linux, you can use svn path as shown in the previous example. Let's look at some
of the important classes in the patch. The SolrIndexUpdateMapper class is responsible
for creating new indexes from the input document. The SolrXMLDocRecordReader
class reads Solr input XML files for indexing. The SolrIndexUpdater class is
responsible for creating a MapReduce job and running it to read the document and
updating the Solr instance.

Although Apache Solr patch 1045 provides an excellent parallel
mapper and reducer, when the indexing is done at the map side,
all the <key, value> pairs received by the reducer gain equal
weight/importance. So, it is difficult to use this patch with data
that carries ranking/weight information.

This patch also provides a way for users to merge the indexes in the reducer
phase of the patch. This patch is not yet part of the Solr label, but it is targeted
for the Solr 4.9/5.0 label.

Chapter 4

[91]

Using Solr 1301 Patch – reduce-side
indexing
The Solr 1301 patch is responsible for generating an index using the Apache Hadoop
MapReduce framework. This patch is merged in Solr version 4.7 and is available in
the code-line if you take Apache Solr with 4.7+ versions. This patch is similar to the
previously discussed patch (SOLR-1045), but the difference is that the indexes that
are generated using Solr 1301 are in the reduce phase and not in the map phase of
Apache Hadoop's MapReduce. Once the indexes are generated, they can be loaded
on Solr or SolrCloud for further processing and application searching. The following
diagram depicts the overall flow:

In case of Solr 1301, a map task is responsible for converting input records into a
<key, value> pair. Later, they are passed to the reducer. The reducer is responsible for
converting and publishing SolrInputDocument, which is then transformed into Solr
indexes. The indexes are then persisted on HDFS directly and can later be exported
to a Solr instance. In the latest Solr instance, this patch is part of the contrib module in
the $SOLR_HOME\contrib\map-reduce folder. The patch/contrib map-reduce folder
provides a MapReduce job that allows a user to build Solr indexes and merge them in
the Solr cluster optionally.

Big Data Search Using Hadoop and Its Ecosystem

[92]

You will require a Hadoop cluster to run a solr 1301 patch. The solr 1301 patch is
merged in Solr version 4.7 and is part of Solr contrib already. Once Hadoop is set,
you can run the following command:

$HADOOP_HOME/bin/hadoop --config $HADOOP_CONF_DIR jar $SOLR_HOME/
contrib/dist/solr-map-reduce-*.jar -D 'mapred.child.java.opts=-Xmx500m'
--morphline-file readAvroContainer.conf --zk-host 127.0.0.1:9983
--output-dir hdfs://127.0.0.1:8020/outdir --collection collection1
--log4j log4j.properties --go-live --verbose "hdfs://127.0.0.1:8020/
indir"

In this command, the config parameter requires the configuration folder path of the
Hadoop setup, the mapred.child.java.opts parameter passes the parameters to
MapReduce programs, while the zk-host parameter points to an Apache ZooKeeper
instance, the output-dir is where the output of this program should be stored,
collection points to the collection in Apache Solr, log4j provides pointers to the
log, the go-live option enables the merging of the output shards of the previous
phase into a set of live customer-facing Solr servers, and morphline-file provides
the configuration of the Avro-based pipe.

This will run the mapper and the reducer to generate a Solr index. Once the index
is created through a Hadoop patch, it will be provisioned to the Solr server. The
patch contains the default converter for CSV files. Let's look at some of the important
classes that are a part of this patch. The CSVDocumentConverter class takes care
of converting the output of mapper(key,value) to SolrInputDocument. The
CSVReducer class provides the reducer implementation of the Hadoop Reduce
cluster. The CSVIndexer class has to be called from the command line to run
or create indexes using MapReduce; similarly, the CSVMapper class provides an
introspection of the CSV and finally extracts with the key-value pairs. It requires
additional parameters such as paths to point and output for storing shards. The
SolrDocumentConverter class is responsible for transforming custom objects into
SolrInputDocument. This class transforms (key, value) pairs into data that resides
in HDFS or locally. The SolrRecordWriter class provides an extension over the
MapReduce record writer. It divides the data into multiple pairs; these pairs are then
transformed into the SolrInputDocument form.

Follow these steps to run this patch:

1. Create a local folder with the configuration and the lib folder, a conf file
containing the Solr configuration (solr-config.xml, schema.xml), and lib
folder, which contains the library.

Chapter 4

[93]

2. SolrDocumentConverter provides an abstract class for writing your
own converters. Create your own converter class implementing
SolrDocumentConverter; this will be used by SolrOutputFormat
to convert output records to Solr document. If required, override
the OutputFormat class provided in Solr by your own extension.

3. Write a simple Hadoop MapReduce job in the configuration writer:
SolrOutputFormat.setupSolrHomeCache(new File(solrConfigDir),
conf);
conf.setOutputFormat(SolrOutputFormat.class);
SolrDocumentConverter.setSolrDocumentConverter(<your classname>.
class, conf);

4. Zip your configuration, and load it in HDFS. The zip file name should be
solr.zip (unless you change the patch code).

5. Now, run the patch; each job will instantiate EmbeddedSolrInstance, which
will in turn do the conversion, and finally, SolrOutputDocument will be
stored in the output format.

With reduce-sized index generation, it is possible preserve the weights of documents,
which can contribute to the prioritization performed during a search query.

Merging of indexes is not possible as in Solr 1045 because the indexes are created in
the reduce phase. The reducer becomes the crucial component of the system as the
major tasks are performed in the reducer.

Distributed search using Apache Blur
Apache Blur is a distributed search engine that can work with Apache Hadoop.
It is different from the traditional big data system in that it provides a relational
data model-like storage, on top of HDFS. Apache Blur does not use Apache Solr;
however, it consumes Apache Lucene APIs. Blur provides faster data ingestion using
MapReduce and advanced searches such as a faceted search, fuzzy, pagination, and
a wildcard search.

Big Data Search Using Hadoop and Its Ecosystem

[94]

Apache Blur provides a row-based data model (similar to RDBMS), with unique row
IDs. Records should have a unique record ID, row ID, and column family. Column
family is a group of logical columns. For example, the personal information column
family will have columns such as name, companies with which the person works,
and contact information. The following figure shows how Apache Blur works closely
with Apache Hadoop:

Apache Blur uses Hadoop to store its indexes in a distributed manner. It uses
Thrift APIs for all interprocess communication. Blur Shard Server is responsible
for managing shards, their availability, and so on, by using Apache ZooKeeper.
Blur Controller provides a single point of access to the Apache Blur cluster.

Setting up Apache Blur with Hadoop
The current version of Apache Blur (0.2.3) works with Hadoop 1.x and 2.x. However,
2.x is not yet validated for scalability. We will set up Apache Blur with Apache
Hadoop 1.2.1, load Hadoop with data, index it using Apache Blur, and search for it:

1. Apache Blur can be downloaded directly from the site http://incubator.
apache.org/blur/. Download Hadoop1 Binary.

http://incubator.apache.org/blur/
http://incubator.apache.org/blur/

Chapter 4

[95]

2. Unzip the binary in your user folder with the following command:
hrishi@nova:~$ tar –xvzf apache-blur-<version>-hadoop1-bin.tar.gz

3. Now, download Apache Hadoop 1.2.1 from the following site: http://www.
apache.org/dyn/closer.cgi/hadoop/common/.

4. Now, set up the Hadoop single node or a cluster with the help of
Apache Documentation (link: https://hadoop.apache.org/docs/
r1.2.1/#Getting+Started) (you will also find the Hadoop 1.X setup
in the previous version of this book).

5. Once Apache Hadoop is set up, you can start the Hadoop cluster with the
start-all.sh command.

6. Start Blur from the command line as shown in the following screenshot:

7. Take the CSV file (education-info.csv) provided in the blur folder of this
book, and load it in Hadoop DFS with the following command. This CSV file
contains sample data with pre-seeded row IDs and record IDs. In case you do
not have these, you can provide –A (to generate row IDs), and –a (to generate
record IDs):
hrishi@nova:~/hadoop $./bin/hadoop dfs -copyFromLocal blur/
education-info.csv hdfs://<ip-address>:<port>/education/sample

8. We are going to index this file in Apache Blur, but first, we need to create a
table. This can be done in various ways. We will do it through the blur shell:

In this case, -c indicates the number of shards to be created. You will find the
details of all shell commands at https://incubator.apache.org/blur/
docs/0.2.3/using-blur.html#shell_table_commands.

http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://www.apache.org/dyn/closer.cgi/hadoop/common/
https://hadoop.apache.org/docs/r1.2.1/#Getting+Started
https://hadoop.apache.org/docs/r1.2.1/#Getting+Started
https://incubator.apache.org/blur/docs/0.2.3/using-blur.html#shell_table_commands
https://incubator.apache.org/blur/docs/0.2.3/using-blur.html#shell_table_commands

Big Data Search Using Hadoop and Its Ecosystem

[96]

9. Now, create the indexes in Blur by using the CSV loader, the following
screenshot shows how you can load it in blur:
hrishi@nova:~/blur $./bin/blur csvloader -t educationinfo -c
localhost:40010 –I localhost:9000/education/sample –d education
degree school year –d presonalinfo personname company phone

10. Once your table is populated, you can simply run a query on blur to check
the matching:
Blur (default)> query educationinfo personalinfo.
personname:Hrishikesh

Apache Solr and Cassandra
Cassandra is one of the most widely used distributed, fault-tolerant NoSQL
databases. Cassandra is designed to handle big data workloads across multiple
nodes with no single point of failure. There are some interesting performance
benchmarks published at Planet Cassandra (http://planetcassandra.org/NoSQL-
performance-benchmarks/), which places Apache Cassandra as one of the fastest
NoSQL databases among its competitors in terms of the throughput, load, and so
on. Apache Cassandra allows the schema-ess storage of user information in its store
called the Column Families pattern. For example, look at the data model for sales
lead information as shown in the following screenshot:

http://planetcassandra.org/NoSQL-performance-benchmarks/
http://planetcassandra.org/NoSQL-performance-benchmarks/

Chapter 4

[97]

This model, when transformed for the Cassandra store, becomes columnar storage.
The following screenshot shows how this model would look using Apache Cassandra:

As one can see, the key here is the customer ID, and the value is a set of
attributes/columns that vary for each row key. Further, columns can be compressed
in order to reduce the size of your data footprint. The column compression is highly
useful when you have common columns with repetitive values (for example, year
or color). Cassandra partitions its data by using multiple strategies. All the nodes
participating in the Cassandra cluster form a ring of nodes called the Cassandra
ring. Column family data is partitioned across the nodes on the basis of the row key.
To determine the node where the first replica of a row will live, the ring is walked
clockwise until it locates the node with a token value greater than that of the row
key. The data is partitioned on the basis of the hashing or ordered partitions, and is
distributed across a cluster of nodes.

With heavy data, users cannot live with a single Solr node-based approach,
and they move to a cluster approach. While Apache Solr provides an in-built
SolrCloud, which seems to be capable of dealing with a huge dataset, many
organizations still consider other options. This is because big data processing has
multiple objectives beyond a pure search and querying. It is used for data analysis
and predictions. Apache SolrCloud provides highly optimized index storage,
particularly for search, and it cannot easily be used for any other purpose. Apache
Cassandra is an open store that supports Hadoop-based MapReduce programs to
be run on its datasets, and it can easily be integrated with any standard application.
In cases where there are data usages beyond search and basic analysis, Apache
Cassandra can serve as a single data store for multiple applications. Another reason
for going ahead with the Cassandra-Solr combination is that Cassandra is a scalable
and high-performance database.

Big Data Search Using Hadoop and Its Ecosystem

[98]

Working with Cassandra and Solr
There are two major approaches for integrating Cassandra with Solr. The first one
is based on an open source application called Solandra, and the second one is based
on DataStax Enterprise (DSE) Search built using Cassandra and Solr. There are
differences between these two approaches in terms of integration with Solr. Solandra
uses Cassandra instead of flat file storage for storing indexes in the lucene index
format; DSE allows users to keep their data in Apache Cassandra and generate
indexes using Cassandra's secondary index API, thus enabling other applications to
consume the data for big data processing.

Solandra on the other hand uses legacy distributed search support from Apache Solr
and allows the use of standard Apache Solr-based APIs, by hiding the underlying
Cassandra-based distributed data storage. All the queries are fired through Apache
Solr distributed search support and Cassandra, instead of flat files. Similarly, the
indexing goes through the same overridden APIs.

We will be looking at the open source approach primarily. For integration using
DSE, please visit: http://www.datastax.com/download.

Single node configuration
Solandra comes with in-built Solr and Cassandra, which can be used for
development/evaluation purposes. It also has a sample dataset that can be loaded
into Cassandra for initial testing. Although the active development of Solandra was
stopped almost two years ago, it can still be used, and it can be extended to work
with the latest Apache Solr instance. Let's go through the steps.

1. Download Solandra from https://github.com/tjake/Solandra.
2. Unzip the zip file. You will require Java as well as ant build scripting.

You can download and unzip ant from https://ant.apache.org/
bindownload.cgi.

3. Place the path of the $ANT_HOME/bin folder in your shell paths so that you
would be able to run ant directly from the command line anywhere. Try
running it from any folder, and you will see something like this:
$ ant -v

Apache Ant version 1.7.1 compiled on June 27 2008

Buildfile: build.xml does not exist!

Build failed

4. You will also require Apache Ivy to resolve Ivy dependency. You can
download Ivy from https://ant.apache.org/ivy/ and put it in the PATH.

http://www.datastax.com/download
https://github.com/tjake/Solandra
https://ant.apache.org/bindownload.cgi
https://ant.apache.org/bindownload.cgi
https://ant.apache.org/ivy/

Chapter 4

[99]

5. Now, go to $SOLANDRA_HOME/solandra-app/conf and open the cassandra.
yaml file as shown in the following screenshot. Modify the paths to point
to your temporary folder. In case of windows, it will be the DRIVE:\tmp\
cassandra-data folder. DRIVE is the name of the drive your Solandra is
installed on. The Cassandra.yaml file is responsible for storing information
on a cluster of nodes. As you can see, it uses a random partitioning
algorithm, which applies hashing to each data element and places it in an
appropriate node in a Cassandra cluster.

Now, run ant from $SOLANDRA_HOME; this will create additional folders.

6. Once ant is complete, go inside Solandra-app and run
$ bin/solandra

This will start your server with Apache Solr and Cassandra together on
one JVM.

7. You can load sample data for Reuters by going to $SOLANDRA_HOME/reuter-
demo.

8. Download the sample dataset by calling:
$ 1-download-data.sh

Big Data Search Using Hadoop and Its Ecosystem

[100]

9. Load it in Solandra (Solr) by calling:
$ 2-import-data.sh

This script first loads Reuter's schema by using curl to http://
localhost:8983/solandra/schema/reuters followed by data
loading through Solandra's data loader (reutersimporter.jar).

Once this is done, you can run a select query on the router by calling http://
localhost:8983/solandra/reuters/select?q=*:* from your browser to see the
data coming from an embedded Solr-Cassandra-based single node Solandra instance.
Along a similar line, you can also load your own schema on Solandra and use the
data importer to import the data onto the Apache Solr instance. You can access the
Solr configuration from the $SOLANDRA_HOME/solandra-app/conf folder.

The current Solandra version available for download uses Apache Solr 3.4, and it can
be upgraded by modifying the library files of your Solr instance in $SOLANDRA_HOME/
solandra-app/lib along with the configuration. In this configuration, Solandra uses
its own index reader called SolandraIndexReaderFactory by overriding the default
index reader as well as a search component (SolandraQueryComponent).

Integrating with multinode Cassandra
To work with the fully-working Apache Cassandra, you will need to perform the
following steps:

1. First download Apache Cassandra from http://cassandra.apache.org/.
If you already have Cassandra running, you can skip the following steps.

2. Unzip Cassandra and copy the library files of Solandra in solandra-app/
lib to Cassandra's library folder ($CASSANDRA_HOME/lib), /bin folder
to $CASSANDRA_HOME/bin, and the Solr configuration core files to the
$CASSANDRA_HOME/conf folder. You can also run the following ant task:
ant -Dcassandra={unzipped dir} cassandra-dist

3. You can now start Solr within Cassandra by using the $CASSANDRA_HOME/
bin/solandra command. Cassandra now takes two optional properties:
-Dsolandra.context and -Dsolandra.port for the context path and the
Jetty port. With the latest Cassandra version, you may get the incompatible
class exception and may have to compile the solandra source against newer
libraries or go back to the older Cassandra version (Version 1.1).

http://cassandra.apache.org/

Chapter 4

[101]

Scaling Solr through Storm
Apache Storm is a real time distributed computation framework. It processes
humongous data in real time. Recently, Storm has been adapted by Apache
as the incubating project and the development for Apache Storm. You can
read more information about Apache Storm Features here: http://storm.
incubator.apache.org/.

Apache Storm can be used to process massive streams of data in a distributed
manner. It therefore provides excellent batch-oriented processing capabilities for
time-sensitive analytics. With Apache Solr and Storm together, organizations
can process big data in real time: for example, such industrial plants that would
like to extract information from their plant system, which is emitting raw data
continuously, and process it to facilitate real-time analytics such as identifying the
top problematic systems or looking for recent errors/failures. Apache Solr and Storm
can work together to execute such batch processing for big data in real time.

Apache Storm runs in a cluster mode where multiple nodes participate in
performing computation in real time. It supports two types of nodes: a master node
(also called Nimbus) and a worker node (also called a slave). As the name describes,
Nimbus is responsible for distributing code around the cluster, assigning tasks
to machines, and monitoring for failures, whereas the supervisor listens for work
assigned to its machine and starts and stops worker processes as necessary on the
basis of what Nimbus has assigned to it. Apache Storm uses ZooKeeper to perform
all the co-ordination between Nimbus and the supervisor. The data in Apache Storm
is ready as a stream, which is simply a tuple of name value pairs:

{id: 1748, author_name: "hrishi", full_name: "Hrishikesh Karambelkar"}

Apache Storm uses the concept of Spout and Bolts. All work is executed in the
Apache Storm topology. The following screenshot shows the Storm topology
with an example of word count:

http://storm.incubator.apache.org/
http://storm.incubator.apache.org/

Big Data Search Using Hadoop and Its Ecosystem

[102]

Spouts are data inputs; this is where data arrives in the Storm cluster. Bolts process
the streams that get piped into it. They can be fed data from spouts or other bolts.
The bolts can form a chain of processing, with each bolt performing a unit task. This
concept is similar to MapReduce, which we will discuss in the following chapters.

Getting along with Apache Storm
Let's install Apache Storm and try out a simple word count example:

1. You will require ZooKeeper to be downloaded first since both Nimbus
and the supervisor have dependencies on them. You can download it
from http://zookeeper.apache.org/ and unzip it at some place.
Copy zoo.cfg from the book's codebase, or rename zoo_sample.cfg
to zoo.cfg in your code.

2. Start the ZooKeeper:
$ bin/zkServer.sh

3. Make sure ZooKeeper is running. Now, download Apache Storm from
http://storm.incubator.apache.org/downloads.html.

4. Unzip it, and go to the $STORM_HOME/conf folder. Edit storm.yaml and
put the correct Nimbus host. You can use the configuration file provided
along with the book. If you are running it in a cluster environment, your
nimbus_host needs to point to the correct master. In this configuration,
you may also provide multiple ZooKeeper servers for failsafe.

5. Now, set JAVA_HOME and STORM_HOME:
$ export STORM_HOME=/home/hrishi/storm

$ export JAVA_HOME=/usr/share/jdk

6. Start the master in a separate terminal by running:
$ $STORM_HOME/bin/storm nimbus

7. Start workers on machines by calling:
$ $STORM_HOME/bin/storm supervisor

8. Start the web interface by running:
$ $STORM_HOME/bin/storm ui

http://zookeeper.apache.org
http://storm.incubator.apache.org/downloads.html

Chapter 4

[103]

9. Now, access the web user interface by typing http://localhost:8080
from your browser. A screen similar to the following screenshot should
be visible now:

10. Now that the Storm cluster is working fine, let's try a simple word count
example from https://github.com/nathanmarz/storm-starter. You can
download the source and compile, or take a pre-compiled jar from the book
source code repository.

11. You also need to install python on your instances where Apache Storm is
running, in order to run this example. You can download and install python
from https://www.python.org/. Once python is installed and added in the
PATH environment, you can run the following command to start the word
count task:
$ bin/storm jar storm-starter-0.0.1-SNAPSHOT-jar-with-
dependencies.jar storm.starter.WordCountTopology WordCount -c
nimbus.host=<host>

https://github.com/nathanmarz/storm-starter
https://www.python.org/

Big Data Search Using Hadoop and Its Ecosystem

[104]

In the word count example, you will find different classes being mapped to different
roles as shown in the following code snippet:

Advanced analytics with Solr
Apache Solr provides excellent searching capabilities on the metadata. It is also
possible to go beyond a search and faceting with the help of the integration space.
As the search industry grows into the next generation, the expectations that search
will go beyond a basic search has led to the creation of software such as Apache
Solr, which is capable of providing an excellent browsing and filtering experience.
It provides basic analytical capabilities. However, for many organizations, this is
not sufficient. They would like to bring in capabilities of business intelligence and
analytics on top of search engines. Today, it is possible to complement Apache Solr
with such advanced analytical capabilities. We will be looking at enabling Solr
integration with R.

R is an open source language and environment for statistical computing and
graphics. More information about R can be found at http://www.r-project.
org/. The development of R started in 1994 as an alternative to SAS, SPSS, and
other proprietary statistical environments. R is an integrated suite of software
facilities for data manipulation, calculation, and graphic display. There are around
2 million R users worldwide, and it is widely taught in universities. Many corporate
analysts know and use R. R provides hundreds of open source packages to enhance
productivity, such as:

• Linear and non-linear modeling
• Classical statistical tests

http://www.r-project.org/
http://www.r-project.org/

Chapter 4

[105]

• Time-series analysis
• Spatial statistics
• Classification, clustering, and other capabilities
• Matrix arithmetic, with scalar, vector, matrices, list, and data frame

(aka table) structures
• Extensive library functions (more than 2000) for different graphs/charts

Integrating R with Solr provides organizations with access to these extensive library
functions, so that they can perform data analysis on Solr outputs.

Integrating Solr and R
Since R is an analytical engine, it can work on top of Apache Solr to perform a direct
analysis on the results of Apache Solr. R can be installed directly through executable
installers (.exe/.rpm/bin) that can be downloaded from cran mirrors (http://
cran.r-project.org/mirrors.html) for any *nix, Windows, or Mac OS. R can
connect to Apache Solr through the CURL utility built in as the RCURL library in R
packages. R also provides a library called Solr to use Solr capabilities to search over
user data, extracted content, and so on. To enable R with Solr, open the R console
from and run:

http://cran.r-project.org/mirrors.html
http://cran.r-project.org/mirrors.html

Big Data Search Using Hadoop and Its Ecosystem

[106]

Now, to test it, fire a search on your Solr server:

> library(solr)

To test analytics, let us take a simple use case. Assume that there is a multinational
job recruitment firm and it is using Apache Solr built on top of candidate resumes.
The expectation is to provide facets such as technical capabilities and country. Now,
using Apache Solr, they would like to decide which countries to focus their business
for certain technology (let's say Solr). So, they would like to classify the countries
based on the current available resource pool for Apache Solr. R provides various
clustering algorithms, which can provide users with different clusters of data based
on characteristics. One of the most widely used algorithms is K-means clustering
(More information can be read on http://en.wikipedia.org/wiki/K-means_
clustering). To use K-means in R, and plot the graph, you will be required to install
the package cluster by calling

> install.packages('cluster')

After the installation of the cluster package, get the facet information using the Solr
package of R and process it for K-means. Run the following R script on the console
to get the cluster information:

> library(cluster)

> library(solr)

> url <- 'http://localhost:8983/solr/select'

> response1 <- solr_group(q='*:Solr', group.field='Country', rows=10,
group.limit=1, base=url)

> m2 <- matrix(response1$numFound,byrow=TRUE)

> rownames(m2) <- response1$groupValue

> colnames(m2) <- 'Available Workforce';

> fit <- kmeans(m2, 2)

> clusplot(m2, fit$cluster, color=TRUE, shade=TRUE,labels=2, lines=0,
xlab="Workforce", ylab="Cluster", main="K-Means Cluster")

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

Chapter 4

[107]

Once you run the clusplot() function, you should be able to get a graphical
representation of the cluster as shown in the following screenshot:

The cluster plot in this screenshot demonstrates how Apache Solr search analytics
can be used for further advanced analytics using the R statistical language.

Summary
In this chapter, we have discussed different ways in which Apache Solr can be scaled
to work with big data/large datasets. We looked at different implementations of
Solr-big data such as Solr-HDFS, Katta, Solr-1045, Solr-1301, and Apache Solr with
Cassandra. We also looked at advanced analytics by integrating Apache Solr with R.
In the next chapter, we will focus on improving the performance for big data.

[109]

Scaling Search Performance
As the data grows, it impacts the time taken for both search, as well as creating new
indexes to keep up with the increasing size of the repository. The simplest way to
preserve the same search performance while scaling your data is to keep increasing
your hardware, which includes higher processing power and higher memory size.
However, this is not a cost-effective alternative. So, instead we will want to look
for optimizing the running of the big data search instance. We have also covered
different architectures of Solr in Chapter 4, Big Data Search Using Hadoop and Its
Ecosystem, among which the most suitable architecture can be chosen on the
basis of the requirements and the usage patterns.

The overall optimization of the technology stack, which includes Apache Hadoop
and Apache Solr, helps you maintain more data with reasonable performance. The
optimization is most important while scaling your instance for big data with Hadoop
and Solr. We are going to look at different techniques of improving performances for
your big data Search. Optimization can be done on different levels:

• Optimizing search schema
• Optimizing the indexes
• Optimizing the J2EE container
• Optimization search runtime
• Monitoring your setup for performance and impact

Scaling Search Performance

[110]

Understanding the limits
Although you can have a completely distributed system for your big data search,
there is a limit in terms of how far you can go. As you keep on distributing the
shards, you may end up facing what is called the "laggard problem" for indexes
for your instance.

This problem states that the response to your search query, which is an aggregation
of results from all the shards, is controlled by the following formula:

QueryResponse = avg(max(shardResponseTime))

This means that if you have many shards, it is more likely that you will have one of
them responding slowly (due to some anomaly) to your queries, and this will impact
on your query response time, and this will start increasing.

The distributed search in Apache Solr has many limitations. Each document
uploaded as distributed big data must have a unique key, and this unique key
must be stored in the Solr repository. To do so, the Solr schema.xml file should
have "stored=true" against the key attribute. This unique key has to be unique
across all shards. Some of the features such as More Like This, Join, and Query
Elevation Component do not work in the Solr distributed environment.

When running Solr in a distributed manner, you may face the issue of Distributed
Deadlock. When a query is passed to a shard, it can make sub-queries to all other
shards. Now, once the work is assigned, and the shards are busy serving their own
request that depends upon completing another's request, it would have an indefinite
wait time for the search query. Let's say that there are two shards, and each of them
got a job for processing. They create sub-tasks, which are then assigned to each
other's threads. Both the requests are waiting for the other shard to complete the
task. This is called Distributed Deadlock.

Apache Lucene does have a cap on the size of index (approximately limiting it to
2 billion documents in total). However, theoretically, there is no limit to the number
of documents that can be loaded on big data search indexing while running in the
distributed mode.

Chapter 5

[111]

Optimizing search schema
When Solr is used in the context of a specific requirement (for example, log search for
an enterprise application) it holds a specific schema that can be defined in schema.
xml and copied over to nodes. The schema is based on the schema attributes indexes
and thus plays a vital role in the performance of your Solr instance.

Specifying default search field
In the schema.xml file of the Solr configuration, the system allows you to specify the
<defaultSearchField> parameter. This is the parameter that controls when you
search without an explicit field name in your query, and which field to pick up for
searching. This is an optional parameter; if this is not specified, for all the queries
that are not providing the field name, the search will run them on all the available
fields in the schema. This will not only consume more CPU time but on the whole,
slow down the search performance.

Configuring search schema fields
In custom schema, having a larger number of fields for indexing has a direct impact
on the index size and the amount of memory needed to create your index and
segments. You can control the amount of indexing of fields to be done by specifying
indexed=true or indexed=false appropriately for each schema attribute. Avoid
indexing unnecessary fields that you do not intend to use in the search.

Similarly, you can set stored=false for fields that are not returned as search results.
Setting this will not stop you from querying for these fields, but you won't be able to
retrieve the original value of these fields. For larger fields, there is a significant value
to this? in terms of disk space and search speed for the lookup.

The fields that are larger are difficult to fit into the memory while indexing, so one
has to ensure that all the fields of the document fit into the memory. Each field can
have maxFieldLength in the schema configuration; this in turn can help you control
the sizing of the fields.

Scaling Search Performance

[112]

Stop words
We have already covered stop words in Chapter 2, Understanding Apache Solr, and
Appendix, Use Cases for Big Data Search, which provides more details about them.
They play a significant role in optimizing your Solr instance for performance.
While performing the inverted index creation, the stop words are not considered
by Solr because they do not add any value to your search. The stop words can be
specified in any file and the file can be pointed out in the schema.xml file of the Solr
configuration.

Having a large set of stop words can significantly save space in terms of index size
creation. You can use some of the common stop words of the English language by
accessing the following example links:

• http://xpo6.com/list-of-english-stop-words/

• http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html

• http://www.textfixer.com/resources/common-english-words.txt

Stemming
Stemming is a process of reducing the derived word into its original form. By
enabling word stemming with Apache Solr, it not only saves your search time but
also improves your query performance. Stemming also improves the accuracy of the
results. For example words such as walking, walked, and walks can be stemmed to
walk. Appendix, Use Cases for Big Data Search, provides a detailed explanation about
protwords.txt, which is used for stemming, along with some examples. Based on
the requirements, a right stemming algorithm should be chosen for your instance.
Here are some of the available algorithms for stemming:

Algorithm Description
Porter This rule-based algorithm transforms any form of the word in English

into its stem. For example, talking and talked are marked as talk.
KStem Similar to Porter, with less aggressiveness.

http://xpo6.com/list-of-english-stop-words/
http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
http://www.textfixer.com/resources/common-english-words.txt

Chapter 5

[113]

Algorithm Description
Snowball This is all language-supported string processing language for running

your words. Using this, you can create new stemming algorithms.
Hunspell Open Office dictionary-based algorithm. Works with all languages; the

only condition is the health of the dictionary.

Overall, the workflow and the mandatory fields for mapping are shown in the
following table. A true value indicates the presence of this attribute while defining the
field, and a false value indicates that it cannot be used for a given use case. For example,
a multi-valued attribute cannot be used in unique keys. An empty value indicates that
the attribute can be true or false. We have already explained the terms multi-valued,
omit-norms, term vector, and so on in Chapter 2, Understanding Apache Solr.

Use Case Indexed Stored Multi-
valued

Omit

Norms

Term

Vectors

Term

Positions

Term

Offsets
Search within
field

TRUE

Retrieve
contents

TRUE

Use as unique
key

TRUE FALSE

Sort on field TRUE FALSE TRUE
Use field
boosts

FALSE

Document
boosts affect
searches
within field

FALSE

Highlighting TRUE TRUE
Faceting TRUE
Add multiple
values,
maintaining
order

TRUE

Field length
affects doc
score

FALSE

MoreLikeThis TRUE TRUE
Term
frequency

TRUE

Scaling Search Performance

[114]

Use Case Indexed Stored Multi-
valued

Omit

Norms

Term

Vectors

Term

Positions

Term

Offsets
Document
frequency

 TRUE

tf*idf TRUE
Term
positions

TRUE TRUE TRUE

Term offsets TRUE TRUE TRUE

Index optimization
The indexes used in Apache Solr are inverted indexes. In case of the inverted
indexing technique, all your text will be parsed and words will be extracted out of
it. These words are then stored as index items, with the location of their appearance.
For example, consider the following statements:

1. "Mike enjoys playing on a beach"
2. "Playing on the ground is a good exercise"
3. "Mike loves to exercise daily"

The index with location information for all these sentences will look like following
(Numbers in brackets denote (sentence number, word number)):

Mike (1,1), (3,1)
enjoys (1,2)
playing (1,3), (2,1)
on (1,4), (2,2)
a (1,5), (2,5)
beach (1,6)
ground (2,3)
is (2,4)
good (2,6)
loves (3,2)
to (3,3)
exercise (2,7), (3,4)
daily (3,5)

When you perform a delete on your inverted index, it does not delete the document;
it only marks the document as deleted. It will get cleaned only when the segment
that the index is a part of is merged. When you create an index, you should avoid
modifying the index.

Chapter 5

[115]

Limiting indexing buffer size
As the index size grows, the Solr instance starts using up more CPU time and
memory to perform a faceted search. When the indexes are first created, the overall
operation runs in the batch mode. All the documents are kept in memory until it
exceeds the RAM buffer size specified in solr-config.xml:

<ramBufferSizeMB>100</ramBufferSizeMB>

Once the size is exceeded, Solr creates a new segment or merges the index with
the current segment. The default value of the RAM buffer size is 100 MB (Solr 1.4
onwards). Similarly, there is another parameter that controls the maximum number
of documents in the buffer of Solr while indexing:

<maxBufferedDocs>1000</maxBufferedDocs>

When an indexed document crosses the limits defined for both the RAM buffer
size and the maximum number of buffer documents, it will flush the changes. You
can also control the maximum number of threads used for indexing the document
by tuning maxIndexingThread; the default value is 8. By setting this parameter
appropriately as per your usage, you can speed up your indexing process. By
setting this parameter, you can use clients that can connect concurrently to the
search server for uploading the data by using multiple threads. Solr provides the
ConcurrentUpdateSolrServer class for the same.

The number of commit operations has to be decided optimally. Frequent commit
operations eat more CPU/IO time, whereas few commit operations demand an
increase in the memory size of your instance.

When to commit changes?
Commit is the operation that ensures that all the updates/uploads to Solr are stored
on the disk. With Solr, you can perform commit in the following different ways:

• Automatic commit
• Soft commit

Scaling Search Performance

[116]

When autocommit is enabled, the document uploaded to Apache Solr gets written
to the storage immediately. In case of a cluster environment, a hard commit will
replicate the indexes across all the nodes. This condition is the maximum time
(maxTime) or maximum number of documents (maxDocs) after which commit should
take place. Choosing relatively low values for these works well for an environment
where you have continuous index updates; this incurs a significant performance
bottleneck for batch updates in a distributed environment. At the same time,
having a high value for maxTime or maxDocs may pose a high risk of losing indexed
documents in case of failures.

There is also an option called openSearcher in the handler definition of
solrconfig.xml. When this value is set to true, it allows a new searcher to get
initialized after the changes are committed to the storage. This option enables
users to see the newly committed changes in their search results immediately. Each
handler also has updateLog, which is a transaction log that enables the recovery of
updates in case of failures; this therefore supports/enables durability.

To achieve the maximum durability of a Solr instance, it is
recommended to have a hard commit size limit based on the
size of the update log.

Similar to hard commit is the soft commit. Soft commit is a faster alternative which,
unlike hard commit, only makes the index changes visible for searches. It does not
perform any sync of indexes across nodes. In case of a power failure of the machine,
the changes made using soft commit are lost. With soft commit, Solr can achieve
near-real-time search capabilities. You should have the soft commit maxTime set less
than the hard commit time. Therefore, the configuration file would look as shown in
the following screenshot:

Solr also allows you to pass the commit request in your update request itself.

Chapter 5

[117]

Optimizing index merge
While creating index segments, the following flowchart depicts how Solr functions:

Scaling Search Performance

[118]

Solr keeps the newly updated index in the most recent segment; if the segment is
filled up, it will create a new segment. Solr performs a merge of segments as and
when the number of lowest-level segments is equal to mergeFactor, specified in the
Solr configuration file. In such a case, it merges all the segments into one. Consider
the following case:

<mergeFactor>20</mergeFactor>

The segments are merged when the number of lowest-level segments equals 20. This
process continues. mergeFactor directly carries the impact on your search query
time and indexing time. If you have a high mergeFactor, your index creation process
will be faster as it does not really need to perform the merging of indexes; however,
for a search, Solr has to look into multiple files in the file store. If you have a low
mergeFactor, it will slow down your indexing process due to the need to perform
a merge over huge indexes. The search will be relatively faster as it has to look at
few files.

Optimize option for index merging
When this option is called, Solr runs the index merge operation, and it forces all the
index segments to get merged into a single segment. This is an expensive operation,
which in turn reads and rewrites all the indexes of Solr. It impacts the functioning of
the search instance, so it is recommended to run this operation when there is no/less
load on the instance. It provides additional attributes such as waitFlush (blocks the
instance until the index changes are flushed to a disk), waitSearcher (blocks until a
new searcher with all the changes visible is made available), and maxSegment (you
can choose to optimize your instance to maximum segment listed here). Solr also
allows you to call optimize through a URL call itself:

curl 'http://localhost:8983/solr/update?optimize=true&maxSegments=2&wa
itFlush=false'

While running in the SolrCloud environment, you should be careful while running
optimize (forced merge) on your own, instead you can rely on Solr to perform
optimization, as a partial merge (that which it does in background).

Chapter 5

[119]

Optimizing the container
Most of the big data implementations including Solr and Hadoop run under J2EE
container with some JDK. While scaling your instance for more data and more
indexes, it becomes important to optimize your containers as well to ensure that you
get optimal high-speed performance out of the system. Choosing the right JVM is
therefore a very important factor. There are many JVMs available in the market today
that can be considered, such as Oracle Java HotSpot, BEA JRockit, and Open Source
JVM. You can look at comparisons between different JVMs at http://en.wikipedia.
org/wiki/Comparison_of_Java_virtual_machines. Apache Solr allows you to
run multiple Solr instances with their own JVMs. Zing JVM from the Azul system is
considered to be a high-performance JVM for Solr/Lucene implementations.

Optimizing concurrent clients
You can control the number of concurrent connections that can be made in your
container. This in turn reduces traffic on your instance, which may be running in
a standalone/distributed environment.

In the tomcat server, you can simply modify the following entries in server.xml for
changing the number of concurrent connections:

Similarly, in Jetty, you can control the number of connections held by modifying
jetty.xml:

http://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines
http://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines

Scaling Search Performance

[120]

Optimizing Java virtual memory
One of the key optimization factors is controlling the virtual memory size of your
big data Solr instance. This is applicable to instances running in the distributed
environment, as well as the instances running as a standalone search instance. As
your big data search instance scales with the data size, it requires more and more
memory and it therefore becomes important to optimize accordingly. Apache Solr
has an in-built cache, which should be one of the factors considered for optimization.
Since both Hadoop and Solr run on JVMs, one has to look at the optimization of Java
Virtual Machine (JVM).

All Solr instances run inside the J2EE container as applications, and all the
common optimizations for applications are applicable to it. It starts with choosing
the right heap size for your JVM. The heap size for JVM can be controlled by the
following parameters.

Parameter Description
-Xms Minimum heap size required with which the container is initialized
-Xmx Maximum heap size up to which the container is allowed to grow

When you choose the minimum heap size to be low, the initialization of the
application itself might take more time. Similarly, having a higher minimum heap
size may unnecessarily block the huge memory segment, which could be useful for
your other processes. However, it will reduce the calls to resize the heap when the
heap is full, since the heap holds more memory at the start time. Similarly, having
a low maximum heap size may fail your application running in-between, throwing
Out Of Memory exceptions for large indexes/objects of your search. When providing
the memory size for JVM, you need to ensure that you keep sufficient memory
for your operating system and other processes so as to avoid them going into the
thrashing mode. In the production environment, it is better to keep the minimum
and the maximum heap sizes the same, to avoid the overhead of the heap size.

When you are running optimized Solr instances in the container,
it is recommended not to install any other applications on the
same container, so as to minimize the CPU time and the memory
getting distributed among Solr and these applications.

Chapter 5

[121]

When the heap is full, JVM tries to grab more memory based on the –Xmx parameter.
Before doing that, it performs garbage collection. Garbage collection in JVM is a
process through which JVM reclaims the memory consumed by objects that are
unused/expired/not referred by any of your application processes running in
memory. Today's JVMs trigger the garbage collection process automatically as and
when needed. The process can be explicitly called from the application code through
the System.gc() call, and this will explicitly trigger the garbage collection process,
cleaning up the garbage. Such explicit calls to garbage collection should be avoided
for the following reasons:

• There is no control over whether the garbage collection process is run while
your search/indexing is run.

• When the garbage collection process is run, it will end up taking your CPU
time and memory, which impacts the overall functioning of the search.

• The heap size influences the time for running the garbage collection process.
A longer heap size will make the garbage collector take more time to identify
and clean the VM objects. New releases of Java (1.7 onwards) have some
optimization over the garbage collection.

If you are using Solr faceting, or features like sorting, you will require more memory.
The operating system performs memory swapping based on the needs of processors.
This can create huge latency in any search with large indexes. Many of the operating
systems allow users to control the swapping of programs.

Optimizing search runtime
The search runtime speed is also a primary concern, and so it should be performed.
You can also perform optimization at various levels at runtime. When Solr fetches
the results for the queries passed by the user, you can limit the fetching of the result
to a certain number by specifying the rows attribute in your search. The following
query will return 10 rows of results from 10 to 20.

q=Scaling Big Data&rows=10&start=10

This can also be specified in solrconfig.xml as queryResultWindowSize, thereby
setting the size to a limited number of query results.

Let's look at various other optimizations possible in the search runtime.

Scaling Search Performance

[122]

Optimizing through search query
Whenever a query request is forwarded to a search instance, Solr can respond in
various ways, such as XML or JSON. A typical Solr response not only contains
information about the matched results, but also contains information about your facets,
highlighted text, and many other things which are used by the client (by default, a
velocity template-based client provided by Solr). This in turn is a heavy response and
can be optimized by providing a compression over the result. Compressing the result,
however, incurs more CPU time, and this may impact the response time and query
performance. However, there is a significant value in terms of the response size that
passes over the network.

Filter queries
A normal query on Solr will perform the search, and then apply a complex scoring
mechanism to determine the relevance of the document that appeared with the search
results. A filter query on Solr will perform the search and apply the filter; this does not
apply any scoring mechanism. A query can easily be converted into a filter query:

Normally: q=name:Scaling Hadoop AND type:books
Filter Query: q=name:Scaling Hadoop&fq=type:books

The processing required for scoring is not needed; hence, it is faster than a normal
query. Since the scoring is no more applicable with filter queries, if the same query
is passed again and again, the results are returned from the filter cache directly.

Optimizing the Solr cache
Solr provides caching at various levels as a part of its optimization. For caching at these
levels, there are multiple implementations available in Solr by default. LRUCache is the
least recently used cache (based on synchronized LinkedHashMap), FastLRUCache, and
LFUCache is the least frequently used cache (based on ConcurrentHashMap). Among
these FastLRUCache is expected to be faster than all others. These caches are associated
with search (index searchers).

Cache Autowarming is a feature by which a cache can pre-populate
itself with objects from old search instances/cache.

Chapter 5

[123]

These cache objects do not carry an expiry; they live as long as the index searches are
alive. The configuration for different caches can be specified in solrconfig.xml as
shown in the following screenshot:

There are common parameters to the cache:

Parameter Description
Class You can specify the type of cache you wish to attach, that is,

LRUCache, FastLRUCache, or LFUCache.
Size This is the maximum size a cache can reach.
initialSize Initial size of the cache when it is initialized.
autowarmCount The number of entries to seed from an old cache.
minSize Applicable to FastLRUCache. After the cache reaches its peak size,

it tries to reduce the cache size to minSize. The default value is 90
percent of the size.

acceptableSize If FastLRUCache cannot reduce to minSize when the cache reaches
its peak, it will at least reach acceptableSize.

All cache is initialized when a new index searcher instance is opened. Let's look at
different caches in Solr and how you can utilize them for speeding up your search.

Scaling Search Performance

[124]

The filter cache
This cache is responsible for storing the documents for filter queries that are passed
to Solr. Each filter is cached separately; when queries are filtered, this cache returns
the results, and eventually, based on the filtering criteria, the system performs
an intersection of them. If you have faceting, the use of a filter cache can improve
performance. This cache stores the document IDs in an unordered state.

The query result cache
This cache will store the top N query results for each query passed by the user. It
stores an ordered set of document IDs. For queries that are repeated, this cache is
very effective. You can specify the maximum number of documents that can be
cached by this cache in solrconfig.xml:

<queryResultMaxDocsCached>200</queryResultMaxDocsCached>

The document cache
This cache primarily stores the documents that are fetched from the disk. Once a
document loads into a cache, search does not then need to fetch it from the disk
again, reducing your overall disk IOs. This cache works on the IDs of documents,
so the autowarming feature does not really have any impact, since the document
IDs keep changing as and when there is a change in index.

The size of the document cache should be based on the size of the
results and the size of the maximum number of queries allowed to
run; this will ensure that there is no refetch of the document by Solr.

The field value cache
This cache is used mainly for faceting. If you have regularly use faceting, it makes
sense to enable caching for field levels. This cache can also be used for sorting. It
supports multivalued fields. You can monitor the caching status in the administration
of Solr. It provides information such as current load, hit rations, and hits.

Chapter 5

[125]

The lazy field loading
By default, Solr reads all stored fields and then filters the ones that are not needed.
This becomes a performance overhead for a large number of fields. When this flag
is set, only fields that are requested will be loaded immediately; the rest of the fields
are loaded lazily. This offers significant improvement in the search speed. This can
be done by setting the following flag in solconfig.xml:

<enableLazyFieldLoading>true</enableLazyFieldLoading>

In addition to these options, you can also define your cache implementation.

Optimizing Hadoop
When running Solr with Hadoop for indexing (Solr patches) or for search (Katta),
the optimization of Hadoop adds performance benefits to a big data search instance.
The optimization can be done at the storage level that is HDFS as well as at the level
of the MapReduce programs. Hadoop should preferably run on 64-bit machines to
allow administrators to go beyond the Java heap size of 3 GB (it is limited to 3 GB in
32 bit). You also need to set a high priority for Hadoop user jobs and scheduler.

Scaling Search Performance

[126]

While storing the indexes in a distributed environment like Hadoop, storing in a
compressed format can improve the storage space as well as the memory footprint.
This in turn reduces your disk IO and bytes transferred over wires, by adding an
overhead for extracting it as and when needed. You can do that this by enabling
mapred.compress.map.output=true. Another interesting parameter is the block
size of a file for HDFS. This needs to be defined well; considering the fact that all
indexes are stored in HDFS files, defining the appropriate block size (dfs.block.
size) will be a great help. The number of MapReduce tasks can also be optimized
based on the input size (the batch size of Solr documents for indexing/sharding).
In case of Solr-1301, the output of reduce tasks are passed to SolrOutputFormat,
which calls SolrRecordWriter for writing the data. After completing the reduce task,
SolrRecordWriter calls commit() and optimize() for performing index merging.
There are additional parameters that can definitely add value towards optimizations in
mapred-site.xml:

Parameter Description
mapred.map.tasks.
speculative.execution
/ mapred.reduce.tasks.
speculative.execution

Hadoop jobs can become slow for various reasons, such as
other processes consuming memory or misconfiguration.
The slowness is hard to detect. So, when such jobs take
more time than expected, Hadoop launches a new task
as backup. This is a speculative execution of tasks. It is
enabled by default and can be set to false for tasks that
take more time, that is, indexing tasks.

mapred.tasktracker.
map.tasks.minimum/
mapred.tasktracker.
reduce.tasks.minimum

This parameter defines the maximum number of task
tracker tasks that can be created. We must understand
that having a larger mapper/reducer count compared to
physical CPU cores will result in CPU context switching,
which may result in an overall slow job completion.
However, a balanced per CPU job configuration may result
in faster job completion results. Typically, it should be
driven based on the number of cores and memory.

mapred.child.java.
opts

This value can have heap size as a parameter, that is,
Xmx64M. This value should be driven by the amount
of memory and the maximum number of tasks in
tasktracker.

Chapter 5

[127]

Parameter Description
mapred.job.map/reduce.
memory.mb

This value sets the virtual memory size for mapper and
reducer. Setting this to -1 will use the maximum amount of
memory available.

mapred.jobtracker.
maxtasks.per.job

Defines the maximum number of tasks for a single job.
This can be set to -1 to utilize the maximum number of
tasks.

mapred.reduce.
parallel.copies

This defines the number of threads for parallel copy in
the reducer task. A very large number can demand more
memory and exceed the heap size. This value is driven by
network strength. A lower number can help balance the
network traffic but slow down the overall transfers. For a
gigabit Ethernet, this value can be set between 10 and 15.

mapreduce.reduce.
input.limit

This value determines the limit on the input size of the
reducer. This can be set to -1, that is, no limit.

mapred.min.split.size During execution, map tasks are created for each slice/
split. This parameter lets you control the size of each slice.
Setting it to 0 enables Hadoop to determine this size.

You can perform additional enhancements in core-site.xml:

Parameter Description
io.sort.factor When heavy output is expected from map jobs (particularly

for large jobs), this value should be set to higher values
(default is 10). This defines the number of input files that get
merged in a batch during the map/reduce task.

io.sort.mb This defines the buffer size in megabytes for sorting. From
experience, this value can be approximately 20% to 30% of
the child heap size defined using mapred.child.java.
opts. The default is 100 MB.

Scaling Search Performance

[128]

Monitoring Solr instance
You can monitor the Solr instance for the purpose of memory and CPU usage. There
are various ways of doing this; a simple administration of Solr provides you with some
statistics for the usage. Using standard tools like JConsole and JVisualVM, you can
connect to the Solr process for monitoring the memory usage, threads, and CPU usage:

With JConsole, you can also look at different JMX-based MBeans supported
by Solr. On an example jetty setup, you can simply connect Solr by using the
following procedure:

• Open JDK folder, which is being used by Solr
• Go to the bin folder and run JConsole

Chapter 5

[129]

• In JConsole, connect to the Solr process; in case of the default jetty
implementation, connect to start.jar

• Once connected, switch to the MBean tab

You will find the MBean browser as shown in the following screenshot:

For a clustered search instance, you can connect remotely through JConsole.
However, while starting JVM, you need to pass the following parameters to
JVM (to bypass authentication and SSL):

-Dcom.sun.management.jmxremote.port=<port-no>
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

Scaling Search Performance

[130]

Using SolrMeter
SolrMeter is a tool that can be used by administrators to access the Solr instance running
in a distributed environment to perform stress testing and get the search-related
statistics out of it. This tool can be downloaded from http://code.google.com/p/
solrmeter and it can simply be run by calling:

java -jar solrmeter-<version-no>.jar

This tool is one of the most powerful tools as it includes both loading and monitoring
of your big data search instance. There are four main consoles:

• Query console: This shows query-related information such as time taken and
queries ran

• Update Console: This provides information regarding newly added
documents, errors on updates, and so on

• Commit console: This provides commit history of documents, time taken,
documents for pending commits, and so on

• Optimize console: This provides history for optimization, the count of
optimize call run, average time taken, errors, and so on, as shown in the
following screenshot:

http://code.google.com/p/solrmeter
http://code.google.com/p/solrmeter

Chapter 5

[131]

SolrMeter also displays performance measurements in a graphic manner, that
is, histogram, pie chart, query time history, operation timeline, query statistics,
errors, and cache history. The charts together provide a detailed view of the query
performance. It also provides an option to optimize the indexes by providing a
button to optimize now.

Summary
In this chapter, we have covered various ways of optimizing Apache Solr and Hadoop
instances. We started by reviewing the schema optimization and optimizing the index.
We also looked at optimizing the container, and the search runtime, to speed up the
overall process. We reviewed optimizing Hadoop instances. Finally, we looked at
different ways of monitoring the Solr instances for performance.

[133]

Use Cases for
Big Data Search

Many organizations across the globe in different sectors have successfully adapted
Apache Hadoop and Solr-based architectures, in order to provide a unique browsing
and searching experience for their rapidly growing and diversified information. Let's
look at some of the interesting use cases where Big Data Search can be used.

E-Commerce websites
E-Commerce websites are meant to work for different types of users. These users
visit the websites for multiple reasons:

• Visitors are looking for something specific, but they find it difficult
to describe

• Visitors are looking for a specific price/features of a product
• Visitors come looking for good discounts, to see what's new, and so on
• Visitors wish to compare multiple products on the basis of

cost/features/reviews

Most e-commerce websites used to be built on custom developed pages, which ran on a
SQL database. Although a database provides excellent capabilities to manage your data
structurally, it does not provide high speed searches and facets as it does in Solr. In
addition to this, it becomes difficult to keep up with the queries for high performance.
As the size of data grows, it hampers the overall speed and user experience.

Use Cases for Big Data Search

[134]

Apache Solr in a distributed scenario provides excellent offerings in terms of a browsing
and searching experience. Solr can easily integrate with a database, and provide a
high-speed search with real-time indexing. Advanced inbuilt features of Solr, such as
suggestions, such as the search, and a spell checker, can effectively help customers gain
access to the merchandise they're looking for. Such an instance can easily be integrated
with current sites. Faceting can provide interesting filters based on the highest discounts
on items, price range, types of merchandise, products from different companies, and so
on, which in turn helps to provide a unique shopping experience for end users. Many
e-commerce based companies, such as Rakuten.com, DollarDays, and Macy's have
acquired distributed Solr-based solutions, preferring these to traditional approaches, so
as to provide customers with a better browsing experience.

Log management for banking
Today, many banks in the world are moving towards computerization and using
automation in business processes to save costs and improve efficiency. This move
requires a bank to build various applications that can support the complex banking
use cases. These applications need to interact with each other over standardized
communication protocols. A typical enterprise banking sector would consist of software
for core banking applications, CMS, credit card management, B2B portals, treasury
management, HRMS, ERP, CRM, business warehouses, accounting, BI tools, analytics,
custom applications, and various other enterprise applications, all working together to
ensure smooth business processes. Each of these applications work with sensitive data:
hence, a good banking system landscape often provides high performance and high
availability of scalable architecture, along with backup and recovery features, bringing
in a completely diversified set of software together, into a secured environment.

Most banks today offer web-based interactions; they not only automate their own
business processes, but also access various third-party software of other banks and
vendors. A dedicated team of administrators are working 24/7 in order to monitor
and handle issues/failures and escalations. A simple application that transfers
money from your savings bank account to a loan account may touch upon at least
twenty different applications. These systems generate terabytes of data everyday
and include transactional data, change logs, and so on.

The problem
The problem arises when any business workflow/transaction fails. With such a
complex system, it becomes a big task for system administrators/managers to:

• Find out the issue or the application that has caused the failure
• Try to understand the issue and find out the root cause

Appendix

[135]

• Correlate the issue with other applications
• Keep monitoring the workflow

When multiple applications are involved, the log management across these
applications becomes difficult. Some of the applications provide their own
administration and monitoring capabilities. However, it make sense to have a
consolidated place where everything can be seen at a glance/in one place.

How can it be tackled?
Log management is one of the standard problems where Big Data Search can
effectively play a role. Apache Hadoop along with Apache Solr can provide a
completely distributed environment to effectively manage the logs of multiple
applications, and also provide searching capabilities along with it. Take a look
at this representation of a sample log management application user interface:

Use Cases for Big Data Search

[136]

This sample UI allows us to have a consolidated log management screen, which may
also be transformed into a dashboard to show us the status and the log details. The
following reasons explain why Apache Solr and Hadoop-based Big Data Search as
the right solution for a given problem:

• The number of logs generated by any banking application are huge in
size and are continuous. Most of log-based systems use rotational log
management, which cleans up old logs. Given that Apache Hadoop can
work on commodity hardware, the overall storage cost for storing these logs
becomes cheap, and they can remain in Hadoop storage for a longer time.

• Although Apache Solr is capable of storing any type of schema, common
fields, such as log descriptions, levels, and others can be consolidated easily.

• Apache Solr is fast and its efficient searching capabilities can provide
different interesting search features, such as highlighting the text or showing
snippets of matched results. It also provides a faceted search to drill down
and filter results, thereby providing a better browsing experience.

• Apache Solr provides near real-time search capabilities to make the logs
immediately searchable, so that administrators can see the latest alarming
logs with high severity.

• The cost of building Apache Hadoop with a Solr-based solution provides
a low cost alternative infrastructure, which itself is required to have a high
speed batch processing of data.

High-level design
The overall design, as shown in the following diagram, can have a schema that
contains common attributes across all the log files, such as date and time of the log,
severity, application name, user name, type of log, and so on. Other attributes can be
added as dynamic text fields:

Appendix

[137]

Since each system has a different log schema, these logs have to parsed periodically
and then uploaded to a distributed search. The Log Upload Utility or an agent can be
a custom script or it can also be based in Apache Kafka, Flume, or even RabbitMQ.
Kafka is based on publish-subscribe messaging, and it provides high scalability; you
can read more at http://blog.mmlac.com/log-transport-with-apache-kafka/
about how it can be used for log streaming. We need to write script/programs that
will understand the log schema, and extract the field data from the logs. Log Upload
Utility can feed the outcome to distributed search nodes, which are simply Solr
instances running on a distributed system, such as Hadoop. To achieve near
real-time search, the Solr configuration requires a change accordingly.

http://blog.mmlac.com/log-transport-with-apache-kafka/

Use Cases for Big Data Search

[138]

Indexing can be done either instantly, that is, right at the time of upload, or in a batch
operation periodically. The second approach is more suitable if you have a consistent
flow of log streams, and also if you have scheduled-based log uploading. Once the
log is uploaded in a certain folder, for example /stage, a batched index operation
using Hadoop's Map-Reduce can generate HDFS-based Solr indexes, based on the
many alternatives that we saw in Chapter 4, Big Data Search Using Hadoop and Its
Ecosystem, and Chapter 5, Scaling Search Performance. The generated index can be
read using Solr through a Solr Hadoop connector, which does not use MapReduce
capabilities while searching.

Apache Blur is another alternative to indexing and searching on Hadoop using
Lucene or Solr. Commercial implementations, such as Hortonworks and LucidWorks
provide a Solr-based integrated search on Hadoop (refer to http://hortonworks.
com/hadoop-tutorial/searching-data-solr/).

http://hortonworks.com/hadoop-tutorial/searching-data-solr/
http://hortonworks.com/hadoop-tutorial/searching-data-solr/

[139]

Index
A
Analyzer 31
ant build scripting

URL 98
Apache Ambari 8
Apache Blur

about 93, 138
setting up, with Hadoop 94-96
URL 94
working, with Hadoop 94

Apache Cassandra
URL 100

Apache Chukwa 8
Apache Flume 8
Apache Hadoop

about 2, 6
configuring 8-14
core components 4-6
download link 9
ecosystem 2-8
fully distributed setup 9
HDFS 2
MapReduce 2
optimizing 126
prerequisites 9
problems 19, 20
pseudo distributed setup 9
running 14-16
single node setup 8
solutions 19, 20
ssh, setting up without passphrase 10
URL 82

Apache HBase 7
Apache HCatalog 8
Apache Hive 7

Apache Ivy
URL 98

Apache JIRA site
URL 89

Apache Kafka
about 137
URL 137

Apache Lucene core 30
Apache Mahout 7
Apache Oozie 8
Apache Pig 7
Apache Solr

about 21
architecture 29-31
configuring 31
data, loading 42
distributed search, enabling with 52
download link 58
Hello World 25
index partitioning 57
information, querying for 47
limitations 110
prerequisites 22
problems 28, 29
running, on J2EE containers 25
running, on jetty 23, 24
setting up 22
solutions 28, 29
working, with Cassandra 96, 97

Apache Sqoop 8
Apache Storm

about 101
download link 102
installing 102, 103
master node 101
slave node 101

[140]

Solr, scaling through 101
URL 101
worker node 101

Apache Tika 31, 46
Apache ZooKeeper

about 7
URL 60

Application Master (AM) 5
architecture, Solr

about 29
index replicator 30

architecture, SolrCloud 54-57
availability, CAP theorem 82

B
big data

about 1, 2
searching, Katta used 86

C
Cache Autowarming 122
CAP theorem

about 82
URL 72, 82

Cassandra 96, 97
Cassandra integration

about 98
multinode Cassandra, integrating 100
single node configuration 98-100

collection 27, 54
commit

about 115
autocommit 116
soft commit 116

configuration files, Apache Hadoop 11, 12
configuration files, Solr

about 37
instance configuration,

with solrconfig.xml 38-40
other configuration 41
Solr core, working with 38
Solr plugin 40
Solr.xml, working with 38

consistency 82
consoles, SolrMeter

commit console 130

optimize console 130
query console 130
update console 130

core components, Hadoop
about 4-6
Application Master (AM) 5
DataNodes 5
NameNode 5
Node Manager (NM) 5
Resource Manager (RM) 5
SecondaryNameNode 5

cran mirrors
URL 105

curl/wget utilities 43

D
Data Import Handler (DIH) 31
data loading

about 42
data import handlers 43
request handler, extracting 42
rich documents, working with 46
SolrJ, using 44, 45

DataNodes 5
DDL (Data Definition Language) 8
Distributed Deadlock 110
distributed search

about 50
distributed search patterns 50, 51
enabling, Apache Solr used 52

distributed search, with Apache Blur
about 93, 94
Apache Blur, setting up

with Hadoop 94-96
DNS (Domain Name System) 17
document

about 33
routing 68, 69

document cache 124
DocValue 34
DSE

URL 98

E
E-Commerce websites

about 133

[141]

usage 133, 134
Elastic Load Balancing

URL 52
elements, Solr schema

defaultSearchField 37
similarity 37
uniqueKey 37

enterprise distributed search,
implementation scenarios

master/slave 51
multi-nodes 51
multi-tenant 51

enterprise distributed search, using
SolrCloud

building 57
collections, creating 65, 66
document, adding to SolrCloud 64
replicas, creating 65, 66
shards, creating 65, 66
SolrCloud, setting up for

development 58-60
SolrCloud, setting up for production 60-63

ETL (Extract-Transform-Load) 8
eventual consistency 54

F
fault tolerance, SolrCloud 71, 72
fields, Apache Solr 33
field value cache 124
filter cache 124
Filters 31

G
garbage collection 121
Gartner

URL 81

H
Hadoop. See Apache Hadoop
Hadoop cluster

setting up 17-19
Hadoop Distributed File System (HDFS) 2
Hello World, with Apache Solr

about 25
Solr administration 27

Solr navigation 27
HiveQL 7
Hortonworks

reference link, for data search 138

I
Index Handler 31
index optimization

about 114
commit 115
concurrent clients, optimizing 119
container, optimizing 119
indexing buffer size, limiting 115
index merge, optimizing 117, 118
Java virtual memory, optimizing 120, 121
optimize option, for merging index 118
performing 114

index partitioning 57
Index Reader 30
Index Replicator 30
Index Searcher 30
Index Writer 30
information, Solr

querying 47

J
J2EE containers

Solr, running on 25
Java 1.6

URL 9
JDK

URL 22
jetty

Solr, running on 23
JVM

URL 29, 119

K
Katta

about 86
architecture 86
indexes, creating 88
URL 86
URL, for integrating with Solr 88
used, for searching big data 86

[142]

working 86, 87
Katta cluster

about 87
download link, for distribution 87
setting up 87
URL, for sample creator script 88

Katta Master 86
K-means clustering

URL 106

L
laggard problem 110
lazy field loading 125
legacy distributed search

reference link 52
load balancing, SolrCloud 71
log management, for banking

about 134
high-level design 136-138
problem 134
resolution 135, 136

M
MapReduce

about 2
using 3

map-side indexing 89, 90
Map Task 3
MongoDB

about 73, 74
data 74
installing 75, 76
Solr indexes, creating from 77-79
URL 73
URL, for project repository 77

MongoDB integration
about 72
MongoDB 73, 74
MongoDB, installing 75, 76
NoSQL 73
Solr indexes, creating from

MongoDB 77-79

N
NameNode 5

near-real-time search 116
Node Manager (NM) 5
NoSQL

about 73, 82
database 7
relating, to Big Data 73

P
parallel-ssh

URL 9
partition tolerance 82
Planet Cassandra

URL 96
Portable Document Format (PDF) 46
post.jar 26
python

download link 103

Q
Query Parser 30
query result cache 124

R
R

about 104
open source packages 104
Solr, integrating with 105-107
URL 104

reduce-side indexing 91-93
Reduce Tasks 3
request handler

about 41
extracting 42
URL 41

Resource Manager (RM) 5
Response Writer 31
Rich Text format (RTF) 46
Round Robin algorithm

reference link 60

S
search performance

limits 110
scaling 109

[143]

search runtime optimization
about 121
filter queries 122
Hadoop, optimizing 125-127
optimizing, through search query 122
Solr cache, optimizing 122, 123

search schema optimization
about 111
default search field, specifying 111
search schema fields, configuring 111
stemming 112
stop words 112

SecondaryNameNode 5
Secure shell (ssh) 9
sequential updates 54
shard index or slice, SolrCloud 55
sharding algorithm, SolrCloud

about 68
document routing 68, 69
fault tolerance 72
load balancing 71
shard splitting 70

Shard Leader, SolrCloud 55
shard replica, SolrCloud 55
shards 52
shard splitting, SolrCloud 70
Solandra

URL 98
Solr

about 104
advanced analytics 104
integrating, with R 105-107
scaling, through Storm 101

Solr 5.0
URL 24

Solr 1045 Patch
about 89
using 89, 90

Solr 1301 Patch
about 91
running 92
using 91, 92

Solr cache optimization
about 122, 123
common parameters 123
document cache 124
field value cache 124

filter cache 124
lazy field loading 125
query result cache 124

Solr Cell 42
SolrCloud

architecture 54-57
parameters, for development process 58
problems 66, 67
resolutions 66, 67
used, for building enterprise distributed

search 57
working with 53
ZooKeeper, using 53

Solr configuration
about 31
conf/ folder 32
configuration files 37
data/ folder 32
lib/ folder 32
Solr schema, defining 32
structure 32

solrconfig.xml file
declarations 38, 39

Solr Core 27, 55
Solr folder

contrib/ 23
dist/ 23
docs/ 23
example/ 23
licenses/ 23

Solr HDFS connector
working with 82-85

Solr instance
monitoring 128, 129
monitoring, SolrMeter used 130, 131

SolrJ
about 44
interacting, through 44, 45

SolrMeter
about 130
consoles 130
URL 130
used, for monitoring Solr instance 130

Solr plugin
about 40
filters 41
request handlers 41

[144]

search components 41
Solr schema

defining 32
dynamic fields 34
elements 37
fields, copying 35
field types, dealing with 35
metadata configuration 36
Solr fields 33, 34

Solr Transactional Log 64
STDIN (standard input stream) 43
stemming

about 112
algorithms 112

stop words 112
Storm. See Apache Storm
sunspot 45

T
technologies, Solr

.NET 46

Java 46
JavaScript 45
Perl 46
PHP 46
Python 46
Ruby 45

Tokenizer 31

Y
YARN (Yet Another Resource Negotiator) 4

Z
Znode 53
ZooKeeper

about 53
download link 102
features 53, 54

Thank you for buying
Scaling Big Data with Hadoop and Solr

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Hadoop
ISBN: 978-1-78398-364-3 Paperback: 374 pages

Go beyond the basics and master the next generation
of Hadoop data processing platforms

1. Learn how to optimize Hadoop MapReduce,
Pig, and Hive.

2. Dive into YARN and learn how it can integrate
Storm with Hadoop.

3. Understand how Hadoop can be deployed
on the cloud and gain insights into analytics
with Hadoop.

Solr Cookbook
Third Edition
ISBN: 978-1-78355-315-0 Paperback: 356 pages

Solve real-time problems related to Apache
Solr 4.x and 5.0 effectively with the help of
over 100 easy-to-follow recipes

1. Solve performance, setup, configuration,
analysis, and querying problems in no time.

2. Learn to efficiently utilize faceting
and grouping.

3. Explore real-life examples of Apache Solr and
how to deal with any issues that might arise
using this practical guide.

Please check www.PacktPub.com for information on our titles

Building Hadoop Clusters [Video]
ISBN: 978-1-78328-403-0 Duration: 2:34 hours

Deploy multi-node Hadoop clusters to harness the
Cloud for storage and large-scale data processing

1. Familiarize yourself with Hadoop and its
services, and how to configure them.

2. Deploy compute instances and set up a
three-node Hadoop cluster on Amazon.

3. Set up a Linux installation optimized
for Hadoop.

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

5. Encode and enrich datasets into R.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Processing Big Data Using Hadoop and MapReduce
	Apache Hadoop's ecosystem
	Core components
	Understanding Hadoop's ecosystem

	Configuring Apache Hadoop
	Prerequisites
	Setting up ssh without passphrase
	Configuring Hadoop

	Running Hadoop
	Setting up a Hadoop cluster
	Common problems and their solutions
	Summary

	Chapter 2: Understanding Apache Solr
	Setting up Apache Solr
	Prerequisites for setting up Apache Solr
	Running Apache Solr on jetty
	Running Solr on other J2EE containers
	Hello World with Apache Solr!
	Understanding Solr administration
	Solr navigation

	Common problems and solutions

	The Apache Solr architecture
	Configuring Solr
	Understanding the Solr structure
	Defining the Solr schema
	Solr fields
	Dynamic fields in Solr
	Copying the fields
	Dealing with field types
	Additional metadata configuration
	Other important elements of the Solr schema

	Configuration files of Apache Solr
	Working with solr.xml and Solr core
	Instance configuration with solrconfig.xml
	Understanding the Solr plugin
	Other configuration

	Loading data in Apache Solr
	Extracting request handler – Solr Cell
	Understanding data import handlers
	Interacting with Solr through SolrJ
	Working with rich documents (Apache Tika)

	Querying for information in Solr
	Summary

	Chapter 3: Enabling Distributed Search using Apache Solr
	Understanding a distributed search
	Distributed search patterns
	Apache Solr and distributed search

	Working with SolrCloud
	Why ZooKeeper?
	The SolrCloud architecture
	Building an enterprise distributed search using SolrCloud
	Setting up SolrCloud for development
	Setting up SolrCloud for production
	Adding a document to SolrCloud
	Creating shards, collections, and replicas in SolrCloud

	Common problems and resolutions

	Sharding algorithm and fault tolerance
	Document Routing and Sharding
	Shard splitting
	Load balancing and fault tolerance in SolrCloud

	Apache Solr and Big Data – integration with MongoDB
	What is NoSQL and how is it related to Big Data?
	MongoDB at glance
	Installing MongoDB
	Creating Solr indexes from MongoDB

	Summary

	Chapter 4: Big Data Search Using Hadoop and Its Ecosystem
	Understanding NoSQL
	Working with the Solr HDFS connector
	Big data search using Katta
	How Katta works?
	Setting up the Katta cluster
	Creating Katta indexes

	Using Solr 1045 Patch – map-side indexing
	Using Solr 1301 Patch – reduce-side indexing
	Distributed search using Apache Blur
	Setting up Apache Blur with Hadoop

	Apache Solr and Cassandra
	Working with Cassandra and Solr
	Single node configuration
	Integrating with multinode Cassandra

	Scaling Solr through Storm
	Getting along with Apache Storm

	Advanced analytics with Solr
	Integrating Solr and R

	Summary

	Chapter 5: Scaling Search Performance
	Understanding the limits
	Optimizing search schema
	Specifying default search field
	Configuring search schema fields
	Stop words
	Stemming

	Index optimization
	Limiting indexing buffer size
	When to commit changes?
	Optimizing index merge
	Optimize option for index merging

	Optimizing the container
	Optimizing concurrent clients
	Optimizing Java virtual memory

	Optimizing search runtime
	Optimizing through search query
	Filter queries

	Optimizing the Solr cache
	The filter cache
	The query result cache
	The document cache
	The field value cache
	The lazy field loading

	Optimizing Hadoop

	Monitoring Solr instance
	Using SolrMeter

	Summary

	Appendix: Use Cases for
Big Data Search
	E-Commerce websites
	Log management for banking
	The problem
	How can it be tackled?
	High-level design

	Index

