

Solr Cookbook
Third Edition

Solve real-time problems related to Apache Solr 4.x and 5.0
effectively with the help of over 100 easy-to-follow recipes

Rafał Kuć

BIRMINGHAM - MUMBAI

Solr Cookbook
Third Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Second edition: January 2013

Third edition: January 2015

Production reference: 1200115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-315-0

www.packtpub.com

www.packtpub.com

Credits

Author
Rafał Kuć

Reviewers
Sunil Gulabani

Charles Lee

Stefan Matheis

Marcelo Ochoa

Walt Stoneburner

Ning Sun

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Prachi Bisht

Technical Editors
Mrunal M. Chavan

Dennis John

Copy Editors
Sayanee Mukherjee

Rashmi Sawant

Project Coordinator
Sageer Parkar

Proofreaders
Simran Bhogal

Samuel Redman Birch

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Rafał Kuć is a born team leader and software developer. He currently works as a consultant
and software engineer at Sematext Group, Inc., where he concentrates on open source
technologies such as Apache Lucene and Solr, Elasticsearch, and Hadoop stack. He has
more than 14 years of experience in various software branches—from banking software to
e-commerce products. He focuses mainly on Java but is open to every tool and programming
language that will make the achievement of his goal easier and faster. Rafał is also one of the
founders of the solr.pl site, where he tries to share his knowledge and help people with the
problems they face with Solr and Lucene. He is also a speaker at various conferences around
the world, such as Lucene Eurocon, Berlin Buzzwords, ApacheCon, Lucene Revolution, and
DevOps Days.

Rafał began his journey with Lucene in 2002, and it wasn't love at first sight. When he
came back to Lucene in late 2003, he revised his thoughts about the framework and saw
the potential in search technologies. Then, Solr came along and that was it. He started
working with Elasticsearch in the middle of 2010. Currently, Lucene, Solr, Elasticsearch,
and information retrieval are his main points of interest.

Rafał is also the author of Apache Solr 3.1 Cookbook, and the update to it, Apache Solr 4.0
Cookbook, both published by Packt Publishing. He also authored Elasticsearch-related
books, ElasticSearch Server and its second edition, and the first and second editions of
Mastering ElasticSearch, all published by Packt Publishing.

This book is a second update to the first book I ever wrote— Apache Solr 3.1 Cookbook, Packt
Publishing. Again, similar to Apache Solr Cookbook 4.0, Packt Publishing, what meant to be
an update turned out to be almost a complete rewrite because of the pending release of Solr
5.0 and the changes to Solr itself. Between Solr 4.0 and 5.0, there were a lot of changes and
additions to Solr, and I know I didn't manage to gather them all in the recipes that are present
in the book you are holding. However, I hope that if you are either using Solr 4.x or Solr 5.0,
this book will help you overcome some common problems and will push your knowledge about
Solr a bit further.

solr.pl

Acknowledgments

Although I would go the same way if I could go back in time, the time during the writing of
this book was not easy for my family. The ones that suffered from this the most were my wife,
Agnes, and my two great kids—son Philip and daughter Susanna. Without their patience and
understanding, writing this book wouldn't have been possible. I would also like to thank my
and Agnes' parents for their support and help.

I would like to thank all the people involved in creating, developing, and maintaining
Lucene and Solr projects for their work and passion. Without them, this book wouldn't
have been written.

Once again, thank you.

About the Reviewers

Sunil Gulabani is a technical geek in software development based in Ahmedabad, Gujarat,
India. He graduated in commerce from S. M. Patel Institute of Commerce (SMPIC) and has
a master's degree in computer applications from Ahmedabad Education Society Institute of
Computer Studies (AESICS). He had been a top ranker while pursuing his master's degree.

He has also presented a paper Effective Label Matching For Automated Evaluation of
Use -- Case Diagrams on Technology For Education (T4E)—IIIT Hyderabad, an IEEE conference,
along with senior lecturers, Vinay Vachharajani and Dr. Jyoti Pareek.

Since 2011, he has been working as a software engineer and is cloud technology savvy.
He has experience in developing enterprise solutions using Java (EE), Apache Solr, RESTful
Web Services, GWT, Smart GWT, Amazon Web Services (AWS), Redis, Memcache, MongoDB,
and others. He has a keen interest in system architecture and integration, data modeling,
relational databases, and mapping with NoSQL for high throughput.

He is the author of Developing RESTful Web Services with Jersey 2.0, Packt Publishing, that
looks at JAX-RS 2.0, which is an enhanced framework based on the RESTful architecture.
He also reviewed the book RESTful Web Services with Dropwizard, Packt Publishing.

He also takes interest in writing tech blogs and is actively involved in knowledge-sharing
communities such as JUG-Ahmedabad, GDG Ahmedabad, and Ahmedabad University.

You can visit him online at http://www.sunilgulabani.com and follow him on Twitter
at @sunil_gulabani. He can be reached directly at sunil_gulabani@yahoo.com.

http://www.sunilgulabani.com

Stefan Matheis is a freelance backend engineer, currently living in Zurich, Switzerland.
He likes to work on projects around API development, natural language processing, graph
databases, and infrastructure management. Lately, he got involved in payment and logistics
projects. Stefan is an Apache Lucene/Solr committer since 2012 as well as a member of
the project management committee. His main contribution was the new Admin UI, which is
shipped with all Solr releases since 4.0.

Marcelo Ochoa works at the System Laboratory of Facultad de Ciencias Exactas of
the Universidad Nacional del Centro de la Provincia de Buenos Aires and is the CTO at
Scotas.com, a company specialized in near real-time search solutions using Apache
Solr and Oracle. He divides his time between university jobs and external projects related
to Oracle and Big Data technologies. He has worked on several Oracle-related projects such
as translation of Oracle manuals and multimedia CBTs. His background is in database,
network, Web, and Java technologies. In the XML world, he is known as the developer of the
DB Generator for the Apache Cocoon project, the open source projects DBPrism and DBPrism
CMS, the Lucene-Oracle integration using Oracle JVM Directory implementation, and in the
Restlet.org project, the Oracle XDB Restlet Adapter (an alternative to writing native REST
web services inside the database-resident JVM).

Since 2006, he has been part of the Oracle ACE program; Oracle ACEs are known for
their strong credentials as Oracle community enthusiasts and advocates, with candidates
nominated by ACEs in the Oracle Technology and Applications communities.

He is the author of Chapter 17, 360-Degree Programming the Oracle Database, of the book,
Oracle Database Programming using Java and Web Services, Kuassi Mensah, Elsevier Digital
Press, and Chapter 21, DB Prism: A Framework to Generate Dynamic XML from a Database,
of the book, Professional XML Databases, Kevin Williams, Wrox Press.

Scotas.com
Restlet.org

Walt Stoneburner is a software architect with over 25 years of commercial application
development and consulting experience. Fringe passions involve quality assurance,
configuration management, and security. If cornered, he might actually admit to liking
statistics and authoring documentation as well.

He is easily amused by programming language design, collaborative applications, Big Data,
knowledge management, data visualization, and ASCII art. Self-described as a closet geek,
Walt also evaluates software products and consumer electronics, draws comics, runs a
freelance photography studio specializing in portraits and art (CharismaticMoments.com),
writes humor pieces, performs sleights of hand, enjoys game design, and can occasionally be
found on ham radio.

Walt can be reached directly via email at wls@wwco.com or Walt.Stoneburner@gmail.
com. He publishes a tech and humor blog called the Walt-O-Matic at http://www.wwco.
com/~wls/blog/.

His other book reviews and contributions include:

 f AntiPatterns and Patterns in Software Configuration Management, John Wiley & Sons
(ISBN 978-0-471-32929-9, p. xi)

 f Exploiting Software: How to Break Code, Addison-Wesley Professional
(ISBN 978-0-201-78695-8, p. xxxiii)

 f Ruby on Rails Web Mashup Projects, Packt Publishing (ISBN 978-1-847193-93-3)

 f Building Dynamic Web 2.0 Websites with Ruby on Rails, Packt Publishing
(ISBN 978-1-847193-41-4)

 f Instant Sinatra Starter, Packt Publishing (ISBN 978-1782168218)

 f C++ Multithreading Cookbook, Packt Publishing (978-1-78328-979-0)

 f Learning Selenium Testing Tools with Python, Packt Publishing (978-1-78398-350-6)

 f Whittier (ASIN B00GTD1RBS)

 f Cooter Brown's South Mouth Book of Hillbilly Wisdom, CreateSpace Independent
Publishing Platform (ISBN 978-1-482340-99-0)

CharismaticMoments.com
http://www.wwco.com/~wls/blog/
http://www.wwco.com/~wls/blog/

Ning Sun is a software engineer currently working for a China-based start-up, LeanCloud,
providing one-stop Backend as a Service (BaaS) for mobile apps. Being a startup engineer,
he solves various kinds of problems and plays different kinds of roles. However, he has
always been an enthusiast for open source technology. He contributes to several open
source projects and has also learned a lot from them.

Ning worked on Delicious.com in 2013, which is known as one of the most important
websites in early Web 2.0 EAR. The search for Delicious is fully powered by a Solr cluster,
and it might be one of the largest deployments for Solr.

You can always find Ning on Github.com/sunng87 and Twitter.com/Sunng.

Delicious.com
Github.com/sunng87
Twitter.com/Sunng

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Apache Solr Configuration 7

Introduction 8
Running Solr on a standalone Jetty 8
Installing ZooKeeper for SolrCloud 13
Migrating configuration from master-slave to SolrCloud 16
Choosing the proper directory configuration 18
Configuring the Solr spellchecker 20
Using Solr in a schemaless mode 24
Limiting I/O usage 29
Using core discovery 31
Configuring SolrCloud for NRT use cases 33
Configuring SolrCloud for high-indexing use cases 35
Configuring SolrCloud for high-querying use cases 38
Configuring the Solr heartbeat mechanism 40
Changing similarity 42

Chapter 2: Indexing Your Data 47
Introduction 47
Indexing PDF files 48
Counting the number of fields 51
Using parsing update processors to parse data 54
Using scripting update processors to modify documents 58
Indexing data from a database using Data Import Handler 62
Incremental imports with DIH 65
Transforming data when using DIH 68
Indexing multiple geographical points 70
Updating document fields 73

ii

Table of Contents

Detecting the document language during indexation 77
Optimizing the primary key indexation 82
Handling multiple currencies 83

Chapter 3: Analyzing Your Text Data 89
Introduction 89
Using the enumeration type 90
Removing HTML tags during indexing 93
Storing data outside of Solr index 95
Using synonyms 98
Stemming different languages 101
Using nonaggressive stemmers 104
Using the n-gram approach to do performant trailing wildcard searches 107
Using position increment to divide sentences 109
Using patterns to replace tokens 112

Chapter 4: Querying Solr 117
Introduction 117
Understanding and using the Lucene query language 118
Using position aware queries 121
Using boosting with autocomplete 124
Phrase queries with shingles 127
Handling user queries without errors 130
Handling hierarchies with nested documents 134
Sorting data on the basis of a function value 137
Controlling the number of terms needed to match 141
Affecting document score using function queries 144
Using simple nested queries 148
Using the Solr document query join functionality 150
Handling typos with n-grams 152
Rescoring query results 156

Chapter 5: Faceting 163
Introduction 163
Getting the number of documents with the same field value 164
Getting the number of documents with the same value range 167
Getting the number of documents matching the query and subquery 170
Removing filters from faceting results 173
Using decision tree faceting 176
Calculating faceting for relevant documents in groups 179
Improving faceting performance for low cardinality fields 183

iii

Table of Contents

Chapter 6: Improving Solr Performance 187
Introduction 187
Handling deep paging efficiently 188
Configuring the document cache 192
Configuring the query result cache 194
Configuring the filter cache 196
Improving Solr query performance after the start and commit operations 198
Lowering the memory consumption of faceting and sorting 201
Speeding up indexing with Solr segment merge tuning 203
Avoiding caching of rare filters to improve the performance 205
Controlling the filter execution to improve expensive filter performance 206
Configuring numerical fields for high-performance sorting and
range queries 208

Chapter 7: In the Cloud 211
Introduction 211
Creating a new SolrCloud cluster 212
Setting up multiple collections on a single cluster 215
Splitting shards 217
Having more than a single shard from a collection on a node 220
Creating a collection on defined nodes 222
Adding replicas after collection creation 224
Removing replicas 226
Moving shards between nodes 229
Using aliasing 232
Using routing 234

Chapter 8: Using Additional Functionalities 239
Introduction 239
Finding similar documents 240
Highlighting fragments found in documents 242
Efficient highlighting 245
Using versioning 247
Retrieving information about the index structure 251
Altering the index structure on a live collection 257
Grouping documents by the field value 262
Grouping documents by the query value 265
Grouping documents by the function value 267
Efficient documents grouping using the post filter 271

iv

Table of Contents

Chapter 9: Dealing with Problems 275
Introduction 275
Dealing with the too many opened files exception 276
Diagnosing and dealing with memory problems 277
Configuring sorting for non-English languages 280
Migrating data to another collection 283
SolrCloud read-side fault tolerance 287
Using the check index functionality 289
Adjusting the Jetty configuration to avoid deadlocks 292
Tuning segment merging 293
Avoiding swapping 296

Chapter 10: Real-life Situations 299
Introduction 299
Implementing the autocomplete functionality for products 300
Implementing the autocomplete functionality for categories 304
Handling time-sliced data using aliases 307
Boosting words closer to each other 309
Using the Solr spellchecking functionality 313
Using the Solr administration panel for monitoring 317
Automatically expiring Solr documents 322
Exporting whole query results 326

Index 331

Preface
Welcome to Solr Cookbook, Third Edition. You will be taken on a tour of the most common
problems that a user might face while dealing with Apache Solr. You will also explore some of
the features that were recently introduced in Solr. You will learn how to deal with the problems
when configuring and setting up Solr, handle common queries, fine-tune Solr instances, set
up and use SolrCloud, use faceting and grouping, fighting common problems, and many more
things. Each and every recipe is based on real-life problems and provides solutions along with
detailed descriptions of the configuration and code that was used.

What this book covers
Chapter 1, Apache Solr Configuration, covers Solr configuration recipes, along with setting up
ZooKeeper, migrating from master to slave, and configuring Solr for different use cases.

Chapter 2, Indexing Your Data, as the name suggests, explains data indexing, such as binary
files indexing, using Data Import Handler, language detection, updating a single field of
document, and much more.

Chapter 3, Analyzing Your Text Data, concentrates on common problems when analyzing your
data, such as stemming, geographical location indexing, or using synonyms.

Chapter 4, Querying Solr, describes querying Apache Solr, such as nesting queries, affecting
the scoring of documents, phrase searching, or using the parent-child relationship.

Chapter 5, Faceting, is dedicated to the faceting mechanism in which you can find the
information needed to overcome some problems that you might encounter while working
with Solr and faceting.

Chapter 6, Improving Solr Performance, focuses on improving your Apache Solr cluster
performance with information such as cache configuration, indexing speed up, and much more.

Preface

2

Chapter 7, In the Cloud, covers the cloud side of Solr—SolrCloud, setting up collections, replicas
configuration, distributed indexing and searching, as well as aliasing and shard manipulation.

Chapter 8, Using Additional Functionalities, explains how we can highlight long text fields,
sort results on the basis of function value, check user spelling mistakes, and use the
grouping functionality.

Chapter 9, Dealing with Problems, is a small chapter dedicated to the most common
situations such as memory problems, tuning segment merges, and others.

Chapter 10, Real-life Situations, describes how to handle real-life situations such as
implementing different autocomplete functionalities, using near real-time search,
or improving query relevance.

What you need for this book
In order to run most of the examples in this book, you will need Java Runtime Environment
1.7 or the newer version and of course, the 4.10 or the newer version of Apache Solr search
server. To run examples found in this book, you might need a web browser or a command-line
tool that is able to run HTTP requests such as curl.

The recipes in this book (unless stated otherwise) are tested in a Linux environment with the
latest available Version of Solr 5.0. For Windows-based hosts, the single quotes should be
replaced with double quotes in the commands. Remember that during the writing of this book,
the final Version of Solr 5.0 was not released and there might have been changes between
the version used during testing and the released Version of Solr 5.0.

A few chapters in this book require additional software such as Apache ZooKeeper 3.4.3
or Jetty.

Who this book is for
This book is for intermediate Solr Developers who are willing to learn and implement pro-level
practices, techniques, and solutions. This edition will specifically appeal to developers who
wish to quickly get to grips with the changes and new features of Apache Solr 5.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Preface

3

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguishes between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The lib
entry in the solrconfig.xml file tells Solr to look for all the JAR files from the ../../
langid directory."

A block of code is set as follows:

<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="langId" type="string" indexed="true" stored="true" />

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="langId" type="string" indexed="true" stored="true" />

Any command-line input or output is written as follows:

curl 'localhost:8983/solr/update?commit=true' -H 'Content-
type:application/json' -d '[{"id":"1","file":{"set":"New file name"}}]'

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The Overview page for
a collection gives you basic statistics about the core of the collection such as number of
documents, heap memory usage, version of the index, number of segments, and so on."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Apache Solr

Configuration

In this chapter, we will cover the following recipes:

 f Running Solr on a standalone Jetty

 f Installing ZooKeeper for SolrCloud

 f Migrating configuration from master-slave to SolrCloud

 f Choosing the proper directory configuration

 f Configuring the Solr spellchecker

 f Using Solr in a schemaless mode

 f Limiting I/O usage

 f Using core discovery

 f Configuring SolrCloud for NRT use cases

 f Configuring SolrCloud for high-indexing use cases

 f Configuring SolrCloud for high-querying use cases

 f Configuring the Solr heartbeat mechanism

 f Changing similarity

Apache Solr Configuration

8

Introduction
Setting up an example for a Solr instance is not a hard task. We have all that is provided
with the Solr distribution package, which we need for the example deployment. In fact, this
is the simplest way to run Solr. It is very convenient for local development because you don't
need any additional software, apart from Java, which is already installed and you can control
when to run Solr and easily change its configuration. However, the example instance of Solr
will probably not be the optimized way in terms of your deployment. For example, the default
cache configurations are most likely not good for your deployment; there are only sample
warming queries that don't reflect your production queries, there are field types you don't
need, and so on. This is why I will show a few configuration-related recipes in this chapter.

If you don't have any experience with Apache Solr, refer to the
Apache Solr tutorial, which can be found at http://lucene.
apache.org/solr/tutorial.html, before reading this book.
You can also check articles regarding Solr on http://solr.pl
and http://blog.sematext.com.

This chapter focuses on Solr configuration. It starts with showing you how to set up Solr,
install ZooKeeper for SolrCloud, migrate your old master-slave configuration to a SolrCloud
deployment, and also covers some more advanced topics such as near real-time indexing
and searching. We will also go through tuning Solr for specific use cases and the
configurations of some more advanced functionality, such as the scoring algorithm.

One more thing before we go on—remember that while writing the book, the
main version of Solr used was 4.10. All the recipes were also tested on Solr 5.0
in the newest version available, but the Solr 5.0 itself has not been released.

Running Solr on a standalone Jetty
The simplest way to run Apache Solr on the Jetty servlet container is to run the provided
example configuration based on an embedded Jetty. This is very simple if you use the provided
example deployment. However, it is not suited for production deployment, where you will have
the standalone Jetty installed. In this recipe, I will show you how to configure and run Solr on a
standalone Jetty container.

Getting ready
First, you need to download the Jetty servlet container for your platform. You can get your
download package from an automatic installer, such as apt-get, or you can download it
from http://download.eclipse.org/jetty/. In addition to this, read the Using core
discovery recipe of this chapter for more information.

http://lucene.apache.org/solr/tutorial.html
http://lucene.apache.org/solr/tutorial.html
http://solr.pl
http://blog.sematext.com
http://download.eclipse.org/jetty/

Chapter 1

9

While writing this recipe, I used Solr Version 4.10 and Jetty Version 8.1.10.
Solr 5.0 will stop providing the WAR file for deployment on the external
web application container and will be ready for installation as it is.

How to do it...
The first step is to install the Jetty servlet container, which is beyond the scope of this book,
so we will assume that you have Jetty installed in the /usr/share/jetty directory.

1. Let's start with copying the solr.war file to the webapps directory of the installed
Jetty (so that the whole path is /usr/share/jetty/webapps). In addition to this,
we need to create a temporary directory in the installed Jetty, so let's create the tmp
directory in the Jetty installation directory.

2. Next, we need to copy and adjust the solr-jetty-context.xml file from the
contexts directory of the Solr example distribution to the contexts directory
of the installed Jetty. The final file contents should look like this:
<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN" "http://www.
eclipse.org/jetty/configure.dtd">
<Configure class="org.eclipse.jetty.webapp.WebAppContext">
 <Set name="contextPath"><SystemProperty name="hostContext"
default="/solr"/></Set>
 <Set name="war"><SystemProperty name="jetty.home"/>/webapps/solr.
war</Set>
 <Set name="defaultsDescriptor"><SystemProperty name="jetty.
home"/>/etc/webdefault.xml</Set>
 <Set name="tempDirectory"><Property name="jetty.home"
default="."/>/tmp</Set>
</Configure>

3. Now, we need to copy the jetty.xml and webdefault.xml files from the etc
directory of the Solr distribution to the configuration directory of Jetty; in our case,
to the /usr/share/jetty/etc directory.

4. The next step is to copy the Solr core (https://wiki.apache.org/solr/
SolrTerminology) configuration files to the appropriate directory. I'm talking about
files such as schema.xml, solrconfig.xml, and so forth—the files that can be
found in the solr/collection1/conf directory of the example Solr distribution.
These files should be put in the core_name/conf directory inside a folder specified
by the solr.solr.home system variable (in my case, this is the /usr/share/solr
directory). For example, if we want our core to be named example_data, we should
put the mentioned configuration files in the /usr/share/solr/example_data/
conf directory.

https://wiki.apache.org/solr/SolrTerminology
https://wiki.apache.org/solr/SolrTerminology

Apache Solr Configuration

10

5. In addition to this, we need to put the core.properties file in the /usr/share/
solr/example_data directory. The file should be very simple and contain the
single property, name, with the value of the name of the core, which in our case
should look like the following:
name=example_data

6. The next step is optional and is only needed for SolrCloud deployments. For such
deployments, we need to create the zoo.cfg file in the /usr/share/solr/
directory with the following contents:
tickTime=2000
initLimit=10
syncLimit=5

7. The final configuration file we need to create is the solr.xml file, which should
be put in the /usr/share/solr/ directory. The contents of the file should look
like this:
<?xml version="1.0" encoding="UTF-8" ?>
<solr>
 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${jetty.port:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${zkClientTimeout:30000}</int>
 <bool name="genericCoreNodeNames">
 ${genericCoreNodeNames:true}</bool>
 </solrcloud>
 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>
</solr>

8. The final step is to include the solr.solr.home property in the Jetty startup file.
If you have installed Jetty using software such as apt-get, then you need to update
the /etc/default/jetty file and add the –Dsolr.solr.home=/usr/share/
solr parameter to the JAVA_OPTIONS variable of the file. The whole line with this
variable will look like this:

JAVA_OPTIONS="-Xmx256m -Djava.awt.headless=true -Dsolr.solr.home=/
usr/share/solr/"

Chapter 1

11

If you didn't install Jetty with apt-get or a similar software, you
might not have the /etc/default/jetty file. In this case, add
the –Dsolr.solr.home=/usr/share/solr parameter to
the Jetty startup file.

We can now run Jetty to see if everything is okay. To start Jetty, which was already installed,
use the apt-get command, as shown:

/etc/init.d/jetty start

If there are no exceptions during startup, we have a running Jetty with Solr deployed and
configured. To check whether Solr is running, visit http://localhost:8983/solr/.

Congratulations, you have just successfully installed, configured, and run the Jetty servlet
container with Solr deployed.

How it works...
For the purpose of this recipe, I assumed that we needed a single core installation with only
the schema.xml and solrconfig.xml configuration files. Multicore installation is very
similar; it differs only in terms of the Solr configuration files—one needs more than a single
core defined.

The first thing we did was copied the solr.war file and created the tmp directory. The WAR
file is the actual Solr web application. The tmp directory will be used by Jetty to unpack the
WAR file.

The solr-jetty-context.xml file that we place in the context directory allows Jetty
to define the context for a Solr web application. As you can see in its contents, we have
set the context to be /solr, so our Solr application will be available under http://
localhost:8983/solr/. We also need to specify where Jetty should look for the WAR file (the
war property), where the web application descriptor file (the defaultsDescriptor property)
is, and finally, where the temporary directory will be located (the tempDirectory property).

Copying the jetty.xml and webdefault.xml files is important. The standard Solr
distribution comes with Jetty configuration files prepared for high load; for example,
we can avoid the distributed deadlock.

The next step is to provide configuration files for the Solr core. These files should be put
in the core_name/conf directory, which is created in a folder specified by the system's
solr.solr.home variable. Since our core is named example_data, and the solr.solr.
home property points to /usr/share/solr, we place our configuration files in the /usr/
share/solr/example_data/conf directory. Note that I decided to use the /usr/share/
solr directory as the base directory for all Solr configuration files. This ensures the ability to
update Jetty without the need to override or delete the Solr configuration files.

Apache Solr Configuration

12

The core.properties file allows Solr to identify the core that it will try to load. By providing
the name property, we tell Solr what name the core should have. In our case, its name will be
example_data.

The zoo.cfg file is optional, is only needed when setting up SolrCloud, and is used by Solr
to specify ZooKeeper client properties. The tickTime property specifies the number of
milliseconds of each tick. The tick is the unit of time in ZooKeeper client connections. The
initLimit property specifies the number of ticks the initial synchronization phase can take,
and the syncLimit property specifies the number of ticks that can pass between sending a
request and getting an acknowledgement. For example, because the syncLimit property is
set to 5 and tickTime is 2000, the maximum time between sending the request and getting
the acknowledgement is 10,000 milliseconds (syncLimit multiplied by tickTime).

The solr.xml file is described in the Using core discovery recipe in this chapter.

If you installed Jetty with the apt-get command or a similar software, then you need to
update the /etc/default/jetty file to include the solr.solr.home variable for Solr to
be able to see its configuration directory.

After all these steps, we will be ready to launch Jetty. If you installed Jetty with apt-get or
similar software, you can run Jetty with the first command shown in the example. Otherwise,
you can run Jetty with the java -jar start command from the Jetty installation directory.

After running the example query in your web browser, you should see the Solr front page as
a single core. Congratulations, you have successfully configured and run the Jetty servlet
container with Solr deployed.

There's more...
There are a few more tasks that you can perform to counter some problems while running Solr
within the Jetty servlet container. The most common tasks that I encountered during my work
are described in the ensuing sections.

I want Jetty to run on a different port
Sometimes, it's necessary to run Jetty on a port other than the default one. We have two ways
to achieve this:

 f Add an additional start up parameter, jetty.port. The startup command looks
like this:
java –Djetty.port=9999 –jar start.jar

Chapter 1

13

 f Change the jetty.xml file to do what you need to change the following line:

<Set name="port"><SystemProperty name="jetty.port"
default="8983"/></Set>

The line should be changed to a port that we want Jetty to listen to requests from:

<Set name="port"><SystemProperty name="jetty.port"
default="9999"/></Set>

Buffer size is too small
Buffer overflow is a common problem when our queries get too long and too complex, for
example, when using many logical operators or long phrases. When the standard HEAD buffer
is not enough, you can resize it to meet your needs. To do this, add the following line to the
Jetty connector in the jetty.xml file, which will specify the size of the buffer in bytes. Of
course, the value shown in the example can be changed to the one that you need:

<Set name="requestHeaderSize">32768</Set>

After adding the value, the connector definition should look more or less like this:

<Call name="addConnector">
 <Arg>
 <New class="org.mortbay.jetty.bio.SocketConnector">
 <Set name="port"><SystemProperty name="jetty.port"
 default="8080"/></Set>
 <Set name="maxIdleTime">50000</Set>
 <Set name="lowResourceMaxIdleTime">1500</Set>
 <Set name="requestHeaderSize">32768</Set>
 </New>
 </Arg>
</Call>

Installing ZooKeeper for SolrCloud
You might know that in order to run SolrCloud, the distributed Solr deployment, you need
to have Apache ZooKeeper installed. Zookeeper is a centralized service for maintaining
configurations, naming, and provisioning service synchronizations. SolrCloud uses ZooKeeper
to synchronize configurations and cluster states to help with leader election and so on. This is
why it is crucial to have a highly available and fault-tolerant ZooKeeper installation. If you have
a single ZooKeeper instance, and it fails, then your SolrCloud cluster will crash too. So, this
recipe will show you how to install ZooKeeper so that it's not a single point of failure in your
cluster configuration.

Apache Solr Configuration

14

Getting ready
The installation instructions in this recipe contain information about installing ZooKeeper
Version 3.4.6, but it should be useable for any minor release changes of Apache ZooKeeper.
To download ZooKeeper, visit http://zookeeper.apache.org/releases.html. This
recipe will show you how to install ZooKeeper in a Linux-based environment. For ZooKeeper to
work, Java needs to be installed.

How to do it...
Let's assume that we have decided to install ZooKeeper in the /usr/share/zookeeper
directory of our server, and we want to have three servers (with IPs 192.168.1.1,
192.168.1.2, and 192.168.1.3) hosting a distributed ZooKeeper installation. This can be
done by performing the following steps:

1. After downloading the ZooKeeper installation, we create the necessary directory:
sudo mkdir /usr/share/zookeeper

2. Then, we unpack the downloaded archive to the newly created directory. We do this
on three servers.

3. Next, we need to change our ZooKeeper configuration file and specify the servers that
will form a ZooKeeper quorum. So, we edit the /usr/share/zookeeper/conf/
zoo.cfg file and add the following entries:
clientPort=2181
dataDir=/usr/share/zookeeper/data
tickTime=2000
initLimit=10
syncLimit=5
server.1=192.168.1.1:2888:3888
server.2=192.168.1.2:2888:3888
server.3=192.168.1.3:2888:3888

4. Now, the next thing we need to do is create a file called myid in the /usr/
share/zookeeper/data directory. The file should contain a single number
that corresponds to the server number. For example, if ZooKeeper is located on
192.168.1.1, it will be 1, and if ZooKeeper is located on 192.168.1.3, it will be 3,
and so on.

5. Now, we can start the ZooKeeper servers with the following command:
/usr/share/zookeeper/bin/zkServer.sh start

http://zookeeper.apache.org/releases.html

Chapter 1

15

6. If everything goes well, you should see something like:

JMX enabled by default

Using config: /usr/share/zookeeper/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

That's all. Of course, you can also add the ZooKeeper service to start automatically as your
operating system starts up, but this is beyond the scope of the recipe and book.

How it works...
I talked about the ZooKeeper quorum and started this using three ZooKeeper nodes.
ZooKeeper operates in a quorum, which means that at least 50 percent plus one server
needs to be available and connected. We can start with a single ZooKeeper server, but such
deployment won't be highly available and resistant to failures. So, to be able to handle at least
a single ZooKeeper node failure, we need at least three ZooKeeper nodes running.

Let's skip the first part because creating the directory and unpacking the ZooKeeper server is
quite simple. What I would like to concentrate on are the configuration values of the ZooKeeper
server. The clientPort property specifies the port on which our SolrCloud servers should
connect to ZooKeeper. The dataDir property specifies the directory where ZooKeeper will hold
its data. Note that ZooKeeper needs read and write permissions to the directory. So far so good,
right? So, now, the more advanced properties, such as tickTime, specified in milliseconds
is the basic time unit for ZooKeeper. The initLimit property specifies how many ticks the
initial synchronization phase can take. Finally, syncLimit specifies how many ticks can pass
between sending the request and receiving an acknowledgement.

There are also three additional properties present, server.1, server.2, and server.3.
These three properties define the addresses of the ZooKeeper instances that will form the
quorum. The values for each of these properties are separated by a colon character. The first
part is the IP address of the ZooKeeper server, and the second and third parts are the ports
used by ZooKeeper instances to communicate with each other.

The last thing is the myid file located in the /usr/share/zookeeper/data directory.
The contents of the file is used by ZooKeeper to identify itself. This is why we need to properly
configure it so that ZooKeeper is not confused. So, for the ZooKeeper server specified as
server.1, we need to write 1 to the myid file.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Apache Solr Configuration

16

Migrating configuration from master-slave
to SolrCloud

After the release of Apache Solr 4.0, many users wanted to leverage SolrCloud-distributed
indexing and querying capabilities. SolrCloud is also very useful when it comes to handling
collections as you can create them on-the-fly, add replicas, and split already created shards,
and this is only an example of the possibilities given by SolrCloud. Now, for releases after Solr
4.0, people are going for SolrCloud even more frequently. It's not hard to upgrade your current
master-slave configuration to work on SolrCloud, but there are some things you need to take
care of. With the help of the following recipe, you will be able to easily upgrade your cluster.

Getting ready
Before continuing further, it is advised to read the Installing Zookeeper for SolrCloud and
Running Solr on a standalone Jetty recipes of this chapter. They will show you how to set up a
Zookeeper cluster to be ready for production use and how to configure Jetty and Solr to work
with each other.

How to do it...
1. We will start with altering the schema.xml file. In order to use your old index

structure with SolrCloud, you need to add the following fields to the already
defined index structure (add the following fragment to the schema.xml file
in its fields section):
<field name="_version_" type="long" indexed="true"
 stored="true" multiValued="false"/>

2. Now, let's switch to the solrconfig.xml file, starting with the replication handlers.
First, you need to ensure that you have a replication handler set up. Remember that
you shouldn't add master- or slave-specific configurations to it. So, the replication
handler configuration should look like this:
<requestHandler name="/replication" class="solr.
ReplicationHandler" />

3. In addition to this, you need to have the administration panel handlers present, so
the following configuration entry should be present in your solrconfig.xml file:
<requestHandler name="/admin/" class="solr.admin.AdminHandlers" />

Chapter 1

17

4. The last request handler that should be present is the real-time get handler,
which should be defined as follows (the following should also be added to the
solrconfig.xml file):
<requestHandler name="/get" class="solr.RealTimeGetHandler">
 <lst name="defaults">
 <str name="omitHeader">true</str>
 <str name="wt">json</str>
 </lst>
</requestHandler>

5. The next thing SolrCloud needs in order to properly operate is the transaction log
configuration. The following fragment should be added to the solrconfig.xml file:
<updateLog>
 <str name="dir">${solr.data.dir:}</str>
</updateLog>

6. The last thing is the solr.xml file. The example solr.xml file should look like this:

<solr>
 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${jetty.port:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${zkClientTimeout:30000}</int>
 <bool name="genericCoreNodeNames">${genericCoreNodeNames:tr
ue}</bool>
 </solrcloud>
 <shardHandlerFactory name="shardHandlerFactory" class="HttpShar
dHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>
</solr>

That's all. Your Solr instance configuration files are now ready to be used with SolrCloud.

How it works...
Now, let's see why all these changes are needed in order to use our old configuration files
with SolrCloud.

The _version_ field is used by Solr to enable document versioning and optimistic locking,
which ensures that you won't have the newest version of your document overwritten by
mistake. As a result of this, SolrCloud requires the _version_ field to be present in the index
structure. Adding this field is simple—you just need to place another field definition that is
stored, indexed, and based on a long type, that's all.

Apache Solr Configuration

18

As for the replication handler, you should remember not to add slave- or master-specific
configurations, but only a simple request handler definition, as shown in the previous
example. The same applies to the administration panel handlers; they need to be available
under the default URL address.

The real-time get handler is responsible for getting the updated documents right away. In
general, the documents are not available to search if the Lucene index searcher is not open,
which happens after a hard or soft commit command (we will talk more about commit and
soft commit in the Configuring SolrCloud for NRT use cases recipe of this chapter). This
handler allows Solr (and also you) to retrieve the latest version of the document without the
need to reopen the searcher, and thus, even if the document is not yet visible during a usual
search operation. This is done by using the transaction log if the document is not yet indexed.
The configuration is very similar to usual request handler configurations; you need to add
a new handler with the name property set to /get and the class property set to solr.
RealTimeGetHandler. In addition to this, we want the handler to omit response headers
(the omitHeader property set to true) and return a response in JSON (with the wt property
set to json). We omit the headers so that we have responses that are easier to parse.

One of the last things that is needed by SolrCloud is the transaction log, which enables real-
time get operations to be functional. The transaction log keeps track of all the uncommitted
changes and enables real-time get handlers to retrieve them. In order to turn on transaction
log usage, one should add the updateLog tag to the solrconfig.xml file and specify the
directory where the transaction log directory should be created (by adding the dir property,
as shown in the example). In the previous configuration, we tell Solr that we want to use the
Solr data directory as the place to store transaction log directories.

Finally, Solr needs you to keep the default address for the core administrative interface, so
you should remember to have the adminPath property set to the value shown in the example
(in the solr.xml file). This is needed in order for Solr to be able to manipulate cores.

We already talked about the solr.xml file contents in the Running Solr on a standalone Jetty
recipe in this chapter, so refer to that recipe if you are not familiar with the contents.

Choosing the proper directory configuration
One of the most crucial properties of Apache Lucene and Solr is the Lucene Directory
implementation. The directory interface provides an abstraction layer for all I/O operations for
the Lucene library. Although it seems simple, choosing the right directory implementation can
affect the performance of your Solr setup in a drastic way. This recipe will show you how to
choose the right directory implementation.

Chapter 1

19

How to do it...
In order to use the desired directory, all you need to do is choose the right directory
factory implementation and inform Solr about it. Let's assume that you want to use
NRTCachingDirectory as your directory implementation. In order to do this, you need to
place (or replace if it is already present) the following fragment in your solrconfig.xml file:

<directoryFactory name="DirectoryFactory" class="solr.
NRTCachingDirectoryFactory" />

That's all. The setup is quite simple, but I think that the question that will arise is what
directory factories are available to use. When this book was written, the following directory
factories were available:

 f solr.StandardDirectoryFactory

 f solr.SimpleFSDirectoryFactory

 f solr.NIOFSDirectoryFactory

 f solr.MMapDirectoryFactory

 f solr.NRTCachingDirectoryFactory

 f solr.HdfsDirectoryFactory

 f solr.RAMDirectoryFactory

Now, let's see what each of these factories provides.

How it works...
Before we get into the details of each of the presented directory factories, I would like to
comment on the directory factory configuration parameter. All you need to remember is that
the name attribute of the directoryFactory tag should be set to DirectoryFactory,
and the class attribute should be set to the directory factory implementation of your choice.
Also, some of the directory implementations can take additional parameters that define their
behavior. We will talk about some of them in other recipes in the book (for example, in the
Limiting I/O usage recipe in this chapter).

If you want Solr to make decisions for you, you should use the
solr.StandardDirectoryFactory directory factory. It is filesystem-based and tries to
choose the best implementation based on your current operating system and Java virtual
machine used. If you implement a small application that won't use many threads, you can
use the solr.SimpleFSDirectoryFactory directory factory that stores the index file
on your local filesystem, but it doesn't scale well with a high number of threads. The solr.
NIOFSDirectoryFactory directory factory scales well with many threads, but remember
that it doesn't work well on Microsoft Windows platforms (it's much slower) because of a JVM
bug (http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6265734).

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6265734

Apache Solr Configuration

20

The solr.MMapDirectoryFactory directory factory has been the default directory factory
for Solr for 64-bit Linux systems since Solr 3.1. This directory implementation uses virtual
memory and the kernel feature called mmap to access index files stored on disk. This allows
Lucene (and thus Solr) to directly access the I/O cache. This is desirable, and you should stick
to this directory if near real-time searching is not needed.

If you need near real-time indexing and searching, you should use solr.
NRTCachingDirectoryFactory. It is designed to store some parts of the index in memory
(small chunks), and thus speeds up some near real-time operations greatly. By saying near
real-time, we mean that the documents are available within milliseconds from indexing.

If you want to know more about near real-time search and indexing,
refer to a great explanation on the phrase on Solr wiki, available at
https://wiki.apache.org/lucene-java/NearRealtimeSearch.

The solr.HdfsDirectoryFactory is used when Solr runs on HDFS filesystems, so inside
a Hadoop cluster. If you are using Solr inside a Hadoop cluster, then it is almost certain that
you'll want to use the directory implementation.

The last directory factory, solr.RAMDirectoryFactory, is the only one that is not
persistent. The whole index is stored in the RAM memory, and thus, you'll lose your index
after a restart or server crash. Also, you should remember that replication won't work when
using solr.RAMDirectoryFactory. One might ask why I should use this factory? Imagine
a volatile index autocomplete functionality or for unit tests of your query's relevance, or
just anything you can think of when you don't need to have persistent and replicated data.
However, remember that this directory is not designed to hold large amounts of data.

Configuring the Solr spellchecker
If you are used to the way the spellchecker worked in the previous Solr versions, then you
might remember that it required its own index to give you spelling corrections. This approach
had some disadvantages, such as the need to rebuild the index on each Solr node or replicate
the spellchecker index between the nodes. With Solr 4.0, a new spellchecker implementation
was introduced, solr.DirectSolrSpellchecker. It allows you to use your main index to
provide spelling suggestions and doesn't need to be rebuilt after every commit. Now, let's see
how to use this new spellchecker implementation in Solr.

https://wiki.apache.org/lucene-java/NearRealtimeSearch

Chapter 1

21

How to do it...
First, let's assume we have a field in the index called title in which we hold the titles of our
documents. What's more, we don't want the spellchecker to have its own index, and we would
like to use this title field to provide spelling suggestions. In addition, we would like to decide
when we want spelling suggestions. In order to do this, we need to do two things:

1. First, we need to edit our solrconfig.xml file and add the spellchecking
component, the definition of which can look like this:
<searchComponent name="spellcheck" class="solr.
SpellCheckComponent">
 <str name="queryAnalyzerFieldType">text_general</str>
 <lst name="spellchecker">
 <str name="name">direct</str>
 <str name="field">title</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="distanceMeasure">internal</str>
 <float name="accuracy">0.8</float>
 <int name="maxEdits">1</int>
 <int name="minPrefix">1</int>
 <int name="maxInspections">5</int>
 <int name="minQueryLength">3</int>
 <float name="maxQueryFrequency">0.01</float>
 </lst>
</searchComponent>

2. Now, we need to add a proper request handler configuration that will use the
preceding search component. To do this, we need to add the following section
to the solrconfig.xml file:
<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">
 <str name="df">title</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Apache Solr Configuration

22

3. That's all. In order to get spelling suggestions, we need to run the following query:
/spell?q=disa

4. In response, we will get something like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5</int>
 </lst>
<result name="response" numFound="0" start="0">
</result>
<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="disa">
 <int name="numFound">1</int>
 <int name="startOffset">0</int>
 <int name="endOffset">4</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">data</str>
 <int name="freq">1</int>
 </lst>
 </arr>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <lst name="collation">
 <str name="collationQuery">data</str>
 <int name="hits">1</int>
 <lst name="misspellingsAndCorrections">
 <str name="disa">data</str>
 </lst>
 </lst>
 </lst>
</lst>
</response>

If you check your data folder, you will see that there is no directory responsible for holding the
spellchecker index. Now, let's see how this works.

Chapter 1

23

How it works...
Now, let's get into some specifics about how the configuration shown in the preceding
example works. We will start from the search component configuration. The
queryAnalyzerFieldType property tells Solr which field configuration should be used
to analyze the query passed to the spellchecker. The name property sets the name of the
spellchecker, which is used in the handler configuration later. The field property specifies
which field should be used as the source for the data used to build spelling suggestions. As
you probably figured out, the classname property specifies the implementation class, which
in our case is solr.DirectSolrSpellChecker, enabling us to omit having a separate
spellchecker index; spellchecker will just use the main index. The next parameters visible in
the previous configuration specify how the Solr spellchecker should behave; however, this
is beyond the scope of this recipe (if you want to read more about the parameters, visit the
http://wiki.apache.org/solr/SpellCheckComponent URL).

The last thing is the request handler configuration. Let's concentrate on all the properties
that start with the spellcheck prefix. First, we have spellcheck.dictionary,
which, in our case, specifies the name of the spellchecking component we want to use
(note that the value of the property matches the value of the name property in the search
component configuration). We tell Solr that we want spellchecking results to be present
(the spellcheck property with the on value), and we also tell Solr that we want to see the
extended result format, which allows us to see more with regard to the results (spellcheck.
extendedResults set to true). In addition to the previous configuration properties, we also
said that we want to have a maximum of five suggestions (the spellcheck.count property),
and we want to see the collation and its extended results (spellcheck.collate and
spellcheck.collateExtendedResults both set to true).

There's more...
Let's see one more thing—the ability to have more than one spellchecker defined in a
request handler.

More than one spellchecker
If you want to have more than one spellchecker handling spelling suggestions, you can
configure your handler to use multiple search components. For example, if you want to use
search components (spellchecking ones) named word and better (you have to have them
configured), you can add multiple spellcheck.dictionary parameters to your request
handler. This is what your request handler configuration will look like:

<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
<requestHandler name="/spell" class="solr.SearchHandler"
startup="lazy">
 <lst name="defaults">

http://wiki.apache.org/solr/SpellCheckComponent

Apache Solr Configuration

24

 <str name="df">title</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck.dictionary">word</str>
 <str name="spellcheck.dictionary">better</str>
 <str name="spellcheck">on</str>
 <str name="spellcheck.extendedResults">true</str>
 <str name="spellcheck.count">5</str>
 <str name="spellcheck.collate">true</str>
 <str name="spellcheck.collateExtendedResults">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Using Solr in a schemaless mode
Many use cases allow us to define our index structure upfront. We can look at the data, see
which parts are important, which we want to search, how we want to do it, and finally, we can
create the schema.xml file that we will use. However, this is not always possible. Sometimes,
you don't know the data structure before you go into production, or you know very little about
it. Of course, we can use dynamic fields, but such an approach is limited. This is why the
newest versions of Solr allow us to use the so-called schemaless mode in which Solr is able to
guess the type of data and create a field for it.

How to do it...
Let's assume that we don't know anything about the data and we want to fully rely on Solr
when it comes to it.

1. To do this, we start with the schema.xml file—the fields section of it. We need to
include two fields, so our schema.xml file looks as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="_version_" type="long" indexed="true" stored="true"/>

2. In addition to this, we need to specify the unique identifier. We do this by including
the following section in the schema.xml file:
<uniqueKey>id</uniqueKey>

Chapter 1

25

3. In addition, we need to have the field types defined. To do this we add a section that
looks as follows:
<fieldType name="string" class="solr.StrField"
sortMissingLast="true" />
<fieldType name="long" class="solr.TrieLongField"
precisionStep="0" positionIncrementGap="0"/>
<fieldType name="booleans" class="solr.BoolField"
sortMissingLast="true" multiValued="true"/>
<fieldType name="tlongs" class="solr.TrieLongField"
precisionStep="8" positionIncrementGap="0" multiValued="true"/>
<fieldType name="tdoubles" class="solr.TrieDoubleField"
precisionStep="8" positionIncrementGap="0" multiValued="true"/>
<fieldType name="tdates" class="solr.TrieDateField"
precisionStep="6" positionIncrementGap="0" multiValued="true"/>

<fieldType name="text" class="solr.TextField"
positionIncrementGap="100" multiValued="true">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

4. Now, we can switch to the solrconfig.xml file to add the so-called managed index
schema. We do this by adding the following configuration snippet to the root section
of the solrconfig.xml file:
<schemaFactory class="ManagedIndexSchemaFactory">
 <bool name="mutable">true</bool>
 <str name="managedSchemaResourceName">managed-schema</str>
</schemaFactory>

5. We alter our update request handler to include additional update chains
(we can just alter the same section in the solrconfig.xml file we already have):
<requestHandler name="/update" class="solr.UpdateRequestHandler">
 <lst name="defaults">
 <str name="update.chain">add-unknown-fields</str>
 </lst>
</requestHandler>

Apache Solr Configuration

26

6. Finally, we define the used update request processor chain by adding the following
section to the solrconfig.xml file:

<updateRequestProcessorChain name="add-unknown-fields">
 <processor class="solr.RemoveBlankFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseBooleanFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseLongFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseDoubleFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseDateFieldUpdateProcessorFactory">
 <arr name="format">
 <str>yyyy-MM-dd</str>
 </arr>
 </processor>
 <processor class="solr.AddSchemaFieldsUpdateProcessorFactory">
 <str name="defaultFieldType">text</str>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Boolean</str>
 <str name="fieldType">booleans</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.util.Date</str>
 <str name="fieldType">tdates</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Long</str>
 <str name="valueClass">java.lang.Integer</str>
 <str name="fieldType">tlongs</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Number</str>
 <str name="fieldType">tdoubles</str>
 </lst>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory"/>
 <processor class="solr.RunUpdateProcessorFactory"/>
</updateRequestProcessorChain>

Now, if we index a document, it looks like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Test document</field>
 <field name="published">2014-04-21</field>
 <field name="likes">12</field>
 </doc>
</add>

Chapter 1

27

Solr will index it without any problem, creating fields such as titles, likes, or
published, with a proper format. We can check them by running a q=*:* query,
which will result in the following response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
<result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <arr name="title">
 <str>Test document</str>
 </arr>
 <arr name="published">
 <date>2014-04-21T00:00:00Z</date>
 </arr>
 <arr name="likes">
 <long>12</long>
 </arr>
 <long name="_version_">1466477993631154176</long></doc>
 </result>
</response>

How it works...
We start with our index having two fields, id and _version_. The id field is used as the
unique identifier; we informed Solr about this by adding the unqiueKey section in schema.
xml. We will need it for functionalities such as document updates, deletes by identifiers,
and so forth. The _version_ field is used by Solr internally, and is required by some Solr
functionalities (such as optimistic locking); this is why we include it. The rest of the fields will
be added automatically.

We also need to define the field types that we will use. Apart from the string type used by
the id field, and the long type used by the _version_ field, it contains types our documents
will use. We will also define these types in our custom processor chain in the solrconfig.
xml file.

Apache Solr Configuration

28

The next thing is very important; the managed schema factory that we defined in
solrconfig.xml, which is a ManagedIndexSchemaFactory type (the class
property set to this value). By adding this section, we say that we want Solr to manage our
schema.xml file. This means that Solr will load the schema.xml file during startup, change
its name to schema.xml.bak, and will then create a file called managed-schema (the value
of the managedSchemaResourceName property). From this point, we shouldn't modify our
index structure manually—we should either let Solr do it during indexation or add and alter
fields using the schema API (we will talk about this in the Altering the index structure on a live
collection recipe in Chapter 8, Using Additional Functionalities). Since I assume that we will
use the schema API, I've set the mutable property to true. If we want to disallow using the
schema API, we should set the mutable property to false.

Note that you need to have a single schemaFactory defined, and
it needs to be set to the ManagedIndexSchemaFactory type.
If it is not set to this type, field discovery will not work and the
indexation will result in an error.

We also need to include an update request processor chain. Since we want all index
requests to use our custom request chain, we add the update.chain property and
set it to add-unknown-fields in the defaults section of our update request
handler configuration.

Finally, the second most important thing in this recipe is our update request processor chain
called add-unknown-fields (the same as we used in the update processor configuration).
It defines several update processors that allow us to get the functionality of fields and
their types' discoveries. The solr.RemoveBlankFieldUpdateProcessorFactory
processor factory removes empty fields from the documents we send to indexation. The
solr.ParseBooleanFieldUpdateProcessorFactory processor factory is responsible
for parsing Boolean fields; solr.ParseLongFieldUpdateProcessorFactory
parses fields that have data that uses the long type; solr.
ParseDoubleFieldUpdateProcessorFactory parses fields with data of double type;
and solr.ParseDateFieldUpdateProcessorFactory parses the date-based fields. We
specify the format we want Solr to recognize (we will discuss this in more detail in the Using
parsing update processors to parse data recipe in Chapter 2, Indexing Your Data).

Finally, we include the solr.AddSchemaFieldsUpdateProcessorFactory processor
factory that adds the actual fields to our managed schema. We specify the default field
type to text by adding the defaultFieldType property. This type will be used when no
other type will match the field. After the default field type definition, we see four lists called
typeMapping. These sections define the field type mappings Solr will use. Each list contains
at least one valueClass property and one fieldType property. The valueClass property
defines the type of data Solr will assign to the field type defined by the fieldType property.

Chapter 1

29

In our case, if Solr finds a date (<str name="valueClass">java.util.Date</
str>) value in a field, it will create a new field using the tdates field type (<str
name="fieldType">tdates</str>). If Solr finds a long or an integer value, it creates a
new field using the tlongs field type. Of course, a field won't be created if it already exists in
our managed schema. The name of the field created in our managed schema will be the same
as the name of the field in the indexed document.

Finally, the solr.LogUpdateProcessorFactory processor factory tells Solr to write
information about the update to log, and the solr.RunUpdateProcessorFactory
processor factory tells Solr to run the update itself.

As we can see, our data includes fields that we didn't specify in the schema.xml file, and the
document was indexed properly, which allows us to assume that the functionality works. If you
want to check how our index structure looks like after indexation, use the schema API; you
can do it yourself after reading the Retrieving information about the index structure recipe in
Chapter 8, Using Additional Functionalities.

One thing to remember is that by default, Solr is able to automatically detect field types such
as Boolean, integer, float, long, double, and date.

Take a look at https://cwiki.apache.org/confluence/
display/solr/Schemaless+Mode for further information
regarding the Solr schemaless mode.

Limiting I/O usage
As you might know, the Lucene index is divided into smaller pieces called segments, and each
segment is stored on disk. Depending on the indexing and merge policy settings, Lucene, from
time to time, merges two or more segments into a new one. This operation requires reading
the old segments and writing a new one with the information from the old segments. The
merges can happen at the same time when Solr indexes data and queries are run. The same
goes for writing the segments; it can be pretty expensive when it comes to I/O usage.
It is because of this that Solr allows us to configure the limits for I/O usage. This recipe will
show you how to do this.

Getting ready
Before continuing further with this recipe, read the Choosing the proper directory
configuration recipe of this chapter to see what directories are available and how to
configure them.

https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode
https://cwiki.apache.org/confluence/display/solr/Schemaless+Mode

Apache Solr Configuration

30

How to do it...
Let's assume that we want to limit the I/O usage for our use case that uses
solr.MMapDirectoryFactory. So, in the solrconfig.xml file, we will have
the following configuration present:

<directoryFactory name="DirectoryFactory" class="solr.
MMapDirectoryFactory">
</directoryFactory>

Now, let's introduce the following limits:

 f We allow Solr to write a maximum of 20 MB per second during segment writes

 f We allow Solr to write a maximum of 10 MB per second during segment merges

 f We allow Solr to read a maximum of 50 MB per second

To do this, we change our previous configuration to the following:

<directoryFactory name="DirectoryFactory" class="solr.
MMapDirectoryFactory">
 <double name="maxWriteMBPerSecFlush">20</double>
 <double name="maxWriteMBPerSecMerge">10</double>
 <double name="maxWriteMBPerSecRead">50</double>
</directoryFactory>

After altering the configuration, all we need to do is restart Solr and the limits will be taken
into consideration.

How it works...
The logic behind setting the limits is very simple. All directories that extend the Solr
CachingDirectoryFactory class allow us to set the maxWriteMBPerSecFlush,
maxWriteMBPerSecMerge and maxWriteMBPerSecRead properties. The mentioned
directory implementations are all the directory implementations that were mentioned in
the Choosing the proper directory configuration recipe of this chapter.

The maxWriteMBPerSecFlush property allows us to tell Solr how many megabytes per
second can be written by Solr during segment flush (so, during the write operation that is not
triggered by segment merging). The maxWriteMBPerSecMerge property allows us to specify
how many megabytes per second can be written by Solr during segment merge. Finally, the
maxWriteMBPerSecRead property specifies the amount of megabytes allowed to be read
per second. One thing to remember is that the values are approximated, not exact.

Chapter 1

31

Limiting I/O usage can be very handy, especially in deployments where I/O usage is at its
maximum. During query peak hours, when we want to solve server queries as fast as we
can, we need to minimize the indexing and merging impact. With proper configuration that is
adjusted to our needs, we can just limit the I/O usage and still serve queries with the latency
we want.

Using core discovery
Until Solr 4.4, solr.xml needed to include mandatory information, such as the cores
definition. This was needed because Solr used this information to get and load the defined
cores and their properties, basically information that was required for Solr to operate properly.
Starting from Solr 4.4, a new structure of the solr.xml file was introduced, and in addition
to this, a process called core discovery was implemented. Due to these changes, we are not
forced to describe the core in the solr.xml file, but instead, we can use simple text files, and
Solr will automatically load the appropriate cores. This recipe will show you how to use the
core discovery process.

How to do it...
Using the new core discovery process is very simple.

1. We start with creating the solr.xml file, which should be put in the home directory
of Solr. The contents of the file should look like the following:
<?xml version="1.0" encoding="UTF-8" ?>
<solr>
 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${jetty.port:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${zkClientTimeout:30000}</int>
 <bool name="genericCoreNodeNames">
 ${genericCoreNodeNames:true}</bool>
 </solrcloud>
 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>
</solr>

Apache Solr Configuration

32

2. After this, we are ready to use the core discovery. For each core, apart from
the standard configuration stored in the conf directory, we need to create the
core.properties file, which should be placed in the same directory as the
conf directory. For example, if we have a core named sample_core, our very
simple core.properties file will look like this:

name=sample_core

That's all; during startup, Solr will load our core.

How it works...
The solr.xml file is the same one that is provided with the Solr example deployment, and
it contains the default values related to Solr configuration. The host property specifies the
hostname, and the hostPort property specifies the port on which Solr will run (it will be taken
from the jetty.port property, and is by default 8983). The hostContext property specifies
the web application context under which Solr will be available (by default, it is solr). In addition
to this, we can specify the ZooKeeper client session timeout by using the zkClientTimeout
property (used only in the SolrCloud mode, defaulting to 30,000 milliseconds). By default, we
also say that we want Solr to use generic core names for SolrCloud, and we can change this by
specifying false in the genericCoreNodeNames property.

There are two additional properties that relate to shard handling. The socketTimeout
property specifies the timeout of socket connection, and the connTimeout property specifies
the timeout of connection. Both the properties are used to create clients used by Solr to
communicate between shards. The connection timeout specifies the timeout when Solr
connects to another shard, and it takes a long time; the socket timeout is about the time
to wait for the response to be back.

The simplest core.properties file is an empty file, in which case, Solr will try to choose
the core name for us. However, in our case, we wanted to give the core a name we've chosen,
and because of this, we included a single name entry that defines the name Solr will assign
to the core. You should remember that Solr will try to load all the cores that have the core.
properties file present, and the core name doesn't have to live in the directory of the
same name.

Of course, the name property is not the only property available for usage. There are other
properties, but in most cases, you'll use the name property only:

 f name: This is the name of the core.

 f config: This is the configuration filename, which defaults to solrconfig.xml.

 f dataDir: This is the directory where data is stored. By default, Solr will use a
directory called data that is created on the same level as the conf directory.

Chapter 1

33

 f ulogDir: This is the directory where the transaction log entries are stored.
For performance reasons, it might be good to store transaction logfiles on a
disks other than the index files.

 f schema: This is the name of the file describing the index structure, which defaults
to schema.xml.

 f shard: This is the identifier of the shard.

 f collection: This is the name of the collection the core belongs to.

 f roles: This is the core role definition.

 f loadOnStartup: This can take a value of true or false. It defaults to true,
which means Solr will load the core during startup.

 f transient: This can take a value of true or false. It defaults to false,
which means that the core can't be automatically unloaded by Solr.

 f coreNodeName: This is the name of the core used by SolrCloud.

Finally, it is worth saying that the old solr.xml format will not be supported in Solr 5.0,
so it is good to get familiar with the new format now.

There's more...
If you want to see all the properties and sections exposed by the new solr.xml format,
refer to the official Apache Solr documentation located at https://cwiki.apache.org/
confluence/display/solr/Format+of+solr.xml.

Configuring SolrCloud for NRT use cases
Nowadays, we are used to getting information as soon as we can. We want our data to be
indexed fast, efficiently, and be available for searching as soon as possible; in perfect cases,
right after they were sent for indexation. This is what near real time in Solr is all about— the
ability to search the documents right after they are sent for indexation or with a very short
latency. This recipe will show you how to configure Solr, especially SolrCloud for such use cases.

How to do it...
I assume that you already have SolrCloud set up and ready to go (if you don't, refer to the
Creating a new SolrCloud cluster recipe in Chapter 7, In the Cloud); you will now know how
to update your collection configuration and be interested in near real-time search.

https://cwiki.apache.org/confluence/display/solr/Format+of+solr.xml
https://cwiki.apache.org/confluence/display/solr/Format+of+solr.xml

Apache Solr Configuration

34

Let's assume that we want our data to be available about one second after it's indexed.
To do this, we need to change the solrconfig.xml file so that its update handler section
looks as shown:

<updateHandler class="solr.DirectUpdateHandler2">
 <updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
 </updateLog>

 <autoSoftCommit>
 <maxTime>1000</maxTime>
 </autoSoftCommit>

 <autoCommit>
 <maxTime>300000</maxTime>
 <openSearcher>false</openSearcher>
 </autoCommit>
</updateHandler>

That's all; after a restart or configuration reload, documents should be available to search
after about one second.

How it works...
By changing the configuration of the update handler, we introduced three things. First, using
the <updateLog> section, we told Solr to use the update log functionality. The transaction
log (another name for this functionality) is a file where Solr writes raw documents so that
they can be used in a recovery process. In SolrCloud, each instance of Solr needs to have its
own transaction log configured. When a document is sent for indexation, it gets forwarded to
the shard leader and the leader sends the document to all its replicas. After all the replicas
respond to the leader, the leader itself responds to the node that sent the original request,
and this node reports the indexing status to the client. At this point in time, the document
is written into a transaction log, not yet indexed, but safely written; so, if a failure occurs
(for example, the server shuts down), the document is not lost. During a startup process,
the transaction log is replayed and the documents stored in it are indexed, so even if they
were not indexed, they will be if a failure happens. After the process of storing the data in
transaction logs, Solr can easily index the data located there.

The second thing is the autoSoftCommit section. This is a new autocommit option
introduced in Solr 4.0. It basically allows us to reopen the index searcher without closing
and opening a new one. For us, this means that our documents that were sent for indexation
will start to be visible and available to search. We do this once every 1000 milliseconds as
configured using the maxTime tag. The soft commit was introduced because reopening is
easier to do and is less resource intensive than closing and opening a new index searcher.
In addition to this, it doesn't persist the data to disk by creating a new segment.

Chapter 1

35

However, one has to remember that even though the soft commit is less resource intensive,
it is still not free. Some Solr caches will have to be reloaded, such as the filter, document, or
query result caches. We will get into more configuration details in the Configuring SolrCloud
for high-indexing use cases and Configuring SolrCloud for high-querying use cases recipes in
this chapter.

The last thing is the autocommit defined in the autoCommit section, which is called the
hard autocommit. It is responsible for flushing data and closing the index segment used for
it (because of this segment, merge might start in the background). In addition to this, the
hard autocommit also closes the transaction log and opens a new one. We've configured this
operation to happen every 5 minutes (300000 milliseconds). What we also included is the
<openSearcher>false</openSearcher> section. This means that Solr won't open a
new index searcher during a hard auto commit operation. We do this on purpose; we define
index searcher opening periods in the soft autocommit section. If we set the openSearcher
section to true, Solr will close the old index searcher, open a new one, and automatically
warm caches. Before Solr 4.0, this was the only way to have documents visible for searching
when using autocommit.

One additional thing to remember is that with soft autocommit set to reopen the searcher very
often, all the top level caches, such as the filter, document, and query result caches, will be
invalidated. It is worth thinking and doing performance tests if the cache (all or some of them)
are actually worth being used at all. I would like to give a clear advice here, but this is highly
dependent on the use case. You can read more about cache configuration in the Configuring
the document cache, Configuring the query result cache, and Configuring the filter cache
recipes in Chapter 6, Improving Solr Performance.

Configuring SolrCloud for high-indexing
use cases

Solr is designed to work under high load, both when it comes to querying and indexing.
However, the default configuration provided with the example Solr deployment is not sufficient
when it comes to these use cases. This recipe will show you how to prepare your SolrCloud
collection configuration for use cases when the indexing rate is very high.

Getting ready
Before continuing reading the recipe, read the Running Solr on a standalone Jetty and
Configuring SolrCloud for NRT use cases recipes in this chapter.

Apache Solr Configuration

36

How to do it...
In very high indexing use cases, there are chances that you'll use bulk indexing to index your
data. In addition to this, because we are talking about SolrCloud, we'll use autocommit so
that we can leave the data durability and visibility management to Solr. Let's discuss how to
prepare configuration for a use case where indexing is high, but the querying is quite low; for
example, when using Solr for log centralization solutions.

Let's assume that we are indexing more than 1,000 documents per second and that we have
four nodes, each of 12 cores and 64 GB of RAM. Note that this specification is not something
we need to index the number of documents, but they are here for reference.

1. First, we'll start with the autocommit configuration, which will look as follows (we add
this to the solrconfig.xml file):
<updateHandler class="solr.DirectUpdateHandler2">
 <updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
 </updateLog>

 <autoSoftCommit>
 <maxTime>600000</maxTime>
 </autoSoftCommit>

 <autoCommit>
 <maxTime>15000</maxTime>
 <openSearcher>false</openSearcher>
 </autoCommit>
</updateHandler>

2. The second step is to adjust the number of indexing threads. To do this, we add the
following information to the indexConfig section of solrconfig.xml:
<maxIndexingThreads>10</maxIndexingThreads>

3. The third step is to adjust the memory buffer size for each indexing thread. To do this,
we add the following information to the indexConfig section of solrconfig.xml:

<ramBufferSizeMB>128</ramBufferSizeMB>

Now, let's discuss what each of these changes mean.

Chapter 1

37

How it works...
We started with tuning the autocommit setting, which you should be aware of after reading
this recipe. Since we are not worried about documents being visible as soon as they are
indexed, we set the soft autocommit's maxTime property to 600000. This means that we will
reopen the searcher every 10 minutes, so our documents will be visible maximum 10 minutes
after they are sent to indexation.

The one thing to look at is the short time for hard commit, which is every 15 seconds (the
maxTime property of the autoCommit section set to 15000). We did this because we don't
want transaction logs to contain a high number of entries because this can cause problems
during the recovery process.

We also increased the default number of threads an index writer can use from the default
8 to 10 by setting the maxIndexingThreads property. Since we have 12 cores on each
machine, and we are not querying much, we can allow more threads using the index writer.
If the index writer uses the number of threads that's equal to the maxIndexingThreads
property, the next thread will wait for one of the currently running to end. Remember that the
maxIndexingThreads property sets the maximum allowed indexing threads, which doesn't
mean they will be used every time.

We also increased the default RAM buffer size from 100 to 128 using the ramBufferSizeMB
property. We did this to allow Lucene to buffer as many documents as needed in memory. If the
size of the documents in the buffer is larger than the given value of the ramBufferSizeMB
property, Lucene will flush the data to the directory, which will decide what else to do. We have
to remember though that we are also using autocommit, so the data will be flushed every 15
seconds because of hard autocommit settings.

Remember that we didn't take into consideration the size of the cluster
because we had the maximum number of nodes. You should remember
that if I/O is the bottleneck when indexing, spreading the collection among
more nodes should help with the indexing load.

In addition to this, you might want to look at the merging policy and segment merge processes
as this can become a major bottleneck. If you are interested, refer to the Tuning segment
merging recipe in Chapter 9, Dealing with Problems.

Apache Solr Configuration

38

Configuring SolrCloud for high-querying
use cases

One of the things that Solr is really great for is high-querying use cases. Whether they
are distributed queries using SolrCloud or single node queries running in master-slave
environments, Solr does very well when it comes to handling queries and scaling. In this
recipe, we will concentrate on use cases where we index quite a small amount of documents
per second, but we want to have them at low latency.

Getting ready
Before continuing to read this recipe, read the Running Solr on a standalone Jetty, Configuring
SolrCloud for NRT use cases, and Configuring SolrCloud for high-indexing use cases recipes of
this chapter.

How to do it...
Giving general advice for high-querying use cases is pretty hard because it very much
depends on the data, cluster structure, query structure, and target latency. In this recipe, we
will look at three things—configuration, scaling, and overall general advices. Let's assume that
we have four nodes, each having 128 GB of RAM and large disks, and we have 100 million
documents we want to search across.

We should start with sizing our cluster. In general, this means choosing the right number of
nodes, the right number of shards and replicas for your collections, and the memory. The
general advice is to index some portion of your data and see how much space is used. For
example, assuming you've indexed 1,000 documents and they are taking 1 MB of disk space,
we can now calculate the disk space needed by 100 million documents; this will give us about
100 GB of total disk space used. With a replication factor of 2, we will need 200 GB, which
means our four nodes should be enough to have the data cached by the operating system. In
addition to this, we will need memory for Solr to operate (we can help ourselves calculate how
much we will need using http://svn.apache.org/repos/asf/lucene/dev/trunk/
dev-tools/size-estimator-lucene-solr.xls).

Given these facts, we can end up with a minimum of four shards and a replication factor of 2,
which will give us a leader shard and its replica for each of the four initial shards we created
the collection with. However, going for more initial shards might be better for scaling in the
later stage of your application life cycle.

http://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-estimator-lucene-solr.xls
http://svn.apache.org/repos/asf/lucene/dev/trunk/dev-tools/size-estimator-lucene-solr.xls

Chapter 1

39

After we know some information, we can prepare the autocommit settings. To do this,
we alter our solrconfig.xml configuration file and include the following update
handler configuration:

<updateHandler class="solr.DirectUpdateHandler2">

 <updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
 </updateLog>

 <autoSoftCommit>
 <maxTime>30000</maxTime>
 </autoSoftCommit>

 <autoCommit>
 <maxTime>600000</maxTime>
 <openSearcher>false</openSearcher>
 </autoCommit>
</updateHandler>

In addition to this, we should adjust caching, which is covered in the Configuring the
document cache, Configuring the query result cache, and Configuring the filter cache
recipes in Chapter 6, Improving Solr Performance.

In addition to all this, you might want to look at the merging policy and segment merge
processes as this can become a major bottleneck. If you are interested, refer to the
Tuning segment merging recipe in Chapter 9, Dealing with Problems.

How it works...
We started with sizing questions and estimations. Remember that the numbers you will
extrapolate from the small portion of data are not exact numbers, they are estimations.
What's more, we now know that in order to have our index fully cached by the operating
system, we will need at least 200 GB of RAM memory that can be used for the system cache
because we will have at least one shard and its physical copy. Of course, the four nodes with
128 GB of RAM are more or less a perfect case when we will be able to have our indices
cached. This is because we will have a total of 512 GB of RAM across all nodes. Given the fact
that we will end up with four leader shards, one on each machine, four replicas, again one on
each machine, and that our index will be evenly divided, it will give us 50 GB of data on each
node (25 GB for leader and the same for replica because it is an exact copy).

Apache Solr Configuration

40

A few words about having more shards—sometimes, if you expect your data to grow, it is good
to create a collection with more shards initially and place multiple ones on a single node. This
gives more flexibility when you add new nodes; you can migrate some shards without the need
to split them, or you can create a new collection with new shards and reindex your data.

Next, we adjust the autocommit section. Since we don't need near real-time searching, we
decide not to stress Solr too much and set the soft autocommit to 60000 milliseconds, which
means that the data will be visible after 1 minute from indexing. In general, if you will, the
more often you reopen the searcher, the more pressure is put on Solr, and thus, the queries
will be slower. So, if you query heavily, you should set the soft autocommit to the maximum
time allowed by your use case.

Of course, we also included the hard autocommit and set it to be executed every 10 minutes.
We decided to go for this because we don't index much data, so the index shouldn't be
changed too often, and the transaction log shouldn't be too large.

Configuring the Solr heartbeat mechanism
Solr is designed to be scalable, fault tolerant, and have a high up time so that we can have
our search service always ready. Many of the deployments, whether they are still master-
slave setups or SolrCloud ones, still use some kind of load-balancing and health-checking
mechanism. Solr comes with a request handler that is designed to handle health-checking
requests, and this recipe will show you how to set it up.

How to do it...
Setting up the heartbeat mechanism in Solr is very easy. One just needs to add the following
section to the solrconfig.xml file:

<requestHandler name="/admin/ping" class="solr.PingRequestHandler">
 <lst name="invariants">
 <str name="q">solrpingquery</str>
 </lst>
</requestHandler>

This is all. Of course, if we need all our cores and collections to respond to the health
requests, we should include the previous section in the solrconfig.xml files for all of
them. After this, run a query to the admin/ping handler of our Solr instance, for example:

curl 'localhost:8983/solr/heartbeat_core/admin/ping'

Chapter 1

41

Solr will respond with a status response, for example:

<?xml version="1.0" encoding="UTF-8"?>

<response>

<lst name="responseHeader"><int name="status">0</int><int
name="QTime">6</int><lst name="params"/></lst><str name="status">OK</str>

</response>

How it works...
The configuration is really simple; we defined a new request handler that will be available
under the /admin/ping address (of course, we have to prefix it with the host address and
core name). The class implementing the handle is the one dedicated to handle the heartbeat
mechanism request, solr.PingRequestHandler. We also defined that the q parameter for
all the ping requests will be solrpingquery and the request won't be able to overwrite this
parameter (because we included it in the invariants section). The ping query should be as
simple as it can get so that it runs blazingly fast; what's more, it is usually good for it not to
return any search results.

As you can see, the response contains the status section, which in our case has the value of
OK. In the case of an error, the status section will contain the error code.

There's more...
The solr.PingRequestHandler handler allows us to enable and disable the heartbeat
mechanism without shutting down the whole Solr instance.

Enabling and disabling the heartbeat mechanism
If we want to disable and enable the heartbeat mechanism without taking down the whole
Solr instance, we need to introduce a property called healthcheckFile to our request
handler configuration, for example:

<requestHandler name="/admin/ping" class="solr.PingRequestHandler">
 <lst name="invariants">
 <str name="q">solrpingquery</str>
 </lst>
 <str name="healthcheckFile">server-enabled.txt</str>
</requestHandler>

Now, to enable the heartbeat mechanism, one should run the following command:

curl 'localhost:8983/solr/heartbeat_core/admin/ping?action=enable'

Apache Solr Configuration

42

By running this, Solr will create a file named server-enabled.txt in the directory the data
directory is located at. This file will contain information about when the heartbeat mechanism
is enabled.

To disable the heartbeat mechanism, one should run the following command:

curl 'localhost:8983/solr/heartbeat_core/admin/ping?action=disable'

This command will delete the previously created file.

We can also check the heartbeat status by running the following command:

curl 'localhost:8983/solr/heartbeat_core/admin/ping?action=status'

Changing similarity
Most times, the default way to calculate the score of your documents is what you need.
However, sometimes you need more from Solr than just the standard behavior. For example,
you might want shorter documents to be more valuable compared to longer ones. Let's
assume that you want to change the default behavior and use different score calculation
algorithms for the description field of your index. This recipe will show you how to leverage
this functionality.

Getting ready
Before choosing one of the score calculation algorithms available in Solr, it's good to read
a bit about them. The detailed description of all the algorithms is beyond the scope of this
recipe and the book (although a simple description is mentioned later in the recipe), but I
suggest visiting the Solr wiki page (or Javadocs) and reading basic information about the
available implementations.

How to do it...
For the purpose of this recipe, let's assume we have the following index structure (just add
the following entries to your schema.xml file):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="description" type="text_general_dfr" indexed="true"
stored="true" />

Chapter 1

43

The string and text_general types are available in the default schema.xml file provided
with the example Solr distribution. However, we want DFRSimilarity to be used to calculate
the score for the description field. In order to do this, we introduce a new type, which is
defined as follows (just add the following entries to your schema.xml file):

<fieldType name="text_general_dfr" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" enablePositionIncrements="true" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="stopwords.txt" enablePositionIncrements="true" />
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <similarity class="solr.DFRSimilarityFactory">
 <str name="basicModel">P</str>
 <str name="afterEffect">L</str>
 <str name="normalization">H2</str>
 <float name="c">7</float>
 </similarity>
</fieldType>

Also, to use the per-field similarity, we have to add the following entry to your schema.xml file:

<similarity class="solr.SchemaSimilarityFactory"/>

That's all. Now, let's have a look and see how this works.

How it works...
The index structure previously presented is pretty simple as there are only three fields.
The one thing we are interested in is that the description field uses our own custom
field type called text_generanl_dfr.

Apache Solr Configuration

44

The thing we are most interested in is the new field type definition called text_general_dfr.
As you can see, apart from the index and query analyzer, there is an additional section called
similarity. It is responsible for specifying which similarity implementation to use to
calculate the score for a given field. You are probably used to defining field types, filters,
and other things in Solr, so you probably know that the class attribute is responsible for
specifying the class that implements the desired similarity implementation, in our case,
solr.DFRSimilarityFactory. Also, if there is a need, you can specify additional
parameters that configure the behavior of your chosen similarity class. In the previous
example, we specified the four additional parameters of basicModel, afterEffect,
normalization, and c, all of which define the DFRSimilarity behavior.

The solr.SchemaSimilarityFactory class is required to specify the similarity for
each field.

Although the recipe is not about all the similarities available, I wanted to list the available
ones. Note that each similarity might require and use different configuration parameters
(all of them are described in the provided Javadocs). The list of currently available similarity
factories are:

 f solr.DefaultSimilarityFactory: This is the default Lucene similarity
implementing the default scoring algorithm (the Javadoc is available at
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/
search/similarities/DefaultSimilarityFactory.html).

 f solr.SweetSpotSimilarityFactory: This is the extension to the
default similarity factory, providing additional parameters to tune scoring
behaviors (the Javadoc is available at http://lucene.apache.org/
solr/4_10_0/solr-core/org/apache/solr/search/similarities/
SweetSpotSimilarityFactory.html).

 f solr.BM25SimilarityFactory: This is the similarity model that bases the score
calculation on the probabilistic model, estimating the probability of finding a document
for a given query. It is said that this similarity performs best on short texts (the Javadoc
is available at http://lucene.apache.org/solr/4_10_0/solr-core/org/
apache/solr/search/similarities/BM25SimilarityFactory.html).

 f solr.DFRSimilarityFactory: This similarity is based on the divergence from
the randomness probability model (the Javadoc is available at http://lucene.
apache.org/solr/4_10_0/solr-core/org/apache/solr/search/
similarities/DFRSimilarityFactory.html).

 f solr.IBSimilarityFactory: This similarity is based on the
information-based probability model, which is similar to the one used for divergence
from the randomness model (the Javadoc is available at http://lucene.apache.
org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/
IBSimilarityFactory.html).

http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/DefaultSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/DefaultSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/SweetSpotSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/SweetSpotSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/SweetSpotSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/BM25SimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/BM25SimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/DFRSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/DFRSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/DFRSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/IBSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/IBSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/IBSimilarityFactory.html

Chapter 1

45

 f solr.LMDirichletSimilarityFactory: This similarity is based on Bayesian
smoothing using Dirichlet priors (the Javadoc is available at http://lucene.
apache.org/solr/4_10_0/solr-core/org/apache/solr/search/
similarities/LMDirichletSimilarityFactory.html).

 f solr.LMJelinekMercerSimilarityFactory: This similarity is based on the
Jelinek-Mercer smoothing method (the Javadoc is available at http://lucene.
apache.org/solr/4_10_0/solr-core/org/apache/solr/search/
similarities/LMJelinekMercerSimilarityFactory.html).

Note that after the similarity model changes, full document
reindexing should be performed.

There's more...
In addition to per-field similarity definition, you can also configure the global similarity.

Changing the global similarity
Apart from specifying the similarity class on a per-field basis, you can choose fields other than
the default one in a global way. For example, if you want to use BM25Similarity as the
default field, you should add the following entry to your schema.xml file:

<similarity class="solr.BM25SimilarityFactory"/>

As with the per-field similarity, you need to provide the name of the factory class that is
responsible for creating the appropriate similarity class.

http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMDirichletSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMDirichletSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMDirichletSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMJelinekMercerSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMJelinekMercerSimilarityFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/search/similarities/LMJelinekMercerSimilarityFactory.html

2
Indexing Your Data

In this chapter, we will cover the following topics:

 f Indexing PDF files

 f Counting the number of fields

 f Using parsing update processors to parse data

 f Using scripting update processors to modify documents

 f Indexing data from a database using Data Import Handler

 f Incremental imports with DIH

 f Transforming data when using DIH

 f Indexing multiple geographical points

 f Updating document fields

 f Detecting the document language during indexation

 f Optimizing the primary key indexation

 f Handling multiple currencies

Introduction
Indexing data is one of the most crucial things in Lucene and Solr deployment. When your
data is not indexed properly, your search results will be poor. When the search results are
poor, it's almost certain the users will not be satisfied with the application that uses Solr.
This is why we need our data to be prepared and indexed as timely and correctly as possible.

Indexing Your Data

48

On the other hand, preparing data is not an easy task. Nowadays, we have more and more
data floating around. We need to index multiple formats of data from multiple sources. Do
we need to parse the data manually and prepare the data in XML format? The answer is no;
we can let Solr do this for us. This chapter will concentrate on the indexing process and data
preparation, starting with how to index data that is a binary PDF file to how to use Data Import
Handler to fetch data from database and index it with Apache Solr and describing how we can
detect the document language during indexation. We will also learn how to modify the data
during indexation so that we don't have to prepare everything upfront.

Indexing PDF files
The library on the corner, we used to go to, wants to expand its collection and become
available for the wider public through the World Wide Web. It asked its book suppliers to
provide sample chapters of all the books in PDF format so that they can share it with online
users. With all the samples provided by the supplier comes a problem—how to extract data for
the search box from more than 900,000 PDF files. Solr can do it with the use of Apache Tika
(http://tika.apache.org/). This recipe will show you how to handle such a task.

How to do it...
To index PDF files, we will need to set up Solr to use extracting request handlers. To do this,
we will take the following steps:

1. First, let's edit our Solr instance, solrconfig.xml, and add the following
configuration:
<requestHandler name="/update/extract" class="solr.extraction.
ExtractingRequestHandler">
 <lst name="defaults">
 <str name="fmap.content">text</str>
 <str name="lowernames">true</str>
 <str name="uprefix">attr_</str>
 <str name="captureAttr">true</str>
 </lst>
</requestHandler>

2. Next, create the extract folder anywhere on your system (I created the folder in
the directory where Solr is installed, on the same level as the lib directory of Solr)
and place the solr-cell-4.10.0.jar file from the dist directory (you can find it
in the Solr distribution archive). After this, you have to copy all the libraries from the
contrib/extraction/lib/ directory to the extract directory you created before.

http://tika.apache.org/

Chapter 2

49

3. In addition to this, we need the following entries added to the solrconfig.xml file
(adjust the path to the one matching your system):
<lib dir="../../extract" regex=".*\.jar" />

This is actually all that you need to do in terms of configuration.

4. The next step is the index structure. To simplify the example, I decided to choose the
following index structure (place it in your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="text" type="text_general" indexed="true"
stored="true"/>"/>
<dynamicField name="attr_*" type="text_general" indexed="true"
stored="true" multiValued="true""/>"/>

5. To test the indexing process, I created a PDF file, book.pdf, using Bullzip PDF Printer
(www.bullzip.com), which contains the text This is an updated version
of Solr cookbook only. To index this file, I used the following command:
curl "http://localhost:8983/solr/cookbook/update/extract?literal.
id=1&commit=true" -F "myfile=@book.pdf"

You should see the following response:
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">0</int><int
name="QTime">1383</int></lst>
</response>

6. To see what was indexed, I ran the following within a web browser:

http://localhost:8983/solr/cookbook/select/?q=text:solr&fl=attr_
creator,attr_modified

In return, I got the following response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">text:solr</str>
 <str name="fl">attr_creator,attr_modified</str>
 </lst>

www.bullzip.com

Indexing Your Data

50

 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <arr name="attr_creator">
 <str>Rafał Kuć</str>
 </arr>
 <arr name="attr_modified">
 <str>2014-05-07T11:30:09Z</str>
 </arr>
 </doc>
 </result>
</response>

How it works...
A binary file parsing is implemented in Solr using the Apache Tika framework. Tika is a toolkit
used to detect and extract metadata and structured text from various types of documents,
not only binary files but also HTML and XML files.

Solr has a dedicated handler that uses Apache Tika. To be able to use it, we need to add a
handler based on the solr.extraction.ExtractingRequestHandler class to our
solrconfig.xml file, as shown in the preceding example.

In addition to the handler definition, we need to specify where Solr should look for the
additional libraries we placed in the extract directory we created. The dir attribute of
the lib tag should be pointing to the path to the created directory. The regex attribute is
the regular expression telling Solr which files to load. The base directory is the Solr home
directory, so if you use relative paths, you should remember this.

Now, let's discuss the default configuration parameters. The fmap.content parameter
tells Solr to what field content the parsed document should be put. In our case, the parsed
content will go to the field named text. The next parameter, lowernames, set to true,
tells Solr to lower all names that come from Tika and make them lowercased. The next
parameter, uprefix, is very important. It tells Solr how to handle fields that are not defined
in the schema.xml file. The name of the field returned from Tika will be added to the value
of the parameter and sent to Solr. For example, if Tika returns a field named creator,
and we don't have such a field in our index, then Solr will try to index it under a field named
attr _creator, which is a dynamic field. The last parameter tells Solr to index Tika XHTML
elements into separate fields named after these elements. Remember that Tika can
return multiple attributes of the same name; this is why we defined the dynamic field as a
multivalued one.

Chapter 2

51

Next, we have a command that sends a PDF file to Solr. We send a file to the /update/
extract handler with two parameters. First, we define a unique identifier. It's useful to be
able to do this during document sending because most of the binary documents won't have
an identifier in its contents. To pass the identifier, we use the literal.id parameter. The
second parameter we send to Solr is information to perform a commit immediately after
document processing.

The test file I created for the purpose of the recipe contained the simple sentence This is an
updated version of Solr cookbook. Of course, Tika will extract way more information
from the PDF, such as creation time, creator, and many more attributes. We queried Solr
with a simple query, and to keep the response simple, we limited the returned fields to only
attr_creator and attr_modified. In response, I got one document that matched the given
query. As you can see, Solr was able to extract both the creator and the file modification date. If
you want to see all the information extracted by Solr, just remove the fl parameter.

Counting the number of fields
Imagine a situation where we have a simple document to be indexed to Solr with titles and
tags. What we will want to do is separate the premium documents that have more tag values
because they are better in terms of our business. Of course, we can count the number of tags
ourselves, but why not let Solr do this? This recipe will show you how to do this with Solr.

How to do it...
Let's look at the steps we need to take to count the number of field values.

1. We start with the index structure. What we need to do is put the following section in
the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true"/>
<field name="tags" type="string" indexed="true" stored="true"
multiValued="true"/>
<field name="tags_count" type="int" indexed="true" stored="true"/>

2. The next thing is our test data, which looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr Cookbook 4</field>
 <field name="tags">solr</field>

Indexing Your Data

52

 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr Cookbook 4 second edition</field>
 <field name="tags">search</field>
 <field name="tags">solr</field>
 <field name="tags">cookbook</field>
 </doc>
</add>

3. In addition to this, we need to alter our solrconfig.xml file. First, we add the
proper update request processor to the file:
<updateRequestProcessorChain name="count">
 <processor class="solr.CloneFieldUpdateProcessorFactory">
 <str name="source">tags</str>
 <str name="dest">tags_count</str>
 </processor>
 <processor class="solr.CountFieldValuesUpdateProcessorFactory">
 <str name="fieldName">tags_count</str>
 </processor>
 <processor class="solr.DefaultValueUpdateProcessorFactory">
 <str name="fieldName">tags_count</str>
 <int name="value">0</int>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

4. We would also like to have our update processor be used with every indexing request,
so we change our /update handler in the solrconfig.xml file so that it looks like
this:
<requestHandler name="/update" class="solr.UpdateRequestHandler">
 <lst name="defaults">
 <str name="update.chain">count</str>
 </lst>
</requestHandler>

5. Now, if we want to use the count information Solr automatically added, we will send
the following query:
http://localhost:8983/solr/cookbook/select?q=title:cookbook&bf=fie
ld(tags_count)&defType=edismax

Chapter 2

53

6. Solr will position the document with more tags at the top of the result list:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">title:cookbook</str>
 <str name="defType">edismax</str>
 <str name="bf">field(tags_count)</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">2</str>
 <str name="title">Solr Cookbook 4 second edition</str>
 <arr name="tags">
 <str>search</str>
 <str>solr</str>
 <str>cookbook</str>
 </arr>
 <int name="tags_count">3</int>
 <long name="_version_">1467535763434373120</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solr Cookbook 4</str>
 <arr name="tags">
 <str>solr</str>
 </arr>
 <int name="tags_count">1</int>
 <long name="_version_">1467535763382992896</long></doc>
 </result>
</response>

Now, let's see how it works.

How it works...
The index structure is quite simple. It contains a unique identifier field, a title, a field holding
tags, and a field holding the count of tags. As you can see, in the example data, we provide the
identifier of the document, its title, and the tags. What we don't provide is the number of tags
that we calculate during indexation.

Indexing Your Data

54

We also defined a new update request processor chain called count. It contains five
update processors.

The first update processor, solr.CloneFieldUpdateProcessorFactory,
is responsible for copying the value of the field defined by the source property
to a field defined by the dest property. The second update processor, solr.
CountFieldValuesUpdateProcessorFactory, replaces the actual value of the
field defined by the fieldName property with the count of values. This is why we need
the solr.CloneFieldUpdateProcessorFactory update processor before solr.
CountFieldValuesUpdateProcessorFactory. The third update processor, solr.
DefaultValueUpdateProcessorFactory, sets the default value (defined by the value
property) for the field defined by the fieldName property. The other request processors are
responsible for logging the request information and running the update. By defining this chain,
we tell Solr that we want the tags field to be cloned into tags_count first, then we want the
counts to be calculated and placed in the tags_count field; if we don't have a value in the
tags_count field, we set it to 0.

We also define the solr.UpdateRequestHandler configuration and then alter the default
configuration by adding the defaults section and including the update.chain property
to count (our update request processor chain name). This means that our defined update
request processor chain will be used with every indexing request.

Our query searches for every document that includes the cookbook term in the title
field. We will also use the edismax query parser (defType=edismax). We also include
a simple boosting function that boosts documents by the value of their tags_count field
(bf=field(tags_count)). As you can see in the results, we get what we wanted to achieve.

Using parsing update processors to
parse data

Let's assume that we are running a bookstore, we want to sort our books by the publication
date, and run faceting on the number of likes each book gets. However, we get all our data in
XML, and we don't have data in the proper format, and so on. The good thing is that we can
tell Solr to parse our data property so that we don't have to change what we already have.
This recipe will show you how to do this.

Getting ready
Before continuing with this recipe, I suggest reading the Counting the number of fields recipe
of this chapter to get used to updating the request processor configuration.

Chapter 2

55

How to do it...
Let's look at the steps we need to take to make data parsing work.

1. First, we need to prepare our index structure, so we add the following section to the
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="published" type="date" indexed="true" stored="true"
/>
<field name="likes" type="long" indexed="true" stored="true" />

2. In addition to this, we need a custom update request processor chain defined. To do
this, we add the following section to the solrconfig.xml file:
<updateRequestProcessorChain name="parse">
 <processor class="solr.ParseLongFieldUpdateProcessorFactory">
 <str name="fieldName">likes</str>
 </processor>
 <processor class="solr.ParseDateFieldUpdateProcessorFactory">
 <str name="fieldName">published</str>
 <arr name="format">
 <str>yyyy-MM-dd</str>
 </arr>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

3. The third step is to alter the /update request handler configuration by adding the
following section to our solrconfig.xml file:
<requestHandler name="/update" class="solr.UpdateRequestHandler">
 <lst name="defaults">
 <str name="update.chain">parse</str>
 </lst>
</requestHandler>

4. Now, we can index our data, which looks like this:
<add>
 <doc>
 <field name="id">1</field>

Indexing Your Data

56

 <field name="title">Solr Cookbook 4</field>
 <field name="published">2013-01-10</field>
 <field name="likes">10</field>
 </doc>
</add>

5. After we send our data, we can check a simple query like this:

http://localhost:8983/solr/cookbook/select?q=*:*&sort=published+de
sc&facet=true&facet.field=likes

The response from Solr looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">106</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="facet.field">likes</str>
 <str name="sort">published desc</str>
 <str name="facet">true</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Solr Cookbook 4</str>
 <date name="published">2013-01-10T00:00:00Z</date>
 <long name="likes">10</long>
 <long name="_version_">1468068127952601088</long></doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="likes">
 <int name="10">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, the data was properly parsed, the sorting works, and faceting also works,
so let's see how it was possible.

Chapter 2

57

How it works...
Our data is very simple. Each book is described with its identifier (the id field), the title
(the title field), the publication day (the published field), and the number of likes
(the likes field). The published field is of the date type for proper date-based sorting,
and the likes field is of the long type.

Our defined update request processor chain consists of two new processors that we are not
familiar with. The first processor, solr.ParseLongFieldUpdateProcessorFactory, is
responsible for parsing the data to a long type. It takes the field defined in the fieldName
property from the document sent to indexation and parses it. The second processor is
solr.ParseDateFieldUpdateProcessorFactory, which we already talked about in
the Using Solr in a schemaless mode recipe in Chapter 1, Apache Solr Configuration, but
let's a recap. It takes the field defined in the fieldName property from the document sent to
indexation and tries to parse its value using the date formats defined using the format array.
We only defined a single format, but you can put multiple formats if this is what you need.

For a description of the possible formats, refer to http://joda-
time.sourceforge.net/apidocs/org/joda/time/format/
DateTimeFormat.html.

We also defined the solr.UpdateRequestHandler configuration, and then altered the
default configuration by adding the defaults section and including the update.chain
property to script (our update request processor chain name). This means that our defined
update request processor chain will be used with every indexing request.

After indexing our data and running a query, we will see that our data has proper field types.
We will also see that sorting works on the published field, which was parsed into data,
although our published field content was not in a format understandable by Solr.

See also
 f If you want to see all the possibilities of parsing different field types, refer to the

Javadoc of solr.FieldMutatingUpdateProcessorFactory available at
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/
update/processor/FieldMutatingUpdateProcessorFactory.html. The
classes extending this class provide a nice description of the additional possibilities.

http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://joda-time.sourceforge.net/apidocs/org/joda/time/format/DateTimeFormat.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/FieldMutatingUpdateProcessorFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/FieldMutatingUpdateProcessorFactory.html

Indexing Your Data

58

Using scripting update processors to
modify documents

Sometimes, we need to modify documents during indexing, and we don't want to do this on
the indexing application side. For example, we have documents describing the Internet sites.
What we want to be able to do is filter the sites on the basis of the protocol used, for example,
http or https. We don't have this information; we only have the whole URL address. Let's
see how we can achieve this with Solr.

Getting ready
Before continuing with the following recipe, I suggest reading the Counting the number of
fields recipe of this chapter to get used to updating request processor configuration.

How to do it...
The following steps will take you through the process of achieving our goal:

1. First, we start with the index structure, putting the following section in the
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="url" type="text_general" indexed="true"
stored="true"/>
<field name="protocol" type="string" indexed="true" stored="true"
/>

2. The next step is configuring Solr by adding a new update request processor chain
called script. We do this by adding the following section to our solrconfig.xml
file:
<updateRequestProcessorChain name="script">
 <processor class="solr.StatelessScriptUpdateProcessorFactory">
 <str name="script">script.js</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

3. The third step is to alter the /update request handler configuration by adding the
following section to our solrconfig.xml file:
<requestHandler name="/update" class="solr.UpdateRequestHandler">
 <lst name="defaults">

Chapter 2

59

 <str name="update.chain">script</str>
 </lst>
</requestHandler>

4. Finally, we need the script mentioned in the update request processor chain
configuration, which we called script.js and stored in the conf directory
(the same directory where the schema.xml file is placed). The content of the
script.js file looks as follows:
functionfunction processAdd(cmd) {
 doc = cmd.solrDoc;
 url = doc.getFieldValue("url");
 if (url != null) {
 parts = url.split(":");
 if (parts != null && parts.length > 0) {
 doc.setField("protocol", parts[0]);
 }
 }
}

function processDelete(cmd) {
}

function processMergeIndexes(cmd) {
}

function processCommit(cmd) {
}

function processRollback(cmd) {
}

function finish() {
}

Our example data looks as follows:

<add>
 <doc>
 <field name="id">1</field>
 <field name="url">http://solr.pl/</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="url">https://drive.google.com/</field>
 </doc>
</add>

Indexing Your Data

60

5. After indexing our data, we can try our script out by running the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&fq=protocol:http

The response from Solr should be similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
 <response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="fq">protocol:http</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <strname="url">http://solr.pl/</str>
 <strname="protocol">http</str>
 <long name="_version_">1468022030035058688</long></doc>
 </result>
</response>

As you can see, everything works as it should, so now let's see how it worked.

How it works...
Our data is very simple. Each document is described with its identifier (the id field), the URL
(the url field), and the field holding the protocol (the protocol field). The first two fields will
be passed in the data; the protocol field will be filled automatically by our update request
processor chain.

The next thing is to configure our update request processor chain. We already described most
of the configuration details in the Counting the number of fields recipe of this chapter. The
new thing is the solr.StatelessScriptUpdateProcessorFactory processor. It allows
us to define a script (using the script property) that will be used to process our documents.
In our case, this script is called script.js. Solr will load this script and use it for each
document passed through the update request processor chain.

We also defined the solr.UpdateRequestHandler configuration, and then altered the
default configuration by adding the defaults section and including the update.chain
property to script (our update request processor chain name). This means that our defined
update request processor chain will be used with every indexing request.

Chapter 2

61

Finally, we come to the juicy part of the recipe, the script.js script. The solr.
StatelessScriptUpdateProcessorFactory processor allows us to alter Solr
behavior using the following script functions:

 f processAdd: This function is executed when a document is added to the index.
In our case, we will put our code in this function.

 f processDelete: This function is executed when a delete operation is sent to Solr.

 f processMergeIndexes: This function is executed when the index merge
command is sent to Solr.

 f processCommit: This function is executed when the commit command is sent
to Solr.

 f processRollback: This function is executed when the rollback command is
sent to Solr.

 f finish: Any code that should be run after the script that finished executing is put
in this method.

Apart from the finish function, all the other functions have a single argument that
represents the command sent to Solr.

As already mentioned, we only need to provide logic in the processAdd function. We start
by retrieving the Solr document from the command (the cmd object) and then store the
document in the doc variable (doc = cmd.solrDoc;). Next, we get the url field of the
document (url = doc.getFieldValue("url");). We check whether the field is defined
(if (url != null)); if it is, we split the URL using the : character. This means that for the
http://solr.pl URL, we should get an array containing the two parts http and //solr.
pl. We are interested in the first value. We check if the parts variable, which was returned
by the split function, is defined and if it has elements (if (parts != null &&parts.
length> 0)). If the condition is true, we just set a new field using the first element in the
parts array, which will contain the protocol.

After indexing our data and running a query that filters the documents to only those that has
the http protocol, we see that we did the job right.

See also
 f If you want to read more about solr.

StatelessScriptUpdateProcessorFactory, refer to the Solr Javadoc
available at http://lucene.apache.org/solr/4_10_0/
solr-core/org/apache/solr/update/processor/
StatelessScriptUpdateProcessorFactory.html

http://solr.pl
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/StatelessScriptUpdateProcessorFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/StatelessScriptUpdateProcessorFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/StatelessScriptUpdateProcessorFactory.html

Indexing Your Data

62

Indexing data from a database using
Data Import Handler

One of our clients has a problem. His database of users grows to such a size that even a
simple SQL select takes too much time, and he seeks how to improve the search times.
Of course, he has heard about Solr, but he doesn't want to generate XML or any other data
format and push it to Solr; he would like the data to be fetched. What can we do about it?
Well, there is one thing—we can use one of the contribute modules of Solr, which is the Data
Import Handler. This task will show you how to configure the basic setup of the Data Import
Handler and how to use it.

How to do it...
Let's assume that we have a database table. To select users from our table, we use the
following SQL query:

SELECT user_id, user_name FROM users

The response might look like this:

user_id	user_name
1	John Kowalski
2	Amanda Looks

We also have a second table called users_description, where we store the descriptions
of users. The SQL query to get data about a particular user looks like this:

SELECT desc FROM users_description WHERE user_id = 1

The response will look as follows:

| desc |
| superuser|

Now, let's look at the steps we need to take to set up a Data Import Handler and let Solr
connect to the database and start indexing the preceding data:

1. First, we need to copy the appropriate libraries that are required to use the Data
Import Handler. So, let's create the dih folder anywhere on the system (I created
the folder in the directory where Solr is installed, on the same level as the lib
directory of Solr) and place the solr-dataimporthandler-4.10.0.jar and
solr-dataimporthandler-extras-4.10.0.jar files from the Solr distribution
dist directory. In addition to this, we need the following entry to be added to the
solrconfig.xml file:
<lib dir="../../dih" regex=".*\.jar" />

Chapter 2

63

2. Next, we need to modify the solrconfig.xml file. You should add an entry like this:
<requestHandler name="/dataimport" class="solr.DataImportHandler">
 <lst name="defaults">
 <str name="config">db-data-config.xml</str>
 </lst>
</requestHandler>

3. Now, we will create the db-data-config.xml file that is responsible for the Data
Import Handler configuration. It should have contents like the following example:
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/users" user="users"
password="secret" />
 <document>
 <entity name="user" query="SELECT user_id, user_name FROM
users">
 <field column="user_id" name="id" />
 <field column="user_name" name="name" />
 <entity name="user_desc" query="SELECT desc FROM users_
description WHERE user_id=${user.user_id}">
 <field column="desc" name="description" />
 </entity>
 </entity>
 </document>
</dataConfig>

If you want to use other database engines, change the driver, url, user, and
password fields.

4. Now, let's create a sample index structure. We just add the following section to our
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="name" type="text" indexed="true" stored="true" />
<field name="description" type="text" indexed="true"
stored="true"/>

5. One more thing before the indexation—you should copy an appropriate JDBC driver
to the lib directory of your Solr installation or the dih directory we created before.
You can get the driver library for PostgreSQL at http://jdbc.postgresql.org/
download.html.

6. Now, we can start indexing. We run the following query to Solr:
http://localhost:8983/solr/cookbook/dataimport?command=full-import

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/download.html

Indexing Your Data

64

7. As you might know, the HTTP protocol is asynchronous, and thus, you won't be
updated on how the process of indexing is going. To check the status of the
indexing process, you can run the status command, which looks like this:

http://localhost:8983/solr/cookbook/dataimport?command=status

This is how we configure the Data Import Handler.

How it works...
First, we have a solrconfig.xml part that actually defines a new request handler, the Data
Import Handler, to be used by Solr. We specify the class attribute, telling Solr which handler
to use, which is solr.DataImportHandler, in our case. We also said it will be available
under the /dataimport address by using the name property. The <str name="config">
XML tag specifies the name of the Data Import Handler configuration file.

The second listing is the actual configuration of the Data Import Handler. I used the JDBC
source connection sample to illustrate how to configure the Data Import Handler. The contents
of this configuration file start with the root tag named dataConfig, which is followed
by a second tag defining a data source named dataSource. In the example I used, the
PostgreSQL (http://www.postgresql.org/) database, and thus, the JDBC driver, org.
postgresql.Driver. We also define the database connection URL (the attribute named
url) and the database credentials (the attributes user and password).

Next, we have a document definition, a document that will be constructed by the Data Import
Handler and indexed to Solr. To define this, we use the tag named document. The document
definition is made of database queries, which are the entities.

The entity is defined by a name (the name attribute) and SQL query (the query attribute).
The entity name can be used to reference values in subqueries; you can see an example of
such a behavior in the second entity named user_desc. As you might already have noticed,
entities can be nested to handle subqueries. The SQL query is there to fetch the data from the
database and use it to fill the entity variables that will be indexed.

After the entity comes the mapping definition. There is a single field tag for every column
returned by a query, but this is not a must; the Data Import Handler can guess what the
mapping is (for example, where the entity field name matches the column name), but I tend
to use mappings because I find it easier to maintain. However, let's get back to fields. A field is
defined by two attributes: column, which is the column name returned by a query and name,
which is the field to which the data will be written.

http://www.postgresql.org/

Chapter 2

65

Next, we have a Solr query to start the indexing process. There are actually five commands
that can be run:

 f /dataimport?command=status: This command will return the actual status.

 f /dataimport?command=full-import: This command will start the full import
process. Remember that the default behavior is to delete the index contents at the
beginning.

 f /dataimport?command=delta-import: This command will start the incremental
indexing process (which is explained in the Incremental imports with DIH recipe later
in this chapter).

 f /dataimport?command=reload-config: This command will force the
configuration reload.

 f /dataimport?command=abort: This command will stop the indexing process.

There's more...
There is one more thing that I think you should know, which is explained in the
following section.

How to change the default behavior of deleting index contents
at the beginning of a full import
If you don't want to delete the index contents at the start of full indexing using the Data
Import Handler, add the clean=false parameter to your query. An example query should
look like this:

http://localhost:8983/solr/cookbook/data?command=full-
import&clean=false

Incremental imports with DIH
In most use cases, indexing the data from scratch during every indexation doesn't make
sense. Why index your 1,00,000 documents when only 1,000 were modified or added? This
is where the Solr Data Import Handler delta queries come in handy. Using them, we can index
our data incrementally. This recipe will show you how to set up the Data Import Handler to use
delta queries and index data in an incremental way.

Indexing Your Data

66

Getting ready
Refer to the Indexing data from a database using Data Import Handler recipe in this chapter
to get to know the basics of the Data Import Handler configuration. I assume that Solr is set
up according to the description given in the mentioned recipe.

How to do it...
We will reuse parts of the configuration shown in the Indexing data from a database using
Data Import Handler recipe in this chapter, and we will modify it. Execute the following steps:

1. The first thing you should do is add an additional column to the tables you use, a
column that will specify the last modification date of the record. So, in our case,
let's assume that we added a column named last_modified (which should be a
timestamp-based column). Now, our db-data-config.xml will look like this:
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/users" user="users"
password="secret" />
 <document>
 <entity name="user" query="SELECT user_id, user_name FROM users"
deltaImportQuery="select user_id, user_name FROM users WHERE user_
id = '${dih.delta.user_id}'" deltaQuery="SELECT user_id FROM users
WHERE last_modified > '${dih.last_index_time}'">
 <field column="user_id" name="id" />
 <field column="user_name" name="name" />
 <entity name="user_desc" query="select desc from users_
description where user_id=${user.user_id}">
 <field column="desc" name="description" />
 </entity>
 </entity>
 </document>
</dataConfig>

2. After this, we run a new kind of query to start the delta import:

http://localhost:8983/solr/cookbook/dataimport?command=delta-
import

Chapter 2

67

How it works...
First, we modified our database table to include a column named last_modified. We need
to ensure that the column will contain the last modified date of the record it corresponds to.
Solr will not modify the database, so you have to ensure that your application will do this.

When running a delta import, the Data Import Handler will start by reading a file named
dataimport.properties inside a Solr configuration directory. If it is not present, the
Data Import Handler will assume that no indexing was ever made. Solr will use this file to
store information about the last indexation time, and this file will be updated or created after
indexation is finished. The last index time will be stored as a timestamp. As you can guess, the
Data Import Handler uses this timestamp to distinguish whether the data was changed. It can
be used in a query by using a special variable, ${dih.last_index_time}.

You might already have noticed the two differences—two additional attributes defining
entities named user, deltaQuery, and deltaImportQuery. The deltaQuery attribute
is responsible for getting the information about users that were modified since the last
index. Actually, it only gets the users' unique identifiers and uses the last_modified
column we added to determine which users were modified since the last import. The
deltaImportQuery attribute gets users with the appropriate unique identifier (which was
returned by deltaQuery) to get all the needed information about the user. One thing worth
noticing is the way that I used the user identifier in the deltaImportQuery attribute; we did
this using ${dih.delta.user_id}. We used the dih.delta variable with its user_id
property (which is the same as the table column name) to refer to the user identifier.

You might notice that I left the query attribute in the entity definition. It's left on purpose; you
might need to index the full data once again so that the configuration will be useful for full as
well as partial imports.

Next, we have a query that shows how to run the delta import. You might notice that compared
to the full import, we didn't use the full-import command; we sent the delta-import
command instead.

The statuses that are returned by Solr are the same as those with the full import, so refer to
the appropriate chapters to see what information they carry.

One more thing—the delta queries are only supported for the default SqlEntityProcessor.
This means that you can only use these queries with JDBC data sources.

See also
 f For information about the efficiency of a Data Import Handler, full

and delta imports, refer to http://wiki.apache.org/solr/
DataImportHandlerDeltaQueryViaFullImport

http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport
http://wiki.apache.org/solr/DataImportHandlerDeltaQueryViaFullImport

Indexing Your Data

68

Transforming data when using DIH
Data that is stored in our data source is not always in a form we would like it to be indexed in
our Solr cluster. For example, imagine that you want to split the first and second names into
two fields during indexing because these two reside in a single column in the database and
are separated by a whitespace character. Of course, we can modify our database, but in most
cases this is not possible. Can we do this? Of course we can, we just need to add some more
configuration details to the Data Import Handler configuration. This recipe will show you how
to do this.

Getting ready
Refer to the Indexing data from a database using Data Import Handler recipe in this chapter.

How to do it...
We will reuse the data from the Indexing data from a database using Data Import Handler
recipe in this chapter. So, to select users from our table, we use the following SQL query:

SELECT user_id, user_name FROM users

The response in the text client looks as follows:

user_id	user_name
1	John Kowalski
2	Amanda Looks

Our task is to split the first and second names from the user_name column and place it in
the two fields firstname and secondname. The steps we need to take are as follows:

1. First, we need to change the index structure so that our field definitions in the
schema.xml file look as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="firstname" type="string" indexed="true"
stored="true"/>
<field name="secondname" type="string" indexed="true"
stored="true"/>
<field name="description" type="text" indexed="true"
stored="true"/>

Chapter 2

69

2. Now, we need to modify our db-data-config.xml file (the one we created earlier)
so that it looks as follows:
<dataConfig>
 <dataSource driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/users" user="users"
password="secret" />
<script><![CDATA[
 function splitName(row) {
 var nameTable = row.get('user_name').split(' ');
 row.put('firstname', nameTable[0]);
 row.put('secondname', nameTable[1]);
 row.remove('user_name');
 return row;
 }
]]></script>
 <document>
 <entity name="user" transformer="script:splitName" query="SELECT
user_id, user_name, description FROM users">
 <field column="user_id" name="id" />
 <field column="firstname" />
 <field column="secondname" />
 <entity name="user_desc" query="SELECT desc FROM users_
description WHERE user_id=${user.user_id}">
 <field column="desc" name="description" />
 </entity>
 </entity>
 </document>
</dataConfig>

3. Now, you can follow the normal indexing procedure that was discussed in the
Indexing data from a database using Data Import Handler recipe in this chapter.

How it works...
The first two listings are the sample SQL query and result given by a database. Next,
we have a field definition part of a schema.xml file that defines four fields. Look at the example
database rows once again. See the difference? We have four fields in our index structure,
while our database rows have only two columns. We must split the contents of the user_name
column into the two index fields firstname and secondname. To do this, we will use the
JavaScript language and script transformer functionality of the Data Import Handler.

The solrconfig.xml file is the same as the one discussed in the Indexing data from a
database using Data Import Handler recipe in this chapter, so I'll skip this as well.

Indexing Your Data

70

Next, we have the updated contents of the db-data-config.xml file, which we use to
define the behavior of the Data Import Handler. The first and biggest difference is the script
tag that holds our scripts and alters the data. The scripts should be held in the CDATA section.
I defined a simple function called splitName that takes one parameter, the database
row (remember that the functions that operate on the entity data should always take one
parameter, which actually is an instance of the Map<String, Object> Java object). The
first thing in the function is to get the contents of the user_name column, split it with the
space character, and assign it into a JavaScript array. Then, we create two additional columns
in the processed rows firstname and secondname. The contents of these rows come from
the JavaScript table we created. Then, we remove the user_name column because we don't
want it to be indexed. The last operation is the returning of the processed row.

To enable script processing, you must add one additional attribute to the entity definition; this
is the transformer attribute with contents similar to that of script:functionName. In
our example, it looks like transformer="script:splitName". It tells the Data Import
Handler to use the defined function name for every row returned by the query.

This is how it works. The rest is the usual indexing process described in the Indexing data
from a database using Data Import Handler recipe in this chapter, so I'll skip this as well.

There's more...
There is one more thing I want to mention; check out the following section for
more information.

Using scripts other than JavaScript
If you want to use a language other than JavaScript, then you have to specify it in the
language attribute of the <script> tag. Just remember that the scripting language
that you want to use must be supported by Java. The example definition will look like this:

<script language="ECMAScript">…</script>

Indexing multiple geographical points
Let's assume we have a website allowing you to search for companies not only using key
words but also using a geographical location. In the real world, companies tend to have more
than a single location. This is where we hit a limitation in the default spatial field used by Solr;
we can only have a single location indexed using it. So, we have to create multiple documents
for each company location and use group collapsing, or we can use a different field type that
allows multivalued location fields. The recipe will show you how to do the latter.

Chapter 2

71

How to do it...
The following steps will take you through the process of enabling the indexation of multivalued
spatial fields.

1. First, we need to prepare our index structure by adding the following section to the
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="loc" type="location_recursive" indexed="true"
stored="true" multiValued="true" />

2. We also need the location_recursive field type defined, so we add the following
type to the same schema.xml file:
<fieldType name="location_recursive" class="solr.
SpatialRecursivePrefixTreeFieldType" distErrPct="0.025"
maxDistErr="0.000009" units="degrees" />

3. Now, we can index our data, which looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Burger Deluxe</field>
 <field name="loc">51.30,-0.12</field>
 <field name="loc">38.89,-77.03</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Chips and fish D.C. exclusive</field>
 <field name="loc">38.89,-77.03</field>
 </doc>
</add>

4. So, if we want to get all companies that are located within 50 kilometers from the
centre of London, we will send the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&fq={!geofilt}&sfi
eld=loc&pt=51.30,-0.12&d=50

Indexing Your Data

72

The results returned by Solr will look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="pt">51.30,-0.12</str>
 <str name="d">50</str>
 <str name="fq">{!geofilt}</str>
 <str name="sfield">loc</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Burger Deluxe</str>
 <arr name="loc">
 <str>51.30,-0.12</str>
 <str>38.89,-77.03</str>
 </arr>
 <long name="_version_">1468077157967200256</long></doc>
 </result>
</response>

As we can see, everything works as it should, so let's learn how it was done.

How it works...
Each company is described with three fields: the company identifier (the id field), the
company name (the name field), and multivalued company locations (the loc field).

To be able to index multiple locations, we use a new field type that we defined, location_
recursive. It uses the solr.SpatialRecursivePrefixTreeFieldType class, which
is new in Solr 4. It offers more features compared to the solr.LatLonType field type and is
faster when it comes to filtering of spatial data. We configured it using three properties:

 f distErrPct: This defines the default precision for the fields that store points. The
value of the property can vary from 0.0 to 0.5. The closer the value is to 0, the more
precise the field will be, but the indexing will be slower, and the index will be larger.
If we set the value of the property closer to 0.5, the queries against the field will be
faster, but at the cost of less precision.

Chapter 2

73

 f maxDistErr: This defines the highest level of details required to index data.
The default empty value means the detail level is of one meter, about 0.000009
degrees, which is exactly the value we used. The setting is required for the
solr.SpatialRecursivePrefixTreeFieldType field type to internally
calculate a spatial grid.

 f units: This is the unit used by the type; right now, the only value possible
is degrees.

As you can see, the first company in our example data has two locations. The first location is
the centre of London, and the second location is the centre of Washington, D.C. The second
document has a single location, only in Washington, D.C.

Our query asks for all documents (q=*:*) and uses the geofilt filter (fq={!geofilt}).
The geofilt filter needs three additional parameters to be passed:

 f sfield: This is the field used for spatial search, our loc field.

 f pt: This is the latitude and longitude of the point from which the distance will be
calculated. In our case, it is the centre of London city.

 f d: This is the distance from the given point. In our case, it is 50, which means
50 kilometers.

As you can see, only a single document is returned by the query; the first query has the
location as London, which means that everything works as it should.

See also
 f In addition to indexing multiple geographical points, solr.

SpatialRecursivePrefixTreeFieldType is also capable of indexing shapes
(although Solr needs additional libraries in such cases). If you are interested in such
functionalities, refer to the official Solr documentation and the page dedicated to
spatial search, which is available at https://cwiki.apache.org/confluence/
display/solr/Spatial+Search.

Updating document fields
Imagine that you have a system where you store documents your users upload. In addition
to this, your users can add other users to have access to the files they uploaded. Before Solr
4, you had to reindex the whole document to update it. With the release of Solr 4 and later
versions, we are allowed to update a single field if we fulfill some basic requirements. This
recipe will show you how to do this.

https://cwiki.apache.org/confluence/display/solr/Spatial+Search
https://cwiki.apache.org/confluence/display/solr/Spatial+Search

Indexing Your Data

74

How to do it...
Let's look at the steps we need to take to update the document field:

1. For the purpose of the recipe, let's assume we have the following index structure
(put the following entries into your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="file" type="text_general" indexed="true"
stored="true"/>
<field name="count" type="int" indexed="true" stored="true"/>
<field name="user" type="string" indexed="true" stored="true"
multiValued="true" />

2. In addition to this, we need the _version_ field:
<field name="_version_" type="long" indexed="true" stored="true"/>

That's all when it comes to the schema.xml file.

3. In addition to this, let's assume we have the following data indexed:
<add>
 <doc>
 <field name="id">1</field>
 <field name="file">Sample file</field>
 <field name="count">2</field>
 <field name="user">gro</field>
 <field name="user">negativ</field>
 </doc>
</add>

4. So, we have a sample file and two usernames specifying which users in our system
can access the file. However, what if we want to add another user called jack?
Is it possible? To add the value to a field that has multiple values, we should send
the following command:
curl 'localhost:8983/solr/cookbook/update?commit=true' -H
'Content-type:application/json' -d '[{"id":"1","user":{"add":"ja
ck"}}]'

Let's see if it works by sending the following query:
http://localhost:8983/solr/cookbook/select?q=*:*&indent=true

The response sent by Solr is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>

Chapter 2

75

 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="file">Sample file</str>
 <int name="count">2</int>
 <arr name="user">
 <str>gro</str>
 <str>negativ</str>
 <str>jack</str>
 </arr>
 <long name="_version_">1467522939960164352</long></doc>
 </result>
</response>

As you can see, it works without any problems.

5. Now, imagine that one of the users changed the name of the document, and we
want to update the file field of this document to match the change. In order to
do so, we should send the following command:
curl 'localhost:8983/solr/cookbook/update?commit=true' -H
'Content-type:application/json' -d '[{"id":"1","file":{"set":"New
file name"}}]'

6. Again, we send the same query as before to see if the command succeeds:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="file">New file name</str>
 <int name="count">2</int>
 <arr name="user">
 <str>gro</str>
 <str>negativ</str>
 <str>jack</str>
 </arr>
 <long name="_version_">1467522994255429632</long></doc>
 </result>
</response>

Indexing Your Data

76

7. Finally, let's increment the count field, which specifies how many times the file
is accessed. To do this, we run the following command:
curl 'localhost:8983/solr/cookbook/update?commit=true' -H
'Content-type:application/json' -d '[{"id":"1","count":{"i
nc":1}}]'

8. Again, we send the same query as before to see if the command succeeds:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="file">New file name</str>
 <int name="count">3</int>
 <arr name="user">
 <str>gro</str>
 <str>negativ</str>
 <str>jack</str>
 </arr>
 <long name="_version_">1467523747367878656</long></doc>
 </result>
</response>

Again, the command works well. So, let's see how Solr does this.

How it works...
As you can see, the index structure is pretty simple; we have the document identifier and its
name and users that can access the file. As you can see, all the fields in the index are marked
as stored (stored="true"). This is required for the partial update functionality to work.
This is because, under the hood, Solr takes all the values from the fields and updates the
one we tell it to update. So, it is just a typical document indexing, but instead of you having to
provide all the information, it's Solr's responsibility to get it from the index.

Another thing that is required for the atomic update functionality to work is the _version_
field. You don't have to set it during indexation; it is used internally by Solr. The example data
we index is also very simple. It is a single document with two users defined.

Chapter 2

77

The interesting stuff comes with the update command. As you can see, this command
is run against a standard update handler you run indexation against. The commit=true
parameter tells Solr to perform the commit operation right after update. The -H 'Content-
type:application/json' part is responsible for setting the correct HTTP headers for the
update request.

Next, we have the request contents. It is sent as a JSON object. We specify that we are
interested in the document with identifier 1 ("id":"1"). We want to change the user
field and add the jack value to this field (the add command). So, as you can see, the add
command is used when we want to add a new value to a field that can hold multiple values.

The second command shows how to change the value of a single-valued field. It is very similar
to what we had before, but instead of using the add command, we use the set command.
Again, as you can see, it works perfectly.

The third command shown in the recipe illustrates how to increment a field. We can run this
command against any numeric field. We need to use the inc command and specify a number
that will be added to the value of the field in the index. In our case, we add 1.

Note that apart from the add, set, and inc commands, we can also remove values
(the remove command) using regex (the removeregex command). The number of
commands can grow with time, so keep an eye on https://cwiki.apache.org/
confluence/display/solr/Updating+Parts+of+Documents.

Detecting the document language during
indexation

Imagine a situation when you have users from different countries and you would like to give
them a choice to only see content you index that is written in their native language. However,
there is one problem; your documents don't have their language identified, so we need to do
this ourselves. Let's see how we can identify the language of the documents during indexing
time and store this information along with the documents in the index for later use.

How to do it...
For language identification, we will use one of the Solr contribution modules, but let's start
from the beginning:

1. For the purpose of the recipe, I assume that we will use the following index structure
(we just need to add the following to the schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true"
stored="true"/>

https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents
https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents

Indexing Your Data

78

<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="langId" type="string" indexed="true" stored="true" />

2. The next thing we need to do is create a langid directory somewhere on your
filesystem (I'll assume that the directory is created in the same directory that Solr is
installed and on the same level as the lib directory of Solr) and copy the following
libraries to this directory:

 � solr-langid-4.10.0.jar (from the dist directory of the Apache Solr
distribution)

 � jsonic-1.2.7.jar (from the contrib/langid/lib directory of the
Apache Solr distribution)

 � langdetect-1.1-20120112.jar (from the contrib/langid/lib
directory of the Apache Solr distribution)

3. The next step is to inform Solr that it should load the libraries we just copied. We do
this by adding the following information to the solrconfig.xml file:
<lib dir="../../langid/" regex=".*\.jar" />

4. In addition to this, we configure a new update processor by adding the following to the
config section of the solrconfig.xml file:
<updateRequestProcessorChain name="langid">
 <processor class="org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory">
 <str name="langid.fl">name,description</str>
 <str name="langid.langField">langId</str>
 <str name="langid.fallback">en</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

5. Now, we need some data to be indexed. I decided to use the following test data that
contains the same document in two languages, English and German (stored in the
data.xml file):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First</field>

Chapter 2

79

 <field name="description">Water is a chemical substance with the
chemical formula H2O. A water molecule contains one oxygen and two
hydrogen atoms connected by covalent bonds. Water is a liquid at
ambient conditions, but it often co-exists on Earth with its solid
state, ice, and gaseous state (water vapor or steam). Water also
exists in a liquid crystal state near hydrophilic surfaces.[1]
[2] Under nomenclature used to name chemical compounds, Dihydrogen
monoxide is the scientific name for water, though it is almost
never used.</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Zweite</field>
 <field name="description">Wasser (H2O) ist eine chemische
Verbindung aus den Elementen Sauerstoff (O) und Wasserstoff
(H). Wasser ist die einzige chemische Verbindung auf der Erde,
die in der Natur in allen drei Aggregatzuständen vorkommt.
Die Bezeichnung Wasser wird dabei besonders für den flüssigen
Aggregatzustand verwendet. Im festen (gefrorenen) Zustand spricht
man von Eis, im gasförmigen Zustand von Wasserdampf.</field>
 </doc>
</add>

6. Now, let's index the data. To index the preceding test file, use the following
commands:
curl 'http://localhost:8983/solr/cookbook/update?update.
chain=langid' --data-binary @data.xml -H 'Content-
type:application/xml'

curl 'http://localhost:8983/solr/cookbook/update?update.
chain=langid' --data-binary '<commit/>' -H 'Content-
type:application/xml'

7. After sending the previous two queries, we can finally test if they work. We will just
ask Solr to return all the documents by sending the q=*:* query. Solr returns the
following results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="indent">true</str>

Indexing Your Data

80

 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">First</str>
 <str name="description">>Water is a chemical substance with
the chemical formula H2O. A water molecule contains one oxygen and
two hydrogen atoms connected by covalent bonds. Water is a liquid
at ambient conditions, but it often co-exists on Earth with its
solid state, ice, and gaseous state (water vapor or steam). Water
also exists in a liquid crystal state near hydrophilic surfaces.
[1][2] Under nomenclature used to name chemical compounds,
Dihydrogen monoxide is the scientific name for water, though it is
almost never used.</str>
 <str name="langId">en</str>
 <long name="_version_">1467520138652680192</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Zweite</str>
 <str name="description">Wasser (H2O) ist eine chemische
Verbindung aus den Elementen Sauerstoff (O) und Wasserstoff
(H). Wasser ist die einzige chemische Verbindung auf der Erde,
die in der Natur in allen drei Aggregatzuständen vorkommt.
Die Bezeichnung Wasser wird dabei besonders für den flüssigen
Aggregatzustand verwendet. Im festen (gefrorenen) Zustand spricht
man von Eis, im gasförmigen Zustand von Wasserdampf.</str>
 <str name="langId">de</str>
 <long name="_version_">1467520138716643328</long></doc>
 </result>
</response>

As you can see, the langId field is filled with the correct language.

How it works...
The index structure we use is quite simple; it contains four fields, and we are most interested
in the langId field that won't be supplied with the data. However, instead of this, we want
Solr to fill it.

Note that language detection doesn't do any language-specific analysis.

Chapter 2

81

The mentioned libraries are needed in order for language identification to work. The lib entry
in the solrconfig.xml file tells Solr to look for all the JAR files from the langid directory
we created. Remember to change the dir property to reflect your setup.

Now, the update request processor chain definition comes. We need this
definition to include our org.apache.solr.update.processor.
LangDetectLanguageIdentifierUpdateProcessorFactory processor in order to
detect the document language. The langid.fl property tells the defined processor which
fields should be used to detect the language. The langid.langField property specifies to
which field the detected language should be written. The last property, langid.fallback,
tells the language detection library what language should be set if it fails to detect a language.
The solr.LogUpdateProcessorFactory and solr.RunUpdateProcessorFactory
processors log the updates and actually run them. Also, it is worth mentioning that we used
the language detection library available at https://code.google.com/p/language-
detection/, which detects 53 languages right now and is based on the naïve Bayesian filter.

As for data indexing, in order to use the defined update request processor chain, we need to
tell Solr that we want it to be used. In order to do this, when sending data to Solr, we specify
an additional parameter called update.chain with the name of the update chain we want
to use, which in our case is langid. The --data-binary switch tells the curl command to
send data in a binary format, and the -H switch tells curl which content type should be used.
In the end, we send the commit command to write the data to the Lucene index. One thing to
remember is that we can include our update chain name in the update handler configuration
so that it can be used automatically.

There's more...
If you don't want to use the aforementioned processor to detect the document language,
you can use the one that uses the Apache Tika library.

Language identification based on Apache Tika
If the LangDetectLanguageIdentifierUpdateProcessorFactory class is not
good enough for you, you can try using language identification based on the Apache
Tika library. In order to do this, you need to provide all the libraries from the contrib/
extraction directory in the Apache Solr distribution package instead of the ones
from contrib/langid/lib, and instead of using the org.apache.solr.update.
processor.LangDetectLanguageIdentifierUpdateProcessorFactory
processor, use org.apache.solr.update.processor.
TikaLanguageIdentifierUpdateProcessorFactory. So, the final configuration
should look like this:

<updateRequestProcessorChain name="langid">
 <processor class="org.apache.solr.update.processor.
TikaLanguageIdentifierUpdateProcessorFactory">

https://code.google.com/p/language-detection/
https://code.google.com/p/language-detection/

Indexing Your Data

82

 <str name="langid.fl">name,description</str>
 <str name="langid.langField">langId</str>
 <str name="langid.fallback">en</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

However, remember to still specify the update.chain parameter during indexing, or add the
defined processor to your update handler configuration.

Optimizing the primary key indexation
Most of the data stored in Solr has some kind of primary key. Primary keys are different from
most of the fields in your data as each document has a unique value stored because they are
primary, and in most cases, unique. However, this search on the primary field is not always as
fast as you would expect when you compare to other databases. So, is there anything we can
do to make it faster? With Solr 4.0, we can, and this recipe will show you how to improve the
execution time of queries run against unique fields in Solr.

Keep in mind that the method shown in this recipe is very case dependent,
and you might not see a great performance increase with the mentioned
change. What's more, if you are using the newest version of Solr/Lucene,
the pulsing codec is already a part of the default Lucene posting format.

How to do it...
1. Let's assume we have the following field defined as the unique key for our Solr

collection. So, in your schema.xml file, you will have the following:
<field name="id" type="string" indexed="true" stored="true"
required="true" />

2. Of course, we have the following entry in the schema.xml file:
<uniqueKey>id</uniqueKey>

3. Now, we will want to use Lucene's flexible indexing and PulsingCodec to handle the
id field. In order to do this, we introduce the following field type (just place it in the
types section of your schema.xml file):
<fieldType name="string_pulsing" class="solr.StrField"
postingsFormat="Pulsing40"/>

Chapter 2

83

4. In addition to this, we need to change the id field definition to use the new type.
So, we should change the type attribute from string to string_pulsing:
<field name="id" type="string_pulsing" indexed="true"
stored="true" required="true" />

5. Also, we need to put the following entry in the solrconfig.xml file:

<codecFactory class="solr.SchemaCodecFactory"/>

That's all. Now, you can start indexing your data.

How it works...
The changes we made use the new feature introduced in Apache Lucene 4.0 and Solr; it's the
so-called flexible indexing. It allows us to modify the way data is written into an inverted index,
and thus, configure it to our own needs. In the previous example, we used the PulsingCodec
(postingsFormat="Pulsing40") in order to store the unique values in a special way. The
idea behind this codec is that the data for low-frequency terms is written in a special way to
save a single I/O seek operation when retrieving documents for those terms from the index.
This is why, in some cases, when you do a noticeable amount of searches to your unique field
(or any high cardinality field indexed with PulsingCodec), you can see a drastic performance
increase for the fields.

The last change, the one we made to the solrconfig.xml file, is required; without it, Solr
will not let us use specified codes and will throw an exception during startup. It just specifies
which codec factory should be used to create codec instances.

See also
 f For more information about pulsing codec, take a look at the Mike McCandless

blog available at http://blog.mikemccandless.com/2010/06/lucenes-
pulsingcodec-on-primary-key.html

Handling multiple currencies
Imagine a situation where you run an e-commerce site and sell your products all over the
world. One day, you say that you want to calculate the currencies by yourself and have all the
goodies that Solr gives you on all the currencies you support. You can, of course, add multiple
fields, one for each currency. On the other hand, you can use the new functionality introduced
in Solr 4 and create a field that will use the provided currency exchange rates. This recipe will
show you how to configure and use multiple currencies using a single field in the index.

http://blog.mikemccandless.com/2010/06/lucenes-pulsingcodec-on-primary-key.html
http://blog.mikemccandless.com/2010/06/lucenes-pulsingcodec-on-primary-key.html

Indexing Your Data

84

How to do it...
1. Let's start with creating a sample index structure by modifying the schema.xml file

so that the field definition looks like this:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="price" type="currencyField" indexed="true"
stored="true" />

2. In addition to this, we need to provide the definition for the type the price field is
based on (again we add the following to the schema.xml file):
<fieldType class="solr.CurrencyField" name="currencyField"
defaultCurrency="USD" currencyConfig="currencyExchange.xml" />

3. Another file that we need to create is the currencyExchange.xml file, which
should be placed in the conf directory of your collection and contain the following:
<?xml version="1.0" ?>
<currencyConfig version="1.0">
 <rates>
 <rate from="USD" to="EUR" rate="0.743676" comment="European
Euro" />
 <rate from="USD" to="HKD" rate="7.801922" comment="HONG KONG
Dollar" />
 <rate from="USD" to="GBP" rate="0.647910" comment="UNITED
KINGDOM Pound" />
 </rates>
</currencyConfig>

4. Now we can index some example data. For the usage of this recipe, I decided to index
the following documents:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Test document one</field>
 <field name="price">10.10,USD</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Test document two</field>
 <field name="price">12.01,USD</field>
 </doc>
</add>

Chapter 2

85

5. Now, let's check if this works. Our second document costs 12.01 USD, and we
define the exchange rate for the Euro to 0.743676. This gives us about 7.5 EUR for
the first document, and about 8.9 EUR for the second document. Let's check this by
sending the following query to Solr:

http://localhost:8983/solr/cookbook/select?q=name:document&fq=pric
e:[8.00,EUR TO 9.00,EUR]

The result returned by Solr is the following:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="fq">price:[8.00,EUR TO 9.00,EUR]</str>
 <str name="q">name:document</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Test document two</str>
 <str name="price">12.01,USD</str>
 <long name="_version_">1467445704565719040</long>
 </doc>
 </result>
</response>

As you can see, we got the document we wanted.

How it works...
The idea behind the functionality is simple—we create a field based on a certain type and
provide a file with the currency exchange rate, that's all. After this, we can query our Solr
instance with the use of all the currencies we defined exchange rates for. Now, let's discuss
all the preceding configuration changes in detail.

The index structure is very simple; it contains three fields of which one is responsible for
holding the price of the document and is based on the currencyField type. The mentioned
type is based on solr.CurrencyField. Its defaultCurrency attribute specifies the
default currency for all the fields using this type. This is important because Solr will return
prices in the defined default currency, no matter what currency is used during the query. The
currencyConfig attribute specifies the name of the file with the exchange rate definition.

Indexing Your Data

86

Our currencyExchange.xml file provides the exchange rates for three currencies:

 f EUR

 f HKD

 f GBP

The file should be structured similar to the previous example. This means that each exchange
rate should have the from attribute telling Solr from which currency the exchange will be
done, the to attribute specifying to which currency the exchange will be done, and the rate
attribute specifying the actual exchange rate. In addition to this, it can also have the comment
attribute if we want to include some short comment.

During indexing, we need to specify the currency we want the data to be indexed with. In the
previous example, we indexed data with USD. This is done by specifying the price, a comma
character, and the currency code after it. So, the 10.10,USD value will mean 10 dollars and
10 cents in USD.

Note that in order for Solr to be able to handle currency exchange
between two currencies, we need to provide the direct conversion
rate between these two currencies.

If you need to reload the currencyExchange.xml file, you will need to reload the core
(or collection) for Solr to see the changes. If you use the master-slave deployment, slave
servers will reload the core upon finishing fetching the new index and new version of the
currencyExchange.xml file, which will be loaded (of course, if it is configured to
be replicated).

The last thing is the query. As you can see, you can query Solr with currencies different
from the one used during indexing. This is possible because of the provided exchange rate
file. As you can see, when we use a range query for a price field, we specify the value,
colon character, and currency code after it. Remember that if you provide a currency code
unknown to Solr, it will throw an exception saying that the currency is not known.

There's more...
You can also have the exchange rates updated automatically by specifying the
currency provider.

Chapter 2

87

Setting up your own currency provider
Specifying the currency exchange rate file is great, but we need to update this file because
the exchange rates change constantly. Luckily for us, Solr committers thought about it and
gave us the option to provide an exchange rate provider instead of a plain file. The provider is
a class responsible for providing the exchange rate data. The default exchange rate provider
available in Solr uses exchange rates from http://openexchangerates.org, which are
updated hourly. In order to use it, we need to modify our currencyField field type definition
and introduce three new properties (and remove the currencyConfig property):

 f providerClass: This is the class implementing the exchange rates provider,
which in our case will be the default available in Solr, which is solr.
OpenExchangeRatesOrgProvider

 f refreshInterval: This defines how often to refresh the rates
(specified in minutes)

 f ratesFileLocation: This is the location of the file with rates in an open
exchange format

So, the final configuration should look like this:

<fieldType name="currencyField" class="solr.CurrencyField"
providerClass="solr.OpenExchangeRatesOrgProvider"
refreshInterval="120" ratesFileLocation="http://192.168.10.10/latest.
json"/>

You can download the sample exchange file from the http://openexchangerates.org
site after creating an account.

http://openexchangerates.org
http://openexchangerates.org

3
Analyzing Your

Text Data

In this chapter, we will cover the following topics:

 f Using the enumeration type

 f Removing HTML tags during indexing

 f Storing data outside of Solr index

 f Using synonyms

 f Stemming different languages

 f Using nonaggressive stemmers

 f Using the n-gram approach to do performant trailing wildcard searches

 f Using position increment to divide sentences

 f Using patterns to replace tokens

Introduction
The process of data indexing can be divided into parts. One of the parts is data analysis.
It's one of the crucial parts of data preparation. It defines how your data will be divided into
terms from text, and what type it will be. The Solr data parsing behavior is defined by types.
A type's behavior can be defined in the context of the indexing process, query process, or
both. Furthermore, the type definition is composed of a tokenizer (or multiple tokenizers,
some for querying and some for indexing) and filters (both token and character filters). A
tokenizer specifies how your data will be preprocessed after it is sent to the appropriate field.
An analyzer operates on the whole data that is sent to the field. Types can only have one
tokenizer. The result of the tokenizer is a stream of objects called tokens.

Analyzing Your Text Data

90

Next in the analysis chain are the filters. They operate on the tokens in the token stream.
They can do anything with the tokens—changing, removing, or making them lowercase are
just a few examples. Types can have multiple filters, which are run one after another.

One additional type of filter is the character filter. It does not operate on tokens from the token
stream. It operates on non-tokenized data and is invoked before being sent to the analyzer.
This chapter will focus on data analysis and how to handle day-to-day analysis questions and
problems. You'll see how to use char filters, tokenizers, and of course, the filters.

Using the enumeration type
Imagine that we use Solr to store information about our environment's state, error, and events
related to them—a simple solution that will work as a simple log centralization solution. For
our simple use case, we will store the identifier of the message, the information, what type
of event it is, and the severity of the event, showing us how important the event is. However,
what we will want to be sure of is that the severity field contains only values from a given
list. To achieve all this, we will use the Solr enumeration type.

How to do it...
To achieve our requirements, we will have to perform the following steps:

1. We will start with the index structure. Our field list from the schema.xml file will look
as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="problem" type="text_general" indexed="true"
stored="true" />
<field name="severity" type="enum_type" indexed="true"
stored="true" />

2. In addition to this, we will need enum_type to be defined. To do this, we add the
following entry to the schema.xml file:
<fieldType name="enum_type" class="solr.EnumField"
enumsConfig="enumsConfig.xml" enumName="severity"/>

3. Now, we need to create the enumsConfig.xml file to hold our enumeration values.
The content of the file will look as follows:
<?xml version="1.0" ?>
<enumsConfig>
 <enum name="severity">
 <value>Ignore</value>
 <value>Low</value>

Chapter 3

91

 <value>Medium</value>
 <value>High</value>
 <value>Critical</value>
 </enum>
</enumsConfig>

4. Finally, we can index our test data, which looks as follows:
<doc>
 <field name="id">1</field>
 <field name="problem">Service unavailable</field>
 <field name="severity">Critical</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="problem">Logging error</field>
 <field name="severity">Low</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="problem">Disk space low on node1</field>
 <field name="severity">High</field>
 </doc>
</add>

5. Now, if we want to search for all the events that have the severity level high or critical,
and sort them on this basis, we can run the following query:
http://localhost:8983/solr/cookbook/select?q=*:*&sort=severity+des
c&fq=severity:(Critical+OR+High)

6. In return, Solr will respond with the following result:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="indent">true</str>
 <str name="sort">severity desc</str>
 <str name="fq">severity:(Critical OR High)</str>
 </lst>
 </lst>

Analyzing Your Text Data

92

 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="problem">Service unavailable</str>
 <str name="severity">Critical</str>
 <long name="_version_">1470159603541999616</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="problem">Disk space low on node1</str>
 <str name="severity">High</str>
 <long name="_version_">1470159603544096769</long></doc>
 </result>
</response>

Now, let's look at how it works.

How it works...
As you can see, our index structure is rather simple. It consists of three fields; the id
field holds the document identifier, the problem field contains event description, and
the severity field contains information about the event importance. The interesting
thing is the severity field that is defined using the new enum_type type.

Our new enum_type type uses solr.EnumField as its implementation class.
It also tells Solr the enumeration value definition files that should be used (in our case,
it is enumsConfig.xml stored in the same directory as the rest of the configuration).
Finally, we have the enumName property, which tells Solr which section of the mentioned
enumsConfig.xml file to use.

The enumsConfig.xml file stores our enumeration values. The root tag called
<enumsConfig> can store multiple <enum> entries, each defined with the name property.
The value of the name property of the <enum> tag should be the same as the value of the
enumName property in our previously defined type. It allows us to handle multiple enumeration
types in a single configuration file.

Now, if we look at our data, we can see that the values of the document severity field
contain one of the values defined in the enumsConfig.xml file. If we try to index the
document with a value that is not present in the configuration, Solr will throw an error and
reject the document. Also, remember that when changing the enumsConfig.xml file, you
should reindex your data.

Finally, the query shows that the field using the new enumeration type can be used for
querying, filtering, and sorting. The sort order will depend on the order of the enumeration
value definitions.

Chapter 3

93

Removing HTML tags during indexing
There are many real-life situations when you have to clean your data. Let's assume that you
want to index web pages that your client sends you. You don't know anything about the structure
of the page; one thing you know is that you must provide a search mechanism that will enable
searching through the content of the pages. Of course, you can index the whole page splitting it
by whitespaces, but then you will probably hear the client complain about the HTML tags being
searchable, and so on. So, before we enable searching on the contents of the page, we need to
clean the data. In this recipe, we will see how to remove the HTML tags with Solr.

How to do it...
Now, let's take a look at the steps needed to remove the HTML tags from our data.

1. We start by assuming that our data looks like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="html"><![CDATA[<html><head><title>My page</title></
head><body><p>This is a my<i>sample</i> page</body></
html>]]></field>
 </doc>
</add>

2. Now, let's take care of the schema.xml file. First, we need to add the type definition
to the schema.xml file:
<fieldType name="html_strip" class="solr.TextField">
 <analyzer>
 <charFilter class="solr.HTMLStripCharFilterFactory"/>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3. The next step is to add the following to the field definition part of the
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="html" type="html_strip" indexed="true" stored="false"
/>

Analyzing Your Text Data

94

4. We can now index our data and have the HTML tags removed. Let's check this
by going to the analysis section of Solr administration pages and passing the
<html><head><title>My page</title></head><body><p>This is a
my<i>sample</i> page</body></html> text to analyze, as shown in
the following screenshot:

How it works...
First, we have the data example. In the example, we see one file with two fields, the identifier,
and some HTML data nested in the CDATA section. You must remember to surround the
HTML data with CDATA tags if they are full pages and start from HTML tags, as shown in our
example. Otherwise, Solr will have problems parsing the data. However, if you only have some
tags present in the data, you shouldn't worry.

Next, we have the html_strip field type definition. It is based on solr.TextField to
enable a full-field analysis. Following this we have a character filter that handles the HTML
and XML tag stripping. The character filters are invoked before the data is sent to the
tokenizer. This way, they can operate on untokenized data. In our case, the character filter
strips the HTML and XML tags, attributes, and so on, and then sends the data to the tokenizer
that splits it by whitespace characters. The one and only filter defined in our type makes the
tokens lowercase to simplify the search.

If you want to check how your data was indexed, remember not to be mistaken when
you choose to store the field contents (the stored="true" attribute). The stored value
is the original one sent to Solr, so you won't be able to see the filters in action.

Chapter 3

95

If you wish to check the actual data structures, take a look at the Luke utility (a utility that lets
you see the index structure and field values and operates on the index). Luke can be found
by visiting http://code.google.com/p/luke. Instead of using Luke, I decided to use the
analysis capabilities of Solr administration pages and see how the html field behaves when
we pass the example value provided in the example data file.

There's more...
There is one additional thing that I would like to mention, which is mentioned in the
following section.

Preserving defined tags
Sometimes, you might want to preserve some of the tags that are part of the input
document. To do this, you can include the escapedTags property that should contain a
comma-separated list of tags we want to preserve. For example, if you want Solr to preserve
and escape the title tags, our solr.HTMLStripCharFilterFactory configuration will
look as follows:

<charFilter class="solr.HTMLStripCharFilterFactory" escapedTags="a,
title" />

See also
Instead of using the char filter factory, we can use the update request processor for
removing the HTML tags. It might be useful if you only need to remove HTML tags from some
documents. In such cases, you should define multiple update request processor chains, but
only one will have the HTML tag removing processor. If you want to do this, refer to the solr.
HTMLStripFieldUpdateProcessorFactory Javadoc available at http://lucene.
apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/
HTMLStripFieldUpdateProcessorFactory.html.

Storing data outside of Solr index
Although Solr allows us to use the partial update API to update a single field of our document,
what it does in the background is the complete reindexing of a document. However, there
are situations where such reindexing is not possible. For example, we can have an index
containing articles about published books, and we can store the information on how many
users visited this article and read it. The number of users is so high that we have thousands of
updates per second. Sending a high amount of updates can be demanding for Solr; however,
we can store such information in external files and use it for boosting or sorting. This recipe
will show how to do this.

http://code.google.com/p/luke
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/HTMLStripFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/HTMLStripFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/update/processor/HTMLStripFieldUpdateProcessorFactory.html

Analyzing Your Text Data

96

How to do it...
The following steps are needed to achieve our requirements:

1. First of all, we will create the index structure by adding the following field definition to
our schema.xml file:
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="visits" type="visitsType" />

2. Next, we will define the visitsType field type by adding the following section to the
schema.xml file:
<fieldType name="visitsType" class="solr.ExternalFileField"
keyField="id" defVal="0" stored="false" indexed="false"
valType="float"/>

3. We also need to put a file called external_visits to the directory, where the Solr
index directory is located (it is usually the data directory and not the data/index
directory). The contents of the external_visits file looks like this:
1=1.0
2=5.0

4. Our example data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook released</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Elasticsearch server released</field>
 </doc>
</add>

5. Finally, we can run our query, for example a query that returns all the documents
with the released term in the name field, sorted in descending order by the number
of visits:
http://localhost:8983/solr/cookbook/select?q=name:released&sort=fi
eld(visits)+desc

Chapter 3

97

6. The results returned by Solr will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 <lst name="params">
 <str name="q">name:released</str>
 <str name="sort">field(visits) desc</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Elasticsearch server released</str>
 <long name="_version_">1470198928794189824</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook released</str>
 <long name="_version_">1470198928742809600</long></doc>
 </result>
</response>

Now, let's see how it works.

How it works...
Our index structure is built of three fields; the id field holds the unique identifier of our
articles, the name field holds its name, and the visits field holds the number of visits for
each document.

The visits field is the one we are interested in the most. It uses a new type, the
visitsType field type. We defined the type by using the solr.ExternalFileField
class, which tells Solr that we will store the values for this field in an external file. To use this
type, we need to provide a few properties specific to the field type:

 f keyField: This is the name of the field that is used to differentiate documents.
Usually, we set the value of the property to the name of the primary key, but in
general, it should point Solr to a field that can be used to differentiate documents.

 f defVal: This is the default value of the field using the field type, when no value
for the given document is found in the external field. So, in our case, if a document
identifier with a value can't be found in the external field, it will be given a value of 0.

 f valType: This is the name of the type that will be used for values in the external
field. It can be any float-based field type; in our case, it is one of the default, simple
type provided in the example Solr schema.

Analyzing Your Text Data

98

Finally, we have the external_visits file. As I already mentioned, this file needs to
be placed in the same directory as the directory in which Solr stores the index for the
collection (or core). This is because Solr will load the file during startup and reload along
with each searcher reopening (the hard commit with searcher reopening or the soft commit).
The naming scheme of the file is really simple; it consists of the constant external part
concatenated with the name of the field that uses the external field type; in our case, it is
external_visits. When it comes to the contents, this is also not complicated; it contains
pairs of document identifiers (matching the values from the field defined by the keyField
property) and the float values, which in our case is the number of visits. The identifier and
value must be concatenated with the = character. We don't need to sort the values in the file,
but Solr will work slightly faster when the values in the external field are sorted on the basis of
the document identifier.

Finally, as you can see in the query result, the data is sorted properly. We can also use the
value for boosting, but we can't search on the data stored in the external field type; Solr just
doesn't allow this.

Using synonyms
Let's assume we have an e-commerce client and we are providing a search system based on
Solr. Our index has thousands of documents that mainly consist of books and everything works
fine. Then, one day, someone from the marketing department comes into your office and says
that he wants to be able to find books that have the word machine when he types electronics
into the search box. The first thing that comes to mind is "hey, do it in the source and I'll index
that". However, this is not an option this time because there can be many documents in the
database that have those words. We don't want to change the whole database. This is when
synonyms come into play, and this recipe will show you how to use synonyms.

How to do it...
To make the example as simple as possible, I assumed that we only have two fields in
our index.

1. Let's start with defining our index structure by adding the following field definition
section to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="description" type="text_syn" indexed="true"
stored="true" />

Chapter 3

99

2. Now, let's add the text_syn field type definition to the schema.xml file, as shown
in the code snippet:
<fieldType name="text_syn" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.
txt" ignoreCase="true" expand="false" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3. As you noticed, there is a file already mentioned, which is synonyms.txt. Let's take
a look at its contents:
machine => electronics

The synonyms.txt file should be placed in the same directory as other
configuration files are placed in the conf directory.

4. Finally, we can look at the analysis page of the Solr administration panel to see if the
synonyms are properly recognized and applied:

Analyzing Your Text Data

100

How it works...
First, we have our field definition. There are two fields, identifier (the id field) and description
(the description field). The second field should be our interest right at the moment. It's
based on the new field type, text_syn, the definition of which is shown in the second listing.

Now the new type, text_syn, is based on the solr.TextField class, so we will
analyze it. Its definition is divided; it behaves in one way while indexing (the <analyzer
type="query"> section) and in a different way while querying (the <analyzer
type="index"> section).

The first thing we see is the query time analyzer definition. It consists of the tokenizer that splits
the data on the basis of white space characters (solr.WhitespaceTokenizerFactory),
and then the lowercase filter makes all the tokens lowercased.

The interesting part is the index time behavior. It starts with the same tokenizer, but then the
synonyms filter comes into play. Its definition starts like all the other filters, with the factory
definition, which is the solr.SynonymFilterFactory class. Next, we have a synonyms
attribute that defines which file contains the synonyms definition. Following this, we have the
ignoreCase attribute that tells Solr to ignore the case of the tokens and the contents of the
synonyms file (because its value is set to true).

The last attribute named expand is set to false. This means that Solr won't expand the
synonyms; all equivalent synonyms will be reduced to the first synonym in the line. If the
attribute is set to true, all synonyms will be expanded to all equivalent forms. For example,
if we have expand set to true, the synonyms file looks as follows:

machine, robot, ai

All the words are changed into different words, which means that machine is changed into
robot and ai.

The example synonyms.txt file tells Solr that when the word machine appears in the field
based on the text_syn type, it should be replaced by electronics, but not vice versa.
Note that the word machine will only be changed during indexing, and not query time. Each
synonym rule should be placed in a separate line in the synonyms.txt file. Also, remember
that the file should be written in UTF-8 file encoding. This is crucial, and you should always
remember it because Solr will expect the file to be encoded UTF-8.

As you can see, in the provided screenshot from the Solr administration pages, the defined
synonym was properly applied during the indexing phase.

Chapter 3

101

There's more...
There is one more thing connected to using synonyms in Solr, which is described in the
following section.

Equivalent synonyms setup
Let's get back to our example for a second. What if the person from the marketing department
says that he wants not only to be able to find books that have the word machine when
entering the word electronics, but also all the books that have the word electronics
to be found when entering the word machine. The answer is simple. First, we will set the
expand attribute (of the filter) to true. Then, we will change our synonyms.txt file to
something like this:

machine, electronics

As I said earlier, Solr will expand synonyms to equivalent forms.

See also
 f If you want to use Solr capabilities for managing resource files, such as the

synonyms file that we just discussed, look at the official documentation of Solr
available at https://cwiki.apache.org/confluence/display/solr/
Managed+Resources

Stemming different languages
Stemming is a very common requirement; it is the process of reducing words to their root form
(or stems). Let's imagine the book e-commerce store, where you store the books' names and
descriptions. We want to be able to find words such as shown and showed when you type the
word show, and vice versa. We can achieve this requirement using stemming algorithms. The
thing is, there are no general stemmers; they are language-specific. This recipe will show you
how to add stemming to your data analysis chain and where to look for a list of stemmers.

How to do it...
To achieve our requirement to stem English, we need to take certain steps:

1. We will start with the index structure. Let's assume that our index consists of three
fields that we defined in the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="string" indexed="true" stored="true" />
<field name="description" type="text_stem" indexed="true"
stored="true" />

https://cwiki.apache.org/confluence/display/solr/Managed+Resources
https://cwiki.apache.org/confluence/display/solr/Managed+Resources

Analyzing Your Text Data

102

2. Now, let's define our text_stem type, which should look like this:
<fieldType name="text_stem" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" />
 </analyzer>
</fieldType>

3. Now, we can index our data. For example, let's index the following data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="description">This is a book that we show</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr cookbook 2</field>
 <field name="description">This is a book I showed</field>
 </doc>
</add>

4. After indexing, we can test how our data was analyzed. To do this, let's run the
following query:
http://localhost:8983/solr/cookbook/select?q=description:show

The result we get from Solr is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">description:show</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>

Chapter 3

103

 <str name="description">This is a book that we show</str>
 <long name="_version_">1468265180046557184</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Solr cookbook 2</str>
 <str name="description">This is a book I showed</str>
 <long name="_version_">1468265180093743104</long></doc>
 </result>
</response>

5. We can also use the Solr administration panel to see how the show and showed
words are processed:

That's right, Solr finds two documents matching the query, which means that our
fields and types are working as intended.

Analyzing Your Text Data

104

How it works...
Our index consists of three fields. The first field holds the unique identifier of the document
(the id field), the second field holds the name of the document (the name field), and the third
field holds the document description (the description field). The description field is the
field that will be stemmed.

The stemmed field is based on a Solr text field and has an analyzer that is used at
query and indexing time. It is tokenized on the basis of the whitespace characters by
using solr.WhitespaceTokenizerFactory. Then, the stemming filter (solr.
SnowballPorterFilterFactory) is used. What does this filter do? It tries to bring
the words to its root form, which means that words such as shows, showing, and show
will all be changed to show, or at least they should be changed to this form.

Note that in order to properly use stemming algorithms, they should be used on query
and indexing times. It is a must because of the stemming results, so the same stems are
produced during querying and indexing.

As you can see, our test data consists of two documents. Take a look at the descriptions.
One of the documents has the word showed, and the other has the word show in their
description fields. After indexing and running the sample query, Solr will return two
documents in the results, which means that stemming did its job.

There's more...
There are too many languages that have stemming support integrated into Solr to mention
them all. If you are using a language other than English, refer to the https://cwiki.
apache.org/confluence/display/solr/Language+Analysis page of the Solr
official documentation to find the appropriate filter.

Using nonaggressive stemmers
Nowadays, it's nice to have stemming algorithms (algorithms that will reduce words to their
stem or root forms) in your application, which will allow you to find words such as cat and
cats just by typing cat. However, let's imagine that you have a search engine that searches
through contents of the books in a library. One of the requirements is changing the plural
forms of the words from plural to singular; nothing less, nothing more. Can Solr do this?
Yes, Solr can do this, and this recipe will show you how to do it.

https://cwiki.apache.org/confluence/display/solr/Language+Analysis
https://cwiki.apache.org/confluence/display/solr/Language+Analysis

Chapter 3

105

How to do it...
1. First, let's start with a simple, two-field index (add the following section to your

schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="description" type="text_light_stem" indexed="true"
stored="true" />

2. Now, let's define the text_light_stem field type, which should look like this
(add this to your schema.xml file):
<fieldType name="text_light_stem" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.EnglishMinimalStemFilterFactory" />
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3. Then, let's check the analysis tool of Solr administration pages; you should see
that words such as ways, keys, and populations have been changed to their
singular forms:

Analyzing Your Text Data

106

How it works...
First, we need to define the fields in the schema.xml file. We do this by adding the contents
from the first example into the schema.xml file. It tells Solr that our index will consist of
two fields—the id field that will be responsible for holding information about the unique
identifier of the document, and the description file that will be responsible for holding
the document description.

The description field is where the magic is being done. We defined a new field type for
this field, and we called it text_light_stem. The field definition consists of a tokenizer
and two filters. The solr.WhitespaceTokenizerFactory tokenizer splits the words
on the basis of whitespace characters. The first filter is the one we are interested in.
This is the light-stemming filter that we will use to perform minimal stemming. In general,
aggressive stemming can and will change the words more, while minimal stemming is
usually about removing the plural forms. The class that enables Solr to use this filter is
solr.EnglishMinimalStemFilterFactory. This filter takes care of the process of
light stemming. You can see this by using analysis tools of the Solr administration panel.
The second filter, solr.LowerCaseFilterFactory is responsible for lowercasing terms.

There's more...
Light stemming supports a number of different languages. To use the light stemmers for your
respective language, add the following filters to your type:

Language Filter
Russian solr.RussianLightStemFilterFactory

Portuguese solr.PortugueseLightStemFilterFactory

French solr.FrenchLightStemFilterFactory

German solr.GermanLightStemFilterFactory

Italian solr.ItalianLightStemFilterFactory

Spanish solr.SpanishLightStemFilterFactory

Hungarian solr.HungarianLightStemFilterFactory

Swedish solr.SwedishLightStemFilterFactory

Finish solr.FinnishLightStemFilterFactory

Indonesian solr.IndonesianStemFilterFactory
(with the stemDerivational="false" attribute)

Norwegian solr.NorwegianLightStemFilterFactory

In the case of solr.IndonesianStemFilterFactory, you need to add the
stemDerivational="false" attribute in order to have it working as a light stemmer.

Chapter 3

107

Using the n-gram approach to do performant
trailing wildcard searches

Many users working with traditional RDBMS systems are used to wildcard searches.
The most common among them are the ones using the * characters, which means zero
or more characters. If you used SQL databases, you probably saw searches such as this:

AND name LIKE 'ABC12%'

However, wildcard searchers are not too efficient when it comes to Solr. This is because Solr
needs to enumerate all the terms because the query is executed. So, how do we prepare our
Solr deployment to handle trailing wildcard characters in an efficient way? This recipe will
show you how to prepare your data and make efficient searches.

How to do it...
There are some steps we need to make efficient wildcards using the n-gram approach:

1. The first step is to create a proper index structure. Let's assume we have the following
fields defined in the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_wildcard" indexed="true"
stored="true" />

2. Now, let's define our text_wildcard type, again in the schema.xml file:
<fieldType name="text_wildcard" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1"
maxGramSize="25"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Analyzing Your Text Data

108

3. The third step is to create an index example data that looks like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">XYZ1234ABC12POI</field>
 </doc>
</add>

4. Now, send the following query to Solr:

http://localhost:8983/solr/cookbook/select?q=name:XYZ1

The Solr response for this query is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">name:XYZ1</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">XYZ1234ABC12POI</str>
 <long name="_version_">1468270390243491840</long></doc>
 </result>
</response>

As you see, the document has been found, so our setup is working as intended.

How it works...
First, let's look at our index structure defined in the schema.xml file. We have two fields, one
holding the unique identifier of the document (the id field) and the second holding the name
of the document (the name field), which are actually the fields we are interested in.

The name field is based on the new type we defined, text_wildcard. This type is
responsible for enabling trailing wildcards, the ones that will enable running queries similar
to LIKE 'WORD%' in SQL. As you can see, the field type is divided into two analyzers, one for
data analysis during indexing and the other for query processing.

Chapter 3

109

The querying analyzer is straight—it just tokenizes the data on the basis of whitespace
characters (using the solr.WhitespaceTokenizerFactory tokenizer) and lowercases
it (using the solr.LowerCaseFilterFactory filter). We don't want the query time analysis
to include n-gram because we will provide only a part of the word, the first letters of it. For
example, in our case, we passed the XYZ1 part of the whole XYZ1234ABC12POI name.

Now, the indexing time analysis (of course, we are talking about the name field) is similar to
the query time. During indexing, the data is tokenized on the basis of whitespace characters
(using the same solr.WhitespaceTokenizerFactory tokenizer), but there is also
an additional filter defined. The solr.EdgeNGramFilterFactory filter is responsible
for generating so called n-grams. In our setup, we tell Solr that the minimum length of an
n-gram is 1 (the minGramSize attribute) and the maximum length is 25 (the maxGramSize
attribute). We also use the solr.LowerCaseFilterFactory filter to lowercase the n-gram
output. So, what will Solr do with our example data? It will create the following tokens from
the example text X, XY, XYZ, XYZ1, XYZ12, and so on. It will create tokens by adding the next
character from the string to the previous token, up to the maximum length of n-gram that is
given in the filter configuration. As you can see, the YZ1 term won't match.

So, by typing the example query, we can be sure that the example document will be found
because the n-gram filter is defined in the configuration of the field. We also didn't define the
n-gram on the querying stage of analysis because we don't want our query to be analyzed in
such a way, since that could lead to false positive hits, and we don't want this to happen.

By the way, this functionality, as described, can be successfully used to provide
autocomplete (if you are not familiar with the autocomplete feature, take a look at
http://en.wikipedia.org/wiki/Autocomplete) features for your application.

Remember that using n-grams will make your index a bit larger. As a result of this, you should
avoid having n-grams on all the fields in the index; you should carefully decide which fields
should use n-grams and which should not.

Using position increment to divide
sentences

Imagine that we want to search in the short notes created by our users. We want to have two
possibilities—searching inside a single sentence and searching inside the whole content of
the note. We also know that our users don't write notes longer than 100 sentences, and each
sentence has a maximum of 100 words, giving us a maximum of 10,000 words per note. To
achieve this, we will use position increments that allow us to control how data is divided in the
same field.

http://en.wikipedia.org/wiki/Autocomplete

Analyzing Your Text Data

110

How to do it...
The following steps will allow us to fulfill our requirements:

1. We start with example data, which will look like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="note_line">Support meeting at Monday.</field>
 <field name="note_line">Need to prepare presentation.</field>
 </doc>
</add>

2. Now, we need to create an index structure. To do this, we need to add the fields that
will be used. We do this by adding the following part to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="note_line" type="text_general" indexed="true"
stored="true" multiValued="true" />

3. Now, add the first field type definition, text_general. We do this by adding the
appropriate field type definition to the schema.xml file:
<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

4. To test our functionality, we will start with searching inside the whole note. Once we
find the ones that contain the monday and presentation words, we will run the
following query:
http://localhost:8983/solr/cookbook/select?q=monday+presentation&d
f=note_line&q.op=AND

The result returned by Solr looks as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>

Chapter 3

111

 <lst name="params">
 <str name="q">monday presentation</str>
 <str name="df">note_line</str>
 <str name="q.op">AND</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <arr name="note_line">
 <str>Support meeting at Monday.</str>
 <str>Need to prepare presentation.</str>
 </arr>
 <long name="_version_">1470163824187277312</long></doc>
 </result>
</response>

Our example note is returned, which is as expected.

5. Now, if we want to search for the same words, but only inside a single sentence,
we will run the following query:

http://localhost:8983/solr/cookbook/select?q="monday presentation"
~100+OR+"presentation monday"~100&df=note_line&q.op=AND

The result will be as follows:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">"monday presentation"~100 OR "presentation
monday"~100</str>
 <str name="df">note_line</str>
 <str name="indent">true</str>
 <str name="q.op">AND</str>
 </lst>
 </lst>
 <result name="response" numFound="0" start="0">
 </result>
</response>

As you can see, no result is returned, which is again as expected.

Analyzing Your Text Data

112

How it works...
We start with our data, which is quite simple. However, we have to remember one thing. We put
each line of the user note in a single field, which is note_line. Due to this, we can see that our
index structure stored in the schema.xml file contains this field, and it is a multivalued field
because each note can have more than one sentence. In addition to the mentioned field,
we can also see a single additional field, the id field, which stores the identifier.

Our text_general type is very straightforward, apart from one thing, the
positionIncrementGap property, which is set to 1000000. This property specifies the
gap between each instance of a field for multivalued fields, in our case the gap between
each sentence. The higher the value of the positionIncrementGap property, the larger
the gap will be, which means a larger phrase slop will be needed to match data between
instances of the field. This is needed because we don't want the queries to match between
sentences, and the value should be large enough (as shown in the example), so we can even
use the phrase slop.

If we look at our first query and the results returned by it, we can see that it matches
our note. This is understandable because we just use two term queries (having two words),
and we search across all the data in the note_line field.

The second query is more interesting. We use a phrase query to limit the searching to a single
sentence. We need to include both phrases because we don't know in which order the words
were included in the query. However, the interesting thing is the phrase slop for both phrase
queries—the ~100 part. As you remember, in the introduction to the recipe, we said that our
notes can have a maximum of 100 sentences with a maximum of 100 words each. After
looking at our indexing time analysis, we shouldn't have more than 100 tokens per sentence.
As a result of this, we tell our phrase queries to include a slop of 100, which basically means
that each token can have a maximum of 100 other tokens between them (including the
defined gap). In our case, we set the positionIncrementGap property to 1000000 in the
field type definition, so the gap between sentences will be higher than 100, and this is why
Solr won't match our document.

Using patterns to replace tokens
Let's assume that we want to search inside user blog posts. We need to prepare a simple
search returning only the identifier of the documents that were matched. However, we will
want to remove some words because of explicit language. Of course, we can do this using
the stop words functionality, but what if we want to know how many documents have their
contents censored with compute statistics on. In such a case, we can't use the stop words
functionality, we need something more, which means that we need regular expressions. This
recipe will show you how to achieve such requirements using Solr and one of its filters.

Chapter 3

113

How to do it...
To achieve our needs, we will use the solr.PatternReplaceFilterFactory filter.
Let's assume that we want to remove all the words that start with the word prefix.
These are the steps needed:

1. First, we need to create our index structure, so the fields we add to the schema.xml
file are as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="post" type="text_ignore" indexed="true"
stored="false" />

2. We also need to define the text_ignore field type by adding the following section to
the schema.xml file:
<fieldType name="text_ignore" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory" />
 <filter class="solr.PatternReplaceFilterFactory"
pattern="word[a-zA-Z0-9]*" replacement="[censored]" />
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3. Now, we can index our test data that looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="post">First post</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="post">Second post single word</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="post">Third post and the word1</field>
 </doc>
</add>

Analyzing Your Text Data

114

4. First, before running our query, let's see if we are actually changing tokens starting with
the word prefix to [censored], just like we want to. We do this using the analysis tool
from the Solr admin panel. The result can be seen in the following screenshot:

5. Now, let's compute the statistics we are looking for. To do this, we will use the
following query:
http://localhost:8983/solr/cookbook/select?q=*:*&rows=0&facet=true
&facet.query={!raw f=post}[censored]

6. The results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>

Chapter 3

115

 <int name="QTime">1</int>
 <lst name="params">
 <str name="facet.query">{!raw f=post}[censored]</str>
 <str name="q">*:*</str>
 <str name="rows">0</str>
 <str name="facet">true</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries">
 <int name="{!raw f=post}[censored]">2</int>
 </lst>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As we can see, everything works, so now let's look at how all of this was achieved.

How it works...
As we already said, our index structure is very simple. We only need two things; the first is the
document identifier, which is held by the id field, which we store and return in the results, and
the second is the post field that holds the post contents.

The post field uses our new type, text_ignore. The type itself is rather simple, it uses
solr.StandardTokenizerFactory to tokenize data (both during querying and indexing);
we then lowercase the data by using solr.LowerCaseFilterFactory. On the indexing
side, however, we do one more thing—we use the solr.PatternReplaceFilterFactory
filter. We use it because it allows us to not only remove some words but also to replace them.
Of course, we can use synonyms (described in the Using synonyms recipe of this chapter),
but they only work on whole words, not on patterns in which we want them to work. Basically,
what we do here is replace every word starting with the word pattern with the [censored]
term. We achieve this by specifying a simple regular expression (pattern="word[a-
zA-Z0-9]*"), telling Solr to match every word starting with the given prefix and followed by
characters or numbers (yes, I know that the regex can be more complicated, but this is only
an example). In addition to this, we said that we want the matched word to be replaced by the
[censored] term (replacement="[censored]").

As you can see in the preceding screenshot, our filter is working as it should. During indexing,
a term that starts with the word prefix is changed to the term [censored].

Analyzing Your Text Data

116

Now, let's look into our analysis query. We are interested in all the documents that are in
our collection (q=*:*), and we will use faceting to get the information about the number of
documents with the[censored] term (facet.query={!raw f=post}[censored]). We
used the raw query parser and sent the facet query against the post field (f=post) to easily
pass a term with the two Lucene special characters—[and]. As you can see, we got the
count in the results—two documents out of three have at least a single word censored.

There's more...
There is one additional thing I will like to mention, check the next section.

Using solr.PatternReplaceCharFilterFactory
Sometimes, we want to do an analysis before the field text is actually tokenized. Solr allows
us to do this by providing the solr.PatternReplaceCharFilterFactory char filter,
which can be used to do the analysis on the whole text before it is passed to the tokenizer.
If we want our recipe example to use the char filter instead of the token filter, we need to
change our text_ignore type definition as follows:

<fieldType name="text_ignore" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <charFilter class="solr.PatternReplaceCharFilterFactory"
pattern="word[a-zA-Z0-9]*" replacement="[censored]" />
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory" />
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

You might want to follow this method if you need to operate on the whole text and not on the
tokens produced by the tokenizer.

4
Querying Solr

In this chapter, we will cover the following topics:

 f Understanding and using the Lucene query language

 f Using position-aware queries

 f Using boosting with autocomplete

 f Phrase queries with shingles

 f Handling user queries without errors

 f Handling hierarchies with nested documents

 f Sorting data on the basis of a function value

 f Controlling the number of terms needed to match

 f Affecting document score using function queries

 f Using simple nested queries

 f Using the Solr document's query join functionality

 f Handling typos with n-grams

 f Rescoring query results

Introduction
Creating a simple query is not a hard task, but creating a complex one, with faceting, local
params, parameter dereferencing, and phrase queries can be a challenging task. Other than
this, you must remember to write your query while keeping the performance factors in mind.
This is why something that is simple at first sight can turn into something more challenging,
such as writing a good, complex query. This chapter will try to guide you through some of the
tasks you might encounter during your everyday work with Solr.

Querying Solr

118

Understanding and using the Lucene query
language

As you know, Solr is built using the Apache Lucene library. Due to this, some of the query
parsers available in Solr allow us to fully leverage the query language of Lucene, giving us
great flexibility to understand how our queries work and with what documents they match.
In this recipe, we will discuss an example usage of the Lucene query language by looking
at a book search site that gives its users the possibility of defining complex Boolean queries
that contain phrases.

How to do it...
Let's perform the following steps to achieve this:

1. The first step is to prepare our index to handle data. To do this, we add the following
entries to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="published" type="int" indexed="true" stored="true" />

2. Now, let's index some sample book data. The data that we want to index looks
as follows:
<doc>
 <field name="id">1</field>
 <field name="title">Solr 4.0 cookbook</field>
 <field name="description">The book is totally focused on the 4.0
version of Apache Solr enterprise search server. The content is
divided into ten thematic chapters, just like with the previous
version of the book</field>
 <field name="published">2012</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr 3.1 cookbook</field>

Chapter 4

119

 <field name="description">The book is focused on the 3.1 version
of Solr. The content is divided into ten chapters, each of which
consists of a few to several recipes.</field>
 <field name="published">2011</field>
 </doc>
</add>

3. Let's assume that our user wants to find the books that have the term solr in their
title and book in their description. In addition, our user wants to see the books that
were published between 2011 and 2013 (inclusive of 2011). However, this is not all.
Our user also says that he doesn't want books that have the term 3.1 or the book is
focused phrase in their description. The query seems a bit complicated, but Solr can
easily handle it. A request that handles all the requirements looks as follows:
http://localhost:8983/solr/cookbook/select?q=title:solr AND
description:book AND published:[2011+TO+2013} NOT (description:3.1
OR description:"book is focused")

4. The results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">64</int>
 <lst name="params">
 <str name="q">title:solr AND description:book AND
published:[2011 TO 2013} NOT (description:3.1 OR description:"book
is focused")</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Solr 4.0 cookbook</str>
 <str name="description">The book is totally focused on the 4.0
version of Apache Solr enterprise search server. The content is
divided into ten thematic chapters, just like with the previous
version of the book</str>
 <int name="published">2012</int>
 <long name="_version_">1471367306831462400</long></doc>
 </result>
</response>

As we can see, Solr returned the document we were after, so now let's see how it works.

Querying Solr

120

How it works...
Our index is very simple; it contains four fields:

 f The first field is the one responsible for the unique identifier of the book (the id field)

 f The second field is the title of the book (the title field)

 f The third field is the description of the book (the description field)

 f The fourth field holds the publication year (the published field)

By default, Solr uses the standard query parser that supports the full Lucene query language.
This means that we can search in a particular field, use phrase and range queries, use
Boolean operators, and so on.

Our particular query says that we want the documents that have solr in the title field
(title:solr), book in the description field (description:book), and the publication
date between 2011 and 2013, including 2011 (published:[2011 TO 2013}).These three
parts of the query are connected to each other with the Boolean operator AND. Both sides of
the operator must match for the document to be considered a match; in our case, all three
conditions must be met. The Lucene query language provides us with the possibility of using
three Boolean operators: AND (requires both operands to be matched), OR (any operant can
be a match), and NOT (the operand after the operator can't match). After the operands are
concatenated with the AND operator, we have the NOT operator, which means that the section
in the parenthesis can't be a match for the document to be returned in the search results
((description:3.1 OR description:"book is focused")). This basically means
that the description of the book can't have the 3.1 term or the book is focused phrase.

Of course, the logical operators are not everything that is present in the query. We have the
sections specifying that we want a particular value in a field, for example, title:solr. We
have the range query run against the published field and say that we want all documents
with a value between 2011 and 2013 (exclusive) in this field. One thing to remember when it
comes to the range query is that using [or] means that we want the value to be inclusive,
while using { or } means that the value will be exclusive. Finally, we have the phrase query
that we construct by surrounding the phrase with the " character.

Note that the query shown in the example is suboptimal. Some parts of it should be moved to
filter queries (such as the section about publication year) because of performance reasons.
However, for the purpose of demonstrating the Lucene query language, I decided to go for the
simplest example. The more optimal version of the query looks as follows:

http://localhost:8983/solr/cookbook/select?q=title:solr AND
description:book NOT (description:3.1 OR description:"book is focused"
)&fq=published:[2011+TO+2013}

Chapter 4

121

See also
 f Of course, the recipe doesn't show all the possibilities of the Lucene query

language (for example, it doesn't mention the -, +, and ! operators). If you want
to know more, look at the Javadoc of the classic Lucene query parser available at
http://lucene.apache.org/core/4_10_0/queryparser/org/apache/
lucene/queryparser/classic/package-summary.html.

Using position aware queries
Most of the queries exposed by Lucene and Solr are not position-aware, which means that the
query doesn't care about the place in the document where the word comes from. Of course, we
have phrase queries that we can use for phrase searching, and even introduce the phrase slop,
but this is not always enough. Sometimes, we might want to search for words with their positions
in the searched documents. Let's assume that we allow our users to search for book titles
and descriptions and specify how these words should be positioned related to each other.
Solr provides us with such functionalities, and this recipe will show you how to use them.

How to do it...
Let's start with a simple index structure. For the purpose of this recipe, we will use the
following fields:

1. Add the following sections to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="description" type="text_general" indexed="true"
stored="true" />

2. After this, we index our sample data, which looks as follows:

<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr 4.0 cookbook</field>
 <field name="description">The book is totally focused on the 4.0
version of Apache Solr enterprise search server. The content is
divided into ten thematic chapters, just like with the previous
version of the book</field>
 </doc>
 <doc>

http://lucene.apache.org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html
http://lucene.apache.org/core/4_10_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html

Querying Solr

122

 <field name="id">2</field>
 <field name="title">Solr 3.1 cookbook</field>
 <field name="description">The book is focused on the 3.1 version
of Solr. The content is divided into ten chapters, each of which
consists of a few to several recipes.</field>
 </doc>
</add>

Let's assume that our user wants to find books that have the words chapters and solr not
more than 10 times apart from each other (no matter the order). In addition to this, he only
wants documents with the word book followed by the word solr. However, the word solr
should not be further than 8 words from it and, in addition to this, the word solr should be no
more than 3 words from the word 3.1. Of course, all the mentioned requirements are about the
documents that were indexed. The query that fulfills this requirement looks as follows:

http://localhost:8983/solr/cookbook/select?q={!surround}
(10n(chapters,solr) AND 8w(book,3n(solr,3.1)))&df=description

The result returned by Solr looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">{!surround}(10n(chapters,solr) AND
8w(book,3n(solr,3.1)))</str>
 <str name="df">description</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="title">Solr 3.1 cookbook</str>
 <str name="description">The book is focused on the 3.1 version of
Solr. The content is divided into ten chapters, each of which consists
of a few to several recipes.</str>
 <long name="_version_">1471273737021030400</long></doc>
 </result>
</response>

Solr returns the only book that matches user requirements, so now let's see how it works.

Chapter 4

123

How it works...
We start with the index structure, which is quite simple. It contains three fields:

 f One field holds the identifier of the document (the id field)

 f One field holds the title of the book (the title field)

 f The last field holds the description of the book (the description field)

Our example data is also very simple; it contains two books and their descriptions.

The query is the thing that we are interested in. First, the last part of the query says that
the default search field is the description field; we've specified this using the df query
property (df=description). To use position-aware queries in Solr, we need to use the
Surround query parser; we do this by adding {!surround} to our query. The whole query is
surrounded by parentheses, so we tell Solr that the whole query should be processed by the
query parser that we choose.

Before we continue, it is crucial to know the operators that are supported by the Surround
query parser; they are AND, OR, NOT, W, and N. The first three operators were discussed in
the Understanding and using the Lucene query language recipe earlier in this chapter;
the W and N operators are new. W and N are position operators; the W operator is unordered,
which means that words can be in any order; the N operator is ordered, so word order matters.
The positional operators require distance to be specified, and assume 1 when none is
provided; the value can be from 2 to 99 and is specified as a prefix. For example, 2n(solr,
cookbook) means that the query should match documents that have the words solr
and cookbook, the second one no further than two positions away from each other
(up to one term between them). For example, solr 3.1 cookbook will match,
while solr 3.1 updated edition cookbook won't.

Now, as we know how the surround query parser works, let's discuss what we told Solr to
do. The 10n(chapters,solr) part of the query says that we want documents having
the words chapters and solr up to 10 positions from each other, no matter the order.
The 8w(book,3n(solr,3.1)) part of the query specifies that we want the word book
present up to 8 positions before the span query defined by the 3n(solr,3.1) part. The
3n(solr,3.1) part tells Solr to create a span query that matches documents having the
solr word up to 3 positions from the word 3.1 in whatever order.

As you can see, with the use of the Surround query parser and its ability to create span
queries using the N and W operators, we can create queries that match documents using
not only terms but also the information on where they are in the document, in other words,
their positions.

Querying Solr

124

There are a few things one should remember when using span queries.
First of all, the queries are much more demanding when it comes to
CPU usage because they not only need to match terms but also check
their positions. The second limitation of span queries is that they are not
analyzed at all, so you need to provide the terms that match the ones that
were indexed, else the documents won't match.

There's more...
There is one additional thing I would like to mention, as mentioned in the following section.

Too many generated queries
Sometimes, Surround query parsers can generate too many internal queries that will result in
no documents being returned for the query. We can overwrite this behavior by specifying the
maxBasicQueries property for the Surround query parser with a high value. For example,
our example query might look as follows:

http://localhost:8983/solr/cookbook/select?q={!surroundmaxBasicQueri
es=20000}(10n(chapters,solr) AND 8w(book,3n(solr,3.1)))&df=description

Using boosting with autocomplete
Autocomplete is very good when it comes to our user search experience. It is especially useful
for showing users' data that we want to promote or the data that is of value to the users. In
general, in e-commerce, the deployment of the autocomplete functionality means more profit.
However, there are situations where we want to promote certain products or documents, for
example, the currently top-selling books or financial reports, which are the most important
ones. This recipe will show you how to boost certain documents when using the n-gram-based
autocomplete functionality.

How to do it...
Let's perform the following steps to boost certain documents using the n-gram-based
autocomplete function:

1. We start with creating the index structure for our use case; we just put the following
section to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true"/>
<field name="title" type="text_general" indexed="true"
stored="true"/>
<field name="title_ac" type="text_general_edge_ngram"
indexed="true" stored="false"/>

Chapter 4

125

2. Next, we define the text_general_edge_ngram type by adding the following
section to the schema.xml file:
<fieldType name="text_general_edge_ngram" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="2"
maxGramSize="45"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

3. The next step is to add a copy field definition so that the title_ac field is
automatically populated by the data from the title field. We do this by adding the
following to the schema.xml file:
<copyField source="title" dest="title_ac" />

4. Imagine that one of our documents, the one with identifier 2, is the most valuable
one for us and we would like to show it on top in searches and autocomplete. To
achieve this, our example data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Financial report 2014</field>
 </doc>
 <doc boost="1000">
 <field name="id">2</field>
 <field name="title">Financial marketing report 2014</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Excluded financials in 2014 - internal
report</field>
 </doc>
</add>

5. Now, let's run our autocomplete query, which looks as follows:
http://localhost:8983/solr/cookbook/select?q=financial
repor&df=title_ac&q.op=AND

Querying Solr

126

6. The results returned by Solr looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">financial repor</str>
 <str name="df">title_ac</str>
 <str name="q.op">AND</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="title">Financial marketing report 2014</str>
 <long name="_version_">1471236319725223936</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Financial report 2014</str>
 <long name="_version_">1471236319670697984</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Excluded financials in 2014 - internal
report</str>
 <long name="_version_">1471236319726272512</long></doc>
 </result>
</response>

As we can see, we got the required results. Now, let's see how it works.

How it works...
Our index structure is very simple. We have a field responsible for holding the unique
identifier of the document (the id field). We also have two fields that are used to hold
the title of the document:

 f The title field (used for searching)

 f The title_ac field (used for autocomplete)

Chapter 4

127

The next thing is the definition of the text_general_edge_ngram type. At query time,
(<analyzer type="query">), we use the solr.StandardTokenizerFactory
tokenizer and the solr.LowerCaseFilterFactory filter to divide the phrase and
lowercase it. The index time analysis (<analyzer type="index">) is more important.
During indexing, we not only repeat the same steps as during query time, we also use the
solr.EdgeNGramFilterFactory filter to divide tokens into grams to implement the
autocomplete functionality. We want to return the document containing the term financial
when the user enters finan into the search box. The screenshot from the analysis section of
the Solr administration panel shows how the filter works:

Finally, the last thing about the schema.xml file is the copy field. We added it, so we tell Solr
that it should copy the contents of the title field to the title_ac field because we need a
different analysis for the title_ac field.

As you can see in the example data, the document with the id field equaling 2 is a bit
different when compared to the rest of the documents. In its definition, it has the boost
property included (<doc boost="1000">). It tells Solr to add boost to the document during
indexing. The default boost value given to every document is 1, so when we set the boost
value to 1000, we inform Solr that the document is much more important than the ones with
the default boost.

We can see the difference in the results of our query. The document with an id of 2 is on the
top of the results list, although, from the scoring algorithm point of view, the best match is
the document with the identifier of 1. Since we set the boost value during indexation, Solr is
informed that our boosted document is more important, and it increases its score accordingly.

Phrase queries with shingles
Imagine that you have an application that searches within millions of documents that are
generated by a law company. One of the requirements is to search boost the documents that
have either a search phrase or part of the phrase in their title. So, is it possible to achieve it
using Solr? Yes, and this recipe will show you how to do this.

Querying Solr

128

How to do it...
Let's follow these steps to achieve this:

1. Let's start with our index structure; we configure it by adding the following section to
the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />

2. The second step is to create example data that looks like this:
<doc>
 <field name="id">1</field>
 <field name="title">Financial report 2014</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Financial marketing report 2014</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Excluded financials in 2014 - internal
report</field>
 </doc>
</add>

3. Let's assume our users want to find documents with the terms financial report
2014 in the title field. However, we also want boost and partial phrases so the
documents with query terms closer to each other have a higher boost. To do this,
make the following query to Solr:

http://localhost:8983/solr/cookbook/select?q=financial report
2014&defType=edismax&qf=title&pf=title&pf2=title&pf3=title

The result should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">11</int>
 <lst name="params">

Chapter 4

129

 <str name="q">financial report 2014</str>
 <str name="defType">edismax</str>
 <str name="qf">title</str>
 <str name="pf">title</str>
 <str name="pf3">title</str>
 <str name="pf2">title</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Financial report 2014</str>
 <long name="_version_">1471162075046739968</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Financial marketing report 2014</str>
 <long name="_version_">1471162075092877312</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Excluded financials in 2014 - internal report</
str>
 <long name="_version_">1471162075092877313</long></doc>
 </result>
</response>

The debug query (the debugQuery=on parameter) shows us how the Lucene query
was made:

<str name="parsedquery">(+(DisjunctionMaxQuery((title:financial)) Di
sjunctionMaxQuery((title:report)) DisjunctionMaxQuery((title:2014)))
DisjunctionMaxQuery((title:"financial report 2014")) (DisjunctionMa
xQuery((title:"financial report")) DisjunctionMaxQuery((title:"repo
rt 2014"))) DisjunctionMaxQuery((title:"financial report 2014")))/
no_coord</str>

As you can see, we got the documents we wanted, and in the right order. Now, let's see why
this happened.

How it works...
For this recipe, I chose a very simple index. It contains only two fields:

 f The identifier of the document (the id field)

 f The title of the document (the title field)

Querying Solr

130

The query is the part that we should be most interested in. We start by sending the terms
in the q parameter (q=financial report 2014). This means that all our example
documents will be matched. We also specify that we want to use the extended dismax query
parser (defType=edismax). We define the field that we want to search on by specifying the
qf=title parameter. This part of the query satisfies one of our requirements—the one that
forces us to match the terms in the title field. Notice that the default logical operator is
OR in our case. Because of that, even if only a single term from the query will be present in
a document, it will be returned in the results of the query.

The second requirement is to boost the documents with the phrase query. We can add
the phrase query to the q parameter, but instead we use the pf parameter. By specifying
pf=title, we say that the query parser should make the phrase query using the values in
the q parameter. We can see this in the debug query output, DisjunctionMaxQuery((tit
le:"financial report 2014")). In the results, we can see that the document matching
the phrase query is at the top of the results.

The third requirement is the inclusion of the partial phrases, again using the value of the
q parameter. The pf2 parameter will take the value of the q parameter and create pairs
and phrase queries out of them. So, in our case, it will create the financial report and
report 2014 phrases. We can see DisjunctionMaxQuery((title:"financial
report")) and DisjunctionMaxQuery((title:"report 2014")) in the debug query.
The pf3 parameter will do a similar thing to pf2, but instead of constructing pairs, it will
create triples. In our case, it will create the financial report 2014 phrase. Again, we can
see this in the debug query.

All the queries constructed by Solr using the pf, pf2, and pf3 parameters are added to the
query and will boost the documents that match them. We can see this in the results returned
by Solr.

See also
 f The Simple query parser allows us to use a subset of the default Lucene query

language. The full documentation on a Simple query parser can be found at
https://cwiki.apache.org/confluence/display/solr/The+Extended+D
isMax+Query+Parser.

Handling user queries without errors
When building an application that uses Solr, we usually pass the query that the user sent to
Solr. Sometimes, we even allow users to send complex queries that contain Lucene special
characters. Due to this, there are situations where the user provides malformed queries, and
thus, Solr throws an exception when running such queries. We can alter this behavior by using
a new query parser called Simple. This recipe will show you how to do this.

https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser
https://cwiki.apache.org/confluence/display/solr/The+Extended+DisMax+Query+Parser

Chapter 4

131

Getting ready
Before continuing to read this recipe, I suggest reading the Understanding and using the
Lucene query language recipe from this chapter.

How to do it...
Let's look into how to handle user queries without errors using the following steps:

1. We start by creating a simple index structure that will allow us to easily illustrate the
example. To do this, we place the following section in the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true"/>
<field name="author" type="text_general" indexed="true"
multiValued="true" />

2. In addition to this, we index an example data that looks as follows:
<doc>
 <field name="id">1</field>
 <field name="title">Apache Solr 3.1 Cookbook</field>
 <field name="author">Rafał Kuć</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Apache Solr 4.0 Cookbook</field>
 <field name="author">Rafał Kuć</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Elasticsearch Server book</field>
 <field name="author">Rafał Kuć</field>
 <field name="author">Marek Rogoziński</field>
 </doc>
</add>

3. Now, let's assume that our user runs the "Apache Cookbook query. So, the query
using the default Solr query parser will look as follows:
http://localhost:8983/solr/cookbook/select?q="Apache
Cookbook&qf=title author

Querying Solr

132

4. The result returned by such a query will look like the following:
<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">400</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">"Apache Cookbook</str>
 <str name="qf">title author</str>
 </lst>
 </lst>
 <lst name="error">
 <str name="msg">org.apache.solr.search.SyntaxError: Cannot parse
'"Apache Solr': Lexical error at line 1, column 13. Encountered:
<EOF> after : "\"Apache Solr"</str>
 <int name="code">400</int>
 </lst>
</response>

5. We see an error, so let's use the Simple query parser. To do this, we run the
following query:
http://localhost:8983/solr/cookbook/select?q="ApacheCookbook&qf=ti
tle author&defType=simple

6. The results for this query look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">4</int>
 <lst name="params">
 <str name="q">"Apache Cookbook</str>
 <str name="defType">simple</str>
 <str name="qf">title author</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>

Chapter 4

133

 <str name="title">Apache Solr 3.1 Cookbook</str>
 <arr name="author">
 <str>Rafał Kuć</str>
 </arr>
 <long name="_version_">1471151647034966016</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Apache Solr 4.0 Cookbook</str>
 <arr name="author">
 <str>Rafał Kuć</str>
 </arr>
 <long name="_version_">1471151647089491968</long></doc>
 </result>
</response>

As we can see, the results were returned without an error. Let's see how it works.

How it works...
Our index structure is very simple. It contains three fields:

 f The document identifier (the id field)

 f The book title (the title field)

 f The authors of the book (the author field)

The data is very simple as well, so let's just skip discussing it.

The first query uses a standard Solr query parser and produces an error. This is because
the query is not proper; there is no closing " character. This is only an example, and we can
expect way more errors with user queries. If we want Solr to take care of such errors, we can
use the Simple query parser, which we do in the second query. As you can see, the second
query produces results for our query without an error. Of course, a phrase query is not run
because the query was not properly constructed. However, we get results in spite of the fact
that the query contains errors.

See also
 f The Simple query parser allows us to use a subset of the default Lucene

query language. The full documentation on Simple query parsers can be
found at https://cwiki.apache.org/confluence/display/solr/
Other+Parsers#OtherParsers-SimpleQueryParser.

https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-SimpleQueryParser
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-SimpleQueryParser

Querying Solr

134

Handling hierarchies with nested documents
In the real world, data is not flat, it contains many hierarchies that we need to handle.
Sometimes it is not possible to flatten the data, but still we want to avoid cross and false
matches. For example, let's assume that we have articles and comments to these articles,
for example, news sites or blogs. Imagine that we want to search for articles and comments
at the same time. To do this, we will use the Solr nested documents; this recipe will show you
how to do this.

How to do it...
To handle hierarchies with nested documents, follow these steps:

1. We start by defining the index structure. To do this, we add the following fields to our
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true"/>
<field name="content" type="text_general" indexed="true"
stored="true"/>
<field name="author" type="text_general" indexed="true"
stored="true"/>
<field name="parent" type="boolean" indexed="true" stored="true"
multiValued="false" />

2. For the functionality of the nested documents, we need to define the _root_ field in
the schema.xml file. We do this by adding the following section to it:
<field name="_root_" type="string" indexed="true" stored="false"
/>

3. We also need a special cache defined, which is called perSegFilter. To define it,
we need to add the following section to the solrconfig.xml file:
<cache name="perSegFilter" class="solr.search.LRUCache"
size="10" initialSize="0" autowarmCount="10" regenerator="solr.
NoOpRegenerator" />

4. Our example data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Next-gen consoles announced</field>
 <field name="parent">true</field>

Chapter 4

135

 <doc>
 <field name="id">10001</field>
 <field name="content">Great, can't wait!</field>
 <field name="author">annon</field>
 <field name="parent">false</field>
 </doc>
 <doc>
 <field name="id">10002</field>
 <field name="content">When they'll be out?</field>
 <field name="author">marel</field>
 <field name="parent">false</field>
 </doc>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Next-gen consoles announced will be
announced</field>
 <field name="parent">true</field>
 <doc>
 <field name="id">20001</field>
 <field name="content">New Mario, super!</field>
 <field name="author">ralf</field>
 <field name="parent">false</field>
 </doc>
 </doc>
</add>

5. Let's look at the query now. Let's assume that we want to find articles with
the next-gen consoles term in their title and the out term in one of the
comments. This way, we should only match our first article. The query to achieve
this looks as follows:

http://localhost:8983/solr/cookbook/select?q=title:(Next-gen
consoles)+_query_:"{!parent which=parent:true}content:out"&q.
op=AND

The results returned by Solr will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">

Querying Solr

136

 <str name="q">title:(Next-gen consoles) _query_:"{!parent
which=parent:true}content:out"</str>
 <str name="q.op">AND</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Next-gen consoles announced</str>
 <bool name="parent">true</bool>
 <long name="_version_">1471146160561324032</long></doc>
 </result>
</response>

As we can see, everything works as it should, so let's see how it works.

How it works...
We start with the index structure. Since the parent and nested documents are stored in
the same index (or collection), we have their fields defined in the same schema.xml file.
Our parent document is described by the following:

 f The id field that holds the identifier

 f The title field that holds the title of the article

The children documents are described by the id field holding the identifier, the content field
holding comment contents, the author field providing the author with the comment, and the
special field called _root_ that allows Solr to store the parent document identifier. Finally,
we also have the parent field, which will hold information about whether the document is a
parent or nested document.

The cache we defined in the solrconfig.xml file is a special cache used by Solr to provide
nested document support. It needs to be called perSegFilter (name="perSegFilter").
It is constructed for each Lucene segment, so it is near real-time friendly. Like all the other
caches Solr uses, we can set the perSegFilter cache's initial size (initialSize="0"),
its maximum size (size="10"), and the auto warm count (autowarmCount="10").

The example data is where things get interesting. As you can see, the parent documents look
exactly the same. They contain the identifier, title, and information that they are the parent
(<field name="parent">true</field>). However, in addition to the standard field
information, we also included the nested documents inside the parent documents.
Yes, that's right, we just nest the parent documents.

Chapter 4

137

This is needed because the nested documents in Solr rely on only the Lucene block-join
functionality, which means that we need to index the parent and nested documents in the
same segment. In the children documents (the nested ones), we also index the information
that there are children (<field name="parent">false</field>).

The query is the second interesting thing that we encounter in the recipe. The first query
part, title:(Next-gen consoles), is responsible for searching in the parent documents.
We just search in the title field for the provided phrase. The next part of the query
(_query_:"{!parent which=parent:true}content:out") is the part with the nested
documents query. We specify that we want to use the parent query parser ({!parent), which
performs matching on the children documents and returns the parent documents. By adding
the which=parent:true parameter, the parent query parser knows which documents are
the parent ones (in our case, they are the ones with the parent field equal to true). The last
part of the query is the standard field search (content:out); we just search the content
field for the out term.

Finally, we tell Solr that we want all the query parts to be mandatory, by specifying the default
Boolean query operator to AND and specifying q.op=AND.

There's more...
There is one more thing to remember when it comes to nested document support in Solr.

Returning children documents in the query
Of course, in addition to returning the parent documents, Solr can also return the children
documents. We can do this using the child parser instead of the parent one that we used
in our query. So, to return all the children documents for the parent document matching
Next-gen consoles in the title field, we will run the following query:

http://localhost:8983/solr/cookbook/select?q={!child of=parent:true}
title:(Next-gen consoles)&q.op=AND

Sorting data on the basis of a function value
Suppose we have a search application that stores information about companies. Every
company is described by a name and two floating point numbers that represent the
geographical location of the company. One day your boss comes to your room and says that
he wants the search results to be sorted by distance from the user's location. What's more, he
wants us to force our search engine to return the distance from a user location to each of the
returned companies. This recipe will show you how to achieve this requirement.

Querying Solr

138

How to do it...
Let's perform the following steps to sort data on the basis of a function value:

1. For this recipe, we will begin with the following index structure (add the following
entries to your schema.xmlfile):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true"/>
<field name="location" type="location" indexed="true"
stored="true" />
<dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

2. We also need to define the location type in our schema.xml file, so we add the
following section to it:
<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

I assume that the user location will be provided from the application that is
making the query.

3. Now, let's index our example data file, which looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="location">56.4,40.2</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="location">50.1,48.9</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="location">23.18,39.1</field>
 </doc>
</add>

Chapter 4

139

4. So, our user stands at the North Pole and uses our search application. Now, let's
assume that we want to get the companies sorted in a way that the ones that are
nearest to the user are at the top of the result list. In addition to this, we want to
return the distance from the user's location to each of the companies. The query
that matches our requirements will look as follows:

http://localhost:8983/solr/cookbook/select?q=name:company&sort=geo
dist(location,0.0,0.0)+asc&fl=*,distance:geodist(location,0.0,0.0)

The results of this query will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:company</str>
 <str name="fl">*,distance:geodist(location,0.0,0.0)</str>
 <str name="sort">geodist(location,0.0,0.0) asc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="location">23.18,39.1</str>
 <long name="_version_">1471140606301437952</long>
 <double name="distance">4946.836542733629</double></doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="location">56.4,40.2</str>
 <long name="_version_">1471140606244814848</long>
 <double name="distance">7227.258357265134</double></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Company 2</str>
 <str name="location">50.1,48.9</str>
 <long name="_version_">1471140606300389376</long>
 <double name="distance">7234.322642147299</double></doc>
 </result>
</response>

If you want to calculate the distance by hand, you will see that the results are sorted as they
should be.

Querying Solr

140

How it works...
As you can see in the index structure and data, every company is described by three fields:

 f id: This is the unique identifier

 f name: This is the company name

 f location: This is the latitude and longitude of the company location

I'll skip commenting on how the actual location of the company is stored; if you want to read
more about it, refer to the Indexing multiple geographical points recipe from Chapter 2,
Indexing Your Data.

We wanted to get the companies that match the given query and are sorted in ascending
order from the North Pole. To do this, we run a simple query that asks for companies with the
term company in the name field. The second thing is the sorting order. We included a function
there, the geodist function, which calculates the distance between points. In our example,
the function takes three parameters:

 f The first parameter specifies the field in the index that should be used to calculate
the distance

 f The second parameter is the latitude value of the point from which the distance will
be calculated

 f The third parameter is the longitude value of the point from which the distance will
be calculated

After the function, there is the order of the sort, which in our case is asc, which means it is in
ascending order.

Finally, we modified the fields returned for each document in the result. We did this by
specifying the fl=*,distance:geodist(location,0.0,0.0) parameter. It basically
means to return all the stored fields for a document (the * value), and in addition to this,
includes the value of the function query—the same that we used for distance calculation
and sorting. However, we did one more thing—we told Solr to return the calculated distance
in the field called distance (of course, the field is not present in our index structure).
We did this by appending the function name with the name of the pseudo field and the :
character, in our case, distance:. This forced Solr to return the distance, not in a field called
geodist(location,0.0,0.0), but in one called distance. Of course, this is not needed,
but it is convenient and easier to read.

Chapter 4

141

Controlling the number of terms needed
to match

Imagine a situation where you have an e-commerce bookstore and you want to make a search
algorithm that tries to bring the best search results to your customers. However, you notice
that many of your customers tend to make queries with too many words, which results in an
empty result list. So, you decide to make a query that will require a maximum of two of the
words, which the user entered, to be matched. This recipe will show you how to do it.

Getting ready
Before we continue, it is crucial to mention that the following method can only be used
with the dismax or edismax query parser. For the list of available query parsers, refer to
http://wiki.apache.org/solr/QueryParser.

How to do it...
Follow these steps to control the number of terms needed to match:

1. Let's begin with creating our index structure. For our simple use case, we will only
have documents with the identifier (the id field) and title (the title field). We define
the index structure by adding the following section to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text" indexed="true" stored="true" />

2. Now, let's look at the example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solrcook book revised</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Some book that was revised</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Another revised book</field>
 </doc>
</add>

http://wiki.apache.org/solr/QueryParser

Querying Solr

142

3. The third step is to make a query that will satisfy the requirements. For example,
let's imagine that we want 100 percent of the terms matched for queries that have
three or fewer terms in them, and only 25 percent of the terms matched for queries
that have four or more terms. Such a query might look like this:

http://localhost:8983/solr/cookbook/select?q=book+revised+another+
different+word+that+doesnt+count&defType=dismax&mm=3<25%25

This query will return the following results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="mm">3<25%</str>
 <str name="q">book revised another different word that doesnt
count</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 <long name="_version_">1470445837694795776</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Some book that was revised</str>
 <long name="_version_">1470445837693747200</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 <long name="_version_">1470445837648658432</long></doc>
 </result>
</response>

On the other hand, let's look at the following query:

http://localhost:8983/solr/cookbook/select?q=book+revised+another&defT
ype=dismax&mm=3<25%25

Chapter 4

143

This query will return the following results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="mm">3<25%</str>
 <str name="q">book revised another</str>
 <str name="defType">dismax</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 <long name="_version_">1470445837694795776</long></doc>
 </result>
</response>

As you can see, only a single document was returned. Now, let's see how it works.

How it works...
The index structure and data are fairly simple. Every book is described by using two fields:

 f The unique identifier

 f The title

The data itself is not complicated, so let's skip discussing it.

The query is the thing that we are interested in. The first query sends eight terms in the q
parameter. However, since we are using the dismax query parser (the defType=dismax
parameter) and added the mysterious mm parameter, Solr returned three documents.
This is because we specified mm=3<25%25 (which is in fact mm=3<25%, but we needed to
URL-encode it). It tells Solr to enforce matching all the query terms. If there are three or fewer
terms present in the query, they must all match. If there are more terms in the query, at least
25 percent of the query terms must be found in a document for it to be considered a match.

Now, if we look at the second query, we notice that it has three terms in it, and it only
returns a single document, the one with all three terms matched. Apart from the q parameter,
all the others, especially the mm parameter stayed the same. As you remember, we set the
mm parameter so that queries that have three or less terms must have all of them matched
in a document for that document to be returned in the results. And this is the case in the
second example.

Querying Solr

144

Before we finish, let's get back to the first query and its results. Note that the document that
has three words matched is at the top of the list. The relevance algorithm is still there, which
means that the documents that have more words that matched the query will be higher on the
result list than those that have less words that match the query.

See also
 f The documentation on the mm parameter can be found at http://lucene.

apache.org/solr/4_10_0/solr-core/org/apache/solr/util/doc-
files/min-should-match.html

Affecting document score using function
queries

There are many situations where you would like to have an influence on how the score of the
documents is calculated. For example, you would like to boost the documents on the basis of
the purchases of it. As in, as an e-commerce bookstore, you would like to be showed relevant
results, but you would also like to influence them by adding yet another factor to their score. Is
this possible? Yes, and this recipe will show you how to do it.

How to do it...
Let's see how the document score is affected using function queries and the following steps:

1. Let's start by defining the index structure by adding the following section to the
schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="sold" type="int" indexed="true" stored="true" />

2. The second step will be the example data, which looks like this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solrcook book revised</field>
 <field name="sold">5</field>
 </doc>
 <doc>

http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/util/doc-files/min-should-match.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/util/doc-files/min-should-match.html
http://lucene.apache.org/solr/4_10_0/solr-core/org/apache/solr/util/doc-files/min-should-match.html

Chapter 4

145

 <field name="id">2</field>
 <field name="title">Some book revised</field>
 <field name="sold">200</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Another revised book</field>
 <field name="sold">60</field>
 </doc>
</add>

3. After indexing our data, we can try to boost our documents using function queries.
Our user types revised into the search box, and we want to return the most relevant
results. Our simple query looks as follows:
http://localhost:8983/solr/cookbook/select?defType=dismax&qf=title
&q=revised&fl=*,score

The results will look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">revised</str>
 <str name="defType">dismax</str>
 <str name="qf">title</str>
 <str name="fl">*,score</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0"
maxScore="0.35615897">
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 <int name="sold">5</int>
 <long name="_version_">1470467358823809024</long>
 <float name="score">0.35615897</float></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 <int name="sold">200</int>

Querying Solr

146

 <long name="_version_">1470467358872043520</long>
 <float name="score">0.35615897</float></doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised book</str>
 <int name="sold">60</int>
 <long name="_version_">1470467358873092096</long>
 <float name="score">0.35615897</float></doc>
 </result>
</response>

4. Now let's add another factor to our scoring mechanism. What we would like to do
is affect the score of the document on the basis of how many books were sold.
Basically, we want the score affected by the contents of the sold field. To do that,
we add the following parameter to our query:

bf=product(sold)

So, our modified query will look like this:
http://localhost:8983/solr/cookbook/select?defType=dismax&qf=title
&q=revised&fl=*,score&bf=product(sold)

The results for the preceding query will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">revised</str>
 <str name="defType">dismax</str>
 <str name="bf">product(sold)</str>
 <str name="qf">title</str>
 <str name="indent">true</str>
 <str name="fl">*,score</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0"
maxScore="163.1048">
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 <int name="sold">200</int>
 <long name="_version_">1470467358872043520</long>
 <float name="score">163.1048</float></doc>
 <doc>
 <str name="id">3</str>

Chapter 4

147

 <str name="title">Another revised book</str>
 <int name="sold">60</int>
 <long name="_version_">1470467358873092096</long>
 <float name="score">49.07608</float></doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Solrcook book revised</str>
 <int name="sold">5</int>
 <long name="_version_">1470467358823809024</long>
 <float name="score">4.279089</float></doc>
 </result>
</response>

As you see, adding the parameter changes the whole result list. Now, let's see why
this happened.

How it works...
The schema.xml file is simple. It contains three fields:

 f id: This is responsible for holding the unique identifier of the book

 f title: This is the book title

 f sold: This is the number of books that have been sold during the last month

Our example data is very simple, but let's discuss it. We have three example books and each
of the books has the same number of words in the title field. This is why, when typing the
first query, all documents get the same score. As you see, the first book is the one with the
least pieces sold, and this is not what we want to achieve.

This is why we added the bf parameter. It tells Solr what function to use to affect the
scoring computation (in this case, the result of the function will be added to the score of the
document). In our case, it is the product function, which returns the product of the values
we provide as its arguments; in our case, the one and only argument of the function will be
the value of the book's sold field.

The result list of the modified query clearly shows how the scoring was affected by the
function. In the first place on the results list, we have the book that was the most popular
during the last week. The next book is the one that was less popular than the first book,
but more popular than the last book. The last book on the results list is the least popular.

See also
 f If you want to know more about the functions available in Solr, go to the Solr

wiki page at https://cwiki.apache.org/confluence/display/solr/
Function+Queries

https://cwiki.apache.org/confluence/display/solr/Function+Queries
https://cwiki.apache.org/confluence/display/solr/Function+Queries

Querying Solr

148

Using simple nested queries
Imagine a situation where you need a query nested inside another query. For example, you
want to run a query using the standard request handler, but you need to embed a query
that is parsed by the dismax query parser inside it. For example, we will like to find all the
books having a certain phrase in their title, and boost the ones that have a part of the phrase
present. This recipe will show you how to do this.

How to do it...
Let's start with a simple index that has the following structure:

1. You need to put the following section to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />

2. The next step is data indexing. Our example data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Revised solrcookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Some book revised</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Another revised little book</field>
 </doc>
</add>

3. Now, let's prepare a query that matches our initial requirements. Let's assume we
are searching for the terms book and revised in the title field, but we would
also like to boost the books that have the revised little phrase and terms
in the same title field. Such a query would look like this:

http://localhost:8983/solr/cookbook/select?q=book+revised+_
query_:"{!dismax qf=title pf=title^10 v=$qq}"&qq=revised+little&df
=title

Chapter 4

149

The results of this query should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="qq">revised little</str>
 <str name="q">book revised _query_:"{!dismax qf=title
pf=title^10 v=$qq}"</str>
 <str name="df">title</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">Another revised little book</str>
 <long name="_version_">1470513872076013568</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Some book revised</str>
 <long name="_version_">1470513872074964992</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="title">Revised solr cookbook</str>
 <long name="_version_">1470513872027779072</long></doc>
 </result>
</response>

As you can see, the results list was sorted exactly the way we wanted. Now, let's see how
it works.

How it works...
As you can see, our index is very simple. It consists of two fields:

 f One field holds the unique identifier (the id field)

 f Another field holds the title of the book (the title field)

The query is what we are interested in. The q parameter is built using two parts. The first part,
book+revised, is just a usual query composed from two terms. The second part of the query
starts with a strange-looking expression, _query_. This expression tells Solr that another
query should be made that will affect the results list. Notice that the expression is surrounded
with " characters.

Querying Solr

150

Then, we see the expression telling Solr to use the dismax query parser (the !dismax
part) and the parameters that will be passed to the parser (qf and pf). The v parameter
is an abbreviation for value, and it is used to pass the value of the q parameter. The value
passed to the dismax query parser will be revised+little in our case. Why? You can
see something that is called parameter dereferencing. By the use of the $qq expression,
we tell Solr to use the value of the qq parameter. Of course, we can pass the value to the
v parameter, but I wanted to show you how to use the dereferencing mechanism. The qq
parameter (it can take any other name you choose) is set to revised+little and used
by Solr as a parameter for the query that was passed to the dismax query parser. The last
parameter, df=title, tells Solr which field should be used as the default search field.
Remember that using parameter dereferencing allows us to simplify the queries sent to Solr
and save common parts of queries in the request handler configuration.

As we can see in the result list, Solr returns all the documents for the first part of the query
and boosts the document matching the second query.

Using the Solr document query join
functionality

When using Solr, you will probably be used to having a flat structure of documents without
any relationships. However, there are situations where decomposing relationships is a cost
we can't bear. Due to this, Solr 4.0 comes with a join functionality that lets us use some basic
relationships. For example, imagine that our index consists of books and workbooks, and we
want to use this relationship. This recipe will show you how to do this.

How to do it...
Let's perform the following steps:

1. First of all, let's assume that we have the following index structure (just place the
following entries in your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true"
stored="true" multiValued="false"/>
<field name="type" type="string" indexed="true" stored="true"/>
<field name="book" type="string" indexed="true" stored="true"/>

2. Now, let's index our test data that looks as follows:
<add>
 <doc>
 <field name="id">1</field>

Chapter 4

151

 <field name="name">Book 1</field>
 <field name="type">book</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="type">book</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook A</field>
 <field name="type">workbook</field>
 <field name="book">1</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Workbook B</field>
 <field name="type">workbook</field>
 <field name="book">2</field>
 </doc>
</add>

3. Let's assume we want to get all the books that have workbooks. Also, we want to
narrow the books we have to search, since we are searching only for those that have
the character 2 in their names. In order to do this, we run the following query:

http://localhost:8983/solr/cookbook/select/?q={!join from=book
to=id}type:workbook&fq=name:2

The Solr response for this query is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">{!join from=book to=id}type:workbook</str>
 <str name="fq">name:2</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Book 2</str>

Querying Solr

152

 <str name="type">book</str>
 <long name="_version_">1471154992469508096</long></doc>
 </result>
</response>

As you can see, the returned document is exactly the one we expected.

How it works...
Although the example index structure is simple, I would like to comment on it. The id field is
responsible for holding the unique identifier of the document, the name field is the document
name, the type field holds documents types, and the book field is optional and specifies
the identifier of the parent document. So, you can see that in our example data, we have two
parent documents (those with id field values of 1 and 2) and two child documents (those with
id field values of 3 and 4).

Now, let's stop for a bit before looking at the query and look at our example data. If you
query only for workbooks, you will get documents with identifiers 3 and 4. The parent for the
document with an id field equal to 3 is 1, and the parent for the document with the id field
equal to 4 is 2. If we filter 1 and 2 with the fq=name:2 filter, we should only get the document
with the id field equal to 2 as the result. So, looking at the query result, it works as intended,
but how does the query actually work?

I'll begin the description from the join part—q={!join from=book to=id}
type:workbook. As you can see, we used local parameters to choose different types of
query parsers, such as the join query parser (the !join part of the query). We specified that
children documents should use the book field (the from parameter) and join it with the id
field (the to parameter). The type:workbook part specifies the query we run; we want only
those documents that have the workbook value in their type field. The fq parameter, which
narrows the result set to only those documents that have the value 2 in the name field, is
applied after the join is executed, so we only apply it to the parent documents.

Note that the Solr pseudo join results only contain the parent's documents,
not children, which is a bit different from the join of relational databases.

Handling typos with n-grams
Sometimes, there are situations where you would like to have some kind of functionality
that allows you to give your user the search results even though he made a typo, perhaps
even more than one typo. In Solr, there are multiple ways to do this—use the Spellchecker
component and try to correct the user's mistake, use fuzzy queries, or use the n-gram
approach. This recipe will concentrate on the third approach and show you how to use
n-grams to handle user typos.

Chapter 4

153

How to do it...
For this recipe, let's assume that our index is built of four fields: identifier, name,
description, and description_ngram, which will be processed with the n-gram filter.

1. So, let's start with the definition of our index structure that can look like this
(we will place the following entries in the schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" multiValued="false" />
<field name="name" type="text_general" indexed="true"
stored="true"/>
<field name="description" type="text_general" indexed="true"
stored="true" />
<field name="description_ngram" type="text_ngram" indexed="true"
stored="false" />

2. Since we want to use the n-gram approach, we will include the following filter in our
text_ngram field type definition:

<filter class="solr.NGramFilterFactory" minGramSize="2"
maxGramSize="2" />

The filter will be responsible for dividing the indexed data and queries into two
bi-grams. To better illustrate what I mean, look at the following screenshot,
which shows how the mentioned filter worked for the word multiple:

So, the whole text_ngram type definition will look like this:

<fieldType name="text_ngram" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="2"
maxGramSize="2" />
 </analyzer>
</fieldType>

Querying Solr

154

3. We also need to add the copy field definition to our schema.xml file to automatically
copy the value of the description field to the description_ngram field. To copy
the field definition, use the following code:
<copyField source="description" dest="description_ngram" />

4. Now, we can index our data. For this recipe, I used the following data sample:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook 4.0</field>
 <field name="description">Solr Cookbook 4.0 contains multiple
recipes helping you with your everyday work with Solr :)</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Elasticsearch Server second edition</field>
 <field name="description">A nice book about Elasticsearch for
novice and intermediate users</field>
 </doc>
</add>

5. After indexing it, I decided to test if my query can handle a single typo in each of the
words provided to the query, so I sent the following query to Solr:

http://localhost:8983/solr/cookbook/select?q=description:(kontains
+multyple) description_ngram:"kontains+multyple"&q.op=OR

The words I am interested in are contains and multiple. The result of the query is
as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="q">description:(kontains multyple) description_
ngram:"kontains multyple"</str>
 <str name="q.op">OR</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>

Chapter 4

155

 <str name="name">Solr Cookbook 4.0</str>
 <str name="description">Solr Cookbook 4.0 contains multiple recipes
helping you with your everyday work with Solr :)</str>
 <long name="_version_">1471155870918246400</long></doc>
 </result>
</response>

As you can see, the document we are interested in is found. So, let's see how this works.

How it works...
As you can see from the index structure, we have two fields, name and description,
defined to use the text_ngram field. We want these fields to support returning search
results even when users enter a typo of some kind.

To allow this, we use the solr.NGramFilterFactory filter with two attributes defined,
the minGramSize attribute that sets the minimum size of the produced n-gram, and the
maxGramSize attribute that sets the maximum size of the produced n-gram. With both of
those attributes set to 2, we configure the solr.NGramFilterFactory filter to produce
the so-called 2-grams, which are tokens that are built of two characters. The third attribute
of the filter tag, the class attribute, specifies the filter factory class we want to use.

Let's concentrate on the previous screenshot to discuss how the solr.NGramFilterFactory
filter works in our case. As I wrote earlier, we want the n-gram filter to produce grams built of two
characters. You can see how the filter we chose works. From the multiple word, it created the
following bi-grams (n-grams built from 2 characters):

mu ul lttiippl le

So the idea of the algorithm is quite simple—divide the word so that we take the first character
and the character after it and make a bi-gram from it. Then, we take the second character
and the next character to create the second bi-gram, and so on, until we can't make any
more bi-grams.

Now, if you look at the query, there are two words we are looking for, and both of them have
a typo in them. The kontains word will be contain without a typo, and the multyple
word will be multiple without a typo. However, we assume that our user made the typo. Our
query also specifies the logical query operator we want to use, which is the OR operator. We
use it because we want to match all documents with even a single match to any bi-gram. If
we turn the kontainsmultyple tokens into bi-grams, we will get the following (I'll use the |
character to separate the words from each other):

ko on nt ta ai in ns | mu ul lt ty yppl le

If we turn the contains multiple tokens into bi-grams, we will get the following:

co on nt ta ai in ns | mu ul lttiippl le

Querying Solr

156

If you compare these bi-grams, you will see that only three of them differ between the proper
words and the ones with typos. The rest of them are the same. As a result of this, our query
finds the document we indexed. You might wonder why we queried both the description
and description_ngram fields. We did this because we don't know if the client's query is
one with typos or without. If it is without, we want the documents with better matches to be
higher in the results list than the ones that are not perfectly matched. Notice that we used
the phrase query against the description_ngram field; we need to do this, otherwise
the second of our documents will also be matched because it has similar bi-grams just on
different positions and not close to each other.

Of course, all of this doesn't come without some downsides. One of the major downsides of
this approach is the growth of the index size because of the number of tokens produced by
the n-gram filter. The second downside is the number of results produced as a result of such
an approach; there will be many more results than you are used to, and that's why we queried
both the description and description_ngram fields because we want to increase the
score of the perfectly matched documents (you can also boost the description field during
query). You can also try the same approach with the edismax query parser, and the minimum
should match the mm parameter, but this is beyond the scope of this recipe.

Rescoring query results
Imagine a situation in which your score calculation is affected by numerous function queries,
which makes the score calculation very CPU-intensive. This is not a problem for small result
sets, but it is for larger ones. Starting from Solr 4.9, this great search engine gives us the
possibility of rerank results. This means that Solr will get some results from our initial query
and will apply another query only on those results. The query that is applied modifies the
score of the documents. This recipe will show you how this can be done.

How to do it...
Let's say that we have a use case where we want to show the latest books added to our index
and boost them on the basis of some additional query. To do this, we will need to take the
following steps:

1. Let's start with a simple index structure. Our index will be built of three fields that look
as follows (please put the following entries to the schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="added" type="date" indexed="true" stored="true" />

Chapter 4

157

2. Next, we index our example data that looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr 4.0 cookbook</field>
 <field name="added">2012-01-12T23:59:59Z</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr 3.1 cookbook</field>
 <field name="added">2011-07-01T23:59:59Z</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">Elasticsearch Server</field>
 <field name="added">2012-03-01T23:59:59Z</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="title">Elasticsearch Server second edition</field>
 <field name="added">2014-04-01T23:59:59Z</field>
 </doc>
 <doc>
 <field name="id">5</field>
 <field name="title">Mastering Elasticsearch</field>
 <field name="added">2013-11-01T23:59:59Z</field>
 </doc>
</add>

3. Let's assume that our standard query looks as follows:
http://localhost:8983/solr/cookbook/select?q={!boost%20
b=recip(ms(NOW,added),3.16e-11,1,1)}*:*+OR+_query_:"title:solr+tit
le:cookbook"&fl=*,score

4. The results returned by Solr looks like this (note that your score for the documents
might be different because of the time):
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">

Querying Solr

158

 <str name="q">{!boost b=recip(ms(NOW,added),3.16e-11,1,1)}*:*
OR _query_:"title:solr title:cookbook"</str>
 <str name="fl">*,score</str>
 </lst>
</lst>
<result name="response" numFound="5" start="0"
maxScore="0.35659808">
 <doc>
 <str name="id">1</str>
 <str name="title">Solr 4.0 cookbook</str>
 <date name="added">2012-01-12T23:59:59Z</date>
 <long name="_version_">1487144228514430976</long>
 <float name="score">0.35659808</float></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Solr 3.1 cookbook</str>
 <date name="added">2011-07-01T23:59:59Z</date>
 <long name="_version_">1487144228588879872</long>
 <float name="score">0.31378558</float></doc>
 <doc>
 <str name="id">4</str>
 <str name="title">Elasticsearch Server second edition</str>
 <date name="added">2014-04-01T23:59:59Z</date>
 <long name="_version_">1487144228589928448</long>
 <float name="score">0.12536839</float></doc>
 <doc>
 <str name="id">5</str>
 <str name="title">Mastering Elasticsearch</str>
 <date name="added">2013-11-01T23:59:59Z</date>
 <long name="_version_">1487144228590977024</long>
 <float name="score">0.10079001</float></doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Elasticsearch Server</str>
 <date name="added">2012-03-01T23:59:59Z</date>
 <long name="_version_">1487144228588879873</long>
 <float name="score">0.056244835</float></doc>
</result>
</response>

Chapter 4

159

5. Of course, this is only an example. To see the actual difference in query execution
time, we need to have way more documents indexed than the five shown in the
example. However, let's assume that the query is being run for a longer period of
time. The modified query that scores only the top documents looks as follows:
http://localhost:8983/solr/cookbook/select?q=*:*&rq={!rerank reRan
kQuery=$rerankQueryreRankDocs=100 reRankWeight=10}&rerankQuery=tit
le:solr+title:cookbook&sort=added+desc&fl=score,*

6. The results are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="rerankQuery">title:solr title:cookbook</str>
 <str name="fl">score,*</str>
 <str name="sort">added desc</str>
 <str name="rq">{!rerank reRankQuery=$rerankQuery reRankDocs=100
reRankWeight=10}</str>
 </lst>
 </lst>
 <result name="response" numFound="5" start="0"
maxScore="11.68315">
 <doc>
 <str name="id">1</str>
 <str name="title">Solr 4.0 cookbook</str>
 <date name="added">2012-01-12T23:59:59Z</date>
 <long name="_version_">1471421442477260800</long>
 <float name="score">11.68315</float></doc>
 <doc>
 <str name="id">2</str>
 <str name="title">Solr 3.1 cookbook</str>
 <date name="added">2011-07-01T23:59:59Z</date>
 <long name="_version_">1471421442543321088</long>
 <float name="score">11.68315</float></doc>
 <doc>
 <str name="id">3</str>
 <str name="title">Elasticsearch Server</str>
 <date name="added">2012-03-01T23:59:59Z</date>

Querying Solr

160

 <long name="_version_">1471421442544369664</long>
 <float name="score">1.0</float></doc>
 <doc>
 <str name="id">4</str>
 <str name="title">Elasticsearch Server second edition</str>
 <date name="added">2014-04-01T23:59:59Z</date>
 <long name="_version_">1471421442544369665</long>
 <float name="score">1.0</float></doc>
 <doc>
 <str name="id">5</str>
 <str name="title">Mastering Elasticsearch</str>
 <date name="added">2013-11-01T23:59:59Z</date>
 <long name="_version_">1471421442545418240</long>
 <float name="score">1.0</float></doc>
 </result>
</response>

As we can see, the results changed, and believe me, so did the execution time. Now, let's see
how it works.

How it works...
Our index structure is very simple; it contains the following:

 f The book identifier (the id field)

 f The book title (the title field)

 f The date the book was added into our application (the added field)

The example data is also very simple, so let's skip discussing it.

Our initial query asks for all documents in the index and boosts the documents that were
added recently ({!boost%20b=recip(ms(NOW,added),3.16e-11,1,1)}*:*). We also
boost the documents by adding an OR query (_query_:"title:solr+title:cookbook").
The results returned by Solr shows that the query works as it should.

The recip(field_name, m, a, b) is a reciprocal function that
implements a/(m*x+b), where m, a, and b are constants, and x is the
value stored in field_name. For a description of available functions,
refer to the official Solr documentation available at https://cwiki.
apache.org/confluence/display/solr/Function+Queries.

https://cwiki.apache.org/confluence/display/solr/Function+Queries
https://cwiki.apache.org/confluence/display/solr/Function+Queries

Chapter 4

161

The thing is that we are calculating the score of the documents for all of the documents
that match the query, and for some use cases, this is not the best way, it might be too
resource-heavy. This is why we modified our query. It also queries for all the documents
(q=*:*); however, it first sorts the document on the basis of the date they were added
(sort=added+desc). In this way, we have the newest documents at the top of the results
set, so we are sure we will use them to score calculations using our reranking.

Instead of calculating the score for all the documents, we decided to use the Solr rerank
functionality. We specified the query that should be used for boosting (rerankQuery=ti
tle:solr+title:cookbook) and included the rerank functionality. To do this, we used
the rq parameter and rerank query parser (!rerank). It allows us to specify the rerank
query by dereferencing the query itself; we said that Solr should take the query stored in
the rerankQuery parameter (reRankQuery=$rerankQuery). We also said that we
only want the score to be calculated on the top 100 documents returned by our query
(reRankDocs=100) and the rerank weight to be set to 10 (reRankWeight=10). The best
thing about the second query is that the score using the boosting query will only be given for
the top 100 documents because of the reRankDocs property. If you look at the results, you
can see that the score was properly calculated.

The thing to keep in mind is that this method can't be used every time, for every query, and
every use case. If you need to score all the documents and show only the top ones among
them, you can't use this method. In our case, we were able to change the boosting on date for
date sorting because we are only interested in the newest documents, but remember that this
is not always the case.

5
Faceting

In this chapter, we will cover the following topics:

 f Getting the number of documents with the same field value

 f Getting the number of documents with the same value range

 f Getting the number of documents matching the query and subquery

 f Removing filters from faceting results

 f Using decision tree faceting

 f Calculating faceting for relevant documents in groups

 f Improving faceting performance for low cardinality fields

Introduction
One of the advantages of Solr is its ability to calculate statistics from your data. Solr faceting
mechanism provides functionalities that can help us in several tasks that we do every
day. From getting the number of documents with the same values in a field (for example,
companies from the same city) through the ability of date and range faceting, to the
autocomplete features based on the faceting mechanism. This chapter will show you
how to handle some of the common tasks when using the faceting mechanism.

Faceting

164

Getting the number of documents with the
same field value

Imagine a situation where you have to return the number of documents with the same field
value besides the search results. For example, you have an application that allows your user
to search for companies in Europe and your client wants to have the number of companies in
the cities where the companies that were found by the query are located. To do this, you can
of course run several queries, but Solr provides a mechanism called faceting that can do this
for you. This recipe will show you how to use it.

How to do it...
1. Let's start by assuming that we have the following fields present in the

schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="city" type="string" indexed="true" stored="true" />

2. The next step is to index the following example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="city">New York</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="city">New Orleans</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="city">New York</field>
 </doc>
</add>

Chapter 5

165

3. Suppose that our hypothetical user searches for the word company. Apart from the
query results, we would also like to return the number of documents with the same
city. The query that will give us what we want should look as follows:

http://localhost:8983/solr/cookbook/select?q=name:company&facet=tr
ue&facet.field=city

The result of the preceding query should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name:company</str>
 <str name="facet.field">city</str>
 <str name="facet">true</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="city">New York</str>
 <long name="_version_">1471068544442564608</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Company 2</str>
 <str name="city">New Orleans</str>
 <long name="_version_">1471068544491847680</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="city">New York</str>
 <long name="_version_">1471068544492896256</long></doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="city">
 <int name="New York">2</int>

Faceting

166

 <int name="New Orleans">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

As you can see, besides the normal results list, we got faceting results with the numbers that
we wanted. Now let's see how that happened.

How it works...
The index structure and the data are pretty simple and make the example easier to
understand. Each company is described by three fields. We are particularly interested in the
city field. This is the field that we want to use to get the number of companies that have the
same value in this field, which basically means that they are in the same city. The city field
is configured to use the string type—the one that is not analyzed—the value that we pass
in the field will be indexed without any additional processing by Solr. This is because field
faceting works on the indexed tokens. If we analyze the field, faceting will be calculated for
each token and not for the whole field value (which is the city name in our case).

To get the desired results, we run a query to Solr and inform the query parser that we want
the documents that have the word company in the name field. Additionally, we can say that
we want to enable faceting mechanism—we can say that using the facet=true parameter.
The facet.field parameter tells Solr which field to use to calculate faceting numbers. You
can specify the facet.field parameter multiple times to get faceting numbers for different
fields in the same query.

As you can see in the results list, the results of all types of faceting are grouped in the list
with the name="facet_counts" attribute. The field-based faceting is grouped under the
list with the name="facet_fields" attribute. Every field that you specified using the
facet.field parameter has its own list that has the attribute name the same as the value
of the parameter in the query—in our case, it is city. Then, finally, you can see the results
that we are interested in—the pairs of value (the name attribute) and how many documents
have the value in the specified field.

There's more...
There are two more things that I would like to show you about field faceting.

Chapter 5

167

How to show facets with counts greater than zero
The default behavior of Solr is to show all the faceting results, no matter what the counts are.
If you want to show only the facets with counts greater than zero, then you should add the
facet.mincount=1 parameter to the query (you can set this parameter to another value if
you are interested in any arbitrary value).

Lexicographical sorting of the faceting results
If you want to sort the faceting results lexicographically, not by the highest count (which is the
default behavior), then you need to add the facet.sort=index parameter.

Getting the number of documents with the
same value range

Imagine that you have an application where users can search the index to find a car for rent.
One of the requirements of the application is to show a navigation panel, where the user can
choose the price range for the cars they are interested in. To do this in an efficient way, we will
use range faceting and this recipe will show you how to do it.

How to do it...
Let's begin with the following index structure:

1. Add the following fields definition to our schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="price" type="float" indexed="true" stored="true" />

2. The example data that we will use looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Super Mazda</field>
 <field name="price">50</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mercedes Benz</field>
 <field name="price">210</field>

Faceting

168

 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Bentley</field>
 <field name="price">290</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Super Honda</field>
 <field name="price">99.90</field>
 </doc>
</add>

3. Now, as you recall, our requirement was to show the navigation panel with the
price ranges. To do that, we need to get that data from Solr. We also know that the
minimum price for car rent is 1 dollar and the maximum is 400 dollars. To get the
price ranges from Solr, we send the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&rows=0&facet=true
&facet.range=price&facet.range.start=0&facet.range.end=400&facet.
range.gap=100

The preceding query would result in the following result list:

<?xml version="1.0" encoding="UTF-8"?>
<response>

 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">43</int>
 <lst name="params">
 <str name="facet.range">price</str>
 <str name="q">*:*</str>
 <str name="facet.range.gap">100</str>
 <str name="rows">0</str>
 <str name="facet">true</str>
 <str name="facet.range.start">0</str>
 <str name="facet.range.end">400</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>

Chapter 5

169

 <lst name="facet_dates"/>
 <lst name="facet_ranges">
 <lst name="price">
 <lst name="counts">
 <int name="0.0">2</int>
 <int name="100.0">0</int>
 <int name="200.0">1</int>
 <int name="300.0">0</int>
 </lst>
 <float name="gap">100.0</float>
 <float name="start">0.0</float>
 <float name="end">400.0</float>
 </lst>
 </lst>
 </lst>
</response>

As you can see in the results, we only got the faceting results. So here we got exactly what we
wanted. Now let's see how it works.

How it works...
As you can see, the index structure is simple. There are three fields:

 f One is responsible for the unique identifier (the id field)

 f One is responsible for the car name (the name field)

 f The last one is responsible for the price of rent (the price field)

The query is where all the magic happens. As we are not interested in the search results, we
ask for all documents in the index (the q=*:* parameter), and we tell Solr not to return the
search results (the rows=0 parameter). Then, we tell Solr that we want the faceting mechanism
to be enabled for the query (the facet=true parameter). We will not be using the standard
faceting mechanism—the field-based faceting. Instead, we will be using the range faceting,
which is optimized to work with ranges. So, we tell Solr which field will be used to range faceting
by adding the facet.range parameter with the price value. This means that the price
field will be used for the range faceting calculation. Then, we specify the lower boundary from
where the range faceting calculation will begin. We do this by adding the facet.range.start
parameter—in our example, we set it to 0. Next, we have the facet.range.end parameter
which tells Solr when to stop the calculation of the range faceting. The last parameter
(facet.range.gap) informs Solr about the length of the periods that will be calculated.

Faceting

170

Remember that when using the range faceting mechanism, you must specify the
three parameters:

 f facet.range.start

 f facet.range.end

 f facet.range.gap

If these are not specified, the range faceting mechanism won't work.

In the faceting results, you can see the periods and the number of documents that were
found in each of them. The first period can be found under the <int name="0.0"> tag.
This period consists of prices ranging from 0 to 100 (in mathematical notation, it would
be <0; 100>). It contains two cars. The next period can be found under the <int
name="100.0"> tag and consists of prices ranging from 100 to 200 (in mathematical
notation, it would be <100; 200>), and so on.

Getting the number of documents matching
the query and subquery

Imagine a situation where you have an application that has a search feature for cars. One of
the requirements is not only to show the search results, but also to show the number of cars
with the price period chosen by the user. There is also another thing—these queries must be
fast because of the number of queries that will be running. Can Solr handle this? The answer
is yes. This recipe will show you how to do it.

How to do it...
Let's start with creating an index with a very simple index structure that looks as follows:

1. Add the following definition to your schema.xml:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="price" type="float" indexed="true" stored="true" />

2. Now, let's index the following sample data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Car 1</field>
 <field name="price">70</field>

Chapter 5

171

 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Car 2</field>
 <field name="price">101</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Car 3</field>
 <field name="price">201</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Car 4</field>
 <field name="price">99.90</field>
 </doc>
</add>

Now, as you recall, our requirement is to show cars that match the query
(let's suppose that our user typed car) and to show the counts in the chosen
price periods. For the purpose of this recipe, let's assume that the user has
chosen two periods of prices:

 � 10-80

 � 90-300

3. The query to achieve such requirements should look as follows:

http://localhost:8983/solr/cookbook/select?q=name:car&facet=true&f
acet.query=price:[10 TO 80]&facet.query=price:[90 TO 300]

The result list of the preceding query should look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <arr name="facet.query">
 <str>price:[10 TO 80]</str>
 <str>price:[90 TO 300]</str>
 </arr>
 <str name="q">name:car</str>
 <str name="facet">true</str>
 </lst>

Faceting

172

 </lst>
 <result name="response" numFound="4" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Car 1</str>
 <float name="price">70.0</float>
 <long name="_version_">1471069733520408576</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Car 2</str>
 <float name="price">101.0</float>
 <long name="_version_">1471069733568643072</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Car 3</str>
 <float name="price">201.0</float>
 <long name="_version_">1471069733569691648</long></doc>
 <doc>
 <str name="id">4</str>
 <str name="name">Car 4</str>
 <float name="price">99.9</float>
 <long name="_version_">1471069733570740224</long></doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries">
 <int name="price:[10 TO 80]">1</int>
 <int name="price:[90 TO 300]">3</int>
 </lst>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

Solr returned the results in the form that we wanted them to be, so now let's take a look at
how it works.

How it works...
As you can see, the index structure is quite simple. There are three fields:

 f One is responsible for the unique identifier (the id field)

 f One is responsible for the car name (the name field)

 f The last one is responsible for the price (the price field)

Chapter 5

173

Next, we have the query. First, you can see a standard query, where we tell Solr that we want
to get all the documents that have car word in the name field (the q=name:car parameter).
Next, we can say that we want to use the faceting mechanism by adding the facet=true
parameter to the query. This time we will use the query faceting type. This means that we
can pass the query to the faceting mechanism and as a result, we will get the number of
documents that match the given query. In our example, we wanted to know the prices:

 f One is from the price of 10 to 80

 f Another from the price of 90 to 300

This is achieved by adding the facet.query parameter with the appropriate value.
The first period is defined as a standard range query to the price field—price:[10 TO 80].
The second query is very similar, it has just different values. The value passed to the
facet.query parameter should be a Lucene query written using the default query syntax.

As you can see in the results, the query faceting results are grouped under the <lst
name="facet_queries"> XML tag with the names exactly as in the queries sent to Solr.
You can see that Solr has correctly calculated the number of cars in each of the periods, which
means that this is a perfect solution for us, when we can't use the range faceting mechanism.

Removing filters from faceting results
Let's assume for the purpose of this recipe, you have an application that can search for
companies within a city and a state. However, the requirements say that not only should
you show the search results, but also the number of companies in each city and the number
of companies in each state (to say in the Solr way—you want to exclude the filter query from
the faceting results). Can Solr do this efficiently ? Sure it can, and this recipe will show you
how to do it.

Getting ready
Before you start reading this recipe, let's take a look at the Getting the number of documents
with the same field value recipe of this chapter.

How to do it...
1. As usual we start with a very simple index structure that contains four fields.

We do this by adding the following section to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="city" type="string" indexed="true" stored="true" />
<field name="state" type="string" indexed="true" stored="true" />

Faceting

174

2. The second step would be to index the following example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company 1</field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company 2</field>
 <field name="city">New Orleans</field>
 <field name="state">Luiziana</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company 3</field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Company 4/field>
 <field name="city">New York</field>
 <field name="state">New York</field>
 </doc>
</add>

3. Let's suppose that our hypothetical user searches for the word company, and we tell
our application that the user needs the companies matching the word in the state
of New York. However, we would like to show the number of documents matching
the word company in all the states and in the cities of all the states. In that case, the
query that will fulfill our requirement should look as follows:

http://localhost:8983/solr/cookbook/select?q=name:company&facet=tr
ue &fq={!tag=stateTag}state:"New York"&facet.field={!ex=stateTag}
city&facet.field={!ex=stateTag}state

The result for the preceding query will look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>

Chapter 5

175

 <lst name="params">
 <str name="q">name:company</str>
 <arr name="facet.field">
 <str>{!ex=stateTag}city</str>
 <str>{!ex=stateTag}state</str>
 </arr>
 <str name="fq">{!tag=stateTag}state:"New York"</str>
 <str name="facet">true </str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company 1</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 <long name="_version_">1471070665204301824</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Company 3</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 <long name="_version_">1471070665210593280</long></doc>
 <doc>
 <str name="id">4</str>
 <str name="name">Company 4</str>
 <str name="city">New York</str>
 <str name="state">New York</str>
 <long name="_version_">1471070665210593281</long></doc>
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="city">
 <int name="New York">3</int>
 <int name="New Orleans">1</int>
 </lst>
 <lst name="state">
 <int name="New York">3</int>
 <int name="Luiziana">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 </lst>
</response>

Now let's see how it works.

Faceting

176

How it works...
The index structure is pretty simple—it contains four fields that describe the company.
The search will be performed against the name field, while the filtering and the faceting
will be done with the use of the state and the city fields.

So, let's get on with the query. As you can see, we have some typical elements there. First
of all we have the q parameter, which just tells Solr where and what to search for. Then, the
facet=true parameter enables the faceting mechanism. Following that you have a strange
looking filter query (the fq parameter) with the value of fq={!tag=stateTag}state:"New
York". It tells Solr to only show those results that have both New York in the state field,
but not the results that have either of them. By adding the {!tag=stateTag} part, we
basically gave that filter query a name (stateTag) that we will use further.

Now look at the two facet.field parameters. Our requirement was to show the number
of companies in all states and in all cities. The only thing that was preventing us from getting
those numbers was the filter query that we added to the query. So, let's exclude it from the
faceting results. How do we do it? It's simple—just add {!ex=stateTag} to the beginning of
each of the facet.field parameters like this: facet.field={!ex=stateTag}city.
It tells Solr to exclude the filter with the passed name.

As you can see in the results list, we got the numbers correctly, which means that the exclude
works as intended.

Using decision tree faceting
Imagine that in our store we have products divided into categories. In addition to this, we store
information about the stock of the items. Now, we want to show our crew how many of the
products in the categories are in stock and how many are missing. The first thing that comes
to mind is to use the faceting mechanism and some additional calculation. But why bother,
when Solr 4.0 and later can do that calculation for us with the use of so-called pivot faceting?
This recipe will show you how to use it.

How to do it...
1. We start with defining the index structure that we can easily use. We do this by

adding the following field definitions to the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="stock" type="boolean" indexed="true" stored="true" />

Chapter 5

177

2. Now, let's index the following example data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook 1</field>
 <field name="category">workbooks</field>
 <field name="stock">false</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Workbook 2</field>
 <field name="category">workbooks</field>
 <field name="stock">true</field>
 </doc>
</add>

3. Let's assume that we are running a query from the administration panel of our shop
and we are not interested in the documents at all. We only want to know how many
documents are in stock and how many are not for each of the categories. The query
implementing this logic should look as follows:

http://localhost:8983/solr/cookbook/select?q=*:*&rows=0&facet=true
&facet.pivot=category,stock

The response to the preceding query is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>

Faceting

178

 <str name="facet.pivot">category,stock</str>
 <str name="rows">0</str>
 <str name="facet">true</str>
 </lst>
 </lst>
 <result name="response" numFound="4" start="0">
 </result>
 <lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields"/>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 <lst name="facet_pivot">
 <arr name="category,stock">
 <lst>
 <str name="field">category</str>
 <str name="value">books</str>
 <int name="count">2</int>
 <arr name="pivot">
 <lst>
 <str name="field">stock</str>
 <bool name="value">true</bool>
 <int name="count">2</int>
 </lst>
 </arr>
 </lst>
 <lst>
 <str name="field">category</str>
 <str name="value">workbooks</str>
 <int name="count">2</int>
 <arr name="pivot">
 <lst>
 <str name="field">stock</str>
 <bool name="value">false</bool>
 <int name="count">1</int>
 </lst>
 <lst>
 <str name="field">stock</str>
 <bool name="value">true</bool>
 <int name="count">1</int>
 </lst>
 </arr>
 </lst>
 </arr>
 </lst>
 </lst>
</response>

As you can see, we've achieved what we wanted, now let's see how it works.

Chapter 5

179

How it works...
Our data is very simple. As you can see in the field definition section of the schema.xml file
and the example data, every document is described by four fields:

 f id

 f name

 f category

 f stock

I think that their names speak for themselves and I don't need to discuss them.

The interesting bit starts with the query. We specified that we want the query to match all the
documents (the q=*:* parameter), but we don't want to see any documents in the response
(the rows=0 parameter). In addition to this, we want to have faceting calculation enabled
(the facet=true parameter) and we will use the decision tree faceting—aka pivot faceting.
We do this by specifying which fields should be included in the tree faceting. In our case,
we want the top-level of the pivot facet to be calculated on the basis of the category field
and the second level (the one nested in the category field calculation) should be based
on the values available in the stock field. Of course, if you would like to have another value
of another field nested under the stock field, you can do that by adding another field to the
facet.pivot query parameter. Assuming that you would like to see faceting on field price
nested under the stock field, your facet.pivot parameter would look like this: facet.
pivot=category,stock,price.

As you can see in the response, each nested faceting calculation result is written inside the
<arr name="pivot"> XML tag. So, let's look at the response structure. The first level of
your facet pivot tree is based on the category field. You can see that there are two books
(<int name="count">2</int>) in the books category (<str name="value">books</
str>) and all these books have the stock field (<str name="field">stock</str>)
set to true (<bool name="value">true</bool>). For the workbooks category,
the situation is a bit different because you can see two different sections there—one for
documents with the stock field equal to false and the other with the stock field set to
true. However, in the end the calculation is correct and that's what we wanted!

Calculating faceting for relevant documents
in groups

If you have ever used the field-collapsing functionality of Solr, you might be wondering whether
there is a possibility of using that functionality and faceting. Of course, there is, but the
default behavior still works and so you get the faceting calculation on the basis of documents
and not on document groups. In this recipe, we will learn how to query Solr so that it returns
facets calculated for the most relevant document in each group.

Faceting

180

Getting ready
Before reading the following recipe, let's take a look at Grouping documents by the field value,
Grouping documents by the query value, and Grouping documents by the function value
recipes in Chapter 8, Using Additional Functionalities. Also if you are not familiar with faceting
functionality, read the first three recipes of this chapter.

How to do it...
1. In the first step, we need to create an index. For the purpose of this recipe, let's

assume that we have the following index structure (just add the following section
to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="stock" type="boolean" indexed="true" stored="true" />

2. The second step is to index the data. We will use an example data, which looks
as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Book 1</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Book 2</field>
 <field name="category">books</field>
 <field name="stock">true</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Workbook 1</field>
 <field name="category">Workbooks</field>
 <field name="stock">false</field>
 </doc>
 <doc>

Chapter 5

181

 <field name="id">4</field>
 <field name="name">Workbook 2</field>
 <field name="category">Workbooks</field>
 <field name="stock">true</field>
 </doc>
</add>

3. So, now it's time for our query. Let's assume that we want our results to be grouped
on the values of the category field and we want the faceting to be calculated on
the stock field. Also remember that we are only interested in the most relevant
document from each result group when it comes to faceting. So, the query that would
tell Solr to do what we want should look as follows:

http://localhost:8983/solr/cookbook/select?q=*:*&facet=true&facet.
field=stock&group=true&group.field=category&group.truncate=true

The results for the preceding query would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="facet.field">stock</str>
 <str name="group.truncate">true</str>
 <str name="facet">true</str>
 <str name="group.field">category</str>
 <str name="group">true</str>
 </lst>
</lst>
<lst name="grouped">
 <lst name="category">
 <int name="matches">4</int>
 <arr name="groups">
 <lst>
 <str name="groupValue">books</str>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Book 1</str>
 <str name="category">books</str>
 <bool name="stock">true</bool>

Faceting

182

 <long name="_version_">1487145087213240320</long></
doc>
 </result>
 </lst>
 <lst>
 <str name="groupValue">Workbooks</str>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">Workbook 1</str>
 <str name="category">Workbooks</str>
 <bool name="stock">false</bool>
 <long name="_version_">1487145087281397760</long></
doc>
 </result>
 </lst>
 </arr>
 </lst>
</lst>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="stock">
 <int name="false">1</int>
 <int name="true">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 <lst name="facet_intervals"/>
</lst>
</response>

As you can see, everything has worked as it should have. Now let's see how it works in detail.

How it works...
Our data is very simple. As you can see in the field definition section of the schema.xml file
and the example data, every document is described by four fields:

 f id

 f name

 f category

 f stock

Chapter 5

183

I think that their names speak for themselves and I don't need to discuss them.

When it comes to the query, we fetch all the documents from the index (the q=*:*
parameter). Next, we say that we want to use faceting and want it to be calculated on the
stock field. We want the grouping mechanism to be active and also want to group documents
on the basis of the category field (all the query parameters responsible for defining faceting
and grouping behavior are described in the appropriate recipes in this book, so take a look at
those if you are not familiar with those parameters). And finally, something new—the group.
truncate parameter is set to true. If it is set to true, like in our case, facet counts will be
calculated using only the most relevant document in each of the calculated groups. So, in our
case for the group with the category field equal to books, we have the true value in the
stock field and for the second group we have false in the stock field. Of course, we are
looking at the most relevant documents, so the first ones in our case. As you can easily
see, we've got two facet counts for the stock field both having a count of 1, which is what
we would expect.

Improving faceting performance for low
cardinality fields

Although Solr faceting is very fast, there are times when the default configuration values are
not as fast as they can be. There are a few cases where we can tune Solr faceting mechanism
and make it work faster. This recipe will show you how to tune the faceting mechanism.

Getting ready
Before you start reading this recipe, take a look at the Getting the number of documents with
the same field value recipe of this chapter.

How to do it...
For the purpose of this recipe, we will assume that we have the following index structure:

1. Add the following section to your schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="tag" type="string" indexed="true" stored="true" />

2. We've used the following bash script to index the data (note that we are indexing two
million documents here and are sending them one by one. So it might take a long
time to index the data):
#!/bin/sh
URL=http://localhost:8983/solr/cookbook/update/

Faceting

184

for i in {1..2000000}
do
 if [$(($i % 2)) -eq 0]; then
 curl $URL --data-binary "<add><doc><field name=\"id\">$i</
field><field name=\"tag\">tag1</field></doc></add>" -H 'Content-
type:application/xml'
 else
 curl $URL --data-binary "<add><doc><field name=\"id\">$i</
field><field name=\"tag\">tag2</field></doc></add>" -H 'Content-
type:application/xml'
 fi
done

curl $URL --data-binary '<commit/>' -H 'Content-type:application/
xml'
echo

3. Our initial query looked as follows:
http://localhost:8983/solr/cookbook/select?q=*:*&facet=true&facet.
field=tag

The results returned by the query are not important—we are just interested in the
query execution time, which was about 350 milliseconds.

4. If we consider that the tag field on which calculate facet is a low cardinality field
(contains a low number of unique values), we can change the faceting calculation
method. Our changed query will look as follows:

http://localhost:8983/solr/cookbook/select?q=*:*&facet=true&facet.
field=tag&facet.method=enum

If you would run the query in the same controlled environment, you will see that the
query execution time was lowered—in this case, it was about 20 percent, but the
improvement is highly data- and environment-dependent.

Let's now see how it works.

How it works...
Our index structure is very simple:

 f We only have an id field that holds the unique identifier of the document

 f The tag field that holds the tag

Chapter 5

185

I've chosen the data to be as simple as it can be, so the whole picture of how the improvement
works can be clearly seen.

The indexing script is also very simple as it runs a loop for 2 million iterations. If the i variable
is even, then we put the tag1 value into the tag field for that document. Otherwise, we put
the tag2 value. This is how we end up with million documents with tag1 in the tag field and
one million documents with the tag2 value.

By default, when calculating field faceting, Solr will use the field cache method (facet.
method=fc) and iterate over the documents summing up the terms for the documents
matching the query. However, this might not be the most effective way of calculating fields that
have a low number of unique terms—the low cardinality fields. For such fields, we can chose the
default faceting method that Solr uses for Boolean fields—facet.method=enum. What it does
is it enumerates the terms for that field and calculates the intersection of the two sets—the one
with documents matching the query and the second one that contains documents with a given
term. We only have two unique terms in our field (tag1 and tag2) and because of that we've
experienced performance improvements. One thing to remember is that we have to be careful
not to use that method for high cardinality fields as it might drastically lower the field faceting
performance for such fields.

There's more...
There are two more things that I would like to mention when it comes to faceting.

Using per segment field cache for faceting calculation
As mentioned previously, Solr uses global field cache for faceting calculation by default.
However, for near real-time use cases, this might not be the best way. The facet.
method=fcs method works pretty much in the same way as facet.method=fc; however,
instead of using a global cache structure, it uses a per segment cache for faceting calculation.
When using the facet.method=fcs field faceting method, Solr rebuilds the faceting cache
only for new segments, which might result in faceting query performance improvements,
especially for rapidly changing indices.

Our query using the facet.method=fcs field faceting would look as follows:

http://localhost:8983/solr/cookbook/select?q=*:*&facet=true&facet.
field=tag&facet.method=fcs

Faceting

186

Specifying the number of faceting threads
In addition to what we've discussed, starting from Version 4.5, Solr allows you to
define the maximum number of threads that will be used to load field information used in
faceting calculation. By using the facet.threads parameter we can say that Solr can use
up to N threads running in parallel and gather data for faceting calculation. For example,
if we would like to use up to 10 threads for faceting, we can specify facet.threads=10
in our query. Omitting this parameter or setting its value to 0 will tell Solr to use the default
behavior, which is using only the called thread. Note that the facet.threads parameter
only works with field faceting for now. A higher number of faceting threads can be very useful
during the query warm-up process as it tends to speed up complicated warming queries,
including many facet fields.

6
Improving Solr

Performance

In this chapter, we will cover the following topics:

 f Handling deep paging efficiently

 f Configuring the document cache

 f Configuring the query result cache

 f Configuring the filter cache

 f Improving Solr query performance after the start and commit operations

 f Lowering the memory consumption of faceting and sorting

 f Speeding up indexing with Solr segment merge tuning

 f Avoiding caching of rare filters to improve the performance

 f Controlling the filter execution to improve expensive filter performance

 f Configuring numerical fields for high-performance sorting and range queries

Introduction
The performance of an application is one of the most important factors. Of course, there
are other factors such as usability and availability—we can recite much more, but one of the
most crucial and major factors is the performance. Even if our application is perfectly done
in terms of usability, the users won't be able to use it if they have to wait for minutes for the
search results.

Improving Solr Performance

188

The standard Solr deployment is fast enough, but sooner or later a time will come when you
will have to optimize your deployment. The recipes in this chapter will try to help you optimize
Solr deployment.

If your business depends on Solr, you should keep monitoring it even after optimization.
You can see how your environment works, the state of Solr nodes, the number of queries that
run, its speed, and so on. There are numerous solutions available on the market, from the
generic and open sourced ones such as Ganglia (http://ganglia.sourceforge.net/)
to specific ones such as SPM Performance Monitoring & Alerting (http://www.sematext.
com/spm/index.html) from the Sematext group.

Handling deep paging efficiently
In most cases, the top results returned to the user should be what they are looking for. The top
results should be the most relevant ones and the ones we want to show. However, there are use
cases where this is not enough. Sometimes we want to get all the results—in the worst case, we
want to get all the documents stored in the collection and do something with them. When you
are requesting a high number of pages, you will see that the performance will start suffering.
This is because Solr needs to build the results list for each request and discard the first N ones
to get to the requested page. Of course, there are better ways to handle such cases, and Solr
allows you to use one of those methods that we will discuss in this recipe.

How to do it...
1. The actual index structure doesn't matter, but for the purpose of this recipe, let's

assume that we have the following index structure (we just put the field's definition
in the schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />

2. Of course, we also need some data for this example to work. It would be perfect if we
had hundreds of thousands of documents to illustrate the performance gains, but
for the purpose of the book, we will be using only a few documents to illustrate how
cursor-based paging works. Our example data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr 4.0 cookbook</field>
 </doc>
 <doc>

http://ganglia.sourceforge.net/
http://www.sematext.com/spm/index.html
http://www.sematext.com/spm/index.html

Chapter 6

189

 <field name="id">2</field>
 <field name="title">Solr 3.1 cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">ElasticSearch Server</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="title">Mastering Elasticsearch</field>
 </doc>
 <doc>
 <field name="id">5</field>
 <field name="title">Elasticsearch Server Second Edition</field>
 </doc>
</add>

3. Now we can start sending the queries. Assuming that we want to scroll through the
results starting from the first one and ending on the last, and we want two documents
per page of the results. We start by sending the following query:
q=*:*&rows=2&sort=score+desc,id+asc&cursorMark=*

The results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="cursorMark">*</str>
 <str name="sort">score desc,id asc</str>
 <str name="rows">2</str>
 </lst>
 </lst>
 <result name="response" numFound="5" start="0">
 <doc>
 <str name="id">1</str>
 <str name="title">Solr 4.0 cookbook</str>
 <long name="_version_">1475631480903303168</long></doc>
 <doc>

Improving Solr Performance

190

 <str name="id">2</str>
 <str name="title">Solr 3.1 cookbook</str>
 <long name="_version_">1475631480954683392</long></doc>
 </result>
 <str name="nextCursorMark">AoIIP4AAACEy</str>
</response>

Of course, we got the documents we wanted, but we are not only interested in them.
We should also look at the value of nextCursorMark returned along with the
results by Solr. In our case, its value is AoIIP4AAACEy, and we will use this value in
the next query that will give us the next page of results.

4. The query to give us the second page of results looks as follows:
q=*:*&rows=2&sort=score+desc,id+asc&cursorMark=AoIIP4AAACEy

The results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="cursorMark">AoIIP4AAACEy</str>
 <str name="sort">score desc,id asc</str>
 <str name="rows">2</str>
 </lst>
 </lst>
 <result name="response" numFound="5" start="0">
 <doc>
 <str name="id">3</str>
 <str name="title">ElasticSearch Server</str>
 <long name="_version_">1475631480954683393</long></doc>
 <doc>
 <str name="id">4</str>
 <str name="title">Mastering Elasticsearch</str>
 <long name="_version_">1475631480955731968</long></doc>
 </result>
 <str name="nextCursorMark">AoIIP4AAACE0</str>
</response>

And we got the next two results and the new value of the nextCursorMark parameter.

Chapter 6

191

5. Finally, to get the last pages of the results, we will run the following query:

q=*:*&rows=2&sort=score+desc,id+asc&cursorMark=AoIIP4AAACE0

The results are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="cursorMark">AoIIP4AAACE0</str>
 <str name="sort">score desc,id asc</str>
 <str name="rows">2</str>
 </lst>
 </lst>
 <result name="response" numFound="5" start="0">
 <doc>
 <str name="id">5</str>
 <str name="title">Elasticsearch Server Second Edition</str>
 <long name="_version_">1475631480956780544</long></doc>
 </result>
<str name="nextCursorMark">AoIIP4AAACE1</str>
</response>

Now let's take a look at how it works.

How it works...
I'll skip discussing the index structure and the data itself, because it is very simple and really
doesn't matter in this recipe. They are just here so that we are able to query Solr and get
results back.

Before we go into the details on how the scroll method works, you need to remember that Solr
is almost stateless when it comes to querying. Of course, there are some caches, but still for a
given request Solr creates the result set from scratch for almost each request. When sending
a query with start=0 and rows=10, Solr needs to sort all the documents matching the
query and return the 10 values on the top. Now imagine that we pass start=1000000 and
rows=10. Solr needs to sort all the documents, discard the first 1,000,000, and return the
ones on positions 1,000,001 to 1,000,010. This doesn't sound too efficient, and it isn't. The
cursor paging method allows you to overcome this by giving Solr the query state information
in an encoded value provided by the cursorMark parameter. The con of such an approach is
the need of getting one page after another—we cannot randomly choose which page we want.

Improving Solr Performance

192

So starting with our first query—we said that we want all documents to be matched (q=*:*),
we want Solr to return two documents on a single page of results (rows=2), and we want the
results to be sorted on the basis of score (sort=score+desc,id+asc). Finally, we have the
cursorMark parameter. Because this is the first page of results, we pass * as its value.

Note that until Solr 4.10, one needs to explicitly define the sorting of
document identifiers for Solr so that it can properly handle results sorting
using the cursor paging method.

As you can see, in addition to the standard results, Solr returned one additional thing—the
nextCursorMark property. We take the value of this property and use it as the value of the
cursorMark parameter in the next query. This is needed to get to the next page of results.
In our case, the value of the cursorMark parameter should be set to AoIIP4AAACEy. Of
course, you can expect the value of the nextCursorMark property
to be different after each page of results.

As you can see, the second query is almost the same as the first one, with one change—the
value of the cursorMark parameter. We set the value of this parameter to the one returned
by the nextCursorMark property just as I described. And as you can see, Solr returned the
second page of results. We did exactly the same for the third query, but of course we set the
value of the cursorMark parameter to the one returned by the nextCursorMark property
in the second page of results (which was AoIIP4AAACE0 in our case).

See also
 f If you are interested in performance measurements, refer to the blog post written

by Chris Hostetter available at http://searchhub.org/2013/12/12/coming-
soon-to-solr-efficient-cursor-based-iteration-of-large-result-
sets/

Configuring the document cache
Cache can play a major role in your deployment's performance. One of the caches that you
can use to configure when setting up Solr is the document cache. It is responsible for storing
Lucene internal documents that have been fetched from the disk. The proper configuration
of this cache can save precious I/O calls and therefore boost the whole deployment
performance. This recipe will show you how to properly configure the document cache.

http://searchhub.org/2013/12/12/coming-soon-to-solr-efficient-cursor-based-iteration-of-large-result-sets/
http://searchhub.org/2013/12/12/coming-soon-to-solr-efficient-cursor-based-iteration-of-large-result-sets/
http://searchhub.org/2013/12/12/coming-soon-to-solr-efficient-cursor-based-iteration-of-large-result-sets/

Chapter 6

193

Getting ready
Remember that the cache usage depends on your queries, update rates, searcher reopening,
and on many other things. In this recipe, you will see cache configuration based on some
assumptions; however, you will see the logic behind choosing the right cache configuration.
You can use the same logic to adjust caches in your Solr deployment.

Also remember that the document cache in Solr is a top-level cache, so whenever a searcher
is reopened, the cache is invalidated. This might cause your cache to be almost useless for
rapidly changing data, and it is sometimes better to disable the cache completely by removing
its configuration from the solrconfig.xml file.

How to do it...
For this recipe, I assumed that we are dealing with the deployment of Solr where we have
about 100,000,000 documents. In our case, a single Solr instance gets a maximum of 100
concurrent queries and the maximum number of documents that the query can fetch is 256.

With the preceding parameters, our document cache should look somewhat similar to this
(add this to the solrconfig.xml configuration file):

<documentCache
 class="solr.LRUCache"
 size="25600"
 initialSize="25600"/>

You can see that we didn't specify the autowarmCount parameter—this is because the
document cache uses Lucene's internal ID to identify documents. These identifiers can't
be copied between the index changes and thus we cannot automatically warm this cache.

How it works...
The document cache configuration is simple. We define it in the documentCache XML
tag and specify a few parameters that define the document cache behavior. First of all, we
define the class parameter that tells Solr which Java class to use for implementation. In our
example, we use the solr.LRUCache parameter because we think that we will be adding
more information into the cache than we will getting from the cache. When you see that
you are getting more information than you add, consider using the solr.FastLRUCache
parameter. The next parameter tells Solr about the maximum size of the cache (the size
parameter). As the Solr documentation says, we should always set this value higher than the
maximum number of results returned by the query multiplied by the maximum concurrent
queries that we think will be sent to the Solr instance. This will ensure that we always have
enough space in the cache, so that Solr will not have to fetch the data from the index multiple
times during a single query.

Improving Solr Performance

194

The last parameter tells Solr about the initial size of the cache (the initialSize
parameter). I tend to set it to the same value as the size parameter to ensure that
Solr won't be wasting its resources on cache resizing.

Of course, we can't automatically warm the document cache, because it stores internal
Lucene document identifiers and those changes with the searcher reopening. Hence it
doesn't make sense to use the autowarmCount parameter.

There is one thing to remember. The more fields marked as stored in the index structure
you have, the higher the memory usage of this cache will be.

Remember that the values used in the recipe are examples, which worked for that particular
data. You should always observe your Solr instance and act when you see that your cache is
acting in the wrong way. Remember that having very large cache with very low hit rate can be
worse than having no cache at all.

Like all things, you should pay attention to your cache usage as your Solr instances work. If
there are any evictions, then it might be a signal that your caches are too small. If you have
very poor cache hit rate, it's advisable to turn off the cache sometimes. Cache setup is one
of those things in Apache Solr that is very dependent on your data, queries, and users; so I'll
repeat once again—keep an eye on your caches and don't be afraid to react and change them.
The information regarding the cache hit rate can be found in the Solr administration panel or
in good monitoring software.

Configuring the query result cache
The major role of Solr in a typical e-commerce website is handling the user queries. Of course,
users of the site can type multiple queries into the search box and we can't easily predict
how many unique queries there might be. However, using the logs that Solr gives us, we can
check how many different queries there were on the last day, week, month, or year. Using this
information, we can configure the query result cache to suit our needs in the most optimal
way, and this recipe will show you how to do it.

Getting ready
Remember that the cache usage is dependent on your queries, update rates, searcher
reopening, and so on. In this recipe, you will see cache configuration based on some
assumptions; however, you will see the logic behind choosing the right cache configuration.
You can use the same logic to adjust caches in your Solr deployment.

Also remember that the query result cache in Solr is a top-level cache, so whenever the
searcher is reopened, the cache is invalidated. This might cause your cache to be almost
useless for rapidly changing data, and it is sometimes better to disable the cache completely
by removing its configuration from the solrconfig.xml file.

Chapter 6

195

How to do it...
For the purpose of the recipe, let's assume that one Solr instance of our e-commerce website
is handling about 10 to 15 queries per second. Each query can be sorted by four different
fields (the user can choose by which field). The user can also choose the order of sort. By
analyzing the logs for the past three months, we know that there are about 2,000 unique
queries that users tend to type in the search box of our application. We also saw that our
users don't usually use the paging mechanism, so the documents users are looking for are
at the top of the results.

On the basis of the preceding information, we configured our query results cache as follows
(add this to the solrconfig.xml configuration file):

<queryResultCache
 class="solr.LRUCache"
 size="16000"
 initialSize="16000"
 autowarmCount="4000"/>

How it works...
Adding the query result cache to the solrconfig.xml file is a simple task. We define
it in the queryResultCache XML tag and specify a few parameters that define the query
result cache behavior. First of all, the class parameter tells Solr which Java class to use
as the implementation. In our example, we use the solr.LRUCache parameter because
we think that we will be putting more information into the cache than we will get from the
cache. When you see that you are getting more information than you put, consider using
solr.FastLRUCache. The next parameter tells Solr about the maximum size of the cache
(the size parameter). This cache should be able to store the ordered identifiers of the
objects that were returned by the query with its sort parameter and the range of documents
requested. This means that we should take the number of unique queries, multiply it by the
number of sort parameters and the number of possible orders of sort. In our example, the
size should be at least the result of this equation:

size = 2000 * 4 * 2

So the size property should be 16,000 in our case.

I tend to set the initial size of this cache set to the maximum size, so in our case, I set the
initialSize parameter to a value of 16000. This is done to avoid resizing of the cache
and save some CPU cycles.

Improving Solr Performance

196

The last parameter (the autowarmCount parameter) says how many entries should be
copied when Solr is invalidating caches, which is done after searcher opening (for example,
after a soft commit operation). I tend to set this parameter to a quarter of the maximum size
of the cache. This is done because I want the caches not to be warming too long. However,
remember that the autowarming time depends on your deployment and the autowarmCount
parameter should be adjusted. Sometimes you can afford higher autowarmCount values,
sometimes it needs to be low.

Remember that while using the values shown in the example, you can always observe your
Solr instance and act when you see that your cache is acting in the wrong way.

Like all things, you should pay attention to your cache usage as your Solr instances work.
If there are any evictions, then it might be a signal that the caches are too small. If you have
very poor hit rate, it's sometimes better to turn off the cache. Cache setup is one of those
things in Apache Solr that is very dependent on your data, queries, and users, so I'll repeat
once again—keep an eye on your caches and don't be afraid to react and change them.

Configuring the filter cache
During consulting engagements, I tend to see that Solr users forget or simply don't know
how to use filter queries or simple filters. People tend to add another clause with a logical
operator to the main query—they forget how efficient filters can be, at least when used wisely.
That's why whenever I can, I tell people using Solr to use filter queries. However, when using
filter queries, it is nice to know how to set up a cache that is responsible for holding the filter
results—the filter cache. This recipe will show you how to properly set up the filter cache.

Getting ready
Remember that the cache usage is dependent on your queries, update rates, searcher
reopening, and so on. In this recipe, you will see cache configuration based on some
assumptions; however, you will see the logic behind choosing the right cache configuration.
You can use the same logic to adjust caches in your Solr deployment.

Also remember that the filter cache in Solr is a top-level cache, so whenever the searcher
is reopened, the cache is invalidated. This might cause your cache to be almost useful for
rapidly changing data, and it is sometimes better to disable the cache completely by removing
its configuration from the solrconfig.xml file.

Chapter 6

197

How to do it...
For the purpose of this recipe, let's assume that we have a single Solr slave instance to handle
all the queries coming from the application. We took the logs from the last three months
and analyzed them. From that, we know that our queries are making about 2,000 different
filter queries. By getting this information, we can set up the filter cache for our instance.
This configuration should look like the one shown here (add this to the solrconfig.xml
configuration file):

<filterCache
 class="solr.FastLRUCache"
 size="2000"
 initialSize="2000"
 autowarmCount="1000"/>

And that's it. Now let's see what those values mean.

How it works...
As you might have noticed, adding the filter cache to the solrconfig.xml file is a simple
task; you just need to know how many unique filters your Solr instance is receiving. We define
it in the filterCache XML tag and specify a few parameters that define the query result
cache behavior. First of all, the class parameter tells Solr which Java class to use as the
implementation. In our example, we use solr.FastLRUCache because we think that we will
get more information than what we will put into the cache. The next parameter tells Solr about
the maximum size of the cache (the size parameter). In our case, we said that we have
about 2,000 unique filters and we set the maximum size to that value. This is done because
each entry of the filter cache stores the unordered sets of Solr document identifiers that
match the given filter. This way, after the first use of the filter, Solr can use the filter cache to
apply filters and thus save the I/O operations.

The next parameter—initialSize— tells Solr about the initial size of the filter cache. I tend
to set it to the same value as the size parameter to avoid cache resize. So in our example,
we set the value to 2000.

The last parameter (the autowarmCount parameter) says how many entries should be copied
when Solr is invalidating caches (for example, after a commit operation). I tend to set this
parameter to a quarter of the maximum size of the cache. This is done because I did not want
the caches to be warming too long. However, remember that the autowarming time depends on
your deployment and the autowarmCount parameter should be adjusted if needed.

Remember that when using the values shown in the example, you should always observe your
Solr instance and act when you see that your cache is either too small or too large.

Improving Solr Performance

198

Like with all things, you should pay attention to your cache usage as your Solr instances
work. If you see evictions, then this might be a signal that your caches are too small. If you
have very poor hit rate, it's sometimes better to turn off the cache. Cache setup is one of
those things in Apache Solr that is very dependent on your data, queries, and users, so I'll
repeat once again—keep an eye on your caches and don't be afraid to react and change
them. For example, take a look at the following screenshot that shows you that the filter
cache is probably too small because evictions are happening (this is a screenshot of
the Solr administration panel):

Improving Solr query performance after the
start and commit operations

Almost everyone who has some experience with Solr would have noticed one thing—right after
startup or searcher reopening (such as a soft autocommit), Solr doesn't have such query
performance as after running for a while. This is happening because Solr doesn't have any
information stored in caches, the I/O is not optimized, and so on. Can we do something about
it? Of course we can, and this recipe will show you how to do it.

Chapter 6

199

How to do it...
1. First of all, we need to identify the most common and the heaviest queries that we

send to Solr. I have two ways of doing this: first, I analyze the logs that Solr produces
and see how queries are behaving. I tend to choose those queries that are run often
and those that run slowly. The second way of choosing the right queries is analyzing
the applications that use Solr and see what queries they produce, what queries will
be the most crucial, and so on. Based on my experience, the log-based approach is
usually much faster and can be done with the use of self-written scripts.

However, let's assume that we have identified the following queries as good candidates:

q=cats&fq=category:1&sort=title+desc,value+desc,score+desc
q=cars&fq=category:2&sort=title+desc
q=harry&fq=category:4&sort=score+desc

2. What we will do next is just add so-called warming queries to the solrconfig.xml
file. So the listener XML tag definition in the solrconfig.xml file should look
similar to this:

<listener event="firstSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst><str name="q">cats</str><str name="fq">category:*</
str><str name="sort">title desc,value desc,score desc</str><str
name="start">0</str><str name="rows">20</str></lst>
 <lst><str name="q">cars</str><str name="fq">category:*</
str><str name="sort">title desc</str><str name="start">0</str><str
name="rows">20</str></lst>
 </arr>
</listener>

Basically, what we did is added the so-called warming queries to the startup of Solr. Now let's
see how it works.

How it works...
By adding the preceding fragment of configuration to the solrconfig.xml file, we told
Solr that we want it to run those queries whenever a firstSearcher event occurs. The
firstSearcher event is fired whenever a new searcher object is prepared and there is no
searcher object available in the memory. Basically, the firstSearcher event occurs right
after Solr startup.

Improving Solr Performance

200

So what happens after Solr starts up? After adding the preceding fragment, Solr runs each of
the defined queries. By doing that, the caches are populated with the entries that are significant
for the queries that we identified. This means that if we did the job right, we'll have Solr
configured and it is ready to handle the most common and heavy queries right after its start.

Maybe a few words about what the configuration options mean. The warm-up queries are always
defined under the listener XML tag. The event parameter tells Solr what event should
trigger the queries—in our case, it is the firstSearcher event. The class parameter is the
Java class that implements the listener mechanism. Next, we have an array of queries that are
bound together by the array tag with the name="queries" parameter. Each of the warming
queries is defined as a list of parameters that are grouped by the lst tag.

The thing to remember is choosing the warming queries wisely. You don't need to choose
the queries with all the values in the q parameter, but warm your common filter queries,
your sort parameter values, and so on. Also remember that warming is not only about
Solr itself. During warm-up, Lucene segments are read by the operating system and are
cached. This results in commonly used index parts being placed in the memory and thus
can be accessed very fast.

There's more...
There is one more recipe that I would like to cover.

Improving Solr performance after committing operations
If you are interested in improving the performance of your Solr instance, you should also look
at the newSearcher event. This event occurs whenever a commit operation is performed
by Solr (for example, after replication). Assuming that we identified the same queries as
before as good candidates to warm the caches, we should add the following entries to the
solrconfig.xml file:

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst><str name="q">cats</str><str name="fq">category:*</
str><str name="sort">title desc,value desc,score desc</str><str
name="start">0</str><str name="rows">20</str></lst>
 <lst><str name="q">cars</str><str name="fq">category:*</
str><str name="sort">title desc</str><str name="start">0</str><str
name="rows">20</str></lst>
 </arr>
</listener>

Remember that the warming queries are especially important for the caches that can't be
automatically warmed.

Chapter 6

201

Lowering the memory consumption of
faceting and sorting

Faceting and sorting might require a large amount of RAM memory for large volumes of
documents. For sorting or faceting, Solr needs to un-invert the values in the index and keep
such information in memory—in the field cache. This might require a significant amount of
memory when your data is large enough. Of course, you can scale out, have more nodes, and
spread the collection among them so that a single Solr instance is put under less pressure.
However, Lucene introduced a special structure called doc values, which can work as fast as
field cache, but doesn't require as much memory. This recipe will show you how to use this.

How to do it...
For the purpose of this recipe, let's assume that we have a bookstore and we allow a user to
sort on the title of the book:

1. Our initial index structure (the field's definition section from the schema.xml file)
looks as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="title_sort" type="string" indexed="true"
stored="false" />

2. Our sample data looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr 4.0 cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="title">Solr 3.1 cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">ElasticSearch Server</field>
 </doc>
</add>

Improving Solr Performance

202

3. Of course, we also need a copy field definition so that Solr automatically copies data
from the title field to the title_sort field (again we add the following to the
schema.xml file):
<copyField source="title" dest="title_sort" />

4. To use doc values for the title_sort field, we will change its definition so it looks
as follows:
<field name="title_sort" type="string" indexed="false"
stored="false" docValues="true" />

5. So our final field's definition in the schema.xml file looks as follows:

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="title_sort" type="string" indexed="false"
stored="false" docValues="true" />

And that's all—if we reindex the data now, the title_sort field would use doc values instead
of the field cache.

How it works...
By default, the data in a Lucene index is stored in a so-called inverted index—a structure that
allows very fast terms searching. In our example, the title field, the simplified inverted index
structure, will look as follows:

term count doc

3.1

4.0

cookbook

elastic

search

server

solr

1

2

<2>

<1>

<1, 2>

<3>

<3>

<3>

<1, 2>

1

1

1

1

2

Such a structure is highly efficient when it comes to searching, but requires un-inverting for
sorting and faceting. However, this is where doc values comes in—it un-inverts the field during
indexing and stores that in the index.

Configuring the field to use doc values is very simple. As you can see, our initial index
structure is very simple—it contains three fields: the identifier, the title of the book,
and the title_sort field, which is not analyzed so we can sort on it.

Chapter 6

203

To enable doc values, we added the docValues="true" property for the
title_sort field and we reindexed the data. Also note that we set the field to not be
indexed (indexed="false") and not to be stored (stored="false"). The doc values
don't require the field to be indexed and stored, and because we have another copy of it in
the title field, we can omit those.

Note that doc values are only available for specific types—single and
multivalued solr.StrField based fields, single and multivalued
tier-based fields (such as solr.TrieLongField based fields), and
UUID fields.

Speeding up indexing with Solr segment
merge tuning

During indexing, Solr (actually Lucene) creates a series of new index files—the segments.
Each segment is written once and read many times, which means that once it is written, it
cannot be changed (although some data can be changed, such as delete document markings
or numerical doc values). After some time, Solr will try to merge multiple small segments into
bigger ones. This is because the more segments the index is built of, the slower the queries
will be. Of course, we have the ability to force segment merge (by running the force merge
command), but such an operation is resource intensive, because Lucene will rewrite the index
segments. Because of that, Solr allows you to tune the segment merge process to match our
needs, and this recipe will show you how to do that.

How to do it...
The merge policy is what controls how merges are done in Apache Lucene and thus in
Solr. By default, the merge policy in not explicitly defined in Solr and reasonable defaults
are used. This means that by default, Solr will use org.apache.lucene.index.
TieredMergePolicy:

1. The first and the only step is to add the merge policy configuration to our
solrconfig.xml file. The following section should be added to the indexConfig
section of the mentioned configuration file:

<mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">30</int>
 <int name="segmentsPerTier">30</int>
 <int name="maxMergedSegmentMB">20000</int>
</mergePolicy>

Now, after restarting Solr, we should see fewer segments than we were seeing previously.

Improving Solr Performance

204

How it works...
Let's start by saying what segment merge is. As we know, a Lucene index is built of
pieces—segments. Each segment is a write-once, read many times structure, which means
that once written, it can't be altered. Each segment is also a miniature Lucene index by itself.
The segment merging process builds a new, larger segment using two or more smaller ones.
The new segment will contain the merged information from the old segments. During the
segment merge process, deleted documents are physically removed—so no deleted documents
will be present in the newly created segment. You have to remember that during delete, Lucene
only marks the document for deletion and doesn't remove it from the segment itself.

Now let's get back to our Solr configuration. First of all, we changed the solrconfig.xml
file to include the explicitly defined merge policy. As I already mentioned, the merge policy is
the logic that is responsible for telling Lucene when to start segment merging. We decided to
use the default org.apache.lucene.index.TieredMergePolicy merge policy; you can
read more about it at http://lucene.apache.org/core/4_10_0/core/org/apache/
lucene/index/TieredMergePolicy.html. In general, Lucene will divide the segments
into tiers of similar size and will try to merge them.

We decided to set the maxMergeAtOnce property to 30. This tells how many segments
should be merged at once during the normal merge process (by normal we mean not forced
by calling Solr's optimize command). We also set the segmentsPerTier property to 30 as
well. This property tells Lucene how many segments per chosen tier are allowed. The default
value is 10—smaller values means more merges, but smaller segments number. Higher values
that are equal to or higher than the maxMergeAtOnce property mean less frequent merges
at the cost of the more segments present. We also set the maxMergedSegmentMB property
to 20000 (which translates to about 20 GB). This property specifies the maximum segment
size Lucene is allowed to produce during the normal merge process. If a merge process will
result in a segment larger than this value, the merge policy will merge fewer segments to keep
the size limiting.

There's more...
There are two more things I would like to mention.

Increasing the RAM buffer size to improve the indexing
throughput
In addition to what was written about the segment merging tuning, we can also modify the
ramBufferSizeMB property and increase it from the default 100 MB to 512 MB. The value
of this property controls the amount of memory Lucene can use to store documents before
they are flushed to disk (or rather to the Directory implementation). If your documents
are large, the default ramBufferSizeMB value may result in many small segments being
created, because the amount of buffer space won't be enough.

http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/index/TieredMergePolicy.html
http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/index/TieredMergePolicy.html

Chapter 6

205

However, remember that you need to have enough memory for Solr to be able to work with
such buffer size. To change the ramBufferSizeMB value, you need to add the following
section to the solrconfig.xml file (in the indexConfig section):

<ramBufferSizeMB>512</ramBufferSizeMB>

Speeding up querying with merge policy tuning
Of course, we are not only allowed to speed up indexing by allowing more segments in the
index. We can also lower the number of segments the index is built on and have a slightly
higher query performance at the cost of more often and more intensive merging. To do this,
we can try using the following merge policy configuration:

<mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">3</int>
 <int name="segmentsPerTier">3</int>
 <int name="maxMergeAtOnceExplicit">30</int>
</mergePolicy>

See also
 f If you would like to see how the merge process looks like in real time and how the

segments change, I encourage you to read a great post about visualizing Lucene
segment merges by Mike McCandless available at http://blog.mikemccandless.
com/2011/02/visualizing-lucenes-segment-merges.html

Avoiding caching of rare filters to improve
the performance

Imagine that some of the filters you use in your queries are not good candidates for caching.
You might wonder why—for example, do those filters have date and time with seconds or are
spatial filters scattered all over the world? Such filters are quite unique, and thus when they
are put into the cache, they are very rarely reused and thus they are more or less useless.
Caching such filters is a waste of memory and CPU cycles. Is there something you can do to
avoid filter queries caching? Yes, there is a way, and this recipe will show you how to do it.

How to do it...
Let's assume we have the following query being used to get the information we need:

q=solr+cookbook&fq=category:books&fq=date:[2014-06-
12T13:22:12Z+TO+2014-07-11T11:24:54Z]

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

Improving Solr Performance

206

The filter query we don't want to cache is the one filtering our documents on the basis of
the date field. Of course, even though we don't want that filter to be cached, we still want
the filtering to be done. In order to turn off caching, we need to add the {!cache=false}
line to our filter that filters on the basis of the date field. After the change, our query should
look as follows:

q=solr+cookbook&fq=category:books&fq={!cache=false}date:[2014-06-
12T13:22:12Z+TO+2014-07-11T11:24:54Z]

So now let's take a look at how that works.

How it works...
The first query is very simple; we just search for the document that has the words solr
cookbook and we want the result set to be narrowed to the books category. We also want to
narrow the results further to only those that fall into the range of 2014-06-12T13:22:12Z
to 2014-07-11T11:24:54Z in the date field.

As you can imagine, if we have many filters with such dates as the one in the query, the
filter cache can be filled very fast. And in addition to that, if you don't reuse the same
value in that field, the entry in the field cache is pretty useless. That's why, by adding the
{!cache=false} part to the filter query, we tell Solr that we don't want those filter query
results to be put into the filter cache. With such an approach, we won't pollute the filter cache
and thus save some CPU cycles and memory.

There is one more thing when it comes to querying. The filters that are not cached will be
executed in parallel with the query, so this can be an additional improvement to your query
execution time.

Controlling the filter execution to improve
expensive filter performance

If you use filter queries extensively, which isn't a bad thing at all, you might be wondering
whether there is something you can do to improve the execution time of some of your filter
queries. For example, if you have some filter queries that use heavy function queries, you
might want to have them executed only on the documents that passed all the other filters.
Let's see how to do that.

Getting ready
Before continuing reading, read the Avoiding caching of rare filters to improve performance
recipe in this chapter.

Chapter 6

207

How to do it...
1. Let's assume that we have the following query being used to get the documents we

are interested in:
q=solr+cookbook&fq=category:books&fq={!frange l=10 u=100}log(sum(s
qrt(popularity),100))&fq={!frange l=0 u=10}if(exists(price_a),
sum(0,price_a),sum(0,price))

2. For the purpose of this recipe, let's assume that fq={!frange l=10 u=100}
log(sum(sqrt(popularity),100)) and fq={!frange l=0 u=10}if(exis
ts(price_a),sum(0,price_a),sum(0,price)) are the filter queries that are
heavy and we would like to optimize their execution. They shouldn't be cached and
the last filter present in the query should only be executed on the documents that
match other filters. In order to do this, we need to modify our query, so it should look
as follows:

q=solr+cookbook&fq=category:books&fq={!frange l=10 u=100
cache=false cost=50}log(sum(sqrt(popularity),100))&fq={!frange l=0
u=10 cache=false cost=150}if(exists(price_promotion),sum(0,price_
promotion),sum(0,price))

As you can see, we've added another two attributes, cache=false and cost with two values
50 and 150. Let's see what they mean.

How it works...
As you can see in the first query, we search for the words solr cookbook and we want the
result set to be narrowed to the books category. This part of the query is not heavy when it
comes to execution. We also want the documents to be narrowed to the documents category
to only those that have the value of the log(sum(sqrt(popularity),100)) function
between 10 and 100. And in addition to that, the last filter query specifies that we want our
documents to be filtered to only those that have the price_promotion field (or the price
field if the price_promotion field isn't filled) value between 0 and 10.

Our requirements were such that the second filter query (the one with the log function query)
should be executed after the fq=category:books filter query and the last filter should be
executed at the end, only on the documents that were matched by other filters. So basically,
the last filter should be executed on a subset of the whole results set. We wanted to do this
because the last filter is heavy when it comes to execution and we want to limit the number of
documents it needs to process.

To match the requirements, we set these two filters to not be cached (cache=false) and
introduced the cost parameter. The cost parameter in filter queries specifies the order in
which noncached filter queries are executed—the higher the cost value, the later the filter
query will be executed.

Improving Solr Performance

208

So our second filter (the one with cost=50) should be executed after the
fq=category:books filter query and the last filter query (the one with cost=150)
will be executed as the last one.

In addition to this, because the cost of the second noncached filter query is higher or equal to
100, that filter will be only executed on the documents that matched the main query and all
the other filters.

Remember that the cost attribute only works when the filter query is not cached.

Configuring numerical fields for
high-performance sorting and range queries

Let's assume we have Apache Solr deployment where we use range queries. Some of those
are run against string fields, while others are run against numerical fields. We identified that
our numerical range queries are executing slower than we would like them to run. The usual
question arises—is there something that we can do? Of course there is, and this recipe will
show you what.

How to do it...
1. Let's begin with the definition of a field that we use to run our numerical range

queries (we add it to the schema.xml file):
<field name="price" type="float" indexed="true" stored="true"/>

2. The second step is to define the float field type (again, we add this to the schema.
xml file):
<fieldType name="float" class="solr.TrieFloatField"
precisionStep="8" />

3. And now the usual query that is run against the preceding field:
q=*:*&fq=price:[10.0+TO+59.00]&facet=true&facet.field=price

4. In order to have your numerical range queries' performance improved, there is just a
single thing you need to do—decrease the precisionStep attribute of the float
field type; for example, from 8 to 4. Our field type definition will look as follows:
<fieldType name="float" class="solr.TrieFloatField"
precisionStep="4" positionIncrementGap="0"/>

After the preceding change, you will have to reindex your data and you will see that your
numerical queries are running faster. How much faster—that depends on your setup.
Now let's take a look at how it works.

Chapter 6

209

How it works...
As you can see in the preceding example, we use a simple float based field to run
numerical range queries. Before the changes, we set precisionStep on our field type
as 8. This attribute (specified in bits) tells Lucene (which Solr is built on top of) how many
tokens should be indexed for a single value in such a field. Smaller precisionStep values
(when precisionStep is greater than 0) will lead to more tokens generated by a single
value and thus making range queries faster. Because of this, when we decreased our
precisionStep value from 8 to 4, we saw the performance increase.

However, remember that decreasing the precisionStep value will lead to slightly larger
indices. Also setting the precisionStep value to 0 turns off indexing of multiple tokens
per value, so don't use that value if you want your range queries to perform faster.

See also
 f If you would like to read more about how exactly precision step works, refer to

the numeric range query Javadoc available at http://lucene.apache.org/
core/4_10_0/core/org/apache/lucene/search/NumericRangeQuery.html

http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/search/NumericRangeQuery.html
http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/search/NumericRangeQuery.html

7
In the Cloud

In this chapter, we will cover the following topics:

 f Creating a new SolrCloud cluster

 f Setting up multiple collections on a single cluster

 f Splitting shards

 f Having more than a single shard from a collection on a node

 f Creating a collection on defined nodes

 f Adding replicas after collection creation

 f Removing replicas

 f Moving shards between nodes

 f Using aliasing

 f Using routing

Introduction
With the release of Apache Solr 4.0, we were given a new, powerful mode Solr could work
in—SolrCloud. What we got is out-of-the-box distributed indexing and searching at a full scale.
We can distribute our collection along multiple machines without having to think about doing
it in our application. We can have multiple logical collections defined, running, and managed
automatically. In this chapter, we'll see how to manage your SolrCloud instances, how to
increase the number of replicas, and have multiple collections inside the same cluster.

This chapter covers both Solr 4.x and Solr 5 when it comes to the creation of SolrCloud
clusters and handling collections.

In the Cloud

212

Creating a new SolrCloud cluster
Imagine a situation where one day you have to set up a distributed cluster with the use of Solr.
The amount of data is just too much for a single server to handle. Of course, you can just set
up a second server or go for another master server with another set of data. But before Solr
4.0, you would have to take care of the data distribution yourself. In addition to this, you would
also have to take care of setting up replication, data duplication, and so on. With SolrCloud,
you don't have to do this—you can just set up a new cluster, and this recipe will show you how
to do that.

Getting ready
Before continuing further, I advise you to read the Installing ZooKeeper for SolrCloud recipe
from Chapter 1, Apache Solr Configuration. It shows you how to set up a Zookeeper cluster in
order to be ready for production use. However, if you already have Zookeeper running, you can
skip this recipe.

How to do it...
Let's assume that we want to create a cluster that will have four Solr servers. We also would
like to have our data divided between the four Solr servers in such a way that we have the
original data on two machines, and in addition to this, we would also have a copy of each
shard available in case something happens with one of the Solr instances. I also assume
that we already have our Zookeeper cluster set up, ready, and available at the address
192.168.1.10 on the 9983 port. For this recipe, we will set up four SolrCloud nodes
on the same physical machine:

1. We will start by running an empty Solr server (without any configuration) on port
8983. We do this by running the following command (for Solr 4.x):
java -DzkHost=192.168.1.10:9983 -jar start.jar

2. For Solr 5, we will run the following command:
bin/solr -c -z 192.168.1.10:9983

3. Now we start another three nodes, each on a different port (note that different
Solr instances can run on the same port, but they should be installed on different
machines). We do this by running one command for each installed Solr server
(for Solr 4.x):
java -Djetty.port=6983 -DzkHost=192.168.1.10:9983 -jar start.jar

java -Djetty.port=4983 -DzkHost=192.168.1.10:9983 -jar start.jar

java -Djetty.port=2983 -DzkHost=192.168.1.10:9983 -jar start.jar

Chapter 7

213

4. For Solr 5, the commands will be as follows:
bin/solr -c -p 6983 -z 192.168.1.10:9983

bin/solr -c -p 4983 -z 192.168.1.10:9983

bin/solr -c -p 2983 -z 192.168.1.10:9983

5. Now we need to upload our collection configuration to ZooKeeper. Assuming that
we have our configuration in /home/conf/solrconfiguration/conf, we will
run the following command from the home directory of the Solr server that runs
first (the zkcli.sh script can be found in the Solr deployment example in the
scripts/cloud-scripts directory):
./zkcli.sh -cmd upconfig -zkhost 192.168.1.10:9983 -confdir /home/
conf/solrconfiguration/conf/ -confname collection1

6. Now we can create our collection using the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=firstCollection&numShards=2&replicationFactor=2&collection.
configName=collection1'

7. If we now go to http://localhost:8983/solr/#/~cloud, we will see the
following cluster view:

As we can see, Solr has created a new collection with a proper deployment. Let's now see
how it works.

How it works...
We assume that we already have ZooKeeper installed—it is empty and doesn't have
information about any collection, because we didn't create them.

For Solr 4.x, we started by running Solr and telling it that we want it to run in SolrCloud mode.
We did that by specifying the -DzkHost property and setting its value to the IP address of
our ZooKeeper instance. Of course, in the production environment, you would point Solr to a
cluster of ZooKeeper nodes—this is done using the same property, but the IP addresses are
separated using the comma character.

In the Cloud

214

For Solr 5, we used the solr script provided in the bin directory. By adding the -c switch,
we told Solr that we want it to run in the SolrCloud mode. The -z switch works exactly the
same as the -DzkHost property for Solr 4.x—it allows you to specify the ZooKeeper host that
should be used.

Of course, the other three Solr nodes run exactly in the same manner. For Solr 4.x, we add
the -DzkHost property that points Solr to our ZooKeeper. Because we are running all
four nodes on the same physical machine, we needed to specify the -Djetty.port property,
because we can run only a single Solr server on a single port. For Solr 5, we use the -z
property of the bin/solr script and we use the -p property to specify the port on which
Solr should start.

The next step is to upload the collection configuration to ZooKeeper. We do this because
Solr will fetch this configuration from ZooKeeper when you request the collection creation.
To upload the configuration, we use the zkcli.sh script provided with the Solr distribution.
We use the upconfig command (the -cmd switch), which means that we want to upload the
configuration. We specify the ZooKeeper host using the -zkHost property. After that, we can
say which directory our configuration is stored (the -confdir switch). The directory should
contain all the needed configuration files such as schema.xml, solrconfig.xml, and so
on. Finally, we specify the name under which we want to store our configuration using the
-confname switch.

After we have our configuration in ZooKeeper, we can create the collection. We do this by
running a command to the Collections API that is available at the /admin/collections
endpoint. First, we tell Solr that we want to create the collection (action=CREATE) and
that we want our collection to be named firstCollection (name=firstCollection).
Remember that the collection names are case sensitive, so firstCollection and
firstcollection are two different collections. We specify that we want our collection to
be built of two primary shards (numShards=2) and we want each shard to be present in two
copies (replicationFactor=2). This means that we will have a primary shard and a single
replica. Finally, we specify which configuration should be used to create the collection by
specifying the collection.configName property.

As we can see in the cloud, a view of our cluster has been created and spread across all
the nodes.

There's more...
There are a few things that I would like to mention—the possibility of running a Zookeeper
server embedded into Apache Solr and specifying the Solr server name.

Chapter 7

215

Starting an embedded ZooKeeper server
You can also start an embedded Zookeeper server shipped with Solr for your test
environment. In order to do this, you should pass the -DzkRun parameter instead of
-DzkHost=192.168.0.10:9983, but only in the command that sends our configuration
to the Zookeeper cluster. So the final command for Solr 4.x should look similar to this:

java -DzkRun -jar start.jar

In Solr 5.0, the same command will be as follows:

bin/solr start -c

By default, ZooKeeper will start on the port higher by 1,000 to the one Solr is started at.
So if you are running your Solr instance on 8983, ZooKeeper will be available at 9983.

The thing to remember is that the embedded ZooKeeper should only be used for development
purposes and only one node should start it.

Specifying the Solr server name
Solr needs each instance of SolrCloud to have a name. By default, that name is set using the
IP address or the hostname appended with the port the Solr instance is running on and the
_solr postfix. For example, if our node is running on 192.168.56.1 and port 8983, it will
be called 192.168.56.1:8983_solr. Of course, Solr allows you to change that behavior by
specifying the hostname. To do this, start using the -Dhost property or add the host property
to solr.xml.

For example, if we would like one of our nodes to have the name of server1, we can run the
following command to start Solr:

java -DzkHost=192.168.1.10:9983 -Dhost=server1 -jar start.jar

In Solr 5.0, the same command would be:

bin/solr start -c -h server1

Setting up multiple collections on a single
cluster

Having a single collection inside the cluster is nice, but there are multiple use cases when
we want to have more than a single collection running on the same cluster. For example, we
might want users and books in different collections or logs from each day to be only stored
inside a single collection. This recipe will show you how to create multiple collections on the
same cluster.

In the Cloud

216

Getting ready
Before reading further, I advise you to read the Creating a new SolrCloud cluster recipe of this
chapter. This recipe will show you how to create a new SolrCloud cluster. We also assume that
ZooKeeper is running on 192.168.1.10 and is listening on port 2181 and that we already
have four SolrCloud nodes running as a cluster.

How to do it...
As we already have all the prerequisites, such as ZooKeeper and Solr up and running,
we need to upload our configuration files to ZooKeeper to be able to create collections:

1. Assuming that we have our configurations in /home/conf/firstcollection/
conf and /home/conf/secondcollection/conf, we will run the following
commands from the home directory of the first run Solr server to upload the
configuration to ZooKeeper (the zkcli.sh script can be found in the Solr
deployment example in the scripts/cloud-scripts directory):
./zkcli.sh -cmd upconfig -zkhost localhost:2181 -confdir /home/
conf/firstcollection/conf/ -confname firstcollection

./zkcli.sh -cmd upconfig -zkhost localhost:2181 -confdir /home/
conf/secondcollection/conf/ -confname secondcollection

2. We have pushed our configurations into Zookeeper, so now we can create the
collections we want. In order to do this, we use the following commands:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=firstCollection&numShards=2&replicationFactor=2&collection.
configName=firstcollection'

curl 'localhost:8983/solr/admin/collections?action=CREATE&name
=secondcollection&numShards=4&replicationFactor=1&collection.
configName=secondcollection'

3. Now, just to test whether everything went well, we will go to
http://localhost:8983/solr/#/~cloud. As the result, we will see
the following cluster topology:

As we can see, both the collections were created the way we wanted. Now let's see how
that happened.

Chapter 7

217

How it works...
We assume that we already have ZooKeeper installed—it is empty and doesn't have
information about any collections, because we didn't create them. We also assumed
that we have our SolrCloud cluster configured and started.

To create collections, we start by uploading the configuration to ZooKeeper. This is what we
already discussed in the Creating a new SolrCloud cluster recipe of this chapter. We start by
uploading two configurations to ZooKeeper, one called firstcollection and the other
called secondcollection. After that, we are ready to create our collections.

We start by creating the collection named firstCollection that is built of two primary
shards and one replica. The second collection, called secondcollection, is built of four
primary shards and it doesn't have any replicas. We can see that easily in the cloud view of
the deployment. The firstCollection collection has two shards—shard1 and shard2.
Each of the shards has two physical copies—one green (which means active) and one with
a black dot, which is the primary shard. The secondcollection collection is built of four
physical shards—each shard has a black dot near its name, which means that they are
primary shards.

Splitting shards
Imagine a situation where you reach a limit of your current deployment—the number of shards
is just not enough. For example, the indexing throughput is lower and lower, because the
disks are not able to keep up. Of course, one of the possible solutions is to spread the index
across more shards; however, you already have a collection and you want to keep the data
and reindexing is not an option, because you don't have the original data. Solr can help you
with such situations by allowing splitting shards of already created collections. This recipe will
show you how to do it.

Getting ready
Before reading further, I would suggest you all to read the Creating a new SolrCloud cluster
recipe of this chapter. This recipe will show you how to create a new SolrCloud cluster. We also
assume that ZooKeeper is running on 192.168.1.10 and is listening on port 2181 and that
we already have four SolrCloud nodes running as a cluster.

In the Cloud

218

How to do it...
Let's assume that we already have a SolrCloud cluster up and running and it has one
collection called books. So our cloud view (which is available at http://localhost:8983/
solr/#/~cloud) looks as follows:

We have four nodes and we don't utilize them fully. We can say that these two nodes in which
we have our shards are almost fully utilized. What we can do is create a new collection and
reindex the data or we can split shards of the already created collection. Let's go with the
second option:

1. We start by splitting the first shard. It is as easy as running the following command:
curl 'http://localhost:8983/solr/admin/collections?action=SPLITSHA
RD&collection=books&shard=shard1'

2. After this, we can split the second shard by running a similar command to the one we
just used:
curl 'http://localhost:8983/solr/admin/collections?action=SPLITSHA
RD&collection=books&shard=shard2'

3. Let's take a look at the cluster cloud view now (which is available at
http://localhost:8983/solr/#/~cloud):

As we can see, both shards were split—shard1 was divided into shard1_0 and shard1_1
and shard2 was divided into shard2_0 and shard2_1. Of course, the data was copied as
well, so everything is ready.

Chapter 7

219

However, the last step should be to delete the original shards. Solr doesn't delete
them, because sometimes applications use shard names to connect to a given shard.
However, in our case, we can delete them by running the following commands:

curl 'http://localhost:8983/solr/admin/collections?action=DELETESHARD&col
lection=books&shard=shard1'

curl 'http://localhost:8983/solr/admin/collections?action=DELETESHARD&col
lection=books&shard=shard2'

Now if we would again look at the cloud view of the cluster, we will see the following:

How it works...
We start with a simple collection called books that is built of two primary shards and no
replicas. This is the collection which shards we will try to divide it without stopping Solr.

Splitting shards is very easy. We just need to run a simple command in the Collections
API (the /admin/collections endpoint) and specify that we want to split a shard
(action=SPLITSHARD). We also need to provide additional information such as which
collection we are interested in (the collection parameter) and which shard we want to
split (the shard parameter). You can see the name of the shard by looking at the cloud view
or by reading the cluster state from ZooKeeper. After sending the command, Solr might force
us to wait for a substantial amount of time—shard splitting takes time, especially on large
collections. Of course, we can run the same command for the second shard as well.

Finally, we end up with six shards—four new and two old ones. The original shard will still
contain data, but it will start to re-route requests to newly created shards. The data was split
evenly between the new shards. The old shards were left although they are marked as inactive
and they won't have any more data indexed to them. Because we don't need them, we can just
delete them using the action=DELETESHARD command sent to the same Collections API.
Similar to the split shard command, we need to specify the collection name, which shard
we want to delete, and the name of the shard. After we delete the initial shards, we now see
that our cluster view shows only four shards, which is what we were aiming at.

We can now spread the shards across the cluster, and we do this in the Moving shards
between nodes recipe later in this chapter.

In the Cloud

220

Having more than a single shard from a
collection on a node

Let's assume that we have a cluster of four nodes, but we are sure that we will have eight
nodes in the near future. We want to be prepared for this, so when the new nodes are
installed, we don't need to split collection shards or reindex the data. By default, Solr won't
allow you to do that, but this recipe will show you how to achieve such a setup.

Getting ready
Before reading further, I would suggest you all to read the Creating a new SolrCloud cluster
recipe in this chapter. This recipe will show you how to create a new SolrCloud cluster. We also
assume that ZooKeeper is running on 192.168.1.10 and is listening on port 2181 and that
we already have four SolrCloud nodes running as a cluster.

How to do it...
Let's assume that we already have a cluster with four nodes and the configuration uploaded to
ZooKeeper (if you don't know how to do it, take a look at the Creating a new SolrCloud cluster
recipe in this chapter). Our collection configuration is called firstcollection.

As we said, we have four nodes, but we would like to create a collection that has eight shards.
We want to be prepared for cluster growth, which will happen in the future, and we don't
want to use shard splitting, because we know it will take time and that operation is resource
intensive. What we need to do is force Solr to put more than a single shard of the collection on
a node and create a collection that is built of eight shards:

1. Let's try to create a new collection by running the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&name
=firstTryCollection&numShards=8&replicationFactor=1&collection.
configName=firstcollection'

After running this command, we will see the following response from Solr:
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">400</int><int
name="QTime">74</int></lst><str name="Operation createcollection
caused exception:">org.apache.solr.common.SolrException:org.
apache.solr.common.SolrException: Cannot create collection
firstTryCollection. Value of maxShardsPerNode

Chapter 7

221

is 1, and the number of live nodes is 4. This allows a maximum
of 4 to be created. Value of numShards is 8 and value of
replicationFactor is 1. This requires 8 shards to be created
(higher than the allowed number)</str><lst name="exception"><str
name="msg">Cannot create collection firstTryCollection. Value
of maxShardsPerNode is 1, and the number of live nodes is 4.
This allows a maximum of 4 to be created. Value of numShards
is 8 and value of replicationFactor is 1. This requires 8
shards to be created (higher than the allowed number)</
str><int name="rspCode">400</int></lst><lst name="error"><str
name="msg">Cannot create collection firstTryCollection. Value of
maxShardsPerNode is 1, and the number of live nodes is
4. This allows a maximum of 4 to be created. Value of numShards
is 8 and value of replicationFactor is 1. This requires 8
shards to be created (higher than the allowed number)</str><int
name="code">400</int></lst>
</response>

This means that Solr won't create the collection, because there are not enough
Solr nodes.

2. Let's now add maxShardsPerNode=2 to our command so that it looks as follows:
curl 'localhost:8983/solr/admin/collections?action=CREATE&name=sec
ondTryCollection&numShards=8&replicationFactor=1&collection.config
Name=firstcollection&maxShardsPerNode=2'

3. If we now take a look at http://localhost:8983/solr/#/~cloud, we will see
the following:

As we can see, it worked. Let's now see why.

In the Cloud

222

How it works...
Of course, we assume that we have our four nodes up and running and we have a collection
configuration stored in ZooKeeper under the name firstcollection.

When we run the first command, we tell Solr that we want our firstTryCollection
collection to be created with eight shards (numShards=8) and with only a single physical copy
of each shard (replicationFactor=1), so no replicas. However, Solr returned with an error
telling us that we can't do that. That is because, by default, Solr allows only a single shard of
the same collection to be present on a given node. The default behavior is good, but it is not
what we want in some use cases.

Because of this, we introduced the maxShardsPerNode property and we set it to 2.
The default value for that property is 1, but in our case, we have four nodes and we create a
collection built of eight shards, which means that we need at least two shards of the same
collection on a single node. As we can see, after introducing this parameter and sending the
command to create a collection, we ended up with a collection created.

Now, after our new nodes arrive, we will be able to spread the shards across the cluster.
You will learn how to do this in the Moving shards between nodes recipe later in this chapter.

Creating a collection on defined nodes
There are use cases where we want to create a collection only on some of the nodes.
For example, we would like to have one collection created on other better machines, because
we know that this collection will be heavier in terms of indexing and querying. The other
collections can live on the smaller and worse performing nodes. In such cases, we still have
all the collections in a single cluster, but we know that they will be placed on hardware we
want them to be placed. This recipe will show you how to do this.

Getting ready
Before reading further, I advise you to read the Creating a new SolrCloud cluster and Having
more than a single shard from a collection on a node recipes of this chapter. These recipes
will show you how to create a new SolrCloud cluster. We also assume that ZooKeeper is
running on 192.168.1.10 and is listening on port 2181 and that we already have four
SolrCloud nodes running as a cluster. We also assume that we have a configuration called
firstCollection stored in ZooKeeper.

Chapter 7

223

How to do it...
Let's assume that we have a cluster of four SolrCloud nodes and, as we wrote, we would like
the primary shards to only be present on the better machines—in our case, these are the
nodes called 192.168.56.1:8983_solr and 192.168.56.1:7983_solr:

1. If we run a standard collection creation command and specify that we will allow two
shards of that collection per node, we will use the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&name=fir
stTry&numShards=2&replicationFactor=1&collection.configName=firstc
ollection&maxShardsPerNode=2'

It might happen that our collection has been created the way we wanted, but let's
check this by taking a look at http://localhost:8983/solr/#/~cloud.
This is what we see:

As you can see, it is not exactly what we wanted.

2. So let's try specifying the nodes we want our collection to be created at by adding the
createNodeSet property. Our new command looks as follows:
curl 'localhost:8983/solr/admin/collections?action=CREATE&name=se
condTry&numShards=2&replicationFactor=1&collection.configName=fi
rstcollection&maxShardsPerNode=2&createNodeSet=192.168.56.1:8983_
solr,192.168.56.1:6983_solr'

3. If we now again take a look at http://localhost:8983/solr/#/~cloud, we will
see the following cluster view:

As we can see, everything worked as we wanted. Let's now see why that happened.

In the Cloud

224

How it works...
We assume that the better nodes are the ones that have the names of
192.168.56.1:8983_solr and 192.168.56.1:6983_solr. When we run our standard
collection creation command, we can end up with collections created on those nodes;
however, we can't count on that. In fact, in our example, we ended up with collections created
on nodes 192.168.56.1:2983_solr and 192.168.56.1:6983_solr. This is not what
we wanted.

To achieve what we want, we need to add the createNodeSet property. The value of this
property should be a comma-separated list of SolrCloud node names, which should be taken
into consideration when creating collections. In our case, the value of the createNodeSet
property should be 192.168.56.1:8983_solr,192.168.56.1:6983_solr. As we can
see, after we added this property, our collection named secondTry was properly created only
on the nodes we were interested in.

Adding replicas after collection creation
Replicas are copies of the primary shard. They are very useful when it comes to handing
performance issues—for example, if your current cluster can't keep up with queries, you can
add new nodes and increase the number of replicas. This way, more Solr servers can serve
queries and each of them will have fewer queries to process. In this recipe, we will learn how
to add new shards to already created collections.

Getting ready
Before reading further, I advise you to read the Creating a new SolrCloud cluster and Having
more than a single shard from a collection on a node recipes of this chapter. These recipes
will show you how to create a new SolrCloud cluster and a collection. We also assume that
ZooKeeper is running on 192.168.1.10 and is listening on port 2181. We already have
the configuration called firstcollection stored in ZooKeeper and we already have four
SolrCloud nodes running as a cluster.

How to do it...
1. Let's start by creating a sample collection with two shards and no replicas. We do this

by running the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=collAddReplicas&numShards=2&replicationFactor=1&collection.
configName=firstcollection'

Chapter 7

225

After running the preceding command, our cluster view should look as follows:

2. Now, let's add a replica of shard1 and let's place it on a node called
192.168.56.1:8983_solr. To do this, we will run the following command:
curl 'http://localhost:8983/solr/admin/collections?action=ADDREPLI
CA&shard=shard1&collection=collAddReplicas&node=192.168.56.1:8983_
solr'

After Solr is done working, our cluster view should look similar to the following
screenshot:

3. Now, let's add a replica of shard2 and let's place it on a node called
192.168.56.1:2983_solr. To do this, we will run the following command:
curl 'http://localhost:8983/solr/admin/collections?action=ADDREPLI
CA&shard=shard2&collection=collAddReplicas&node=192.168.56.1:2983_
solr'

4. If we now again look at the cluster view, we will be able to see something similar
to this:

As we can see, everything works as it should.

In the Cloud

226

How it works...
We started by creating a new collection called collAddReplicas. Of course, we
have our SolrCloud cluster up and running, ZooKeeper installed and running, and the
firstcollection configuration stored in it. Our collection is created with two shards
(numShards=2) and with only primary shards (replicationFactor=1).

As we said, after some time, we added new nodes to our cluster because our initial cluster
was heavily used and the queries started to be slow. Because of that, we decided to add
more replicas.

We started by creating a replica for shard1. To do this, we need to call the Collections API
ADDREPLICA command (action=ADDREPLICA) and specify the shard we want to create
the replica for (shard=shard1 in our case), the collection that this command should modify
(collection=collAddReplicas), and the node name on which the replica should be
created (node=192.168.56.1:8983_solr). After receiving this command, Solr will create
that replica and start replication. After replication has ended, Solr will automatically start using
that replica. We do the same for shard2—although we put the replica on a different node.

As we can see, after adding two replicas, we now have four shards in our collection, two for
each shard, and Solr successfully initiated our new shards.

Removing replicas
Sometimes, there is a need of removing one or more replicas from your Solr cluster. Either
because you want to get rid of some nodes and you want your cluster state to become clean
or you want to move some shard to another node and delete the original shard. No matter
what the case is, there might come a time where you need to delete a shard. This recipe will
show you how to do it.

Getting ready
Before reading further, I advise you to read the Creating a new SolrCloud cluster and Having
more than a single shard from a collection on a node recipes in this chapter. These recipes
will show you how to create a new SolrCloud cluster and create a collection. We also assume
that ZooKeeper is running on 192.168.1.10 and is listening on port 2181. We already have
the configuration called firstcollection stored in ZooKeeper and we already have four
SolrCloud nodes running as a cluster.

Chapter 7

227

How to do it...
1. To show you how to delete replicas from the already existing collection, we will create

a new collection that is built of two shards and have a replica of each of the shards.
To do this, we will run the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=testCollection&numShards=2&replicationFactor=2&collection.
configName=firstcollection'

After the collection is created, we should see the following cluster view when we take
a look at http://localhost:8983/solr/#/~cloud:

Now, let's assume that we want to get rid of two servers in our cluster,
192.168.56.1:8983 and 192.168.56.1:6983. And we don't want to leave any
traces in the cluster state. To do this, we need to remove the replicas that are placed
on those nodes.

2. We start by removing the 192.168.56.1:8983_solr replica by running the
following command:
curl 'http://localhost:8983/solr/admin/collections?action=DELETERE
PLICA&collection=testCollection&shard=shard1&replica=core_node2'

3. After the command is executed, we can see the following cluster view:

4. We can now remove the replica of the second shard by running the
following command:

curl 'http://localhost:8983/solr/admin/collections?action=DELETERE
PLICA&collection=testCollection&shard=shard2&replica=core_node4'

In the Cloud

228

And again let's take a look at the cluster view:

As we can see, everything worked.

How it works...
We start by creating a collection that we will use to demonstrate how to remove replicas from
the already created collection. Of course, we have our SolrCloud cluster up and running,
ZooKeeper installed and running, and the firstcollection configuration stored in it. The
collection creation command was already mentioned a few times—in our case, we
created a collection called testCollection that is built of four physical shards—two primary
shards and one replica for each of them.

What we try to do is delete the replicas of the primary shards, because we want to
remove the server on which they are running and throw the hardware away. To do this,
we start by removing the replica that is stored on the node running on port 8983.
The thing is that this time we don't specify the node name like during replica creation,
but we need to specify the actual shard name that Solr uses internally. We can do this by
taking a look at clusterstate.json in the Solr admin panel (you can do that by going
to http://localhost:8983/solr/#/~cloud?view=tree with your web browser and
choosing the mentioned file). In our case, that file looks as follows:

{"testCollection":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"active",
 "replicas":{
 "core_node1":{
 "state":"active",
 "core":"testCollection_shard1_replica1",
 "node_name":"192.168.56.1:4983_solr",
 "base_url":"http://192.168.56.1:4983/solr",
 "leader":"true"},
 "core_node2":{
 "state":"active",
 "core":"testCollection_shard1_replica2",
 "node_name":"192.168.56.1:8983_solr",
 "base_url":"http://192.168.56.1:8983/solr"}}},
 "shard2":{

Chapter 7

229

 "range":"0-7fffffff",
 "state":"active",
 "replicas":{
 "core_node3":{
 "state":"active",
 "core":"testCollection_shard2_replica1",
 "node_name":"192.168.56.1:2983_solr",
 "base_url":"http://192.168.56.1:2983/solr",
 "leader":"true"},
 "core_node4":{
 "state":"active",
 "core":"testCollection_shard2_replica2",
 "node_name":"192.168.56.1:6983_solr",
 "base_url":"http://192.168.56.1:6983/solr"}}}},
 "maxShardsPerNode":"1",
 "router":{"name":"compositeId"},
 "replicationFactor":"2",
 "autoAddReplicas":"false"}}

For example, for shard1, we have two replicas, one named core_node1 and the second one
named core_node2. The first one is the primary shard (leader=true). For shard2, we also
have two replicas, one named core_node3 and the second one named core_node4. In this
case, the first is also the primary shard.

To delete a shard, we need to send an appropriate request to the Collections API
(/admin/collections) and specify the delete action (action=DELETEREPLICA),
collection (collection=testCollection), the shard (shard=shard1), and the name
of the replica (replica=core_node2). In our case, we want to remove the replica from
nodes running on port 8983 for shard1 (which means that we remove core_node4)
and on port 6983 for shard2 (which means we remove core_node4).

As we can see, after both the commands were executed, we are now left with a collection that
has only primary shards. If we look at the cluster state now, we will see that there are no trace
of the replicas, which means that Solr removed them properly.

Moving shards between nodes
There are moments where we want to move shards between nodes in SolrCloud cluster. Until
now, the Solr Collections API doesn't have a command telling Solr to move a single shard to
another node. We need to do such an operation manually. For example, let's assume that we
want to exchange one of the nodes in our cluster with a new server, but we don't want any
downtime or interruptions to our service. This recipe will show you how to do that.

In the Cloud

230

Getting ready
Before reading further, I would suggest you all to read the Creating a new SolrCloud cluster,
Adding replicas after collection creation, and Removing replicas recipes of this chapter.
These recipes will show you how to create a new SolrCloud cluster and create a collection.
We also assume that ZooKeeper is running on 192.168.1.10 and is listening on port 2181.
We already have the configuration called firstcollection stored in ZooKeeper and we
already have four SolrCloud nodes running as a cluster.

How to do it...
1. To keep things simple, we will start by creating a collection that is built of two shards

and no replicas. We do this by running the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=testCollection&numShards=2&replicationFactor=1&collection.
configName=firstcollection'

Our cluster view will look as follows:

2. Now, let's try to move shard1 from 192.168.56.1:4983 to 192.168.56.1:6983
(of course, we assume that we have that node in the cluster). We do this because we
want to replace the server identified by Solr as 192.168.56.1:4983 with the one
identified as 192.168.56.1:6983.

3. To do this, we need to create a new replica on the 192.168.56.1:6983 node;
we do that by running the following command:
curl 'http://localhost:8983/solr/admin/collections?action=ADDREPLI
CA&shard=shard1&collection=testCollection&node=192.168.56.1:6983_
solr'

After the command is completed and Solr synchronizes the replica, the cluster view
should look as follows:

Chapter 7

231

4. Now we need to remove the primary shard of shard1—the one on
192.168.561:8983. We do this by running the following command:
curl 'http://localhost:8983/solr/admin/collections?action=DELETERE
PLICA&collection=testCollection&shard=shard1&replica=core_node2'

5. After the command succeeds, we can see the following cluster view:

As we can see, the primary shard of shard1 is now located on the node
192.168.56.1:6983, which is what we wanted.

How it works...
We start by creating a collection that we will use to demonstrate the migration of a shard from
one node to another. Of course, we have our SolrCloud cluster and ZooKeeper installed and
running and also have the irstcollection configuration stored in it. The collection
creation command was already mentioned a few times—in our case, we created a collection
called testCollection that is built of four physical shards—two primary shards and one
replica for each of them.

As we said, we want to move shard1 from the node 192.168.56.1:4983 to node
192.168.56.1:6983. To do this, we need to create a new shard first—a replica of the shard
we want to migrate on the node we want our shard to be migrated. In our case, we created a
replica of shard1 on the 192.168.56.1:6983 node by running an ADDREPLICA command
using the Collections API (if you are not familiar with the add replica command, refer to the
Adding replicas after collection creation recipe in this chapter).

After Solr created the replica and finished replicating the data, we are now ready to delete
the original shard. In some cases, it would be good to stop indexing and wait for the data in
the primary shard to be in the same state as the data on the replica. This will ensure us that
no data loss will happen. After we know Solr is ready, we can just run the DELETEREPLICA
command and remove the primary shard (if you are not familiar with the delete replica
command, refer to the Removing replicas recipe in this chapter). After the delete command
succeeds, we end up with collection built of two primary shards, one left intact and the
second one moved to a new node. We can now turn off the old node and still have the cluster
state clean. Of course, we should wait for the replication to finish (we can check the status in
the Solr administration UI).

In the Cloud

232

Using aliasing
Aliasing is the functionality of giving your collections more than a single name. It might seem
not very useful, but in fact this is very useful—for example, when dealing with time series data.
Imagine that you have data that stores logfiles and as the data is so large, you create a new
collection every day. In addition to this, you usually search for the latest or one week worth of
data. To simplify indexing and searching, we can use aliasing, and this recipe will show you
how to do that.

Getting ready
Before reading further, I would advise you all to read the Creating a new SolrCloud cluster
recipe of this chapter. This recipe will show you how to create a new SolrCloud cluster and
create a collection. We also assume that ZooKeeper is running on 192.168.1.10 and is
listening on port 2181. We already have the configuration called firstcollection stored
in ZooKeeper and we already have four SolrCloud nodes running as a cluster.

How to do it...
1. When we created our cluster, we started with a single collection that was created

using the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=logs_2014-09-01&numShards=2&replicationFactor=1&collection.
configName=firstcollection'

2. We then created our daily collection and now we need to add two aliases—one for
indexing and searching today's data (called today) and one for searching last week's
data (called lastWeek). We do this by running the following commands:
curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=today&collections=logs_2014-09-01'

curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=lastWeek&collections=logs_2014-09-01'

If we take a look at the tree view in the Solr admin panel and the aliases.json file,
we will see the following (you can do this by going to http://localhost:8983/
solr/#/~cloud?view=tree with your web browser and choosing the
mentioned file):

{"collection":{
 "lastWeek":"logs_2014-09-01",
 "today":"logs_2014-09-01"}}

Chapter 7

233

3. After the day has ended, we create a new daily collection by running the
following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=logs_2014-09-02&numShards=2&replicationFactor=1&collection.
configName=firstcollection'

4. Once done, we need to modify our aliases. We also need the today alias to point the
newly created collection and the lastWeek alias to cover two collections. We do this
by running the following commands:
curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=today&collections=logs_2014-09-02'

curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=lastWeek&collections=logs_2014-09-02,logs_2014-09-01'

5. If we again look at the aliases.json file, we will see the following:

{"collection":{
 "lastWeek":"logs_2014-09-02,logs_2014-09-01",
 "today":"logs_2014-09-02"}}

Of course, everything worked as it should and we can easily run queries and indexing requests.
For example, to take a look at the data from last week, we will run the following command:

curl 'localhost:8983/solr/lastWeek/select?q=*:*'

Now we can repeat the same steps daily and can continue using aliases, which will help you
to change a script or application every day.

How it works...
We started off by creating our first daily collection called logs_2014-09-01. This will be
used to index logs from September 1. Because we don't want our application to be forced
to roll the indices, we create aliases. The alias called today will be used for indexing and
searching the newest data; the second alias called lastWeek will be only used for searching.
One thing to remember is that we can use aliases for indexing only if an alias points to a
single index—which is true for our today alias.

However, let's get back to the commands used to create the aliases. Of course, we call the
Collections API (/admin/collections) and we tell Solr that we want an alias to be created
(action=CREATEALIAS). We specify the name of the alias using the name property and
finally we specify the name of collections (using the collections parameter) separated by
the comma character that will be covered by that alias. After the command execution ends,
you are allowed to use both the alias and the collection name.

In the Cloud

234

When the day ended, we changed the aliases. The one called today was changed to the
new collection—the logs_2014-09-02 one—and the second one called lastWeek was also
changed to include the newest collection. Note that Solr will overwrite the previously created
alias if we request to create an alias with a name already present.

Using routing
Routing is the ability to point queries and index it to a single shard of the collection. Let's
assume that we have a single collection and store data of hundreds of clients in that collection.
We can have a single collection per customer, but there are just too many of them, so such a
solution is not scalable at all. Instead we go with one collection and we keep the data of a single
customer in a single shard, so when querying we don't have to query all the shards. This allows
you to save resources when querying. This recipe will show you how to do it.

Getting ready
Before reading further, I advise you to read the Creating a new SolrCloud cluster recipe of
this chapter. This recipe will show you how to create a new SolrCloud cluster and create a
collection. We also assume that ZooKeeper is running on 192.168.1.10 and is listening on
port 2181 and we already have four SolrCloud nodes running as a cluster.

How to do it...
1. For the purpose of this recipe, we will use the following index structure

(we need to add the following section to our schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true"
stored="true" />
<field name="customer" type="string" indexed="true" stored="true"
/>

2. For a customer named as customer_1, we have the following data (stored in a file
called data_customer_1.xml):
<add>
 <doc>
 <field name="id">customer_1!1</field>
 <field name="title">Customer document 1</field>
 <field name="customer">customer_1</field>
 </doc>
 <doc>

Chapter 7

235

 <field name="id">customer_1!2</field>
 <field name="title">Customer document 2</field>
 <field name="customer">customer_1</field>
 </doc>
</add>

3. For a customer named as customer_2, we have the following data (stored in a file
called data_customer_2.xml):
<add>
 <doc>
 <field name="id">customer_2!3</field>
 <field name="title">Customer document</field>
 <field name="customer">customer_2</field>
 </doc>
</add>

4. We start by uploading our collection configuration to ZooKeeper. Assuming that we
have our configuration in /home/configuration/customers/conf, we run the
following command from the home directory of the first run Solr server (the zkcli.
sh script can be found in the example Solr deployment in the scripts/cloud-
scripts directory):
./zkcli.sh -cmd upconfig -zkhost 192.168.1.10:9983 -confdir /home/
configuration/customers/conf/ -confname customersConfig

5. After this, we can create our collection by running the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&name=cus
tomers&collection.configName=customersConfig&numShards=4&replicati
onfactor=1'

6. Now we can start indexing our data—we do this in the same way that we would
index the data without routing. For example, to index the two files, we will use the
following commands:
curl 'http://localhost:8983/solr/customers/update' --data-binary @
data_customer_1.xml -H 'Content-type:application/xml'

curl 'http://localhost:8983/solr/customers/update' --data-binary @
data_customer_2.xml -H 'Content-type:application/xml'

curl 'http://localhost:8983/solr/customers/update' --data-binary
'<commit/>' -H 'Content-type:application/xml'

In the Cloud

236

7. Now let's try to query the data. For example, if we would like to only get data
for a customer named as customer_2, we will run a standard query with the
route property set to the routing value for that customer. We also need a
proper filter query. So for a customer named as customer_2, the following
command will be used:

curl 'localhost:8983/solr/customers/select?q=*:*&fq=customer:custo
mer_2&_route_=customer_2!'

The response returned by Solr will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">13</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="fq">customer:customer_2</str>
 <str name="_route_">customer_2!</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0" maxScore="1.0">
 <doc>
 <str name="id">customer_2!3</str>
 <str name="title">Customer document</str>
 <str name="customer">customer_2</str>
 <long name="_version_">1478847760611409920</long>
 </doc>
 </result>
</response>

As we can see, everything worked as it should.

Chapter 7

237

How it works...
Our index structure is very simple. Each of the documents have three fields—one for the
document identifier (the id field), one for the title of the document (the title field), and the
customer field that will be used for filtering. What we have to look at is the data itself. Take a
closer look at the identifiers of documents. Each identifier is prefixed with the customer name
followed by the ! character. When using composite routing (when no router is specified during
collection creation), we can prefix the document identifier with a value and the ! character
after that, for example, cookbook1234!1. This means that Solr will use the cookbook1234
value to determine in which shard the document will be indexed (by default, Solr uses the
document identifier to determine that). The thing is that Solr will put the documents with the
same routing value in the same shard. This means that data for a single customer will be put
in the same shard in our case.

There is one additional thing to remember though—you usually end up with more routing
values than what you have shards. In our case, we have four shards, but we might have
hundreds of clients. Because of this, we need to remember about filtering during querying.

Next, we uploaded the configuration to ZooKeeper and finished creating the collection and
then indexed our data. As you can see, there is nothing new in the indexation command.
That's because nothing additional is needed while indexing apart from prefixing document
identifiers with the routing value.

Finally, while querying, we need two things—the filter that will limit the data to only that
customer (because we might have more than a single customer data in a single shard) and
the second thing is the routing value. The routing value is the same as we used for prefixing
document identifiers with the ! character. We do this by adding the _route_ property to our
query. So for example, if we want to point our query to a shard where data for customer_2
was indexed, we should add _route_=customer_2! to our query.

Also note that while using a composite router, Solr supports up to two levels of nesting, for
example, _route_=customer_2!USA!1 is allowed.

8
Using Additional

Functionalities

In this chapter, we will cover the following topics:

 f Finding similar documents

 f Highlighting fragments found in documents

 f Efficient highlighting

 f Using versioning

 f Retrieving information about the index structure

 f Altering the index structure on a live collection

 f Grouping documents by the field value

 f Grouping documents by the query value

 f Grouping documents by the function value

 f Efficient documents grouping using the post filter

Introduction
There are many features of Solr that we don't use every day. Highlighting words, word ignoring,
or statistics computation might not be useful in day-to-day activities, but they can come in
handy in many situations. In this chapter, I'll try to show you how to overcome some typical
problems that can be fixed using some of the Solr functionalities. In addition to this, we will
see how to use the Solr grouping mechanism in order to get documents that have some fields
in common.

Using Additional Functionalities

240

Finding similar documents
Imagine a situation where you want to show documents similar to those that were returned
by Solr. For example, let's assume that we have an e-commerce library, and we want to show
users similar books to the ones that they found while using your application. Of course, we
can use machine learning and one of the collaborative filtering algorithms, but we can also
use Solr for that. This recipe will show you how to do this.

How to do it...
1. Let's start with the following index structure (just add this to your schema.xml file):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" termVectors="true" />

2. Next, let's index the following test data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3. Now let's assume that our hypothetical user wants to find books that have cookbook
and second in their names. However, in addition to the results for the user query,
we would also like to show books that are similar to the query. To do this, we will
send the following query:

http://localhost:8983/solr/cookbook/select?q=cookbook+second&mm=
2&qf=name&defType=edismax&mlt=true&mlt.fl=name&mlt.mintf=1&mlt.
mindf=1

Chapter 8

241

The results returned by Solr for the preceding query are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3</int>
 <lst name="params">
 <str name="mm">2</str>
 <str name="q">cookbook second</str>
 <str name="defType">edismax</str>
 <str name="mlt">true</str>
 <str name="qf">name</str>
 <str name="mlt.fl">name</str>
 <str name="mlt.mintf">1</str>
 <str name="mlt.mindf">1</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Solr Cookbook second edition</str>
 <long name="_version_">1481427182978859008</long></doc>
 </result>
 <lst name="moreLikeThis">
 <result name="2" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr Cookbook first edition</str>
 <long name="_version_">1481427182903361536</long></doc>
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 <long name="_version_">1481427182979907585</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Solr by example first edition</str>
 <long name="_version_">1481427182979907584</long></doc>
 </result>
 </lst>
</response>

Now let's see how it works.

Using Additional Functionalities

242

How it works...
As you can see, the index structure and data are really simple. One thing that we need to
notice is the termVectors attribute, which is set to true in the name field definition. To
achieve the best results with this component, we should always enable term vectors for fields
which we plan to use more, such as this functionality. It enables more detailed computation
of similarity between documents and will show more similar results. If term vectors are not
present, Solr will use data from the stored fields.

Now let's take a look at the query. As you can see, we have added some additional
parameters besides the standard q one (and the ones such as mm and defType, which
specify how our query should be handled). The mlt=true parameter tells you that we want
to add the MoreLikeThis component to the result processing. The mlt.fl parameter
specifies which fields we want to use with the MoreLikeThis component. In our case, we
will use the name field. The mlt.mintf parameter tells Solr to ignore terms from the source
document (the ones from the original result list) with the term frequency below the given
value. In our case, we don't want to include the terms that will have the frequency lower than
1. The last parameter, mlt.mindf, tells Solr that words that appear in less than the value
of the parameter documents should be ignored. In our case, we want to consider words that
appear in at least one document.

The last thing is the search results. As you can see, there is an additional section (<lst
name="moreLikeThis">), which is responsible for showing us the MoreLikeThis
component results. For each document in the results, there is one more similar to this section
added to the response. In our case, Solr added a section for the document with the unique
identifier 2 (<result name="2" numFound="3" start="0">) and there were three
similar documents found. The value of the id attribute is assigned the value of the unique
identifier of the document that the similar documents are calculated for.

Highlighting fragments found in documents
Imagine a situation where you want show your users the words that were matching from the
document, which were shown in the results list. For example, you want to show which words in
the book name were matched and displayed to the user. Do you have to store the documents
and do the matching on the application side? The answer is no—we can force Solr to do this
for us, and this recipe will show you how to do this.

Chapter 8

243

How to do it...
1. We will begin with creating the following index structure (just add the following fields

to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />

2. For the purpose of this recipe, we will use the following test data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3. Let's assume that our user is searching for the word book. To tell Solr that we want to
highlight the matches, we will send the following query:

http://localhost:8983/solr/cookbook/select?q=name:book&hl.
fl=name&hl=true

The response from Solr should be similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">9</int>
 <lst name="params">

Using Additional Functionalities

244

 <str name="q">name:book</str>
 <str name="hl">true</str>
 <str name="hl.fl">name</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 <long name="_version_">1481428771125854209</long></doc>
 </result>
 <lst name="highlighting">
 <lst name="4">
 <arr name="name">
 <str>My book second edition</str>
 </arr>
 </lst>
 </lst>
</response>

As you can see, besides the normal results list, we got the highlighting results (the highlighting
results are grouped by the <lst name="highlighting"> XML tag). The word book is
surrounded with the and HTML tags (of course, they escaped because the result
is in the XML format). So everything is working as intended. Now let's see how it works.

How it works...
As you can see, the index structure and the data are really simple, so I'll skip those parts. Note
that in order to use the highlighting mechanism, your fields should be stored and should not
analyzed by aggressive filters (such as stemming). Otherwise, the highlighting results can be
misleading. The example of such a behavior can be simple—imagine the user types the word
bought in the search but Solr highlighted the word buy because of the stemming algorithm.

The query is also not complicated. We can see the standard q parameter that passes the
query to Solr. However, there is also one additional parameter, hl set to true. This parameter
tells Solr to include the highlighting component results to the results list. In addition to this,
we included the hl.fl parameter, and we set it to name. This parameter specifies which
field Solr should use for highlighting. We can also include more fields in this parameter—each
should be separated by a comma character.

As you can see in the results list, in addition to the standard results, there is a new
section—<lst name="highlighting">, which contains the highlighting results. For every
document, in our case the only one found (<lst name="4"> means that the highlighting
result is presented for the document with the unique identifier value of 4), there is a list
of fields that contain the sample data with the matched word (or words) highlighted. By
highlighted, I mean surrounded with the HTML tag, in this case the tag.

Chapter 8

245

There's more...
There are a few things that can be useful while using the highlighting mechanism.

Changing the default HTML tags that surround the matched
content
There are situations where you would like to change the default and HTML tags
to the ones of your choice. To do this, you should add the hl.simple.pre parameter and
the hl.simple.post parameter. The first one specifies the prefix that will be added in front
of the matched word, and the second one specifies the postfix that will be added after the
matched word. For example, if you would like to surround the matched word with the and
 HTML tags, the query will look similar to this:

http://localhost:8983/solr/cookbook/select?q=name:book&hl=true&hl.
fl=name&hl.simple.pre=&hl.simple.post=

Efficient highlighting
In certain situations, the standard highlighting mechanism might not be performing as you
would like it to be. For example, you might have long text fields and want the highlighting
mechanism to work with them. In such cases, there is a need of another, more efficient
highlighter. Thankfully, there is a highlighter that is very efficient, and this recipe will show
you how to use it.

How to do it...
1. We begin with the index structure configuration, which looks as follows (just add the

following section to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" termVectors="true" termPositions="true"
termOffsets="true" />

2. The next step is to index the data. We will use the following test data for the purpose
of this recipe:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr Cookbook first edition</field>
 </doc>
 <doc>

Using Additional Functionalities

246

 <field name="id">2</field>
 <field name="name">Solr Cookbook second edition</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Solr by example first edition</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">My book second edition</field>
 </doc>
</add>

3. Let's assume that our user is searching for the word book. To tell Solr that we want to
highlight the matches, we will send the following query:

http://localhost:8983/solr/cookbook/select?q=name:book&hl=true&hl.
fl=name&hl.useFastVectorHighlighter=true

The response from Solr should be similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">name:book</str>
 <str name="hl.useFastVectorHighlighter">true</str>
 <str name="hl">true</str>
 <str name="hl.fl">name</str>
 </lst>
 </lst>
 <result name="response" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="name">My book second edition</str>
 <long name="_version_">1481429570147057665</long></doc>
 </result>
 <lst name="highlighting">
 <lst name="4">
 <arr name="name">
 <str>My book second edition</str>
 </arr>
 </lst>
 </lst>
</response>

As you can see, everything is working as intended. Now let's see how it works.

Chapter 8

247

How it works...
As you can see, the index structure and the data are really simple, but there is a difference
between using the standard highlighter and the new FastVectorHighlighting highlighter.
To use the new highlighting mechanism, you need to store the information about term vectors,
terms positions, and offsets. This is done by adding the following attributes to the field
definition or to the type definition: termVectors="true", termPositions="true",
and termOffsets="true".

Note that in order to use the highlighting mechanism, your fields should be stored and
should not analyzed by aggressive filters (such as stemming). Otherwise, the highlighting
results can be a misleading. The example of such a behavior can be simple—imagine the
user types the word bought in the search but Solr highlighted the word buy because of
the stemming algorithm.

The query is also not complicated. We can see the standard q parameter that passes the
query to Solr. But there is also one additional parameter, hl set to true. This parameter
tells Solr to include the highlighting component results to the results list. We have also
included the hl.fl parameter that informs Solr about the field that the highlighting should
be performed on. We set this parameter to name, so the highlighting is done on the name
field. We can also pass multiple field names to that parameter—they should be concatenated
by a comma character. In addition to this, we add the parameter to tell Solr to use
FastVectorHighlighting—hl.useFastVectorHighlighter=true.

As you can see in the results list, in addition to the standard results, there is a new
section—<lst name="highlighting">, which contains the highlighting results. For every
document, in our case, the only one found (<lst name="4"> means that the highlighting
result is presented for the document with the unique identifier value of 4), there is a list
of fields that contain the sample data with the matched word (or words) highlighted. By
highlighted, I mean surrounded with the HTML tag, in this case the tag.

Using versioning
When working with NoSQL solutions such as Solr, we usually don't have the notion of
transaction and we can't predict the sequence in which documents will be received by Solr
and indexed especially when indexing is done from multiple threads and machines. However,
in certain cases, such a functionality is needed at least to some degree. For example, we don't
want to run an update on a document that was updated between the time period we read the
document and sent the update. This recipe will show you how to avoid such situations.

Using Additional Functionalities

248

Getting ready
This recipe uses the functionality discussed in the Updating document fields recipe from
Chapter 2, Indexing Your Data. Read this recipe before proceeding.

How to do it...
For the purpose of this recipe, we assume that we have an e-commerce library. When
updating prices of the books, we need to read the document to get the current price, update
it in the UI, and index the document. However, it can happen that the same book is being
updated by different people and we should reject concurrent updates.

1. We will start with the index structure. For the purpose of this recipe, we assume that
we have the following fields in the schema.xml file:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="price" type="tfloat" indexed="true" stored="true" />
<field name="_version_" type="long" indexed="true" stored="true"/>

2. The next step is to index the test data, which looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="price">39.99</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 <field name="price">19.99</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">ElasticSearch book</field>
 <field name="price">49.99</field>
 </doc>
</add>

Chapter 8

249

3. Now if we would like to get our books and update them, we will just run a simple
search similar to this:
http://localhost:8983/solr/cookbook/select?q=*:*

The response to the preceding query will look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <float name="price">39.99</float>
 <long name="_version_">1481498739861356544</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <float name="price">19.99</float>
 <long name="_version_">1481498739931611136</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">ElasticSearch book</str>
 <float name="price">49.99</float>
 <long name="_version_">1481498739932659712</long></doc>
 </result>
</response>

4. Now let's update the book called Solr cookbook, the one with the id field
equal to 1. To do this, we will run the following command (note that the values
of the _version_ field will be different if you run the example on your Solr,
so adjust it accordingly):

curl 'localhost:8983/solr/cookbook/update?commit=true&_
version_=1481498739861356544' -H 'Content-type:application/json'
-d '[{"id":"1","price":{"set":29.99}}]'

Using Additional Functionalities

250

If everything goes well, our book will be updated and we should see the following
response returned by Solr:
{"responseHeader":{"status":0,"QTime":79}}

However, if someone has already modified the document, we will see a response
similar to the following one:

{"responseHeader":{"status":409,"QTime":4},"error":{"msg":"version
conflict for 1 expected=1481498739861356544 actual=148149982428816
9984","code":409}}

As we can see, the optimistic locking works. Let's now see how it works.

How it works...
To keep the recipe as simple as I can, I decided to keep the index structure simple. It consist
of three fields—one responsible for document identifier (the id field), one used to hold
the name of the book (the name field), and the last one used to hold the price of the book
(the price field). Of course, we also have _version_, which is an internal field used by Solr
for versioning, and it is required for SolrCloud deployments. Our example data is also very
simple, so I'll skip discussing it.

As you can see in the response along with the stored fields in the results, Solr returns the
version field with a generated value. We use this value during the update request that
we send to Solr. We set the _version_ field value in the request to the same value that we
got in the search results. By doing this, we tell Solr that we expect it to update the document
with a certain version.

The logic behind the _version_ field is as follows:

 f If the _version_ parameter is set to a value greater than 1 during the update, Solr
will require the document to have the same version as the value of the parameter. If
the versions don't match, the update will be rejected.

 f If the _version_ parameter is set to 1 during the update, Solr requires the updated
document to exist and doesn't care about a specific version. If the document doesn't
exist, the update will be rejected.

 f If the _version_ parameter is set to 0 during the update, Solr doesn't put any
constrains on the document in the index. If the document exists, it will be updated;
if the document doesn't exist, it will be created.

 f If the _version_ parameter is set to a value lower than 0 during the update,
Solr will require the document not to exist in the index as no such document will
be created. If the document exists, the update will be rejected.

As you can see, the second update that we made using the same _version_ value was not
successful. This is because the document has already been updated and its version is already
different. This is exactly what we are aiming for.

Chapter 8

251

Retrieving information about the index
structure

Until Solr 4.2, we had to look at the schema.xml file to see the full structure of the
document. With the release of Solr 4.2, we got the ability to use the so-called Schema API to
read the schema of collections that are running inside the cluster or on a node. In this recipe,
we will take a look at the possibilities of reading the Solr schema.

How to do it...
The actual schema.xml file that we will use for reading doesn't really matter, as we will
not focus on the actual index structure, but the API and how to get the particular information
from Solr.

We assume that we are using a collection named cookbook.

1. We will start with retrieving all the fields defined in our schema.xml file. To do this,
we will run the following query:
http://localhost:8983/solr/cookbook/schema/fields

The response to the preceding command will be as follows:

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "fields":[{
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"id",
 "type":"string",
 "indexed":true,
 "required":true,
 "stored":true,
 "uniqueKey":true},
 {

Using Additional Functionalities

252

 "name":"name",
 "type":"text_general",
 "indexed":true,
 "stored":true},
 {
 "name":"price",
 "type":"tfloat",
 "indexed":true,
 "stored":true}]}

2. If we would like to get the data for a single field, we can do that. For example,
to get the configuration for the price field, we only need to append /price to the
previous command. So the final command will look as follows:
http://localhost:8983/solr/cookbook/schema/fields/price

3. Next, let's take a look at how to get the information about field types defined in our
schema. If we would like to get information about all the field types defined, we will
run the following request:
http://localhost:8983/solr/cookbook/schema/fieldtypes

The response to this request will be as follows:

{
 "responseHeader":{
 "status":0,
 "QTime":5},
 "fieldTypes":[{
 "name":"binary",
 "class":"solr.BinaryField",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"boolean",
 "class":"solr.BoolField",
 "sortMissingLast":true,
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"date",
 "class":"solr.TrieDateField",
 "positionIncrementGap":"0",
 "precisionStep":"0",

Chapter 8

253

 "fields":[],
 "dynamicFields":[]},
 {
 "name":"double",
 "class":"solr.TrieDoubleField",
 "positionIncrementGap":"0",
 "precisionStep":"0",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"float",
 "class":"solr.TrieFloatField",
 "positionIncrementGap":"0",
 "precisionStep":"4",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"int",
 "class":"solr.TrieIntField",
 "positionIncrementGap":"0",
 "precisionStep":"0",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"long",
 "class":"solr.TrieLongField",
 "positionIncrementGap":"0",
 "precisionStep":"0",
 "fields":["_version_"],
 "dynamicFields":[]},
 {
 "name":"random",
 "class":"solr.RandomSortField",
 "indexed":true,
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"string",
 "class":"solr.StrField",
 "sortMissingLast":true,
"fields":["id"],

Using Additional Functionalities

254

 "dynamicFields":[]},
 {
 "name":"tdate",
 "class":"solr.TrieDateField",
 "positionIncrementGap":"0",
 "precisionStep":"6",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"tdouble",
 "class":"solr.TrieDoubleField",
 "positionIncrementGap":"0",
 "precisionStep":"8",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"text_general",
 "class":"solr.TextField",
 "positionIncrementGap":"100",
 "indexAnalyzer":{
 "tokenizer":{
 "class":"solr.StandardTokenizerFactory"},
 "filters":[{
 "class":"solr.LowerCaseFilterFactory"}]},
 "queryAnalyzer":{
 "tokenizer":{
 "class":"solr.StandardTokenizerFactory"},
 "filters":[{
 "class":"solr.LowerCaseFilterFactory"}]},
 "fields":["name"],
 "dynamicFields":[]},
 {
 "name":"tfloat",
 "class":"solr.TrieFloatField",
 "positionIncrementGap":"0",
 "precisionStep":"8",
 "fields":["price"],
 "dynamicFields":[]},
 {

Chapter 8

255

 "name":"tint",
 "class":"solr.TrieIntField",
 "positionIncrementGap":"0",
 "precisionStep":"8",
 "fields":[],
 "dynamicFields":[]},
 {
 "name":"tlong",
 "class":"solr.TrieLongField",
 "positionIncrementGap":"0",
 "precisionStep":"8",
 "fields":[],
 "dynamicFields":[]}]}

4. We can also get information about a single field type, which is similar to how we got
information about a single field. To do this, we just append the name of the type we
are interested in to the preceding command. So, if we would like to get information
about the tint field, we will run the following command:

http://localhost:8983/solr/cookbook/schema/fieldtypes/tint

As we can see, we can get all of the information related to fields and their types. In addition to
this, we can get information about:

 f Schema name by running http://localhost:8983/solr/cookbook/schema/
name

 f Schema version by running http://localhost:8983/solr/cookbook/
schema/version

 f Defined unique key by running http://localhost:8983/solr/cookbook/
schema/uniquekey

 f Defined similarity by running http://localhost:8983/solr/cookbook/
schema/similarity

 f Default operator by running http://localhost:8983/solr/cookbook/
schema/solrqueryparser/defaultoperator

Finally, if we would like to retrieve the information about the whole schema, we can run the
following command:

http://localhost:8983/solr/cookbook/schema

Now let's see how it works.

Using Additional Functionalities

256

How it works...
We start with the command that retrieves information about the fields defined in the schema.
xml file. It is very simple as it is only a GET HTTP request to the /schema/fields endpoint.
We are also required to specify which collection we are interested in—in our case, this is
collection1. The results returned by Solr contain a standard header and an array of
fields. Each field contains the standard information such as the name of the field (the name
property), type (the type property), whether the field is indexed (the indexed property),
whether the field is required (the required property), whether the field is stored (the stored
property), and whether the field is defined as the unique key (the uniqueKey property). If
a property is set to false, Solr will not return it. The same information is returned when
we request information about a single field—of course, a single field related information is
returned instead of an array of fields.

When it comes to retrieving the information about field types, the situation is similar to how we
request information about fields. We run a GET HTTP request to /schema/fieldtypes and
we need to specify the collection as well. The returned information differs for different field
types. Usually, we will get the name of the type (the name property), the class implementing
the type (the class property), position increment gap (the positionIncrementGap
property), precision step for numeric fields (the precisionStep property), array of fields
using that type (the fields property), and an array of dynamic fields using that type (the
dynamicFields property).

In addition to the preceding properties, for the more complex types, we will get information
about the analyzer used during indexation (the indexAnalyzer property) and the analyzer
used during querying (the queryAnalyzer property). Each of the analyzers will be
characterized by tokenizer (the tokenizer property) and an array of filters (the filters
property)—char filters can also be present. In addition to this, each tokenizer, filter, and char filer
can include their own properties, but we will skip these. The same information is returned when
we request information about a single field type, of course, only about the requested type.

The rest of the Schema API calls are pretty easy to understand, so I'll skip discussing them.

There's more...
There is one more thing that I would like to mention.

Retrieving the index structure information in XML
As we can see, by default, Solr returns the data about the index structure in JSON. We can
force Solr to return the XML format instead of JSON. We do this by adding the wt=xml
parameter to our requests; for example:

http://localhost:8983/solr/cookbook/schema/fields?wt=xml

Chapter 8

257

Retrieving information about dynamic fields
In addition to retrieving fields-related information, we can also retrieve information about
dynamic fields defined in the schema.xml file in the same way as we retrieve data for
standard fields. To do this, we will run the following command:

http://localhost:8983/solr/cookbook/schema/dynamicfields

Retrieving information about copy fields
In addition to retrieving information related to fields and dynamic fields, we can also retrieve
information about copy fields defined in the schema.xml file in the same way as we retrieve
data for standard fields. To do this, we will run the following command:

http://localhost:8983/solr/cookbook/schema/copyfields

See also
 f The full information about the Schema API in Solr can be found in the official Solr

documentation available at https://cwiki.apache.org/confluence/
display/solr/Schema+API

Altering the index structure on a live
collection

The ability to push a new index structure definition (the schema.xml file) to ZooKeeper is
nice, but it requires the collection to be reloaded. The same goes for Solr, when it works in
noncloud mode, we need to reload a core for Solr to see the changes. This is also not super
convenient when you would like to change the index structure from outside Solr. That is why
with the release of Solr 4.3, the Schema API allows you to alter the index structure using
simple HTTP-based requests. In this recipe, we will take a look at how to use the Schema API
to alter our index structure.

Getting ready
Before continuing with the recipe, read the Retrieving information about the index structure
recipe discussed earlier in this chapter, as it provides information on how to read index
structure information using Solr Schema API.

https://cwiki.apache.org/confluence/display/solr/Schema+API
https://cwiki.apache.org/confluence/display/solr/Schema+API

Using Additional Functionalities

258

How to do it...
For the purpose of this recipe, let's assume that we have a very basic index structure that we
want to add a field to and a copy field to.

We assume that we are using a collection named cookbook.

1. We will start with the following index structure (just add the following to your
schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />

2. In addition to this, we need the following entry in the solrconfig.xml file:
<schemaFactory class="ManagedIndexSchemaFactory">
 <bool name="mutable">true</bool>
 <str name="managedSchemaResourceName">managed-schema</str>
</schemaFactory>

3. Now, let's try to add a copy of the name field that we will use for sorting, so let's call
it name_sort. To do this, we need to use the following command (note the usage of
POST HTTP method):
curl -XPOST 'localhost:8983/solr/cookbook/schema/fields' -H
'Content-type:application/json' -d '[

 {

 "name" : "name_sort",

 "type" : "string",

 "stored" : "false",

 "indexed" : "true",

 "docValues" : "false",

 "default" : "",

 "copyFields" : []

 }

]'

If everything goes well, you should see a response as follows:

{
 "responseHeader":{
 "status":0,
 "QTime":14}}

Chapter 8

259

4. Now let's try adding a new copy field definition so that the content of the name
field is automatically copied to name_sort. To do this, we need to run the
following command:
curl -XPOST 'localhost:8983/solr/cookbook/schema/copyfields' -H
'Content-type:application/json' -d '[

 {

 "source" : "name",

 "dest" : [

 "name_sort"

]

 }

]'

If everything goes well, Solr should respond with something similar to this:

{
 "responseHeader":{
 "status":0,
 "QTime":14}}

5. Let's now run the following command to retrieve our field's definition so that we can
check what was done. We do this by running the following command:
curl http://localhost:8983/solr/cookbook/schema/fields

The response should look as follows:

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "fields":[{
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"id",
 "type":"string",
 "indexed":true,
 "required":true,
 "stored":true,
 "uniqueKey":true},
 {

Using Additional Functionalities

260

 "name":"name",
 "type":"text_general",
 "indexed":true,
 "stored":true},
 {
 "name":"name_sort",
 "type":"string",
 "indexed":true,
 "default":"",
 "docValues":false,
 "stored":false}]}

6. Now let's take a look at the copy field's definition by running the following command:

curl http://localhost:8983/solr/cookbook/schema/copyfields

The Solr response should look as follows:

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "copyFields":[{
 "source":"name",
 "dest":"name_sort"}]}

As we can see, everything is working as it should. Now let's check what Solr does to make
it work.

Also remember that the already indexed documents won't be modified
until you reindex the data.

How it works...
The index structure is very simple as it only contains two fields. The first field is the unique
identifier of the document (the id field) and the second field is the name of the document
(the name field).

To use the Schema API to update the index structure definition, Solr requires you to use the
so-called managed schema. What Solr does is that it reads the schema definition that the
collection was created with, changes its name on the local filesystem, and starts taking care
of that schema. One thing that you need to remember is that you shouldn't try to change the
managed schema manually because that might lead to problems such as losing changes
done to the schema.

Chapter 8

261

To configure the managed schema, we need to add or alter the schemaFactory section of
the solrconfig.xml file. We have to specify two properties there. The mutable property
set to true means that the schema.xml file will be managed by Solr. The second property,
managedSchemaResourceName specifies the name of the resource that Solr will use to
load the index structure instead of the schema.xml file. This property can be set to whatever
value we want, but it can't take the value of schema.xml. If the resource specified by the
managedSchemaResourceName property does not exist, Solr will load the data from the
schema.xml and rename the schema.xml file to schema.xml.bak. We are now ready to
use the Schema API to change our index structure definition.

The first thing that we tried is to add a new field to our managed schema. To do this, we
send an HTTP POST request to the /schema/fields REST endpoint of our collection
(which is collection1 in our case). During the writing of the book, the request body that
contains the fields definition had to be JSON, and because of this, we specify the content
type as Content-type:application/json. This is required. The request body contains
information about fields that we want to add—we provide an array of field definitions. In our
case, it contains a single field definition, but you can provide multiple if you want. Each field
definition can take the following properties:

 f name: This is the name of the field we want to create

 f type: This is the type of the field we want to create

 f stored: This specifies whether the field should be stored or not and can take the
value of true or false

 f indexed: This specifies whether the fields should be indexed or not and can take the
value of true or false

 f docValues: This specifies whether the field should be using doc values and can take
the value of true or false

 f default: This is the default value for the field

 f copyFields: This is an array of names of fields we want our field to be copied to

So we created a new field called name_sort that is of type string, which is not stored, is
indexed and doesn't use doc values. As we can see, Solr responded with a proper response,
which means that everything went well.

Adding a copy field is very similar to adding a field, but simpler. We need to run a POST
HTTP request to the /schema/copyfields REST endpoint of our collection (which is
collection1 in our case). We also need to provide proper content type, which is again JSON
(so Content-type:application/json needs to be present in the request header). The
request body is again an array of copy field definitions and again, we only need to define
a single copy field, although we are allowed to create multiples of them. Each copy field
definition requires a source field specified by the source property. This is the field from which
data will be copied.

Using Additional Functionalities

262

The second required property is the dest one, which is an array of field names, that the field
defined in the source property will be copied to. So in our case, the contents of the name
field will be copied to the name_sort field. Again, after running the command, we need to
cross-check that everything went well.

Finally, we checked the index structure using the read abilities of Schema API, but we already
discussed that in the Retrieving information about the index structure recipe earlier in this
chapter, so if you haven't read that, do read it.

See also
 f Solr allows you to use PUT HTTP method to add a single field to our index structure,

but using PUT requires a bit different request body. Refer to the official Apache
Solr documentation available at https://cwiki.apache.org/confluence/
display/solr/Schema+API if you are interested.

Grouping documents by the field value
Imagine a situation where your dataset is divided into different categories, subcategories, price
ranges, and things like that. What if you would like to not only get information about counts
in such groups (with the use of faceting), but you would only like to show the most relevant
document in each of the groups. In such cases, a Solr grouping mechanism comes in handy.
This recipe will show you how to group your documents on the basis of the value of the field.

How to do it...
1. Let's start with the index structure. Let's assume that we have the following fields in

our index (just add the following section to the schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="price" type="tfloat" indexed="true" stored="true" />

2. The example data, which we are going to index, looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="category">it</field>
 <field name="price">39.99</field>

https://cwiki.apache.org/confluence/display/solr/Schema+API
https://cwiki.apache.org/confluence/display/solr/Schema+API

Chapter 8

263

 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 <field name="category">mechanics</field>
 <field name="price">19.99</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">ElasticSearch book</field>
 <field name="category">it</field>
 <field name="price">49.99</field>
 </doc>
</add>

3. Let's assume that we would like to get our data divided into groups on the basis of
their category. In order to do this, we will send the following query to Solr:

http://localhost:8983/solr/cookbook/select?q=*:*&group=true&group.
field=category

The results returned by the preceding query are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="group.field">category</str>
 <str name="group">true</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="category">
 <int name="matches">3</int>
 <arr name="groups">
 <lst>
 <str name="groupValue">it</str>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>

Using Additional Functionalities

264

 <float name="price">39.99</float>
 <long name="_version_">1481430286414643200</long></doc>
 </result>
 </lst>
 <lst>
 <str name="groupValue">mechanics</str>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 <long name="_version_">1481430286497480704</long></doc>
 </result>
 </lst>
 </arr>
 </lst>
 </lst>
</response>

As you can see, the grouped results are different from the ones returned during usual search,
but as you can see we got a single document per group—it worked. So let's see how it works.

How it works...
Our index structure is very simple. It consist of four fields—one responsible for document
identifier (the id field), one used to hold the name of the book (the name field), its category
(the category field), and the last one used to hold the price of the book (the price field).
Our example data is also very simple, but notice that the first and third book belongs to the
same it category and the second book belongs to the mechanics category.

Let's take a look at our query now. We said that we want to have our documents divided on
the basis of contents of the category field. In order to do this, we added a new parameter
called group set to true. This tells Solr that we want to enable the grouping functionality.
Similar to faceting, we added a second parameter and we are not familiar with the group.
field parameter, which is set to the name of the field, that holds the books category. That's
all we need. Of course, we can have more than a single field that Solr will use for grouping—we
just need to add multiple group.field parameters to our query.

If we take a look at the results returned by Solr, they are a bit different than the usual results.
You can see the usual response header; however, the resulting groups are returned in the <lst
name="grouped"> tag. The <lst name="category"> tag is generated for each group.
field parameter passed in the query—this time it tells you that the following results will be
for the category field. The <int name="matches">3</int> tag informs you how many
documents were found for our query—this is the same as numFound during our usual query.

Chapter 8

265

Next, we have the groups array that holds the information about the groups that were
created by Solr in the results. Each group is described by its value, that is, the <str
name="groupValue">it</str> section for the first group means that all documents in
that group have the it value in the field used for grouping (which is category in our case).
In the result tag, we can see the documents returned for the group. By default, Solr will
return the most relevant document for each group. I'll skip commenting on the result tag
because it is almost identical to the results Solr return for a nongrouped query, and we are
familiar with those, right?

There's more...
There are two things more about grouping on the basis of field values I would like to
write about.

Having more than a single document in a group
Sometimes, you might need to return more than a single document in a group. In order to
do this, you need to add the group.limit parameter and set it to the maximum number
of documents you want to have. For example, if we would like to have 10 documents per
group of results, we can send the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&group=true&group.
field=category&group.limit=10

Modifying the number of returned groups
Sometimes, you might need to return more or less groups than the default 10. Solr allows
you to do this and it is very simple actually. What we need to do is add the rows parameter
to our query with the desired maximum number of groups in the response. For example,
if we would like to have maximum two groups, we can use the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&group=true&group.
field=category&rows=2

Grouping documents by the query value
Sometimes, grouping results on the basis of field values is not enough. For example, imagine
that we would like to group documents in some kind of price brackets—show the most relevant
document for documents with the price range of 1.0 to 19.99, a document for documents
with the price range of 20.00 to 50.0, and so on. Solr allows you to group results on the basis
of queries results. This recipe will show you how to do that.

Using Additional Functionalities

266

Getting ready
In this chapter, we will use the same index structure and test data as we used in the Grouping
documents by the field value recipe in this chapter. Read it before we continue.

How to do it…
1. Because we are reusing the data and index structure from the Grouping documents

by the field value recipe, we can start with the query. In order to group our documents
on the basis of query results, we can send the following query:
http://localhost:8983/solr/cookbook/select?q=*:*&group=true&group.
query=price:[20.0+TO+50.0]&group.query=price:[1.0+TO+19.99]

2. The results of the preceding query looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 <arr name="group.query">
 <str>price:[20.0 TO 50.0]</str>
 <str>price:[1.0 TO 19.99]</str>
 </arr>
 <str name="group">true</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="price:[20.0 TO 50.0]">
 <int name="matches">3</int>
 <result name="doclist" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>
 <float name="price">39.99</float>
 <long name="_version_">1481430286414643200</long></doc>
 </result>
 </lst>
 <lst name="price:[1.0 TO 19.99]">
 <int name="matches">3</int>

Chapter 8

267

 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 <long name="_version_">1481430286497480704</long></doc>
 </result>
 </lst>
 </lst>
</response>

So now let's take a look how it works.

How it works...
As you can see, in the query, we tell Solr that we want to use the grouping functionality
using the group=true parameter. In addition to this, we specified that we want to have
two groups calculated on the basis of queries. The first group should contain documents
that match the following range query price=[20.0+TO+50.00] (the group.
query=price:[20.0+TO+50.00] parameter) and the second group should contain
documents that match the following range query price=[1.0+TO+19.99] (the group.
query=price:[1.0+TO+19.99] parameter).

If you look at the results, they are very similar to the ones for grouping on the basis of
 field values. The only difference is in the name of groups. When using the field values for
grouping, groups were named after the used field names. However, when using queries
to group documents, groups are named as our grouping queries. So in our case, we have
two groups—one named price:[20.0 TO 50.0] (the <lst name="price:[20.0
TO 50.0]"> tag) and the second one called price:[1.0+TO+19.99] (the <lst
name="price:[1.0 TO 19.99]"> tag).

Grouping documents by the function value
Imagine that you would like to group results not by using queries or field contents, but instead
you would like to use a value returned by a function query. An example use case can be
grouping documents on the basis of their distance from a point. Sounds nice right? Solr allows
that and in this recipe, we will see how we can use a simple function query to group results.

Getting ready
In this recipe, we will use the knowledge that we've gained in the Grouping documents by the
field value recipe in this chapter. Read the mentioned recipe before we continue.

Using Additional Functionalities

268

How to do it...
1. Let's start with the following index structure (just add the following fields definition to

your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="geo" type="location" indexed="true" stored="true" />
<dynamicField name="*_coordinate" type="tdouble" indexed="true"
stored="false" />

2. Our test data that we want to index looks similar to this:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Company one</field>
 <field name="geo">10.1,10.1</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Company two</field>
 <field name="geo">11.1,11.1</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Company three</field>
 <field name="geo">12.2,12.2</field>
 </doc>
</add>

In addition to this, we also need to define the following field type in the schema.xml
file:

<fieldType name="location" class="solr.LatLonType"
subFieldSuffix="_coordinate"/>

3. I assume that we would like to have our documents grouped on the basis of the
distance from a given point (in real life, we would probably like to have some kind of
brackets calculated, but let's skip that for now). For the purpose of this recipe, we
will assume that we want to use the North Pole as our geographical point. In order to
achieve what we want, we will send the following query:
http://localhost:8983/solr/cookbook/select?q=*:*&group=true&group.
func=geodist(geo,0.0,0.0)

Chapter 8

269

4. The following results were returned by Solr after running the preceding query:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="group.func">geodist(geo,0.0,0.0)</str>
 <str name="group">true</str>
 </lst>
 </lst>
 <lst name="grouped">
 <lst name="geodist(geo,0.0,0.0)">
 <int name="matches">3</int>
 <arr name="groups">
 <lst>
 <double name="groupValue">1584.126028923632</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Company one</str>
 <str name="geo">10.1,10.1</str>
 <long name="_version_">1481432265913270272</long></doc>
 </result>
 </lst>
 <lst>
 <double name="groupValue">1740.0195023531824</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Company two</str>
 <str name="geo">11.1,11.1</str>
 <long name="_version_">1481432265990864896</long></doc>
 </result>
 </lst>
 <lst>
 <double name="groupValue">1911.187477467305</double>
 <result name="doclist" numFound="1" start="0">
 <doc>
 <str name="id">3</str>

Using Additional Functionalities

270

 <str name="name">Company three</str>
 <str name="geo">12.2,12.2</str>
 <long name="_version_">1481432265991913472</long></doc>
 </result>
 </lst>
 </arr>
 </lst>
 </lst>
</response>

Everything worked as it should, so now let's see how that works.

How it works...
Let's start from the index structure. We have four fields in our index—one that holds the
unique identifier (the id field), one that holds the name of the company (the name field),
one field for the geographical location of the company (the geo one). The last field, the
dynamic one, is needed in order for the location type to work. The data is pretty simple,
so let's just skip discussing that.

As you can see, the query is very similar to the one we used while grouping our documents on
the basis of field values. So, we again pass the group=true parameter to enable grouping,
but this time in addition to this, we pass the group.func parameter with the value that is
our function query on which results Solr should group our documents.

If you take a look at the results, they are again very similar to the ones that we had seen while
grouping on the basis of field values. The only difference is the group names. When using the
field values for grouping, groups are named after the used field names. However, when using
function queries to group documents, groups are named by the result of function query. So in
our case, we have three groups because our function query returned three different results:

 f A group named 1584.126028923632 (the <double name="groupVal
ue">1584.126028923632</double> tag)

 f A group named 1740.0195023531824 (the <double name="groupVal
ue">1740.0195023531824</double> tag)

 f A group named 1911.187477467305 (the <double name="groupVal
ue">1911.187477467305</double> tag)

Of course, in real life you would like to use a more complicated function query example that
would give you buckets of distances—such as 5, 10, and 100 kilometers. However, we will
skip discussing that as this is not the main purpose of this recipe.

Chapter 8

271

Efficient documents grouping using the
post filter

Sometimes, the standard field collapsing provided by Solr is not enough when it comes to
performance. This is especially true when we want to perform field collapsing on fields that
will result in large number of unique groups in the results, so mostly, for high cardinality fields.
For such use cases, Solr provides an efficient post filter approach of field collapsing, and this
recipe will show you how to use that approach.

Getting ready
In this chapter, we will use the same index structure and test data as we used in the
Grouping documents by the field value recipe of this chapter. Read it before we continue.

How to do it...
1. Let's start with the index structure. Let's assume that we have the following fields in

our index (just add the following section to the schema.xml files):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="category" type="string" indexed="true" stored="true"
/>
<field name="price" type="tfloat" indexed="true" stored="true" />

2. The example data, which we are going to index, looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="category">it</field>
 <field name="price">39.99</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 <field name="category">mechanics</field>
 <field name="price">19.99</field>
 </doc>
 <doc>

Using Additional Functionalities

272

 <field name="id">3</field>
 <field name="name">ElasticSearch book</field>
 <field name="category">it</field>
 <field name="price">49.99</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Mechanics for dummies</field>
 <field name="category">mechanics</field>
 <field name="price">29.99</field>
 </doc>
</add>

3. Let's assume that we would like to get our data divided into groups on the basis of
their category, but we know that our category field has hundreds of thousands
categories. So to achieve optimal performance, instead of the standard field
collapsing, we can run the following query:

http://localhost:8983/solr/cookbook/select?q=*:*&fq={!collapse
field=category}

The results returned by the preceding query are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="fq">{!collapse field=category}</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>
 <float name="price">39.99</float>
 <long name="_version_">1481493621619294208</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 <long name="_version_">1481493621691645952</long></doc>
 </result>
</response>

Chapter 8

273

As you can see, the grouped results are almost the same to the ones that were returned
during usual search, but as you can see, we got a single document per group, so the
collapsing worked. So let's see how it works.

How it works...
Our index structure is very simple. It consist of four fields—one responsible for document
identifier (the id field), one used to hold the name of the book (the name field), its category
(the category field), and the last one used to hold the price of the book (the price field). Our
example data is also very simple, but notice that the first and third book belongs to the same it
category, and the second and fourth book also belongs to the same mechanics category.

Let's take a look at our query now. We have already said that we want to have our documents
divided on the basis of the contents of the category field. Because we know that our
category field is a high cardinality one, we are using the post filter collapsing approach. To
tell Solr to use that post filter, we add the fq={!collapse field=category} parameter.
It tells Solr to use CollapsingQParserPlugin and to collapse the results on the basis of
the values in the category field.

As you can see, the results are the same as standard search results returned by Solr. Each
document in the returned results represents the top-scored document in each group, so this
is where the difference is and you should remember about this.

There's more...
There is one more thing that I would like to share about group collapsing.

Expanding collapsed groups
Similar to the standard field collapsing approach, we have the ability to expand groups that were
collapsed. To do this, we need to add the expand parameter to our query and set it to true:

http://localhost:8983/solr/cookbook/select?q=*:*&fq={!collapse
field=category}&expand=true

The results of such a query would be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>

Using Additional Functionalities

274

 <str name="expand">true</str>
 <str name="fq">{!collapse field=category}</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="name">Solr cookbook</str>
 <str name="category">it</str>
 <float name="price">39.99</float>
 <long name="_version_">1481494160166879232</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="name">Mechanics cookbook</str>
 <str name="category">mechanics</str>
 <float name="price">19.99</float>
 <long name="_version_">1481494160168976384</long></doc>
 </result>
 <lst name="expanded">
 <result name="mechanics" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="name">Mechanics for dummies</str>
 <str name="category">mechanics</str>
 <float name="price">29.99</float>
 <long name="_version_">1481494160171073536</long></doc>
 </result>
 <result name="it" numFound="1" start="0">
 <doc>
 <str name="id">3</str>
 <str name="name">ElasticSearch book</str>
 <str name="category">it</str>
 <float name="price">49.99</float>
 <long name="_version_">1481494160170024960</long></doc>
 </result>
 </lst>
</response>

As we can see, Solr has included expanded groups in the additional list called expanded.
We can also specify the number of documents for each group by adding the expand.rows
parameter (by default, it is set to 5) and determine the sort order of the documents in the
expanded groups by adding the expand.sort parameter (by default, it is set to score desc).

9
Dealing with Problems

In this chapter, we will cover the following topics:

 f Dealing with the too many opened files exception

 f Diagnosing and dealing with memory problems

 f Configuring sorting for non-English languages

 f Migrating data to another collection

 f SolrCloud read-side fault tolerance

 f Using the check index functionality

 f Adjusting the Jetty configuration to avoid deadlocks

 f Tuning segment merging

 f Avoiding swapping

Introduction
Solr is a great piece of software; it is mature and stable, but even in some situations, things
can break. We can run into memory issues limited to the number of files to be handled that
Solr can use or hardware can fail leading to index corruption. That's normal and we need to
be prepared for such situations or at least know how to deal with them.

In this chapter, we will take a look at some common problems that you might encounter
during your everyday work with Solr and I will try to show you a quick win—simple ways to
handle such situations.

Dealing with Problems

276

Dealing with the too many opened files
exception

Sometimes, you might encounter a strange error—something that lays on the edge
between Lucene and the operating system—the too many opened files exception. Such an
error means that the user that Solr is running with is not allowed to use more file descriptors
(http://en.wikipedia.org/wiki/File_descriptor). This results in Solr not being
able to open new files, so indexing documents, merging segments, and many similar activities
are not possible. Is there something we can do about it? Yes, we can, and this recipe will
show you.

How to do it...
For the purpose of this recipe, let's assume that the header of the exception thrown by Solr
looks as follows:

java.io.FileNotFoundException: /use/share/solr/data/index/_1.fdx (Too
many open files)

1. What can you do instead of trying to pull your hair out of your head? First of all, this
probably happened on a Unix/Linux-based operating system. So, let's start with
setting the opened files limit higher. To do this, you need to edit the limits.conf
file of your operating system (in the case of Ubuntu, this file is placed in /etc/
security/) and set the following (I assume that Solr is running as a solr user):
solr soft nofile 32000
solr hard nofile 32000

2. Now let's try running the following command (you need to log out and log in again if
you are logged in as a solr user):
sudo -u solr -s "ulimit -Sn"

The response to this command should look more or less as follows:

32000

3. If this is still not the case, we need to run the following command (the following
example is from Ubuntu and can be different for different distributions):

egrep -r pam_limits /etc/pam.d/

The response from the operating system should be similar to the following one:

/etc/pam.d/lightdm-greeter:session required pam_limits.so

/etc/pam.d/lightdm:session required pam_limits.so

http://en.wikipedia.org/wiki/File_descriptor

Chapter 9

277

/etc/pam.d/cron:session required pam_limits.so

/etc/pam.d/login:session required pam_limits.so

/etc/pam.d/su:# session required pam_limits.so

/etc/pam.d/lightdm-autologin:session required pam_limits.so

If we see any of the pam_limits.so entries commented out, such as the line next to the last
in the preceding example, we need to comment that out. After this, we should be more than
ready. Now let's see what the options mean.

How it works...
We haven't discussed the operating system's internals in this book, but this time we will make
an exception. The mentioned limits.conf file in the /etc/security directory lets you
specify the number of opened files limit for the users of your system. In the example shown
earlier, we set the two necessary limits to 32000 for the user solr, so if you had problems
with the number of opened files with the default setup, you should see the difference after
restarting Solr. However, remember that if you are working as the user, you can change the
limits as you might need to log out and log in again to see those changes.

However, sometimes changing the limits.conf file is not enough. This is usually the case
when some of the pam_limits.so entries are commented out. Not to get into too many
details—these entries are responsible for the PAM module used to limit resources. Because
of this we need to uncomment those.

Note that saying how to set the limit and giving the exact amount is just not possible. Usually,
you want to set it to a large enough value and just monitor how many file descriptors are used.

Diagnosing and dealing with memory
problems

As with every application, written in Java or not, sometimes there are memory problems.
When dealing with Solr, these problems are usually related to the amount of data you have
and your queries. These problems usually happen when the heap size is too low or your data
is very large and not spread enough. This recipe will show you how to quickly deal with these
problems and what to do to avoid them.

Dealing with Problems

278

How to do it...
So, what do you do when you see an exception as follows:

SEVERE: java.lang.OutOfMemoryError: Java heap space

First of all, you can do something to make your day a bit easier—you can add more
memory that Java virtual machine can use, of course, if you have some free physical
memory available in your system. To do this, you need to add the Xmx and Xms parameters
to the startup script of your servlet container (Apache Tomcat or Jetty). This is how it is
done for the Solr 4.x deployment:

java –Xmx2g –Xms2g –jar start.jar

Don't give more than 50 to 60 percent of the total memory available to the operating system
for the JVM. In addition to this, you should consider not giving JVM more than 31 GB of
memory (because of the compressed option and how Java addresses memory).

The long term activities you can do in order to reduce the amount of memory used are
as follows:

 f Take a look at your queries and how they are built. Try optimizing them.

 f How you use the faceting mechanism and so on (the facet.method=fc parameter
tends to use less memory when the field has many unique terms in the index).

 f Remember that fetching too many documents at one time might cause Solr to run
out of heap memory (for example, when setting a large value for the query result
window). If you need a large amount of data to be fetched, use a cursor.

 f Reduce the number of calculated faceting results (the facet.limit parameter).

 f Check the memory usage of your caches—this can also be one of the reasons of the
problems with memory.

 f Use doc values for fields that you facet or sort on.

 f Reduce the amount of data on each Solr node by introducing more nodes and
dividing your collections into more shards.

 f If you don't need to use a normalization factor for text fields, you can set the
omitNorms="true" parameter for such fields and save some additional
memory too.

 f Remember that the grouping mechanism requires memory for big result sets and
for many numbers of groups a vast amount of memory might be needed.

Also, add monitoring to your Solr instances so that it will allow you to diagnose when the
problems happen and before they do. You can do this using dedicated commercial solutions
such as Sematext SPM (http://sematext.com/spm/), open source solution such as
Ganglia (http://ganglia.sourceforge.net/), or Graphite (http://graphite.
wikidot.com/).

http://sematext.com/spm/
http://ganglia.sourceforge.net/
http://graphite.wikidot.com/
http://graphite.wikidot.com/

Chapter 9

279

How it works...
So what do the Xmx and Xms Java virtual machine parameters do? The Xms parameter
specifies how much heap memory should be assigned by the virtual machine at the start
and thus, this is the minimal size of heap memory that will be assigned by the virtual
machine. The Xmx parameter specifies the maximum size of the heap. The Java virtual
machine will not be able to assign more memory for the heap than the Xmx parameter.

You should remember one thing—sometimes, it's good to set the Xmx and Xms parameters
to the same values. This will ensure that the virtual machine won't be resizing the heap size
during the application execution and thus lose precious time for heap resizing.

Be careful when setting the heap size to be too big. It is usually not advised to give
the heap size more than 50 to 60 percent of your total memory available in the system.
This is because your operating system I/O cache will suffer, especially when your indices are
large. It is wise to leave a lot of memory for the operating system I/O cache so that Lucene
and the operating system can share the same cache and use it in a better way. What's more,
having a large heap size will put a lot of pressure on the garbage collector and can result in
worse performance.

There's more...
There is one more thing that I would like to discuss when it comes to memory issues.

Seeing heap when out of memory error occurs
If the out of memory errors pop up even after taking the necessary actions, then
you should start monitoring your heap. One of the easiest ways to do this is by
adding the appropriate Java virtual machine parameters. The parameters are
XX:+HeapDumpOnOutOfMemoryError and XX:HeapDumpPath. These two parameters tell
the virtual machine to dump the heap on out of memory error and write it to a file created in
the specified directory. So the default Solr deployment start command will look as follows
(again, shown for Solr 4.x):

java –jar –XX:+HeapDumpOnOutOfMemoryError –XX:HeapDumpPath=/var/log/dump/
start.jar

The heap dump can be analyzed using various tools such as jhat (http://docs.oracle.
com/javase/7/docs/technotes/tools/share/jhat.html).

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jhat.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jhat.html

Dealing with Problems

280

Configuring sorting for non-English
languages

As you might already know that Solr supports UTF-8 encoding and thus can handle data in
many languages. However, if you ever needed to sort some languages that have characters
specific to them, you probably know that it doesn't work well on the standard Solr string
type. This recipe will show you how to deal with sorting and Solr.

How to do it...
1. For the purpose of this recipe, I assumed that we will have to sort text that contains

Polish characters. To show good and bad sorting behavior, we need to create the
following index structure (add this to your schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="name_sort_bad" type="string" indexed="true"
stored="true" />
<field name="name_sort_good" type="text_sort" indexed="true"
stored="true" />

2. Now let's define some copy fields to automatically fill the name_sort_bad and
name_sort_good fields. Here is how they are defined (again, we only need to add
the following section to the schema.xml file):
<copyField source="name" dest="name_sort_bad" />
<copyField source="name" dest="name_sort_good" />

3. The last thing about the schema.xml file is the new type. So, the text_sort
definition looks as follows:
<fieldType name="text_sort" class="solr.CollationField"
language="pl" country="PL" strength="primary" />

4. The test that needs to be indexed looks as follows (note that the file with the following
data needs to be encoded with UTF-8):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Łąka</field>
 </doc>
 <doc>

Chapter 9

281

 <field name="id">2</field>
 <field name="name">Lalka</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Ząb</field>
 </doc>
</add>

5. First, let's take a look at how the incorrect sorting order looks like. To do this, we will
send the following query to Solr:
http://localhost:8983/solr/cookbook/select?q=*:*&sort=name_sort_
bad+asc

And now the response that was returned for the preceding query looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="sort">name_sort_bad asc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lalka</str>
 <str name="name_sort_bad">Lalka</str>
 <str name="name_sort_good">Lalka</str>
 <long name="_version_">1481928342372352000</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Ząb</str>
 <str name="name_sort_bad">Ząb</str>
 <str name="name_sort_good">Ząb</str>
 <long name="_version_">1481928342372352001</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Łąka</str>
 <str name="name_sort_bad">Łąka</str>

Dealing with Problems

282

 <str name="name_sort_good">Łąka</str>
 <long name="_version_">1481928342282174464</long></doc>
 </result>
</response>

6. Now let's send the query that should return the documents sorted in the correct
order. The query looks similar to this:

http://localhost:8983/solr/cookbook/select?q=*:*&sort=name_sort_
good+asc

The results returned by Solr are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="sort">name_sort_good asc</str>
 </lst>
 </lst>
 <result name="response" numFound="3" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lalka</str>
 <str name="name_sort_bad">Lalka</str>
 <str name="name_sort_good">Lalka</str>
 <long name="_version_">1481928342372352000</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Łąka</str>
 <str name="name_sort_bad">Łąka</str>
 <str name="name_sort_good">Łąka</str>
 <long name="_version_">1481928342282174464</long></doc>
 <doc>
 <str name="id">3</str>
 <str name="name">Ząb</str>
 <str name="name_sort_bad">Ząb</str>
 <str name="name_sort_good">Ząb</str>
 <long name="_version_">1481928342372352001</long></doc>
 </result>
</response>

As you can see, the order is different and believe me, it's correct. Now let's see how it works.

Chapter 9

283

How it works...
Every document in the index is built of four fields. The id field is responsible for holding the
unique identifier of the document. The name field is responsible for holding the name of the
document. The last two fields are used for sorting.

The name_sort_bad field is nothing new—it's just a string based field that is used to
perform sorting. The name_sort_good field is based on a new type—the text_sort
field type. The field is based on the solr.CollationField type. The field allows Solr to
sort the defined language correctly. We used three attributes while defining the field. First,
the language attribute tells Solr about the language of the field. The second attribute is
country, which tells Solr about the country variant (this can be skipped if necessary). The
strength attribute informs Solr about the collation strength used. More information about
these parameters can be found in the JDK documentation. One thing that is crucial is you
need to create an appropriate field and set the appropriate attributes value for every non-
English language you want to sort.

The two queries that you can see in the examples have one difference—the field used for
sorting. The first query uses the string based field name_sort_bad. When sorting on this
field, the document order will be incorrect when there will be non-English characters present.
However, when sorting on the name_sort_good field, everything will be in the correct order,
as shown in the preceding example.

Migrating data to another collection
There are times when migrating data from one collection to another is a good option, for
example, if you have data of multiple clients in different shards. Some of the clients are paying
for faster searches and more indexing throughput, and you would like to migrate the data of
those clients to another collection so that it can be moved to new, more powerful nodes. If
we use routing during indexation, Solr has a nice feature for us—the Collections API and its
migrate command. This recipe will show you how to use it.

Getting ready
Before continuing, you should read the Using routing recipe in Chapter 7, In the Cloud. It
provides a description on how to use routing, which is essential to fully understand this recipe.
We also assume that we have two collections—one called customers that will hold our
data and the second, empty one called important_customers. Both the collections were
created using the same configuration shown in this recipe. If you want to know more about
how to create a new SolrCloud cluster, refer to the Creating a new SolrCloud cluster recipe in
Chapter 7, In the Cloud. This recipe will show you how to create a new SolrCloud cluster and
create a collection.

Dealing with Problems

284

How to do it...
For the purpose of this recipe, we will use the following index structure (we need to add the
following section to our schema.xml file):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="title" type="text_general" indexed="true" stored="true"
/>
<field name="customer" type="string" indexed="true" stored="true" />

For a customer with the name customer_1, we have the following data (stored in a file called
data_customer_1.xml):

<add>
 <doc>
 <field name="id">customer_1!1</field>
 <field name="title">Customer document 1</field>
 <field name="customer">customer_1</field>
 </doc>
 <doc>
 <field name="id">customer_1!2</field>
 <field name="title">Customer document 2</field>
 <field name="customer">customer_1</field>
 </doc>
</add>

For a customer with the name customer_2, we have the following data (stored in a file called
data_customer_2.xml):

<add>
 <doc>
 <field name="id">customer_2!3</field>
 <field name="title">Customer document 3</field>
 <field name="customer">customer_2</field>
 </doc>
 <doc>
 <field name="id">customer_2!4</field>
 <field name="title">Customer document 4</field>
 <field name="customer">customer_2</field>
 </doc>
</add>

Chapter 9

285

We assume that we have the data indexed into the collection called customers:

1. Let's now try moving the data of the customer_2 collection to another collection
called important_customers that we already created and that is empty. To do
this, we will run the following command:
curl 'localhost:8983/solr/admin/collections?action=MIGRATE&col
lection=customers&target.collection=important_customers&split.
key=customer_2!&forward.timeout=60'

2. After the command was executed, we run the commit command to force the reload
of index reader. We will do this using the following command:
curl 'http://localhost:8983/solr/important_customers/update'
--data-binary '<commit/>' -H 'Content-type:application/xml'

3. We can now check the contents of the new collection by running the following query:

http://localhost:8983/solr/important_customers/select?q=*:*

The response should be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0">
 <doc>
 <str name="id">customer_2!3</str>
 <str name="title">Customer document 3</str>
 <str name="customer">customer_2</str>
 <long name="_version_">1481976223112364032</long></doc>
 <doc>
 <str name="id">customer_2!4</str>
 <str name="title">Customer document 4</str>
 <str name="customer">customer_2</str>
 <long name="_version_">1481976223113412608</long></doc>
 </result>
</response>

As we can see in the new collection, we have only the data for the customer we wanted. We
can now remove this data from the original collection because Solr doesn't do that by default.

Let's now see how it works.

Dealing with Problems

286

How it works...
Our index structure is very simple. Each of the documents has three fields—one for the
document identifier (the id field), one for the title of the document (the title field), and
the field called customer that will be used for filtering. Each identifier is prefixed with the
customer name followed by the !character. We talked about this already in Chapter 7, In the
Cloud; when using the composite routing, we can prefix the document identifier with a value
and the !character after that. This means that Solr will use the cookbook1234 value to
determine in which shard the document will be indexed.

We assumed that we have the data indexed and we want to migrate the data of the second
customer to another collection that we created upfront. We do this by running the MIGRATE
command to the Collections API (action=MIGRATE sent to the /solr/admin/collections
REST endpoint). We provide the source collection, which is in our case the customers
collection (the collection=customers parameter), and we provide the target collection to
where the data should be migrated to (the target.collection=important_customers
parameter). In addition to this, we need the routing key, which we used during indexation, which
for our second customer is customer_2! (the split.key parameter). Finally, we define the
forward.timeout parameter that controls for how long Solr will re-route the write request
from the source collection to the target one. It is the user's responsibility to switch read and
write operations to the target collection after the migration has been done. Note that the
source collection will not be modified by the migrate request. The migration of documents is a
synchronous operation and it is advised to keep the timeout on the client side high, although
even with that the HTTP command might timeout during execution when a large number of
documents need to be migrated. This doesn't mean that the operation will not be successful—
Solr will continue the migration in the background and you should check the logs if errors occur.

There are a few things that we need to remember when migrating data between collections:

 f The migration can be performed on multiple shards at once if the shard.key
parameter value spans multiple shards. Solr will do this automatically.

 f Because the migration is a synchronous operation, it can take a long time on
large collections.

 f Multiple temporary collections can be created during execution of the migrate
command although they should be removed once the command finishes executing.

 f The command only works with collections that use the CompositeId router.
 f The collection that is a target shouldn't receive any updates during the migration

process because it might lead to data loss.
 f Duplication is not done as a part of the migration process, so if the target collection

contains data with the same identifiers as the ones in the source collection, you
might end up with duplicates.

Finally, after the command was successful, we send the commit command to refresh the
index reader so that the data is visible. As we can see in the response, everything went well
and we can now remove data from the original collection.

Chapter 9

287

SolrCloud read-side fault tolerance
When a single shard from your collection fails to respond to the query, Solr will fail the whole
request. This is good for most use cases, but not for all. Sometimes, you might like to show
partial results so that your users can see at least some portion of the results. By default,
this is not possible, but luckily Solr allows you to adapt to its behavior when it comes to such
situations on per request basis. This recipe will show you how to force Solr to return even
partial results.

Getting ready
We assume that we already have a running SolrCloud cluster with two nodes and a collection
created with two leader shards and no replica. If you don't know how to do this, refer to the
Creating a new SolrCloud cluster recipe in Chapter 7, In the Cloud. This recipe will show you
how to create a new SolrCloud cluster and create a collection.

How to do it...
We indexed four sample documents to our Solr cluster. Two documents are placed in one
shard and the other two documents are placed in the second shard. Let's now assume
that one of the shards failed and Solr is not responding to any calls:

1. First, we try to run a simple query to Solr in such a situation:
http://localhost:8983/solr/testcollection/select?q=*:*&rows=0

The results would be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <int name="status">503</int>
 <int name="QTime">2</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <lst name="error">
 <str name="msg">no servers hosting shard: </str>
 <int name="code">503</int>
 </lst>
</response>

Dealing with Problems

288

2. Now, if we would like to force Solr to return partial results, we would have to provide the
shards.tolerant parameter and set it to true so that our query looks as follows:

http://localhost:8983/solr/testcollection/select?q=*:*&shards.
tolerant=true

The response returned by Solr will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <lst name="responseHeader">
 <bool name="partialResults">true</bool>
 <int name="status">0</int>
 <int name="QTime">5</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="shards.tolerant">true</str>
 <str name="rows">0</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0" maxScore="1.0">
 </result>
</response>

As we can see, even though one of the shards fail, Solr returned partial results. Let's now see
how it works.

How it works...
As we can see, the first request failed. This is because, by default, Solr will fail a search
request if it can't execute a search on full results set. Solr tries to execute the search request
on all the shards that build the collection and fails to do that, which results in a failed search
request. As we said, we are not interested in such a behavior, because we are good with even
partial results.

To achieve this, we introduced the shards.tolerant parameter to our query and we set it
to true (by default, it is false). By doing this, we tell Solr that we want to have partial results
of the query, which means that even if only a single shard of our collection is working, Solr will
still return the data to us. To notify us that the results are not full, but partial, Solr included
the partialResults property in the response header and set it to true. If all the shards
return the data, that property would be set to false.

Chapter 9

289

There's more...
Of course, search time fault tolerance (being able to operate even in case of partial system
failure) is not everything—Solr also supports indexing time fault tolerance.

Defining the achieved replication factor
Similar to what we just discussed, Solr allows you to specify the min_rf property on update
requests. The value passed to this property should be set to the desired replication factor. For
example, if we want Solr to only ensure that the update was processed by the leader shard,
we should set it to 1; if we want one leader and one replica, we should set it to 2, and so on.
For example, if we set the min_rf property to 1 and only the leader shard should successfully
index the document, but all the replicas fail, Solr will return the rf property in the results
and set it to 1. This means that only the leader successfully indexed the document and the
replicas will have to sync with the leader once they recover. Such an update is still considered
successful, but we can force Solr to return such information as the update request response.

Using the check index functionality
It's night; the phone is ringing, you answer it and hear: "We've got a problem—the index is
corrupted, nothing works, the apocalypse is coming". What can we do? Is there anything
besides the full indexation or restoring from backup? There is something that we can do
and this recipe will show you.

How to do it...
For the purpose of this recipe, let's suppose that we have a corrupted index that we want to
check and fix. To use the CheckIndex class that we will use, we will need to point it to the
index we want to fix. We will need to run a command similar to the following one:

java –cp LUCENE_JAR_LOCATION -ea:org.apache.lucene... org.apache.lucene.
index.CheckIndex INDEX_PATH -fix

Here, INDEX_PATH is the path to the index, for example, /usr/share/solr/data/index
and LUCENE_JAR_LOCATION is the path to the Lucene core JAR library (which is provided
with the Solr distribution). So, with the given index location, the command will look as follows:

java –cp lucene-core-4.10.0.jar -ea:org.apache.lucene... org.apache.
lucene.index.CheckIndex /usr/share/solr/data/index -fix

Dealing with Problems

290

After running the preceding command, you should see a series of information about the
process of index repair, which in my case looked as follows:

Opening index @ /usr/share/solr/data/index

Segments file=segments_2 numSegments=1 version=4.10.0 format= userData
={commitTimeMSec=1395237413525}
 1 of 1: name=_0 docCount=11
 version=4.7.0
 codec=Lucene46
 compound=false
 numFiles=10
 size (MB)=0.002
 diagnostics = {os=Windows 8.1, java.vendor=Oracle Corporation,
java.version=1.8.0, lucene.version=4.10.0 1570806 - simon - 2014-
12-22 08:25:23, os.arch=amd64, source=flush, os.version=6.3,
timestamp=1395237413563}
 no deletions
 test: open reader.........FAILED
 WARNING: fixIndex() would remove reference to this segment; full
exception:
java.io.IOException: Invalid vInt detected (too many bits)
 at org.apache.lucene.store.DataInput.readVInt(DataInput.
java:138)
 at org.apache.lucene.store.DataInput.readString(DataInput.
java:232)
 at org.apache.lucene.store.DataInput.
readStringStringMap(DataInput.java:263)
 at org.apache.lucene.codecs.lucene46.Lucene46FieldInfosReader.
read(Lucene46FieldInfosReader.java:93)
 at org.apache.lucene.index.SegmentReader.
readFieldInfos(SegmentReader.java:289)
 at org.apache.lucene.index.SegmentReader.<init>(SegmentReader.
java:107)
 at org.apache.lucene.index.CheckIndex.checkIndex(CheckIndex.
java:583)
 at org.apache.lucene.index.CheckIndex.main(CheckIndex.
java:2096)

WARNING: 1 broken segments (containing 11 documents) detected
WARNING: 11 documents will be lost

Chapter 9

291

NOTE: will write new segments file in 5 seconds; this will remove 11
docs from the index. THIS IS YOUR LAST CHANCE TO CTRL+C!
 5...
 4...
 3...
 2...
 1...
Writing...
OK
Wrote new segments file "segments_3"

And that's all. After this, you should have the index processed and depending on the case,
you can have your index repaired. Now, let's see how it works.

How it works...
As you see, the command-line instruction runs the CheckIndex class from the org.
apache.lucene.index package. We also provided the absolute path to the directory
that contains the index files, the library that contains the necessary classes, and the –fix
parameter, which tells the CheckIndex tool to try to repair any errors found in the index
structure. In addition to this, we provided the ea parameter to enable the assertions. We did
this to make the test more accurate. Let's take a look at the response that the CheckIndex
tool provided. As you can see, we have information about the segments, the number of
documents, and the version of Lucene used to build the index. We can also see the number
of files that the index consists of, the operating system, and so on. This information might be
useful but it is not crucial. The most interesting thing for us is the following information:

WARNING: 1 broken segments (containing 11 documents) detected
WARNING: 11 documents will be lost

This information tells us that the CheckIndex tool found one broken segment, which
contains 11 documents and that all the 11 documents will be lost in the repair process.
This is not always the case, but it can happen and you should be aware of that.

The next lines of the CheckIndex tool response tells us about the process of writing the
new segment files that will be repaired. And that's actually all. Of course, when dealing with
larger indexes, the response generated by the CheckIndex tool will be much larger and will
contain information about all the segments of the index. The preceding example is simple but
it should illustrate how the tool works.

Note that you should turn off Solr and not have any process accessing
the index at the same time CheckIndex tool is working.

Dealing with Problems

292

When using the CheckIndex tool, you need to be very careful. There are many situations
where the index files can't be repaired and the CheckIndex tool will result in the deletion of
all the documents in the index. That's not always the case, but you should be aware of that
and be extra careful—for example, a good practice is to make a backup of the existing index
before running the CheckIndex tool.

 There's more...
There is one more thing worth noticing when talking about the CheckIndex tool.

Checking the index without the repair procedure
If you only want to check the index for any errors without the need to repair it, you can run the
CheckIndex tool in the repair mode. To do this, run the command-line fragment shown in the
recipe without the –fix part. For example:

java -ea:org.apache.lucene... org.apache.lucene.index.CheckIndex /usr/
share/solr/data/index

Adjusting the Jetty configuration to avoid
deadlocks

Adjusting Jetty to properly handle all the requests sent to Solr and SolrCloud is very important.
The request that the application sends to Solr is one, but it is also important to allow Solr to
process the internal requests sent between nodes and shards. Because of this we need to
prepare our container to handle a higher number of requests than usual. This recipe will
show and discuss how to properly set up Jetty to handle traffic to and between Solr nodes.

Getting ready
If you are not familiar with how to set up Jetty, please refer to Running Solr on a standalone
Jetty recipe in Chapter 1, Apache Solr Configuration, before proceeding. I also assume that
we are using Jetty 8.1.10 and Solr 4.x, which was distributed as a WAR file.

How to do it...
I assume that each of the Solr instances will run on its own Jetty container. Each of the Jetty
servers has the jetty.xml file that we will need to alter (this file should be present in the
$JETTY_HOME/etc directory). By default, Jetty contains the following configuration:

<Set name="ThreadPool">
 <New class="org.eclipse.jetty.util.thread.QueuedThreadPool">
 <Set name="minThreads">10</Set>

Chapter 9

293

 <Set name="maxThreads">200</Set>
 <Set name="detailedDump">false</Set>
 </New>
</Set>

We need to alter this configuration so that it looks as follows:

<Set name="ThreadPool">
 <New class="org.eclipse.jetty.util.thread.QueuedThreadPool">
 <Set name="minThreads">10</Set>
 <Set name="maxThreads">10000</Set>
 <Set name="detailedDump">false</Set>
 </New>
</Set>

After this change, you will no longer have Solr vulnerable to the deadlock state, at least for
most cases. Now let's see what we did.

How it works...
The default Jetty configuration is not sufficient, especially when it comes to SolrCloud. When
you run a large number of indexing requests and large number of queries per second, your
cluster can hang in a state called deadlock. In such a state, Solr will stop responding to new
requests and old requests will be hanging. To avoid this, we need to increase the number of
threads that are allowed to be running at the same time. By default, this is only 200, which is
very low if you are running SolrCloud with a large number of nodes.

What we did is we increased the number of threads that are allowed to run in parallel to
10000 (by changing the maxThreads property), which should be more than enough for any
deployment. However, if you see deadlock problems in your deployment, try increasing the
value even higher.

Tuning segment merging
As you might know, a Lucene index is built of one or more segments. In general, a segment
is a write-once, read-many data structure, which means that once written it won't be updated
(only some parts of it will be, such as information about a deleted document). Segment
merging is a process of combining multiple segments to a new one to reduce the overall
number of segments the index is built of. The reason Lucene does this is because of
performance—the smaller the number of segments, the better the search performance is.
On the other hand, segment merge is a resource-intensive process as it requires you to read
the old segments and write the new ones. Because of all this, it is good to know how to tune
segment merging for our own purposes and this recipe will show you how to do that.

Dealing with Problems

294

How to do it...
1. For the purpose of this recipe, I assume that we are starting with the basic Solr

configuration, which looks as follows when it comes to segment merging (we modify
the solrconfig.xml file):
<mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">10</int>
 <int name="segmentsPerTier">10</int>
</mergePolicy>

2. Let's assume that the default configuration produced too many segments for our use
case—we have fast disks and we would like to have a lower number of segments to
speed up our searches.

Actually, if we take a look at the number of segments after indexing a few thousands
of documents, we would see the following:

3. To lower down the number of segments that are produced during our normal indexing
procedure, we will alter the merge policy configuration so that it looks as follows:

<mergePolicy class="org.apache.lucene.index.TieredMergePolicy">
 <int name="maxMergeAtOnce">2</int>
 <int name="segmentsPerTier">2</int>
</mergePolicy>

Chapter 9

295

If we now index the same number of documents and take a look at the merging
visualization, we would see the following:

Now let's see how it works.

How it works...
To control the behavior of segment merging process, Solr allows you to specify the class
implementing the merge policy. We do this by including the mergePolicy section in the
solrconfig.xml file and specifying its class property. The default merge policy since Solr
3.3 is org.apache.lucene.index.TieredMergePolicy that classifies index segments
into tiers and merges those segments inside the tiers.

We are allowed to specify many different properties (take a look at the official Javadoc of
the merge policy to learn about them all available at http://lucene.apache.org/
core/4_10_0/core/org/apache/lucene/index/TieredMergePolicy.html);
however, we are interested in two of them—maxMergeAtOnce and segmentsPerTier.
The first property specifies how many segments can be merged at once and the second
property specifies how many segments will be put into each tier.

By default, the maxMergeAtOnce and segmentsPerTier properties are set to 10. If we
lower this value, then we should get a lower number of segments compared to the default
value at the cost of indexing speed. This should speed up searches as fewer segments will
be used in the index. If we set these properties to higher values, we will get more segments
compared to the default value. This will result in faster indexing, but will lower the query
performance as more segments will be present.

In our example, we can clearly see that with the default configuration, we had about 10
segments on average. After the change, we had about one or two segments on average,
which means that our change made a difference in the direction we wanted.

http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/index/TieredMergePolicy.html
http://lucene.apache.org/core/4_10_0/core/org/apache/lucene/index/TieredMergePolicy.html

Dealing with Problems

296

See also
 f There is a great blog post by Mike McCandless about segment merges,

merge policies, and the visualization of segments merging in Lucene available
at http://blog.mikemccandless.com/2011/02/visualizing-lucenes-
segment-merges.html. If you are interested in this topic, I strongly advise that
you read it.

Avoiding swapping
One of the crucial things when running your Solr instances in production is performance.
What you want is to give your clients relevant results in the blink of an eye. If your clients have
to wait for their results for too long, some of them might choose other vendors or sites that
provide similar services. One of the things when running Java application such as Apache Solr
is to ensure that the operating system won't write the heap to disk, to ensure that the part of
the memory used by Solr won't be swapped at all. This recipe will show you how to achieve
this on a Linux operating system.

Getting ready
Note that the following recipe is only valid when you are running Apache Solr on a Linux
operating system. In addition to this, be advised that turning off swapping should only be
done when you have enough memory to handle all the necessary applications in your system
and you want to be sure that there won't be any swapping.

How to do it...
1. Before turning off swapping, let's take a look at the amount of swap memory used by

our operating system. In order to do this, let's take a look at the main page of the Solr
administration panel:

http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html
http://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

Chapter 9

297

2. As you can see, some swap memory is being used. In order to demonstrate how to
turn off swap usage, I freed some memory on the virtual machine that I was using for
tests and after that I ran the following commands:
sudo sysctl -w vm.swappiness=0

sudo /sbin/swapoff -a

3. After the second command is done running, I refreshed the main page of our Solr
admin instance and this is what it showed:

Dealing with Problems

298

4. It seems that it is working, but in order to be sure, I will run the following command:

free -m

The response was as follows:

 total used free shared buffers cached

Mem: 3001 2326 675 0 3 97

-/+ buffers/cache: 2226 775

Swap: 0 0 0

0 0 0

And again, we can see that there is no swap usage. Now let's see how that works.

How it works...
In the first provided screenshot, you can see that there is a bit more than 183 MB of swap
memory being used. This is not good—in a production environment, you want to avoid
swapping, of course, if you have the needed amount of memory. Swapping will write
the contents of the memory onto the hard disk drive and thus make your operating
system and applications execution slower. This can also affect Solr.

So, in order to turn off swapping in a Linux operating system, we will run two commands.
The first one sets the vm.swappiness operating system property to 0, which means that
we want to avoid swapping. We need to use sudo, because in order to set this property with
the use of the sysctl command, we need administration privileges. The second command
(the /sbin/swapoff -a one) disables swapping on all known devices.

As you can see in the second screenshot, the Solr administration panel didn't even include
the swapping information, so we can suspect that it was turned off. However, in order to be
sure, we used another Linux command, the free command with the -m switch in order to
see the memory usage on our system. As you can see, the Swap section shows 0, so we
can now be sure that swapping was turned off.

10
Real-life Situations

In this chapter, we will cover the following topics:

 f Implementing the autocomplete functionality for products

 f Implementing the autocomplete functionality for categories

 f Handling time-sliced data using aliases

 f Boosting words closer to each other

 f Using the Solr spellchecking functionality

 f Using the Solr administration panel for monitoring

 f Automatically expiring Solr documents

 f Exporting whole query results

Introduction
During the previous nine chapters, we discussed the different Apache Solr functionalities and
how to overcome some common problems and situations. However, there are some real-life
situations that were not yet described and I decided that it would be nice to have them shown
to you in a dedicated chapter. All of the problems described in this chapter were raised during
our work with clients or appeared in on the Apache Solr mailing list. This chapter is dedicated
to describing how to handle such situations and I hope that you'll find it useful.

Real-life Situations

300

Implementing the autocomplete
functionality for products

Recently, the autocomplete functionality has gained popularity. You can find it in on Google,
Bing, and many more similar e-commerce sites. It enables your users or clients to find what
they want and do it fast. In most cases, the autocomplete functionality also increases the
relevance of your search by pointing to the right author, title, and so on right away without
looking at the search results. What's more, sites that use autocomplete reported higher
revenue after deploying such a functionality compared to the situation before implementing it.
It is a win-win situation both for you and your clients. So let's take a look at how to implement
the product autocomplete functionality in Solr.

How to do it...
Let's assume that we want to show you the full product name whenever our users enter
part of the word that the product name is built of. In addition to this, we want to show you
the number of documents with the same names.

1. Let's start with the example data that is going to be indexed:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First Solr Cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Second Solr Cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Elasticsearch book</field>
 </doc>
</add>

2. We will need two main fields in the index—one for the document identifier and one for
the name; and we will need two additional fields—one for autocomplete and one for
faceting that we will use. So our index structure will look as follows (we should put it
into the schema.xml section):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />

Chapter 10

301

<field name="name_autocomplete" type="text_autocomplete"
indexed="true" stored="false" />
<field name="name_show" type="string" indexed="true"
stored="false" />

3. In addition to this, we want Solr to automatically copy data from the name field to the
name_autocomplete and name_show fields. So we will add the following to the
schema.xml file:
<copyField source="name" dest="name_autocomplete"/>
<copyField source="name" dest="name_show"/>

4. Now the final thing about the schema.xml file—the text_autocomplete field type,
which will look as follows (place it into the schema.xml file):
<fieldType name="text_autocomplete" class="solr.TextField"
positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1"
maxGramSize="25" />
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

5. That's all! Now, if we would like to show our users all the products that start with the
sol word, we will send the following query:

curl 'http://localhost:8983/solr/cookbook/select?q=name_
autocomplete:sol&q.op=AND&rows=0&&facet=true&facet.field=name_
show&facet.mincount=1&facet.limit=5'

The response returned by Solr will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>

Real-life Situations

302

 <int name="QTime">1</int>
 <lst name="params">
 <str name="q">name_autocomplete:sol</str>
 <str name="facet.limit">5</str>
 <str name="facet.field">name_show</str>
 <str name="q.op">AND</str>
 <str name="facet.mincount">1</str>
 <str name="rows">0</str>
 <str name="facet">true</str>
 </lst>
</lst>
<result name="response" numFound="2" start="0">
</result>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="name_show">
 <int name="First Solr Cookbook">1</int>
 <int name="Second Solr Cookbook">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 <lst name="facet_intervals"/>
</lst>
</response>

As you can see, the faceting results returned by Solr are exactly what we were looking for.
So now, let's see how it works.

How it works...
Our example documents are pretty simple—they are only built of an identifier and the
name that we will use to make autocomplete happen. The index structure is where things
will get interesting. The first two fields are the ones you would have expected—they are
used to hold the identifier of the document and its name. However, we have two additional
fields available—the name_autocomplete field, which will be used for querying and the
name_show field, which will be used for faceting. The name_show field is based on the
string type, because we want to have a single token per name when we use faceting.

With the use of the copy field sections, we can let Solr automatically copy values of fields
defined by the source attribute to the field defined by the dest field. The copying is done
before any analysis. Solr will copy the values that were originally sent to it.

Chapter 10

303

The name_autocomplete field is based on the text_autocomplete field type, which is
defined differently for indexing and querying. During the query time, we divide the entered
query on the basis of whitespace characters using solr.WhitespaceTokenizerFactory
and we lowercase the tokens with the use of solr.LowerCaseFilterFactory. For query
time it's what we want, because we don't want any more processing. For index time, we use
the same tokenizer and filter, but we also use solr.NGramFilterFactory. We use it,
because we want to allow our users to efficiently search for prefixes, so when someone enters
the sol word, we would like to show all the products that have a word starting with that
prefix and solr.NGramFilterFactory allows you to doing that. For the solr word, it will
produce the tokens s, so, sol, and solr, as shown on the Analysis page:

Real-life Situations

304

We also said that we are interested in grams starting from a single character
(the minGramsSize property) and the maximum size of grams allowed is 25
(the maxGramSize property).

Now let's take a look at the query. As you can see, we sent the prefix of the word that users
have entered to the name_autocomplete field (q=name_autocomplete:sol). In addition
to this, we also said that we want words in our query to be connected with the AND logical
operator (the q.op parameter) and that we are not interested in the search results (the
rows=0 parameter). As we said, we will use faceting for our autocomplete functionality
because we need the information about the amount of documents with the same titles. So
we turned on faceting (the facet=true parameter) and said that we want to calculate the
faceting on our name_show field (the facet.field=name_show parameter). We are also
only interested in faceting calculation for the values that have at least one document in it
(facet.mincount=1) and we want the top five results (facet.limit=5).

As you can see in the results, we've got two distinct values in the faceting results both with a
single document with the same title, which matches our sample data.

Implementing the autocomplete
functionality for categories

Sometimes, we are interested not in our product's name for autocomplete, but in something
else. Imagine that we want to show the category of our products in the autocomplete box
along with the number of products in each category. Let's see how we can use faceting to
achieve such functionality.

How to do it...
1. Let's start with the example data, which is going to be indexed and looks as follows:

<add>
 <doc>
 <field name="id">1</field>
 <field name="name">First Solr Cookbook</field>
 <field name="category">Books</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Second Solr Cookbook</field>
 <field name="category">Books And Tutorials</field>
 </doc>
 <doc>

Chapter 10

305

 <field name="id">3</field>
 <field name="name">Elasticsearch Server</field>
 <field name="category">Books And Tutorials</field>
 </doc>
</add>

2. Our schema.xml configuration file that can handle the preceding data will look
as follows:
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="category" type="text_lowercase" indexed="true"
stored="true" />

3. One final thing is the text_lowercase type definition, which will be also placed
in the schema.xml file, and it will look as follows:
<fieldType name="text_lowercase" class="solr.TextField"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

4. So now, if we would like to get all the categories that start with boo, along with the
number of products in these categories, we can send the following query:

curl 'http://localhost:8983/solr/cookbook/select?q=*:*&rows=0&face
t=true&facet.field=category&facet.mincount=1&facet.limit=5&facet.
prefix=boo'

And the following response was returned by Solr:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">42</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str name="facet.limit">5</str>
 <str name="facet.field">category</str>
 <str name="facet.prefix">boo</str>
 <str name="facet.mincount">1</str>
 <str name="rows">0</str>

Real-life Situations

306

 <str name="facet">true</str>
 </lst>
</lst>
<result name="response" numFound="3" start="0">
</result>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="category">
 <int name="books and tutorials">2</int>
 <int name="books">1</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
 <lst name="facet_intervals"/>
</lst>
</response>

As you can see, we have two categories each with a single product in them, so this is what
matches our example data. Let's now see how it works.

How it works...
Our data is very simple; we have three fields for each of our documents—one for the identifier
fields, one to hold the name of the document, and one for its category. We will use the
category field to do the autocomplete functionality and we will use faceting for it.

If you take a look at the index structure, for the category field, we use a special type—the
text_lowercase one. What it does is it stores the category as a single token in the index
because of using solr.KeywordTokenizerFactory, but we also lowercase with the
appropriate filter. This is because we want to send the lowercased queries when we use faceting.

The query is quite simple; we query for all the documents (the q=*:* parameter) and we don't
want any results returned (the rows=0 parameter). We will use faceting for autocomplete,
so we turn it on (the facet=true parameter), and we will specify the category field to
calculate the faceting on (facet.field=category). We are also only interested in faceting
calculation for the values that have at least one document in it (facet.mincount=1) and
we want the top five results (facet.limit=5). One of the most important parameters in
the query is the facet.prefix one—with the use of this parameter, we will return on those
results in faceting that start with the prefix defined by the mentioned parameter, which can
be seen in the results. And of course remember that faceting results are by default sorted by
their numerousness.

Chapter 10

307

Handling time-sliced data using aliases
There are situations in which time-sliced data is the only logical solution to go for. For
example, if you are indexing logs to your SolrCloud cluster, you probably want to divide the
data in time slices depending on how much data you have—if you only have index logs with
error level, then you can probably live with monthly collections. If you are indexing all logs
from all your applications, daily collections will probably be the way to go. With the time-sliced
collections, there are a few things that the application needs to handle; for example, knowing
to which collection it should currently send data to and which collection or collections should
be used for querying. To simplify this, Solr allows you to use aliases and this recipe will show
you how to handle that.

Getting ready
We assume that we already have our configuration stored in ZooKeeper and we have created
a SolrCloud cluster. If you don't know how to do this, refer to the Creating a new SolrCloud
cluster recipe in Chapter 7, In the Cloud.

How to do it...
Let's assume that we want to create daily indices, because we use our SolrCloud cluster to
store logs coming from different applications in our environment. I also assume that we only
want to search in day or week intervals:

1. We will start by creating an initial collection that will hold our data. To do this, we run
a command similar to the following one:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=logs_2014-11-10&numShards=1&replicationFactor=1&collection.
configName=logs'

2. Now to simplify indexing, we will create an alias called logs_index so that our
indexing application always uses the same collection name. We do this by running the
following command:
curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_index&collections=logs_2014-11-10'

3. We also said that we want to simplify querying so that our UI doesn't need to worry
about collections and their names. We need to create two aliases—we do this by
running the following commands:
curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_search_day&collections=logs_2014-11-10'

curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_search_week&collections=logs_2014-11-10'

Real-life Situations

308

4. Now, let's create a new daily collection using the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATE&nam
e=logs_2014-11-11&numShards=1&replicationFactor=1&collection.
configName=logs'

5. After this has been done and the day ended, we need to run a command to alter
our aliases. First, we need to alter our logs_index alias to point to a new, empty
collection. We do this by running the following command:
curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_index&collections=logs_2014-11-11'

6. Now we need to update aliases used for searching. We can do this by running the
following commands:

curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_search_day&collections=logs_2014-11-11'

curl 'localhost:8983/solr/admin/collections?action=CREATEALIAS&nam
e=logs_search_week&collections=logs_2014-11-10,logs_2014-11-11'

Unfortunately, this is the only thing that we will have to automate ourselves—switching aliases.
The rest will be handled by Solr. Now let's see how all this works.

How it works...
We started by creating a new collection. The collection is called logs_2014-11-10 and it
will be used to store logs from November 10, 2014. However, we don't want our application
to know the logic behind the naming of the collections. It might happen that we will change
the naming and we don't want to force the application to be changed during the same time.
Because of this, we created two aliases for searching and one for indexing. We will always use
a single alias pointing to only a single collection for indexing. Actually, Solr won't index data if
an alias points to more than one collection. Of course, the logs_search_day alias will also
point to a single collection—the most recent one and the logs_search_week alias will cover
the whole week (in our case, we start with a single collection, that's why it covers only a single
collection initially).

Alias creation is very simple. We run a command to the same REST API that we used during
the collection creation—to /admin/collections. We specify the action=CREATEALIAS
command. We need to provide two things—first, the name of the alias we want to use (we do
this by providing the name parameter) and the list of comma-separated collections that should
be grouped with that alias (using the collections parameter).

Chapter 10

309

After adding a new collection and when a new day comes, we need to switch our aliases.
We again run the same command that we used to create the logs_index alias, but instead
of pointing it to the logs_2014-11-10 collection, we point it to the newest collection, which
is logs_2014-11-11. Solr will just overwrite the old alias definition. A similar thing is done
for the aliases used for searching. We point the logs_search_day alias to the newest
collection, which is logs_2014-11-11, and now we point the logs_search_week alias to
two collections (we will point it to three collections on the next day and so on).

The only thing we need to worry about is making automation work to create new collections
and switching the aliases, because Solr doesn't do that for us.

There's more...
There is one more thing I would like to describe when it comes to handling aliases.

Deleting an alias
In addition to creating aliases, Solr allows you to delete them as well. For example, if we would
like to delete an alias called logs_search_day, we will run the following command:

curl 'localhost:8983/solr/admin/collections?action=DELETEALIAS&name=lo
gs_search_day'

As you can see, the only thing that we need to provide is the action=DELETEALIAS
parameter and the name of the alias we want to delete using the name request parameter.

Boosting words closer to each other
One of the most common problems that users are struggling with is how to improve the
relevancy of their results while using Apache Solr. Of course, the relevancy tuning is in most
cases connected to your business needs, but one of the common requirements is to have
documents that have all the query words in their fields on top of the results list. You can
imagine a situation where you search for all the documents that match at least a single query
word, but you would like to show the ones with the entire query words set first. This recipe will
show you how to achieve that.

Real-life Situations

310

How to do it...
1. Let's start with the following index structure (add the following definition to your

schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="description" type="text_general" indexed="true"
stored="true" />

2. The second step is to index the following sample data:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr and all the others</field>
 <field name="description">This is about Solr</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Lucene and all the others</field>
 <field name="description">This is a book about Solr and Lucene</
field>
 </doc>
</add>

3. Let's assume that our usual queries look as follows:
http://localhost:8983/solr/cookbook/select?q=solr book&defType=edi
smax&mm=1&qf=name^10000+description

Nothing complicated, however, the results of such a query doesn't satisfy us, because
they look similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<response>

<lst name="responseHeader">

 <int name="status">0</int>

 <int name="QTime">2</int>

 <lst name="params">

 <str name="mm">1</str>

 <str name="q">solr book</str>

Chapter 10

311

 <str name="defType">edismax</str>

 <str name="qf">name^10000 description</str>

 </lst>

</lst>

<result name="response" numFound="2" start="0">

 <doc>

 <str name="id">1</str>

 <str name="name">Solr and all the others</str>

 <str name="description">This is about Solr</str>

 <long name="_version_">1483649935327887360</long></doc>

 <doc>

 <str name="id">2</str>

 <str name="name">Lucene and all the others</str>

 <str name="description">This is a book about Solr and Lucene</
str>

 <long name="_version_">1483649935408627712</long></doc>

</result>

</response>

4. In order to change this, let's introduce a new handler in our solrconfig.xml file:
<requestHandler name="/better" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="q">_query_:"{!edismax qf=$qfQuery
mm=$mmQuerypf=$pfQuery bq=$boostQuery v=$mainQuery}"</str>
 <str name="qfQuery">name^100000 description</str>
 <str name="mmQuery">1</str>
 <str name="pfQuery">name description</str>
 <str name="boostQuery">_query_:"{!edismax qf=$boostQueryQf
mm=100% v=$mainQuery}"^100000</str>
 <str name="boostQueryQf">name description</str>
 </lst>
</requestHandler>

5. So, let's send a query to our new handler by running the following query against Solr:

http://localhost:8983/solr/cookbook/better?mainQuery=solr book

Real-life Situations

312

We get the following results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">328</int>
</lst>
<result name="response" numFound="2" start="0">
 <doc>
 <str name="id">2</str>
 <str name="name">Lucene and all the others</str>
 <str name="description">This is a book about Solr and Lucene</
str>
 <long name="_version_">1483649935408627712</long></doc>
 <doc>
 <str name="id">1</str>
 <str name="name">Solr and all the others</str>
 <str name="description">This is about Solr</str>
 <long name="_version_">1483649935327887360</long></doc>
</result>
</response>

As you can see it works, so let's discuss how.

How it works...
For the purpose of this recipe, we used a simple index structure that consists of a document
identifier, document name, and description. Our data is very simple as well; it just contains
two documents, so let's just skip discussing it.

During the first query, the document with the identifier of 1 is placed on top of the query
results. This is because our name field is highly boosted. However, what we would like
to achieve is to be able to boost the name. In addition to this, we would like to have the
documents with words from the query close to each other on top of the results.

In order to do this, we define a new request handler named /better, which will leverage
the local params. The first thing is the defined q parameter, which is the standard query.
It uses the extended dismax parser (the {!edismax part of the query) and defines several
additional parameters:

 f qf: This is the field that edismax should send the query against. We tell Solr that we
will provide the fields by specifying the qfQuery parameter using the $qfQuery value.

 f mm: This is the minimum that should match a parameter that tells edismax how
many words from the query should be found in a document for the document to
be considered a match. We tell Solr that we will provide the fields by specifying the
mmQuery parameter using the $mmQuery value.

Chapter 10

313

 f pf: This is the phrase fields definition that specifies the fields on which Solr should
generate the phrase queries automatically. Similar to the previous parameters we
specified, we will provide the fields by specifying the pfQuery parameter using the
$pfQuery value.

 f bq: This is the boost query that will be used to boost the documents. Again, we use
the parameter dereferencing functionality and we tell Solr that we will provide the
value in the bqQuery parameter using the $bqQuery value.

 f v: This is the final parameter that specifies the content of the query; in our case, the
user query will be specified in the mainQuery parameter.

Basically, the preceding query says that we will use the edismax query parser, phrase, and
boost queries. Now let's discuss the values of the parameters.

The first thing is the qfQuery parameter, which is exactly the same as the qf parameter in
the first query we sent to Solr. With the use of this parameter, we just specify the fields that
we want to be searched for and their boosts. Next, we have the mmQuery parameter set to
1, which will be used as mm in edismax, which means that a document will be considered a
match when a single word from the query will be found in it. As you remember, the pfQuery
parameter value will be passed to the pf parameter and thus the phrase query will be
automatically created on the fields defined in those fields.

And now the last and probably the most important part of the query—the boostQuery
parameter whose value will be passed to the bq parameter. Our boost query is very similar to
our main query; however, we can say that the query should only match the documents that have
all the words from the query (the mm=100% parameter). We also specify that the documents that
match that query should be boosted by adding the ^100000 part at the end of it.

To sum up all the parameters of our query, they will promote the documents with all the words
from the query present in the fields we want to search for. In addition to this, we will promote
the documents that have phrases matched. So finally, let's take a look at how the newly
created handler works—as you can see, when providing our query to it with the mainQuery
parameter, the previously second document is now placed as the first one, so we achieved
what we wanted.

Using the Solr spellchecking functionality
Most modern search sites have some kind of user spelling mistakes correction functionality.
Some of these sites have a sophisticated mechanism, while others just has a basic one. But
that doesn't actually matter. If all the search engines have it, then there is a big probability
that your client or boss will want one too. Is there a way to integrate such functionality into
Solr? Yes, there is and this recipe will show you how to do it.

Real-life Situations

314

Getting ready
The spellchecker component configuration is something we discussed in the Configuring the
Solr spellchecker recipe in Chapter 1, Apache Solr Configuration. So again, I'll only discuss the
most important fragments.

How to do it...
1. Let's begin with the index structure (just add this to your schema.xml file):

<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />

2. The data that we are going to index looks as follows:
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Other book</field>
 </doc>
</add>

3. Our spellchecking mechanism will work on the basis of the name field. Now, let's add
the appropriate search component to the solrconfig.xml file:
<searchComponent name="spellcheck" class="solr.
SpellCheckComponent">
 <str name="queryAnalyzerFieldType">name</str>
 <lst name="spellchecker">
 <str name="name">direct</str>
 <str name="field">name</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="buildOnCommit">true</str>
 </lst>
</searchComponent>

Chapter 10

315

4. In addition to this, we would like to have it integrated into our search handler,
so we make the default search handler definition as follows (add this to your
solrconfig.xml file):
<requestHandler name="/spell" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="df">name</str>
 <str name="spellcheck.dictionary">direct</str>
 <str name="spellcheck">on</str>
 <str name="spellcheck.collate">true</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

5. Now, let's check how it works. To do this, we will send a query that contains a spelling
mistake—we will send the words othar boak instead of other book. The query
doing this will look as follows:

http://localhost:8983/solr/cookbook/spell?q=name:(othar boak)

The Solr response for this query looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">11</int>
</lst>
<result name="response" numFound="0" start="0">
</result>
<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="othar">
 <int name="numFound">1</int>
 <int name="startOffset">6</int>
 <int name="endOffset">11</int>
 <arr name="suggestion">
 <str>other</str>
 </arr>
 </lst>
 <lst name="boak">
 <int name="numFound">1</int>

Real-life Situations

316

 <int name="startOffset">12</int>
 <int name="endOffset">16</int>
 <arr name="suggestion">
 <str>book</str>
 </arr>
 </lst>
 <str name="collation">name:(other book)</str>
 </lst>
</lst>
</response>

As you can see from the response, Solr corrected the spelling mistake we made. Now let's see
how it works.

How it works...
The index structure is pretty straightforward. It contains two fields—one to hold the unique
identifier (the id field) and the other to hold the name (the name field). The file that contains
the example data is simple too, so I'll skip discussing it.

As already mentioned at the beginning of the recipe, the spellchecker component configuration
is something that I already covered in the Configuring the Solr spellchecker recipe in Chapter 1,
Apache Solr Configuration. So again, I'll discuss only the most important fragments.

As you can see in the configuration, we defined a spellchecker component that will use Solr's
solr.DirectSolrSpellChecker class in order not to store its index on the hard disk
drive. In addition to this, we configured it to use the name field for spellchecking and also to
use that field analyzer to process queries. Our /spell handler is configured to automatically
include spellchecking results (<str name="spellcheck">on</str>) to create collation
(<str name="spellcheck.collate">true</str>) and to use direct dictionary (<str
name="spellcheck.dictionary">direct</str>). All these properties were discussed
in the previously mentioned recipe.

Now let's take a look at the query. We send the boak and othar words in the query
parameter (q). The spellchecker component will be activated automatically because of the
configuration of our /spell handler. And that's actually all when it comes to the query.

Finally, we come to the results returned by Solr. As you can see, there were no documents
found for the word boak and the word other; that's what we were actually expecting.
However, as you can see, there is a spellchecker component section added to the results
list (the <lst name="spellcheck"> tag). For each word, there is a suggestion returned
by Solr (the <lst name="boak"> tag is the suggestion for the boak word). As you can
see, the spellchecker component informed us about the number of suggestions found
(the <int name="numFound"> tag), about the start and end offset of the suggestion
(<int name="startOffset"> and <int name="endOffset">), and about the actual
suggestions (the <arr name="suggestion"> array).

Chapter 10

317

The only suggestion that Solr returned was the book word (<str>book</str> under the
suggestion array). The same goes for the second word.

There is an additional section in the spellchecker component results generated by the
spellcheck.collate=true parameter—<str name="collation">name:(other
book)</str>. It tells us what query Solr suggested to us. We can either show the query
to the user or send it automatically to Solr and show our user the corrected results list—this
one is up to you.

Using the Solr administration panel for
monitoring

Monitoring is crucial for a production environment. We want to be able to see all the needed
metrics that can show us whether our Solr cluster is healthy. We want to be able to see the
operating system and Java Virtual Machine metrics, such as network statistics, garbage
collector work, and so on. By default, Solr comes with the administration panel that allows you
to see the basic statistics regarding it and the JMX connectivity so that we can integrate it with
monitoring systems such as Ganglia. This recipe will show you what information you can get by
looking at the Solr administration panel.

How to do it...
1. When opening the Solr administration panel in our browser

(http://localhost:8983/solr/#/), we will see a view similar to the following one:

Real-life Situations

318

2. Next, let's take a look at the cluster state view. We can do this by pointing our web
browser to http://localhost:8983/solr/#/~cloud. We will see a view similar
to the following one:

3. Of course, the cloud view is not the only thing. When choosing our collection from the
left-hand side of the administration panel or going to http://localhost:8983/
solr/#/collection1, we can see an overview of the collection as follows:

Chapter 10

319

4. We can go even further and look at the statistics provided by each of Solr
components. For example, when we take a look at the query result cache statistics,
we will see a view similar to the following one:

5. We can also see extended statistics for each of the handlers and components, both
when it comes to searching and indexing. For example, if we take a look at the /
select handler statistics after running a few queries, we will see the following:

Real-life Situations

320

We can, of course, continue the discussion and show more screenshots from the Solr
administration panel, but I would just advise you to run Solr and just click through the
functionality. Let's now take a look at what all this functionality provides.

How it works...
On the main page of the Solr administration panel (Dashboard), we can see various metrics
related to Solr. We can see the version of Solr we are running, when the instance was started,
what the configuration parameters were, which Java version was used, and so on. In addition
to this, we can see the memory statistics. We can see the physical memory and how much
of it is used, we can see the swap memory available, and finally, we can see the JVM
memory—the one that Solr uses.

The next thing is the cluster state and layout. The cluster state view provides us with
information about the topology of the cluster, what collections are deployed on our cluster,
what are the shards of each collection, where they are deployed, and what their roles and
statuses are. Remember that this view is only available when running Solr in SolrCloud view.

The Overview page for a collection gives you basic statistics about the core of the collection
such as number of documents, heap memory usage, version of the index, number of
segments, and so on. We can also see the directories and directory implementation used.

Finally, we looked at the statistics of different Solr components—the query result cache
and the search handler registered under the /select name. As we can see, Solr provides
different metrics depending on the component we are looking at. For example, the query
result cache provides information on the size, number of hits, hit ratio, number of inserts
and evictions, and so on. The search handler on the other hand provides information about a
number of requests and errors, total time requests that were running, time-based statistics,
and percentiles.

Note that the metrics we just discussed can be also read using JMX,
as Solr supports this.

Of course, the Solr administration panel gives you a pretty good view on what is currently
happening with Solr, but it doesn't allow you to compare metrics, see them graphed for ease
of viewing, and so on. And the one main thing that really makes us look for a proper type of
production monitoring software is that it doesn't store all the metrics. If something happens
or is restarted, we lose the metrics.

Chapter 10

321

There's more...
There is one more thing when it comes to Solr monitoring that I want to mention.

SPM Performance Monitoring & Alerting
Of course, working with the Solr administration panel or JMX is good, but when it comes to
monitoring and performance analysis, you usually want to have a good view of what happened
in the past, you want to be able to compare different periods, and have alerting functionality
so that you are on top of things when something goes wrong. Such functionalities are not a
part of Solr, but there are solutions out there that provide all the required pieces of a good
monitoring platform. One of these solutions is SPM Performance Monitoring & Alerting
(http://sematext.com/spm/index.html) provided as SaaS and on premises software
by Sematext Group (http://sematext.com). There are also open source tools, such as
Ganglia (http://ganglia.sourceforge.net/) with jmxtrans (http://www.jmxtrans.
org/). For example, this is how the default SPM dashboard looks like, showing you the most
interesting information related to Solr on one page:

The default SPM dashboard

In addition to providing all the relevant and needed Solr metrics, SPM gives you an insight
on JVM and operating system related metrics. Apart from this, it provides you with alerting
capabilities and algorithmic anomaly detection that can help you foresee problems that
are not yet present. Even though SPM is a commercial product, it has a free version that
allows you to keep the last 30 minutes of your metrics for free and doesn't care about the
maintenance of additional software inside your organization.

http://sematext.com/spm/index.html
http://sematext.com
http://ganglia.sourceforge.net/
http://www.jmxtrans.org/
http://www.jmxtrans.org/

Real-life Situations

322

Automatically expiring Solr documents
There are use cases that require expiration of documents after a certain amount of time—they
should either be deleted or marked as inactive after a given time or period. For example, let's
assume that we have a web application that works as a link shortening service. One can paste
a long link and get the short version of it. However, we would like the links to be expired after
one hour from their creation. Of course, we can develop a periodic job on our application-side
and make this happen, but we can also use Solr for this. This recipe will show you how to
achieve such functionality with Solr.

How to do it...
For the purpose of this recipe, let's assume that we want our documents to expire 5 minutes
after they were sent to indexation.

1. We will start with the structure of the index, which looks as follows (we add it to our
schema.xml file):
<field name="id" type="string" indexed="true" stored="true"
required="true" />
<field name="url" type="string" indexed="false" stored="true" />
<field name="short" type="string" indexed="false" stored="true" />
<field name="user" type="string" indexed="false" stored="true" />
<field name="expiration_time" type="date" indexed="true"
stored="true" />

2. The second step is to define a new update request processor chain, which looks as
follows (we put it in the solrconfig.xml file):
<updateRequestProcessorChain default="true">
 <processor class="solr.processor.
DocExpirationUpdateProcessorFactory">
 <int name="autoDeletePeriodSeconds">10</int>
 <str name="expirationFieldName">expiration_time</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

3. Now, we can index the first document using the following command:
curl 'http://localhost:8983/solr/cookbook/update?_
ttl_=%2B5MINUTES' -H 'Content-type:application/xml' --data-binary
'<add>

 <doc>

Chapter 10

323

 <field name="id">1</field>

 <field name="url">http://solr.pl/en/2014/10/31/lucene-
solr-4-10-2/</field>

 <field name="short">http://solr.pl/short/1</field>

 <field name="user">gr0</field>

 </doc>

</add>'

4. A minute later, we index the following document:
curl 'http://localhost:8983/solr/cookbook/update?_
ttl_=%2B5MINUTES' -H 'Content-type:application/xml' --data-binary
'<add>

 <doc>

 <field name="id">2</field>

 <field name="url">http://solr.pl/en/2014/09/04/apache-lucene-
and-solr-4-10/</field>

 <field name="short">http://solr.pl/short/2</field>

 <field name="user">gr0</field>

 </doc>

</add>'

5. Now, let's commit these documents by running the following command:
curl 'http://localhost:8983/solr/cookbook/update' -H 'Content-
type:application/xml' --data-binary '<commit/>'

6. After indexing them, we try running the following query:
http://localhost:8983/solr/cookbook/select?q=*:*

The response will be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
</lst>
<result name="response" numFound="2" start="0">
 <doc>
 <str name="id">1</str>
 <str name="url">http://solr.pl/en/2014/10/31/lucene-
solr-4-10-2/</str>
 <str name="short">http://solr.pl/short/1</str>

Real-life Situations

324

 <str name="user">gr0</str>
 <date name="expiration_time">2014-11-03T12:09:15.002Z</date>
 <long name="_version_">1483752084606025728</long></doc>
 <doc>
 <str name="id">2</str>
 <str name="url">http://solr.pl/en/2014/09/04/apache-lucene-
and-solr-4-10/</str>
 <str name="short">http://solr.pl/short/2</str>
 <str name="user">gr0</str>
 <date name="expiration_time">2014-11-03T12:09:55.963Z</date>
 <long name="_version_">1483752127556747264</long></doc>
</result>
</response>

7. Now we should wait for 5 minutes and again run the same query, which looks as
follows:

http://localhost:8983/solr/cookbook/select?q=*:*

Now, the response is different:
<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 <lst name="params">
 <str name="q">*:*</str>
 </lst>
</lst>
<result name="response" numFound="1" start="0">
 <doc>
 <str name="id">2</str>
 <str name="url">http://solr.pl/en/2014/09/04/apache-lucene-
and-solr-4-10/</str>
 <str name="short">http://solr.pl/short/2</str>
 <str name="user">gr0</str>
 <date name="expiration_time">2014-11-03T12:09:55.963Z</date>
 <long name="_version_">1483752127556747264</long></doc>
</result>
</response>

Also, we can see the following message in the Solr's logs:

213361 [autoExpireDocs-10-thread-1] INFO org.apache.
solr.update.processor.LogUpdateProcessor ľ [collection1]
{deleteByQuery={!cache=false}expiration_time:[* TO
2014-11-03T12:05:25.794Z] (-1483752158835769344),commit=} 0 4
213361 [autoExpireDocs-10-thread-1] INFO org.apache.solr.update.
processor.DocExpirationUpdateProcessorFactory ľ Finished periodic
deletion of expired docs

Chapter 10

325

This means that everything is working as it should be and Solr deleted the first document.
If we would wait longer, we would see that the second document was deleted as well.
Now, let's see how it works.

How it works...
As usual, we are starting with the structure of the index we are going to use. We need the
identifier of the document, which is represented by the id field, the long URL address
(the url field), the shortened URL (the short field), and the user who registered the URL
address—the user field. Finally, the last field—expiration_time is the field that Solr will
use to check whether the document should be deleted or not. This field should be based on
the date and time types, which in our case is the date type.

The next thing we do is define a custom update request processor chain that
we set to be the default one (default="true"). Next, we have an update
processor class that is responsible for document deletion—solr.processor.
DocExpirationUpdateProcessorFactory. We used properties to define the processor
behavior. The first is autoDeletePeriodSeconds that tells Solr how often Solr should
look for deleted documents. In our case, it will be every 10 seconds. What Solr does is runs a
delete by query on the collection and will delete all the documents in the current time. The
autoDeletePeriodSeconds property tells Solr how often such a query should be run. The
second property—expirationFieldName tells Solr which the delete by query should use
as the field to hold the expiration date of the document. In our case, it is our expiration_
time field. The two additional processors are common—one is about logging the update
process (solr.LogUpdateProcessorFactory) and the second one is about running the
update itself (solr.RunUpdateProcessorFactory).

The next interesting thing is how we index our documents. As you can see, in addition to the
document itself, we also provide an additional request parameter—_ttl_. It stands for time to
live and specifies when the documents in the update request should be deleted. The value of
the property can use the whole date math syntax that Solr allows you to use (which is described
in https://cwiki.apache.org/confluence/display/solr/Working+with+Dates).
We set it to %2B5MINUTES (which is +5MINUTES decoded). This means that Solr will take the
current date and time, will add 5 minutes to it, and will write that information into the field
defined in the update processor using the expirationFieldName field name.

As we can see, after waiting for some time Solr deleted and automatically refreshed the
collection using a soft commit operation with the openSearcher=true property.

There's more...
There is one more thing that I would like to mention when it comes to automatic
document expiration.

https://cwiki.apache.org/confluence/display/solr/Working+with+Dates

Real-life Situations

326

Changing the time to live parameter name
If we want, we can also change the name of the parameter that is used to provide time to live
information for documents. To do this, we should use the ttlFieldName property and add
it to the solr.processor.DocExpirationUpdateProcessorFactory parameter in
our solrconfig.xml file. For example, if we would like to use the expireAfter property
instead of _ttl_, we should configure our update request chain as follows:

<updateRequestProcessorChain default="true">
 <processor class="solr.processor.
DocExpirationUpdateProcessorFactory">
 <int name="autoDeletePeriodSeconds">10</int>
 <str name="ttlFieldName">expireAfter</str>
 <str name="expirationFieldName">expiration_time</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

Exporting whole query results
One of the features of search engines such as Solr that users frequently ask about is the
ability to pull the data from the search engine in some form. I'm not talking about a few
hundred results returned by a query, but about all the documents that are indexed in a
particular core or collection. With the new releases of Solr, we have the ability to scroll through
the results and with some effort, we will be able to export all the results. However, with the
release of Solr 4.10, we were also given a possibility of exporting fully sorted query results at
once. This recipe will show you how to do that.

How to do it...
Let's assume that we have an index that contains book names and the number of votes users
have given to those books and that our hypothetical index is large. What we would like to do is
export all the books matching a particular query along with the number of votes they have to a
separate file. The results of such a query can be massive:

1. We start with our index structure that contains the following fields (we just put the
following entries into the schema.xml file):
<field name="id" type="int" indexed="true" stored="true"
required="true" />
<field name="name" type="text_general" indexed="true"
stored="true" />
<field name="votes" type="int" indexed="false" stored="false"
docValues="true" />
<field name="name_export" type="string" indexed="false"
stored="false" docValues="true" />

Chapter 10

327

2. We also need to define a copy field that we also put into the schema.xml file:
<copyField source="name" dest="name_export" />

3. The example data we will use is small and looks as follows (this will only serve the
purpose of showing the export functionality):
<add>
 <doc>
 <field name="id">1</field>
 <field name="name">Solr cookbook</field>
 <field name="votes">5</field>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="name">Mechanics cookbook</field>
 <field name="votes">12</field>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="name">Other cookbook</field>
 <field name="votes">1</field>
 </doc>
 <doc>
 <field name="id">4</field>
 <field name="name">Yet another cookbook</field>
 <field name="votes">0</field>
 </doc>
</add>

4. Now, let's take a look at the configuration of Solr. First, we need to add the following
request handler definition to our solrconfig.xml file:
<requestHandler name="/export" class="solr.SearchHandler">
 <lst name="invariants">
 <str name="rq">{!xport}</str>
 <str name="wt">xsort</str>
 <str name="distrib">false</str>
 </lst>
 <lst name="defaults">
 <str name="df">name</str>
 </lst>
</requestHandler>

Real-life Situations

328

5. Finally, we need to disable lazy fields loading by putting the following entry into our
solrconfig.xml file (or modifying the existing configuration):

<enableLazyFieldLoading>false</enableLazyFieldLoading>

Now, we can export our data by running the following command:
curl 'localhost:8983/solr/cookbook/export_books?q=cookbook&sort=vo
tes+asc&fl=name_export,votes'

The result returned by Solr for our example is as follows:

{"numFound":4, "docs":[{"name_export":"Yet
another cookbook","votes":0},{"name_export":"Other
cookbook","votes":1},{"name_export":"Solr
cookbook","votes":5},{"name_export":"Mechanics
cookbook","votes":12}]}

As we can see, our data was exported. Let's take a look at how it works now.

How it works...
Before we start, remember that the feature you are reading about was introduced in Solr 4.10
and is in a very simple form. For example, in Solr 4.10, it required that fields used for sorting
and displaying during export were using doc values. It uses a stream sorting technique that
enables you to send results within milliseconds after the request was made. This can change
in the future, so keep an eye on Solr release notes and sites such as http://solr.pl for
more information about this.

We start with the index structure, which is similar to most of the recipes is pretty simple. It
contains four fields—one to hold the unique identifier of the document (the id field), one to
hold the name of the book (the name field), the third one to hold the number of votes the book
was given (the votes field), and finally, the last field, name_export, we will use for exporting.
Solr export functionality allows you to export and sort only on those fields that have doc values
enabled. Because of this, we need to set the docValues property to true for the votes
field and create a new field called name_export, because doc values can't be turned on for
analyzed fields. We also introduced a copy field section to tell Solr to automatically copy the
contents of the name field into the name_export field, so we don't have to worry about that.

Now, let's get to our /export_books request handler definition. As you can see, it is
based on the standard solr.SearchHandler handler, but it contains some additional
properties that we didn't see till now. To use Solr export functionality, we need to provide
three properties. First, we specify the rq parameter to {!xport}. The rq stands for
re-ranking query and to use Solr export functionality, we need to set it to {!xport};
otherwise, it won't work. The second parameter—the wt one—specifies the response writer
and for export functionality, it needs to be set to xsort. Finally, we need to set the distrib
parameter to false so that the request is not propagated to other shards and is only
executed locally.

http://solr.pl

Chapter 10

329

Note that initially, Solr export functionality didn't support distributed
operations. Exporting data for collections that are built of more than
a single primary shard needs to be done manually, shard by shard.
This is going to change in future Solr releases.

As you can see, the three mentioned parameters were placed into the invariants section
of the request handler definition so that the user can't overwrite them by providing the same
parameter during a query. We also defined the default search field using the df property.

One more thing that we did is setting the enableLazyFieldLoading property in
solrconfig.xml to false. This is needed because the initial implementation of
Solr export functionality contains a bug that will result in query failures when the
enableLazyFieldLoading property is set to true.

After this, we are ready to export our results. In the example, we exported all the documents
matching the cookbook query (sent against the default search field, which is name in our
case). The export functionality in Solr allows you to provide two properties in addition to the
query—the sort property and the fl property. The sort property can hold up to four fields
and defines how the documents in the export should be sorted. In our case, we want the
documents to be sorted in an ascending order based on the number of votes. The fl property
defines which fields should be exported for each document—in our case, it is name_export
and votes. Remember that each field used in the sort property or the fl property has to
use doc values—this is a requirement for now.

As you can see, the exported data is what we actually wanted and was exported in JSON.
This is the only format supported for now. The good thing about this functionality is that we
can export even massive datasets without putting too much pressure on Solr, so you can use
it whenever you need to export large amounts of data.

Index
Symbol
2-grams 155

A
achieved replication factor

defining 289
aliases

deleting 309
used, for handling time-sliced data 307-309

aliasing
about 232
using 232, 233

Apache Solr
URL, for documentation 33
URL, for tutorials 8

Apache Tika
language identification, based on 81
URL 48

autocomplete feature
about 124
boosting, using with 124-127
implementing, for categories 304-306
implementing, for products 300-304
reference link 109

B
boosting

using, with autocomplete 124-127
buffer overflow 13
Bullzip PDF Printer

URL 49

C
caching, of rare filters

avoiding, for performance
improvement 205, 206

categories
autocomplete functionality, implementing

for 304-306
character filter 90
check index functionality

using 289-292
CheckIndex tool 291
children documents

returning, in query 137
collapsed groups

expanding 273, 274
collection

creating, on defined nodes 222, 223
data, migrating to 283-286

collection creation
replicas, adding after 224-226

configuration
migrating, from master-slave to

SolrCloud 16, 17
configuration properties,

solr.SpatialRecursivePrefixTree
FieldType class

distErrPct 72
maxDistErr 73
units 73

copy fields
information, retrieving of 257

core discovery
using 31-33

332

core.properties file 12
core.properties file, properties

collection 33
config 32
coreNodeName 33
dataDir 32
loadOnStartup 33
name 32
roles 33
schema 33
shard 33
transient 33
ulogDir 33

currencyField field type, properties
providerClass 87
ratesFileLocation 87
refreshInterval 87

currency provider
setting up 87

D
data

indexing, from database with DIH 62-64
migrating, to another collection 283-286
parsing update processors, used for

parsing 54-57
sorting, on basis of function

value 137-140
storing, outside of Solr index 95-98
transforming, on using DIH 68-70

data analysis 89
database

data, indexing from 62-64
Data Import Handler. See DIH
decision tree faceting

using 176-179
deep paging

handling, efficiently 188-192
default HTML tags

modifying 245
defined nodes

collection, creating on 222, 223

defined tags
preserving 95

DIH
incremental imports 65-67
URL 67
used, for indexing data from database 62-64

DIH usage
data, transforming on 68-70

directory configuration
selecting 18-20

document cache
configuring 192-194

document fields
updating 73-76

document language
detecting, during indexation 77-81

documents
fragments, highlighting in 242-244
grouping, by field value 262-264
grouping, by function value 267-270
grouping, by query value 265-267
modifying, scripting update processors

used 58-61
document score

affecting, function queries used 144-147
doc values 201
driver library, PostgreSQL

URL 63
dynamic fields

information, retrieving of 257

E
efficient highlighting mechanism 245-247
embedded ZooKeeper server

starting 215
enumeration type

using 90-92
equivalent synonyms setup 101
expensive filters performance

filter execution, controlling for
improvement in 206-208

333

F
faceting

about 201
calculating, for relevant documents

in groups 179-183
memory consumption, lowering of 201-203

faceting calculation
per segment field cache, using for 185

faceting performance
improving, for low cardinality fields 183-185

faceting results
filters, removing from 173-176

facets
displaying, with counts greater than zero 167

field value
documents, grouping by 262-264

file descriptors
URL, for wiki 276

filter cache
configuring 196-198

filter execution
controlling, for improving expensive filters

performance 206-208
filters

removing, from faceting results 173-176
fragments

highlighting, found in documents 242-244
function queries

used, for affecting document score 144-147
functions, Solr

reference link 147
function value

documents, grouping by 267-270

G
Ganglia

URL 188
geofilt filter, parameters

d 73
pt 73
sfield 73

global similarity
modifying 45

Graphite
URL 278

groups
faceting, calculating for relevant

documents 179-183
multiple documents, having in 265

H
heap

viewing, on out of memory error 279
hierarchies

handling, with nested documents 134-137
high-indexing use cases

SolrCloud, configuring for 35-37
high-performance sorting

numerical fields, configuring for 208
high-querying use cases

SolrCloud, configuring for 38-40
HTML tags

removing, during indexation 93, 94

I
incremental imports, DIH 65-67
index

checking, without repair procedure 292
indexation

document language, detecting during 77-81
HTML tags, removing during 93, 94

indexing
speeding up, with merge policy tuning 205
speeding up, with Solr segments

merge tuning 203, 204
index structure

altering, on live collections 257-261
information, retrieving of 251-256
information, retrieving in XML 256

information, retrieving
of copy fields 257
of dynamic fields 257
of index structure 251-256

installation, ZooKeeper
for SolrCloud 13-15

inverted index 202
I/O usage

limiting 29-31

334

J
Jetty

running, on different port 12
Jetty configuration

adjusting, for avoiding deadlocks 292, 293
Jetty servlet container

URL, for downloading 8
jetty.xml file 11
jhat

URL 279
jmxtrans

URL 321
Joda-Time

URL 57

L
language detection library

reference link 81
language identification

based on Apache Tika 81
languages

stemming 101-104
lexicographical sorting, faceting results 167
light stemmers

using 106
live collection

index structure, altering of 257-261
low cardinality fields

faceting performance, improving for 183-185
Lucene query language

using 118-120
Lucene query parser

URL 121
Lucene segment merges

reference link 205
Luke

URL 95

M
master-slave, to SolrCloud

configuration, migrating from 16, 17
memory consumption

lowering, of faceting 201-203
lowering, of sorting 201-203

memory problems
dealing with 277-279
diagnosing 277-279

merge policy 203
merge policy, Javadoc

URL 295
merge policy tuning

indexing, speeding up with 205
mm parameter

URL, for documentation 144
monitoring

about 317
Solr administration panel, using for 317-320

multiple collections
setting up, on single cluster 215-217

multiple currencies
handling 83-86

multiple documents
having, in group 265

multiple geographical points
indexing 70-73

multiple shards, from collection
on node 220-222

N
nested documents

hierarchies, handling with 134-137
n-gram approach

typos, handling with 152-156
used, for performant trailing wildcard

search 107-109
nodes

shards, moving between 229-231
nonaggressive stemmers

using 104-106
non-English languages

sorting, configuring for 280-283
NRT use cases

SolrCloud, configuring for 33-35
number of documents

obtaining, on query match 170-173
obtaining, on subquery match 170-173
obtaining, with same field value 164-166
obtaining, with same value range 167-169

number of faceting threads
specifying 186

335

number of fields
counting 51-54

number of returned groups
modifying 265

number of terms, needed for matching
controlling 141-143

numerical fields
configuring, for high-performance sorting 208
configuring, for range queries 208

numeric range query
reference link 209

O
org.apache.lucene.index.TieredMergePolicy

merge policy
URL 204

P
parameter dereferencing 150
parameters, extended dismax parser

bq 313
mm 312
pf 313
qf 312
v 313

parsing update processors
used, for parsing data 54-57

patterns
used, for replacing tokens 112-115

PDF files
indexing 48-51

performance measurements
URL, for blog 192

performant trailing wildcard search
n-gram approach, using for 107-109

per segment field cache
using, for faceting calculation 185

phrase queries
using, with shingles 127-130

position aware queries
using 121-123

position increment
used, for dividing sentences 109-112

post filter
used, for efficient documents

grouping 271-273

PostgreSQL
URL 64

primary key indexation
optimizing 82, 83

products
autocomplete functionality, implementing

for 300-304
pulsing codec

reference link 83
PUT HTTP method

URL 262

Q
query

children documents, returning in 137
query parsers

URL, for list 141
query result cache

configuring 194-196
query results

rescoring 156-161
query value

documents, grouping by 265-267

R
range queries

numerical fields, configuring for 208
read-side fault tolerance, SolrCloud 287, 288
replicas

adding, after collection creation 224-226
removing 226-229

routing
about 234
using 234-237

S
sample exchange file

URL, for downloading 87
Schema API

about 251
URL 257

schemaless mode
reference link 29
Solr, using in 24-29

336

scripting update processors
used, for modifying documents 58-61

scripts
using, other than JavaScript 70

segment merging
tuning 293-295

segments merging, Lucene
URL 296

Sematext
URL, for SPM Performance Monitoring &

Alerting 188
Sematext Group

URL 321
Sematext SPM

URL 278
sentences

dividing, position increment used 109-112
shard handling 32
shards

moving, between nodes 229-231
splitting 217-219

shingles
phrase queries, using with 127-130

similar documents
finding 240-242

similarity
modifying 42, 43

similarity factories
solr.BM25SimilarityFactory 44
solr.DefaultSimilarityFactory 44
solr.DFRSimilarityFactory 44
solr.IBSimilarityFactory 44
solr.LMDirichletSimilarityFactory 45
solr.LMJelinekMercerSimilarityFactory 45
solr.SweetSpotSimilarityFactory 44

simple nested queries
using 148-150

Simple query parser
about 130
URL, for documentation 130

single cluster
multiple collections, setting up on 215-217

Solr
running, on standalone Jetty 8-12
URL, for articles 8
URL, for information on stemming 104

URL, for memory estimator 38
URL, for release notes and sites 328
using, in schemaless mode 24-29

Solr administration panel
using, for monitoring 317-320

solr.BM25SimilarityFactory
URL 44

SolrCloud
configuring, for high-indexing use

cases 35-37
configuring, for high-querying use

cases 38-40
configuring, for NRT use cases 33-35
ZooKeeper, installing for 13-15

SolrCloud cluster
creating 212-214

SolrCloud read-side fault tolerance 287, 288
Solr core

URL 9
solr.DefaultSimilarityFactory

URL 44
solr.DFRSimilarityFactory

URL 44
Solr documentation

URL 160
Solr document query join functionality

using 150-152
Solr documents

expiring, automatically 322-325
solr.FieldMutatingUpdateProcessorFactory

URL 57
solr.HdfsDirectoryFactory 20
Solr heartbeat mechanism

configuring 40, 41
disabling 41
enabling 41

solr.HTMLStripFieldUpdateProcessorFactory
URL 95

solr.IBSimilarityFactory
URL 44

Solr index
data, storing outside of 95-98

solr-jetty-context.xml file 11
solr.LMDirichletSimilarityFactory

URL 45
solr.LMJelinekMercerSimilarityFactory

URL 45

337

solr.MMapDirectoryFactory directory
factory 20

solr.PatternReplaceCharFilterFactory
using 116

Solr query performance
improving, after commit operation 198-200
improving, after committing operations 200
improving, after start operation 198-200

Solr segments merge tuning
indexing, speeding up with 203, 204

Solr server name
specifying 215

Solr spellchecker
configuring 20-23
reference link 23
using 313-317

solr.StandardDirectoryFactory directory
factory 19

solr.StatelessScriptUpdateProcessorFactory
processor

finish function 61
processAdd function 61
processCommit function 61
processDelete function 61
processMergeIndexes function 61
processRollback function 61
URL 61

solr.SweetSpotSimilarityFactory
URL 44

solr.war file 11
solr.xml file 12, 32
sorting

about 201
configuring, for non-English

languages 280-283
memory consumption, lowering of 201-203

spatial search
reference link 73

spellchecker handling 23
SPM Performance Monitoring & Alerting

about 321
URL 321

standalone Jetty
Solr, running on 8-12

stemming 101
Surround query parsers

too many generated queries scenario 124
swapping

avoiding 296-298
synonyms

using 98-100

T
tick 12
time-sliced data

handling, aliases used 307-309
time to live parameter name

modifying 326
tokenizer 89
tokens

replacing, patterns used 112-115
too many opened files exception

dealing with 276
typos

handling, with n-grams 152-156

U
user queries

handling, without errors 130-133

V
versioning

using 247-250
visitsType field type

defVal 97
keyField 97
valType 97

W
webdefault.xml file 11
whole date math syntax, Solr

URL 325
whole query results

exporting 326-329
words

boosting, closer to each other 309-313

338

X
XML

index structure information, retrieving in 256

Z
zoo.cfg file 12
ZooKeeper

installing, for SolrCloud 13-15
URL, for downloading 14

Thank you for buying

Solr Cookbook
Third Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1. Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable.

2. Solve performance, setup, configuration, analysis,
and query problems in no time.

3. Get to grips with, and master, the new exciting
features of Apache Solr 4.

Scaling Apache Solr
ISBN: 978-1-78398-174-8 Paperback: 298 pages

Optimize your searches using high-performance
enterprise search repositories with Apache Solr

1. Get an introduction to the basics of Apache Solr
in a step-by-step manner with lots of examples.

2. Develop and understand the workings of
enterprise search solution using various
techniques and real-life use cases.

3. Gain a practical insight into the advanced ways
of optimizing and making an enterprise search
solution cloud ready.

Please check www.PacktPub.com for information on our titles

Apache Solr High
Performance
ISBN: 978-1-78216-482-1 Paperback: 124 pages

Boost the performance of Solr instances and
troubleshoot real-time problems

1. Achieve high scores by boosting query time and
index time, implementing boost queries and
functions using the DisMax query parser and
formulae.

2. Set up and use SolrCloud for distributed indexing
and searching, and implement distributed search
using shards.

3. Use geospatial search, handling homophones,
and ignoring listed words from being indexed
and searched.

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience with
real-world data with this practical guide to Apache Solr

1. Learn to use Solr in real-world contexts,
even if you are not a programmer, using
simple configuration examples.

2. Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3. Teaches you in an easy-to-follow style, full of
examples, illustrations, and tips to suit the
demands of beginners.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Apache Solr Configuration
	Introduction
	Running Solr on a standalone Jetty
	Installing ZooKeeper for SolrCloud
	Migrating configuration from master-slave to SolrCloud
	Choosing the proper directory configuration
	Configuring the Solr spellchecker
	Using Solr in a schemaless mode
	Limiting I/O usage
	Using core discovery
	Configuring SolrCloud for NRT use cases
	Configuring SolrCloud for high-indexing use cases
	Configuring SolrCloud for high-querying use cases
	Configuring the Solr heartbeat mechanism
	Changing similarity

	Chapter 2: Indexing Your Data
	Introduction
	Indexing PDF files
	Counting the number of fields
	Using parsing update processors to parse data
	Using scripting update processors to modify documents
	Indexing data from a database using
Data Import Handler
	Incremental imports with DIH
	Transforming data when using DIH
	Indexing multiple geographical points
	Updating document fields
	Detecting the document language during indexation
	Optimizing the primary key indexation
	Handling multiple currencies

	Chapter 3: Analyzing Your Text Data
	Introduction
	Using the enumeration type
	Removing HTML tags during indexing
	Storing data outside of Solr index
	Using synonyms
	Stemming different languages
	Using nonaggressive stemmers
	Using the n-gram approach to do performant trailing wildcard searches
	Using position increment to divide sentences
	Using patterns to replace tokens

	Chapter 4: Querying Solr
	Introduction
	Understanding and using the Lucene query language
	Using position aware queries
	Using boosting with autocomplete
	Phrase queries with shingles
	Handling user queries without errors
	Handling hierarchies with nested documents
	Sorting data on the basis of function value
	Controlling the number of terms needed
to match
	Affecting document score using function queries
	Using simple nested queries
	Using the Solr document query join functionality
	Handling typos with n-grams
	Rescoring query results

	Chapter 5: Faceting
	Introduction
	Getting the number of documents with the same field value
	Getting the number of documents with the same value range
	Getting the number of documents matching the query and subquery
	Removing filters from faceting results
	Using decision tree faceting
	Calculating faceting for relevant documents in groups
	Improving faceting performance for low cardinality fields

	Chapter 6: Improving Solr Performance
	Introduction
	Handling deep paging efficiently
	Configuring the document cache
	Configuring the query result cache
	Configuring the filter cache
	Improving Solr query performance after the start and commit operations
	Lowering the memory consumption of faceting and sorting
	Speeding up indexing with Solr segment merge tuning
	Avoiding caching of rare filters to improve the performance
	Controlling the filter execution to improve expensive filter performance
	Configuring numerical fields for high performance sorting and range queries

	Chapter 7: In the Cloud
	Introduction
	Creating a new SolrCloud cluster
	Setting up multiple collections on a single cluster
	Splitting shards
	Having more than a single shard from a collection on a node
	Creating a collection on defined nodes
	Adding replicas after collection creation
	Removing replicas
	Moving shards between nodes
	Using aliasing
	Using routing

	Chapter 8: Using Additional Functionalities
	Introduction
	Finding similar documents
	Highlighting fragments found in documents
	Efficient highlighting
	Using versioning
	Retrieving information about the index structure
	Altering the index structure on a live collection
	Grouping documents by the field value
	Grouping documents by the query value
	Grouping documents by the function value
	Efficient documents grouping using the
post filter

	Chapter 9: Dealing with Problems
	Introduction
	Dealing with the too many opened files exception
	Diagnosing and dealing with memory problems
	Configuring sorting for non-English languages
	Migrating data to another collection
	SolrCloud read-side fault tolerance
	Using the check index functionality
	Adjusting the Jetty configuration to avoid deadlocks
	Tuning segment merging
	Avoiding swapping

	Chapter 10: Real-life Situations
	Introduction
	Implementing the autocomplete functionality for products
	Implementing the autocomplete functionality for categories
	Handling time-sliced data using aliases
	Boosting words closer to each other
	Using the Solr spellchecking functionality
	Using the Solr administration panel for monitoring
	Automatically expiring Solr documents
	Exporting whole query results

	Index

