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Foreword

It is always a challenging task to write a foreword to a work authored by Pro-
fessor Pedrycz. The reason is that, as a rule, what he writes about goes far
beyond what can be found in the existing literature. This is particularly true in
the instance of Knowledge-Based Clustering: From Data to Information Gran-
ules or Knowledge-Based Clustering, for short. Knowledge-Based Clustering is a
magnum opus which touches upon some of the most basic facets of human cogni-
tion. It does so with authority, originality, erudition, insight, and high expository
skill. Profusion of examples, figures, and references make Professor Pedrycz’s
work a pleasure to read.

In Knowledge-Based Clustering, Professor Pedrycz addresses a vast array of
linked subjects. Starting with an exposition of clustering and fuzzy clusters, he
moves to computing with granular information, with a granule being a clump
of attribute-values drawn together by indistinguishability, equivalence, similar-
ity, proximity, or functionality. Professor Pedrycz’s co-authorship of a recent
text on granular computing provides him with an effective framework for linking
clustering with granular computing. In granular computing, the objects of compu-
tation are granules rather than singletons. In its general form, granular computing
subsumes computing with intervals, computing with rough sets, and computing
with probability distributions. The linkage between granular computing and clus-
ter analysis plays a pivotal role throughout Professor Pedrycz’s work, and is an
important novel feature of his approach to cluster analysis.

The chapters that are focused on granular computing serve as a foundation for
the core of the book—knowledge-based clustering. In this mode of clustering,
clustering is guided by the knowledge that underlies data. There is much that
is new in this part of the book, especially in chapters dealing with conditioned
fuzzy clustering, collaborative clustering, directional clustering, fuzzy relational
clustering, and clustering of nonhomogeneous patterns. The last part of Professor
Pedrycz’s work is an informative exposition of applications of knowledge-based
clustering to generic models. In this part, we find a range of unconventional
concepts and techniques, among them hyperbox modeling, linguistic modeling,
and granular mapping.

To see the importance of Pedrycz’s work in a proper perspective, an obser-
vation is in order. As we move further into the age of machine intelligence and
automated reasoning, a daunting problem becomes harder and harder to master.
How can we cope with the explosive growth in data, information, and knowledge?
How can we locate and infer from decision-relevant information that is embedded
in a large database that is unstructured, imprecise, and not totally reliable?

xiii



xiv FOREWORD

What these issues point to is an imperative need for new ideas and new
techniques in the realm of organization of data, information, and knowledge. In
effect, information is organized data and knowledge is organized information.

A key concept that underlies the concept of organization is that of relatedness
and, more specifically, the concepts of clustering and granulation. In this per-
spective, the concepts, ideas, and methods that are the objects of discussion in
Professor Pedrycz’s work are of direct relevance to the goal of devising organi-
zational structures that can cope with the explosive growth in data, information,
and knowledge.

There is another observation that I should like to make. There is an enormous
literature dealing with cluster analysis and related subjects but, strangely enough,
what cannot be found in this literature is an operational definition of the concept
of a cluster. There is a brief discussion of the concept of cluster validity in
Professor Pedrycz’s work, but it stops short of defining the concept of a cluster.

Is this an omission or are there some problems in defining a cluster? In my
view, there are two basic problems. First, the concept of a cluster is a fuzzy
concept in the sense that it is a matter of degree. And second, the concept of
a cluster is a second-order concept in the sense that a cluster is a set of points
rather than a singleton. Examples of second-order concepts are convex set, edge,
and a mountain. In fact, the concepts of a cluster and mountain have the same
deep structure.

The intrinsic problem is that, in general, second-order fuzzy concepts cannot
be defined within the conceptual structure of bivalent logic. This is the principal
reason why an operational definition of a cluster cannot be found in the literature
of cluster analysis. A question that arises is: if the concept of a cluster cannot
be defined within the conceptual structure of bivalent logic, then how can it be
defined? In my view, what is needed for this purpose is PNL (Precisiated Natural
Language)—a language that is based on fuzzy logic—a logic in which everything
is or is allowed to be a matter of degree. To define a concept through the use of
PNL, with PNL serving as a definition language, two steps are needed. First, the
concept is defined in a natural language; second, the natural language definition
is precisiated. Unlike bivalent-logic-based definitions, PNL-based definitions are
context-dependent rather than context-free. This is the price that has to be paid
to achieve a closer rapport with reality.

The fact that there is no definition of a cluster in Professor Pedrycz’s work
or, for that matter, anywhere else in the literature, in no way detracts from its
importance. Knowledge-Based Clustering is a major contribution that is must
reading for anyone who is interested in cluster analysis and, more generally,
in the conception, design, and utilization of advanced knowledge-based sys-
tems. Knowledge-Based Clustering is a superlative work and its author, Professor
Pedrycz, and the publisher, John Wiley & Sons, Inc. deserve our loud applause
and congratulations.

Lotfi A. Zadeh



Preface

Data and patterns are an integral part of the cultural fabric of our information
society. The challenge we are confronted with every day is to cope with the
flood of data generated by banking transactions, millions of sensors, World Wide
Web log records, communication traffic of cellular calls, satellite image collec-
tion systems, and networks of intelligent home appliances, to name just a few
evident examples.

Making sense of data has become a critical objective of intelligent data analysis
(IDA), data mining (DM), sensor fusion, image understanding, and logic-driven
system modeling. As never before, we are faced with the growing need to
construct a powerful computer “eye”—a human-centric, human-interactive, and
human-sensitive computer environment that helps us understand data and make
sensible decisions.

Clustering is one of the well-established manifestations of such a computer
eye. With its agenda of venturing into data spaces and discovering their struc-
ture—clusters of data—clustering is an ideal vehicle for exploration of vast
territories of data spaces. From the early concepts of the 1930s, this field has
recently undergone a rapid expansion fueled by new conceptual and comput-
ing challenges. The omnipresence of clustering today is astonishing. Even a
quick and fairly unsophisticated search of the Web or a simple search of any
library database returns thousands of hits revealing an impressive breadth of
applications: from biomedicine to marketing, engineering, economics, biological
sciences, chemistry, military, food engineering, finance, and education.

Clustering has become a synonym for a diversified suite of methodologies and
algorithms that are almost exclusively data-driven and in which any optimiza-
tion is predominantly, if not exclusively, data-oriented. Clustering gives rise to
a variety of information granules whose use reveals the structure of data. The
formalisms of granular computing help design clustering methods designed to
meet user-defined objectives. In this diversified landscape of clustering, the algo-
rithms operating within the framework of fuzzy sets have assumed an important
and unique position. The reason is obvious: fuzzy sets regarded as basic informa-
tion granules are human-centric. Dealing with concepts and groups (clusters) that
allow for partial membership is highly appealing. Identifying data (patterns) that
are of borderline character and may require special attention as potential outliers
is a useful value-added feature of fuzzy clustering. Discovering the most typical
patterns (with the highest membership values) in the cluster is another important
feature of by fuzzy sets.

xv



xvi PREFACE

In light of the recent applications and new forms of agent-based technology,
Web-based pursuits, and rapidly growing dimensionality and heterogeneity of
data sets, the human-centricity of clustering has become even more essential.
The paradigm of data-centric clustering has to be augmented. The paradigm of
knowledge-based clustering I introduce in this book is concerned with reconciling
two important driving forces of clustering activities: gaining data and domain
knowledge and building a coherent platform of navigation in highly dimensional
and often heterogeneous data spaces. The user plays a basic role in forming an
essential feedback loop in any highly interactive data analysis. Needless to say, we
require a carefully selected conceptual and algorithmic layer of human-machine
communication.

This book is divided into three parts. The first parts consisting of Chapters 1
to 3, provides a concise, carefully structured introduction to the subject. Three
interrelated components are presented. First, I discuss the fundamentals of fuzzy
clustering. Second, I review fuzzy computing, regarded as an important realiza-
tion of granular computing, focused on the issues of fuzzy clustering. Third, I
elaborate on the logic-based neurons and ensuing neural networks. The core of
the book, Chapters 4 to 10, presents a highly diversified landscape of knowledge-
based clustering. The third part of the book, consisting of Chapters 11 to 15, is
devoted to generic models whose design is directly linked to the paradigm of
knowledge-based clustering. First, I concentrate on hyperbox models of clus-
ters, demonstrating how the essential structure can be captured in terms of
hyperbox geometry. This is followed by studies of granular mappings and lin-
guistic models.

Throughout the book, I adhere to the standard notation used in pattern recog-
nition and system analysis, as well as the standard terminology used there. The
terms “data” and “pattern” are used interchangeably to emphasize the unified
way of treating various forms of pattern recognition, system modeling, and data
analysis. The book is self-contained. While the reader can benefit from some ini-
tial familiarity with computational Intelligence (CI), this is not a must. CI helps
place the material in perspective and allows the reader to fully appreciate the
ideas of information granularity and information granules as building blocks of
various CI architectures.

The purpose of this book is to present the main ideas in a fairly general format
and not to skew the subject by limiting the discussion to selected application
areas. The algorithmic aspects are also kept quite general, and no attempt is made
to strive for the most efficient yet intricate implementations possible. This makes
the book of interest to a broad audience. Those readers interested in clustering,
fuzzy clustering, unsupervised learning, neural networks, fuzzy sets, and pattern
recognition, as well as those involved in numerous tasks of data analysis, will find
the book thought-provoking and intellectually stimulating. Readers involved in
system modeling will view knowledge-driven clustering as an attractive vehicle
of rapid prototyping of granular models.

Knowledge-based clustering has already emerged. This book outlines its fun-
damentals, presents the essential algorithmic developments, and discusses its
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application-driven aspects. No attempt has been made to cover the subject com-
pletely. However, the material selected paints a coherent picture of the most
recent developments central to this rapidly evolving area.

Witold Pedrycz





1 Clustering and Fuzzy Clustering

This chapter provides a comprehensive, focused introduction to clustering, viewed
as a fundamental means of exploratory data analysis, unsupervised learning, data
granulation, and information compression. We discuss the underlying principles,
elaborate on the basic taxonomy of numerous clustering algorithms (includ-
ing such essential classes as hierarchical, objective function-based algorithms),
and review the main interpretation mechanisms associated with various cluster-
ing algorithms.

1.1. INTRODUCTION

Making sense of data is an ongoing task of researchers and professionals in
almost every practical endeavor. The age of information technology, character-
ized by a vast array of data, has enormously amplified this quest and made it
even more challenging. Data collection anytime and everywhere has become the
reality of our lives. Understanding the data, revealing underlying phenomena,
and visualizing major tendencies are major undertakings pursued in intelligent
data analysis (IDA), data mining (DM), and system modeling.

Clustering is a general methodology and a remarkably rich conceptual and
algorithmic framework for data analysis and interpretation (Anderberg, 1973;
Bezdek, 1981; Bezdek et al., 1999; Devijver and Kittler, 1987; Dubes, 1987;
Duda et al., 2001; Fukunaga, 1990; Hoppner et al., 1999; Jain et al., 1999, 2000;
Kaufmann and Rousseeuw, 1990; Babu and Murthy, 1994; Dave, 1990; Dave and
Bhaswan, 1992; Kersten, 1999; Klawonn and Keller, 1998; Mali and Mitra, 2002;
Webb, 2002). In this chapter, we introduce basic notions, explain the functional
components essential to the formulation of clustering problems, and discuss the
main classes of clustering algorithms. These algorithms are accompanied by the
formalisms of granular computing, including sets, fuzzy sets, shadowed sets, and
rough sets.

1.2. BASIC NOTIONS AND NOTATION

To establish a formal setting in which clustering can be carried out, we start with
basic notions such as data types, distance, and similarity/resemblance.

Knowledge-Based Clustering, by Witold Pedrycz
ISBN 0-471-46966-1 Copyright  2005 John Wiley & Sons, Inc.
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2 CLUSTERING AND FUZZY CLUSTERING

1.2.1. Types of Data

The world surrounding us generates various types of data in abundance. The rich-
ness of data formats is impressive. The formal representation and organization of
patterns reflect the way in which we intend to process the data. The most gen-
eral taxonomy being in common use distinguishes among numeric (continuous),
ordinal, and nominal variables. A numeric variable can assume any value in R.
An ordinal variable assumes a small number of discrete states, and these states
can be compared. For instance, there are four states, denoted a1, a2, a3, and a4,
and we can say that a1 and a2 are closer (in some sense of similarity that we
define in the next section) than a1 and a3. A nominal variable assumes a small
number of states, but nothing can be said about their closeness. Regardless of this
distinction, nominal and ordinal variables are represented as discrete variables.
For computing purposes, we usually have several coding schemes, such as binary
coding or binary coding with various options.

The variables can be organized into internal structures that reflect the speci-
ficity of the problem. If each pattern is described by a number of features,
intuitively we arrange them into vectors—say, x, y, and z. Depending upon the
character of the variables involved, the entries can be real or binary. Obviously,
this can give rise to a variety of vectors, including both types of entries. Vectors
and matrices are “flat” structures in the sense that all variables are at the same
level as individual entries of the feature vector, and they have no structure. Hier-
archical structures like trees are used to visualize the relationship between objects
(patterns) we are interested in when dealing with clustering or classification.

1.2.2. Distance and Similarity

The concept of dissimilarity (or distance) or dual similarity is the essential com-
ponent of any form of clustering that helps us navigate through the data space
and form clusters. By computing dissimilarity, we can sense and articulate how
close together two patterns are and, based on this closeness, allocate them to the
same cluster. Formally, the dissimilarity d(x, y) between x and y is considered
to be a two-argument function satisfying the following conditions:

d(x, y) ≥ 0 for every x and y

d(x, x) = 0 for every x (1.1)

d(x, y) = d(y, x)

This list of requirements is intuitively appealing. We require a nonnegative char-
acter of the dissimilarity. The symmetry is also an obvious requirement. The
dissimilarity attains a global minimum when dealing with two identical patterns,
that is d(x, x) = 0.

Distance, (metric) is a more restrictive concept, as we require the triangular
inequality to be satisfied; that is, for any pattern x, y, and z we have

d(x, y) + d(y, z) ≥ d(x, z) (1.2)
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TABLE 1.1. Selected Distance Functions Between Patterns x and y

Distance Function Formula and Comments

Euclidean distance d(x, y) =
√√√√ n∑

i=1

(xi − yi)
2

Hamming (city block) distance d(x, y) =
n∑

i=1

|xi − yi |

Tchebyschev distance d(x, y) = maxi=1,2,...,n |xi − yi |

Minkowski distance d(x, y) = p

√√√√ n∑
i=1

(xi − yi)
p, p > 0

Canberra distance d(x, y) =
n∑

i=1

|xi − yi |
xi + yi

, xi and yi are positive

Angular separation d(x, y) =

n∑
i=1

xiyi

[
n∑

i=1

x2
i

n∑
i=1

y2
i

]1/2

Note: this is a similarity measure that expresses
the angle between the unit vectors in the
direction of x and y

In the case of continuous features (variables), we have a long list of distance
functions (see (Table 1.1)). Each of these functions implies a different view of
the data because of their geometry. The geometry is easily illustrated when we
consider only two features (x = [x1x2]T ) and compute the distance of x from
the origin. The contours of the constant distance (Figure 1.1) show what type of
geometric construct becomes a focus of the search for structure. Here we become
aware that the Euclidean distance favors circular shapes of data clusters. With
the distance functions come some taxonomy; the Minkowski distance comprises
an infinite family of distances, including well-known and commonly used ones
such as the Hamming, Tchebyschev, and Euclidean distances.

The same effect shown in Figure 1.1d can be achieved when the value of the
power in the Minkowski distance is changed; see Figure 1.2.

One commonly used generalization is the Mahalanobis distance

d(x, y) = xT A−1y (1.3)

where A is a positive definite matrix. By choosing this matrix, we can control the
geometry of potential clusters by rotating the ellipsoid (off diagonal entries of
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Figure 1.1. Examples of distance functions—three-dimensional and contour plots:
(a) Euclidean, (b) Hamming (city block), (c) Tchebyschev, (d) “combined” type of
distance max (2/3 Hamming, Tchebyschev).

A) and changing the length of its axes (the elements lying on the main diagonal
of the matrix).

With binary variables, we traditionally focus on the notion of similarity rather
than distance (or dissimilarity). Consider two binary vectors x and y that consist
of two strings [xk], [yk] of binary data; compare them coordinatewise and do the
simple counting of occurrences:

number of occurrences when xk and yk are both equal to 1
number of occurrences when xk = 0 and yk = 1
number of occurrences when xk = 1 and yk = 0
number of occurrences when xk and yk are both equal to 0
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Figure 1.2. Examples of the Minkowski distance function for selected values of the
power: (a) 1.5 (b) 2.5, and (c) 7.0.

These four numbers can be organized in a 2 by 2 co-occurrence matrix (contin-
gency table) that visualizes how “close” these two strings are to each other.

1 0
1 a b

0 c d

Evidently the zero nondiagonal entries of this matrix point at the ideal match-
ing (the highest similarity). Based on these four entries, there are several com-
monly encountered measure of similarity of binary vectors x and y. The simplest
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matching coefficient computes as the following ratio:

a + d

a + b + c + d
(1.4)

The Russell and Rao measure of similarity consists of the quotient

a

a + b + c + d
(1.5)

The Jacard index involves the case when both inputs assume values equal to 1:

a

a + b + c
(1.6)

The Czekanowski index is practically the same as the Jacard index, but by adding
the weight factor of 2, it emphasizes the coincidence of situations where entries
of x and y both assume values equal to 1:

2a

2a + b + c
(1.7)

1.3. MAIN CATEGORIES OF CLUSTERING ALGORITHMS

Clustering techniques are rich and diversified. They have been continuously
developing for over a half century following a number of trends, depending
upon the emerging optimization techniques, main methodology (system mod-
eling, DM, signal processing), and application areas. At the very high end of
the overall taxonomy we envision two main categories of clustering, known as
hierarchical and objective function-based clustering.

1.3.1. Hierarchical Clustering

The clustering techniques in this category produce a graphic representation of
data (Duda et al., 2001). The construction of graphs (as these methods reveal the
structure by considering each individual pattern) is done in two ways: bottom-up
and top-down. The other names used reflect the way a structure is revealed. In the
bottom-up mode known as an agglomerative approach, we treat each pattern as a
single-element cluster and then successively merge the closest clusters. At each
pass of the algorithm, we merge the two closest clusters. The process is repeated
until we get to a single data set or reach a certain predefined threshold value.
The top-down approach, known as a divisive approach, works in the opposite
direction: we start with the entire set treated as a single cluster and keep splitting
it into smaller clusters. Considering the nature of the process, these methods are
often computationally inefficient, with the possible exception of patterns with
binary variables.
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The results of hierarchical clustering are usually represented in the form of
dendrograms (Figure 1.3). Dendrograms are visually appealing graphical con-
structs: they show how difficult it is to merge two clusters. The distance scale
shown at the right-hand side of the graph helps us quantify the distance between
the clusters. This implies a simple stopping criterion: given a certain threshold
value of the distance, we stop merging the clusters once the distance between
them exceeds this threshold, meaning that merging two distinct structures does
not seem to be feasible.

An important issue is how to measure the distance between two clusters. Note
that we have discussed how to express the distance between two patterns. Here,
as each cluster may contain many patterns, computation of the distance is neither
obvious nor unique. Consider two clusters, A and B, illustrated in Figure 1.4.
Let us describe the distance by d(A, B) and denote the number of patterns in A

and B by n1 and n2, respectively. Intuitively, we can easily envision three typical
ways of computing the distance between the two clusters.

a b c d e f g h

{a}

{b, c, d, e}

{f, g, h}

Figure 1.3. A dendrogram as a visualization of the structure of patterns; also shown are
the distance values guiding the process of successive merging of the clusters.

(a) (b)

(c)

Figure 1.4. Two clusters and three main ways of computing the distance between them:
(a) single link, (b) complete link, and (c) group average link.
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Single-Link Method. The distance d(A,B) is based on the minimal distance
between the patterns belonging to A and B. It is computed in the form

d(A, B) = min
x∈A,y∈B

d(x, y) (1.8)

In essence, the distance supports a sort of radically “optimistic” mode of express-
ing vicinity between clusters where we get involved the closest patterns located in
different clusters. Clustering based on this distance is one of the most commonly
used methods.

Complete-Link Method. This method is at the opposite end of the spectrum,
as it is based on the distance between the two farthest patterns belonging to
two clusters:

d(A, B) = max
x∈A,y∈B

d(x, y) (1.9)

Group Average Link Method. In contrast to the two previous approaches, where
the distance is determined on the basis of extreme values of the distance function,
this method considers the average between the distances computed between all
pairs of patterns, one from each cluster. We have

d(A, B) = 1

card(A)card(B)

∑
x∈A,y∈B

d(x, y) (1.10)

Obviously, these computations are more intensive. However, they reflect a general
tendency between the distances computed for individual pairs of patterns.

Obviously, we can develop other ways of expressing the distance between A

and B. For instance, the Hausdorff method of computing the distance between
two sets of patterns could be an attractive alternative.

There is an interesting general expression for describing various agglomer-
ative clustering approaches known as the Lance-Williams recurrence formula.
It expresses the distance between clusters A and B and the cluster formed by
merging them (C)

dA∪B,C = αAdA,C + αBdB,C + βdA,B + γ|dA,C − dB,C | (1.11)

with the adjustable values of the parameters αA(αB), β, and γ. This is shown in
Table 1.2, where the choice of values implies a certain clustering method.

1.3.2. Objective Function-Based Clustering

The second general category of clustering is concerned with building partitions
(clusters) of data sets on the basis of some performance index known also as
an objective function. In essence, partitioning N patterns into c clusters (groups)
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TABLE 1.2. Values of the Parameters in the Lance-Williams Recurrence Formula
and the Resulting Agglomerative Clustering; nA, nB , and nC Denote the Number of
Patterns in the Corresponding Clusters

Clustering Method αA (αB ) β γ

Single link 1/2 0 −1/2
Complete link 1/2 0 1/2

Centroid
nA

nA + nB

− nAnB

(nA + nB)2
0

Median 1/2 −1/4 0

is a nontrivial problem. First, the number of the partitions is expressed in the
following form (Webb, 2002):

1

c!

c∑
i=1

(−1)c−i

(
c

i

)
iN (1.12)

This number increases very quickly, making any attempt to enumerate all of
the partitions unfeasible. The minimization of a certain objective function can
be treated as an optimization approach leading to some suboptimal configuration
of the clusters (which, in practice, is an appealing solution). The main design
challenge lies in formulating an objective function that is capable of reflecting
the nature of the problem so that its minimization reveals a meaningful structure
in the data set. The minimum variance criterion is one of the most common
options. Having N patterns in Rn, and assuming that we are interested in forming
c clusters, we compute a sum of dispersions between the patterns and a set of
prototypes v1, v2, . . . , vc

Q =
c∑

i=1

N∑
k=1

uik||xk − vi ||2 (1.13)

with || ||2 being a certain distance between xk and vi . The important com-
ponent in the above sum is a partition matrix U = [uik], i = 1, 2, . . . , c, k =
1, 2, . . . , N whose role is to allocate the patterns to the clusters. The entries
of U are binary. Pattern k belongs to cluster i when uik = 1. The same pat-
tern is excluded from the cluster when uik = 0. Partition matrices satisfy the
following conditions:

Each cluster is nontrivial, that is, it does not include all patterns and is
nonempty:

0 <

N∑
k=1

uik < N, i = 1, 2, . . . , c
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Figure 1.5. Star diagram as a graphical representation of the partition matrix for
three clusters.

Each pattern belongs to a single cluster:

c∑
i=1

uik = 1, k = 1, 2, . . . , N

The family of partition matrices (viz., binary matrices satisfying these two con-
ditions) will be denoted by U. As a result of minimization of Q, we construct the
partition matrix and a set of prototypes. Formally we express this in the following
way, which is just an optimization problem with constraints:

Min Q with respect to v1, v2, . . . , vc and U ∈ U (1.14)

Several methods are used to achieve this optimization. The most common one,
named C-Means (Duda et al., 2001; Webb, 2002), is a well-established way of
clustering data.

Partition matrices are an intuitively appealing form in which to illustrate the
structure of the patterns. For instance, the matrix formed for N = 8 patterns split
into c = 3 clusters is

U =

 1 0 0 1 0 1 0 1

0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0




Each row describes a single cluster. Thus we have the following arrangement:
the first cluster consists of patterns {1, 4, 6, 8}, the second involves patterns {2,
3}, and the third covers the remaining patterns, {5, 7}.

Graphically, the partition matrix (or, equivalently, the structure of the data set)
can be shown in the form of a so-called star or radar diagram (Figure 1.5).

1.4. CLUSTERING AND CLASSIFICATION

The structure revealed through the clustering process allows us to set up a classi-
fier. The “anchor” points of the classifier are the prototypes of the clusters. Each
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Figure 1.6. Plots of the classification regions of the first class with prototype
v1 = [1.7 2.5]T . The two other prototypes are v2 = [0.4 0.3]T and v3 = [2.5 4.5]T for
two distance functions: (a) Euclidean and (b) Hamming.

cluster forms a single class ω1, ω2, . . ., ωc. Using the clusters, we develop a
nearest neighbor classification rule by stating that x belongs to class ωj if it is
the closest to the prototype vj :

j = arg mini ||x − vi ||2 (1.15)

This classification rule generates the corresponding decision regions in the feature
space. Depending on the form of the distance function, we end up with different
geometry of the classification boundaries, as shown in Figure 1.6.

The classifier formed in this way is one of the simplest architectures focusing
exclusively on the prototypes of the clusters.

1.5. FUZZY CLUSTERING

The binary character of partitions described so far may not always be a convinc-
ing representation of the structure of data. Consider the set of two-dimensional
patterns illustrated in Figure 1.7. While we can easily detect three clusters, their
character is different. The first one is quite compact, with highly concentrated
patterns. The other two exhibit completely different structures. They are far less
condensed, with several patterns whose allocation to a given cluster may be far
less certain. In fact, we may be tempted to allocate them to two clusters with
varying degrees of membership. This simple and appealing idea forms a corner-
stone of fuzzy sets—collections of elements with partial membership in several
categories. As illustrated in Figure 1.7, the two identified patterns could easily
belong to several clusters.
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Figure 1.7. Three clusters with patterns of partial membership (belongingness) in the
clusters. The patterns of borderline character are pointed to by the arrows.

These situations of partial membership occur quite often. Structures (clusters)
may not be well separated for a variety of reasons. There may be noise or lack of
discriminatory power of the feature space in which the patterns are represented.
Some patterns could be genuine outliers. Some of them could be borderline
cases and thus are difficult to classify. As a result, they may require far greater
attention. A clustering algorithm that could easily provide detailed insight into the
membership grades of the patterns could be a genuine asset. Let us assume that
this is true and that the partition matrix now consists of grades of membership
distributed in the unit interval. For the data in Figure 1.8, the partition matrix
comes with the entries shown. The results are highly appealing, and they fully
reflect our intuitive observations: patterns 6 and 7 have a borderline character,
with membership grades in one of the clusters at the 0.5 level. The values in the
partition matrix quantify the effect of partial membership.

Because we have allowed for partial membership, the clustering algorithm
leading to such conceptual augmentation is regarded as a generalization of the
standard FCM and is named of fuzzy C-Means or FCM, for short This general-
ization was introduced by Dunn (1974) and generalized by Bezdek (1981). The
performance index (objective function) guiding the search through the data space
assumes the form

Q =
c∑

i=1

N∑
k=1

um
ik||xk − vi ||2 (1.16)

It seems similar to the one guiding the optimization of the Boolean (two-valued)
partition matrix with only one significant exception: we consider U to be a fuzzy
partition, viz., a matrix with the entries confined to the unit interval that satisfies
two important requirements:
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Figure 1.8. Star diagram of the fuzzy partition matrix.

ž The clusters are nontrivial. For each cluster (i = 1, 2, . . ., c) we end up
with a nonempty construct that does not include all patterns.

ž The total membership grades sum to 1, so the distribution of belongingness
is equal to 1.

In the above objective function, we can rewrite the distance in a quadratic form
by noting that ||xk − vi ||2 = (xk − vi )

T (xk − vi ) = xT
k xk − 2xT

k vi + vT
i vi . More

formally, determining the structure is equivalent to the optimization task of the
form given by (1.13) in the case of the binary C-Means. As before, the min-
imization is completed with respect to the partition matrix and the prototypes.
The fuzzification factor (m), m > 1, helps control the shapes of the clusters and
produces a balance between the membership grades close to 0 or 1 and those
with intermediate values.

The derivations of the solution are completed in two steps. The first one
involves the constraints accompanying the requirements imposed on the partition
matrix. We incorporate the constraints with the aid of Lagrange multipliers. Then
for each pattern t = 1, 2, . . ., N , we formulate the augmented functional

V =
c∑

i=1

um
it d

2
it − λ

(
c∑

i=1

uit − 1

)
(1.17)

with λ denoting a Lagrange multiplier. Computing the derivative of V with
respect to ust and making it equal to 0, we obtain

∂V

∂ust

= mum−1
st d2

st − λ = 0 (1.18)
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and

ust =
(

λ

m

)1/(m−1) 1

(dst )
2

m−1

(1.19)

Taking into account the identity constraint
c∑

j=1
ujt = 1, we have

(
λ

m

)1/(m−1) c∑
j=1

1

(djt )
2

m−1

= 1 (1.20)

This allows us to determine the Lagrange multiplier λ:

(
λ

m

)1/(m−1)

= 1
c∑

j=1

1

(djt )
2

m−1

(1.21)

Next, we insert the above expression into (1.19), which yields

ust = 1

c∑
j=1

(
dst

djt

) 2
m−1

(1.22)

The computations of the prototypes are straightforward, as no constraints are
imposed on them. The minimum of Q computed with respect to vs yields

∇vs
Q = 0

The detailed solution depends on the distance function. In the case of the
Euclidean distance, this leads to the expression

2
N∑

k=1

um
sk(xk − vs) = 0 (1.23)

We immediately obtain

vs =

N∑
k=1

um
skxk

N∑
k=1

um
sk

(1.24)



FUZZY CLUSTERING 15

Other forms of the distance function, such as the Hamming or Tchebyschev
distances do not lead to an immediate solution and require more optimization
effort. The clustering using these options has been reported in the literature. We
will discuss this extension later on.

To summarize, we can regard the FCM algorithm as an iterative process
involving successive computations (updates) of the prototypes and the partition
matrix. The values of the parameters are set up in advance. They consist of
the following items: the number of clusters (c), the distance function || · ||, the
fuzzification factor (m), and the termination criterion (ε).

Initialization Phase. Select values of c, m, and ε. Choose the distance function.
Initialize (randomly) the partition matrix:

Repeat // main iteration loop
Compute prototypes of the clusters
Compute the partition matrix
until a given stopping criterion quantified in terms of e has been satisfied.

Let us review the design of the clustering process in more detail; in this con-
text, it is useful to refer to the list of parameters we can choose up front the entire
process. The number of clusters reflects the level of generality we are interested in
setting up when dealing with the data. While this number is not known exactly, the
feasible range of clusters we can establish is rather narrow and clearly reflects the
domain knowledge we may have about the problem at hand and/or the objectives
of the data analysis problem. For instance, when dealing with a huge customer
database, it is reasonable to assume that we are interested in a few (say, five)
groups of customers, which we want to characterize for further marketing of new
products and services. There is no point in moving toward a very refined partition
of the data into 20 or more clusters, as these could be difficult to interpret and
take advantage of (perhaps we do not wish to be so specialized and launch a very
narrow marketing campaign). The limit cases are trivial: c = 1 does not reveal
any structure. The number of clusters set up to N , c = N , is meaningless: each
pattern forms an individual cluster, and this does not make any sense. Overall,
we observe that there is a strong monotonic character of the objective function
treated as a function of c; when the number of clusters increases, the values of
Q decrease. There may be a slight departure from this tendency, but very often
it is limited and insignificant. The distance function helps focus our search for
structure. As we demonstrated in Section 1.2.2 each distance function implies a
certain geometry and navigates search for finding structure in data. Hopefully,
the structure revealed in this way is compatible with the “internal” geometry
of the data set itself. For instance, when dealing with the Euclidean distance,
our favorite geometry consists of hyperballs (or hyperellipsoids in case we start
weighting the features). The Hamming distance focuses clustering on the search
for the structure that is compatible with diamond-like shapes of concentrations
of data. The Tchebyschev distance favors a search focusing on hyperboxes. The



16 CLUSTERING AND FUZZY CLUSTERING

(a) (b)

(c)

(e)

(d)

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

0
1

2
3

4
5

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

1
2

3
4

5

0.8

0.6

0.4

0.2

1
2

3
4

5

Figure 1.9. Shapes of the membership function for selected values of the fuzzification
factor (m): (a) m = 2; (b) m = 1.5; (c) m = 1.05; (d) m = 3; (e) m = 5.

fuzzification factor influences the shape of the clusters. Typically, its value is set
to 2. By changing the values of m, we can make the clusters (partition matrices)
look more Boolean so that we see more membership grades close to 0 or 1. This
happens when m approaches 1. On the other hand, when m increases (with val-
ues greater than 2), the resulting membership grades lead to spike-like functions.
Illustrative examples are presented in Figure 1.9.
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The stopping criterion quantifies the situation in which the clustering process
can be stopped because it has reached a steady state and further computations
are not justified. The typical approach used is to compare partition matrices
produced in two successive iterations of the FCM, say U(iter + 1) and U (iter),
and, if the distance between them ||U(iter + 1) − U(iter)|| does not exceed a
certain threshold (ε), stop the computing. The distance itself could be quantified
by taking into account the biggest change in the partition matrix, that is,

||U(iter + 1) − U(iter)|| = maxi,k |uik(iter + 1) − uik(iter)| (1.25)

The numeric value of ε is application oriented; usually it is confined to the
range of 10−3 –10−5.

Fuzzy partition matrices provide detailed insight into the structure of the data
set that is thoroughly quantified through the membership values. Based on these
values, we can easily separate the patterns that are typical of the cluster (as they
have membership grades close to 1) from the data of borderline character. Obvi-
ously, the membership grades help quantify the effect of partial membership.
Sometimes we are interested in cluster allocation without having any detailed
information on the patterns. This is achieved by a transformation known as hard-
ening (Bezdek, 1981). It produces a binary relation (partition matrix) based on
the original partition matrix by choosing the largest membership value. More
specifically, given uik , we produce Boolean entries of matrix ũik such that

ũik =
{

1 if i = arg maxj ujk

0 otherwise
(1.26)

Let us briefly note the use of the clustering results in the design of the classifier.
As in the K-means algorithm, we use the nearest neighbor rule, which in this
case takes into account the fact that the membership grades are continuous. We
then anticipate that all prototypes contribute to some extent to the determination
of the membership values. Consider that, given the set of prototypes, we now
have a new pattern, x. Its membership grades to the clusters u = [u1u2 . . . uc]T

take the form

ui = 1
c∑

j=1

( ||x − vi ||
||x − vj ||

)2/(m−1)
(1.27)

It is easy to check that (1.27) is a solution to the optimization problem

Minu

c∑
i=1

um
i ||x − vi ||2 (1.28)

with the unity constraint imposed on the membership grades,
c∑

i=1
ui = 1.
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1.6. CLUSTER VALIDITY

As we indicated above, the number of clusters is application-driven and user-
centric. As the user is in the middle of the process of data analysis, it is beneficial
to consider a varying number of clusters and analyze the results produced.
Obviously, it would be helpful to have some automation in this process. This
automation should come with a synthetic measure with which we can assess the
quality of the discovered structure. To state the problem in a different way, what
is the optimal number of clusters? Or, even better, what is the preferred num-
ber of clusters given the underlying geometry imposed on the clustering process
through the use of some objective function? The characteristics of the data could
be quite different from those captured by the objective function. How easily could
we detect elongated clusters when the objective function favors spherical shapes?
What about two elongated and crossing clusters? What about a porcupine-like
distribution of patterns? To address these questions, we need a certain cluster
validity measure (Dubes, 1987; Windham, 1980; Windham, 1982; Xie and Beni,
1991). Now that the problem has been identified, a number of proposals have
been made. Most of them define the validity functional on the partition matrix
returning a certain real number. More formally, the validity index v(c) is defined
as the following mapping V : U→R. The extreme value (either minimum or
maximum) of V treated as a function of c (as we are interested in changing this
parameter) points at the feasible or most likely number of clusters in the data
structure. The commonly used validity functionals include the partition index and
partition entropy.

Partition Index. The partition index of U , denoted by P(U), produces an aver-
age of the squared values of the membership grades encountered in the parti-
tion matrix:

P(U) = 1

N

c∑
i=1

N∑
k=1

u2
ik (1.29)

If each pattern belongs to a single cluster (hard partition), then the partition
index assumes its maximal value of 1. If patterns share their membership across
all clusters, with the same membership grade equal to 1/c, this gives rise to the
lowest value of P(U), which in this case equals 1/c. In other words, the index
quantifies the ambiguity of the partition matrices so that we can rank them and
select the one with the lowest ambiguity.

Partition Entropy. We form an entropy function defined over the partition matrix
in the following manner:

H(U) = − 1

N

c∑
i=1

N∑
k=1

uik ln(uik) (1.30)

(we assume that for u = 0, ln = 0)
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The values of the partition entropy range from 0 to ln(N ). Again, if we consider
Boolean entries of the partition matrix, the entropy is equal to 0. The highest
value is obtained when there is a uniform distribution of membership grades
(equal to 1/c); here we have

H(U) = − 1

N

c∑
i=1

N∑
k=1

1

c
ln

(
1

c

)
= ln(c) (1.31)

If we are interested in the lowest entropy, the clusters leading to it are preferred
over other structures discovered in the collection of patterns.

While the partition index and partition entropy exhibit interesting properties
that are useful in quantifying the ambiguity of partition matrices and identifying
those with the lowest values as the most preferred, their use in revealing the
most plausible number of clusters may not be obvious. Even though they have
been used for this purpose, both indexes tend to be quite monotonic, without
a well-delineated minimum (which could have been used as a sound indicator
of the plausible data structure). The literature provides other cluster validity
criteria [proportion exponent (Windham, 1980, 1982), separation index, fuzzy
hypervolume, average partition density], but to some extent, all of them are
affected by monotonicity. Furthermore when applied together, they may lead
to conflicting findings concerning the most preferred number of clusters. These
indexes can be useful, but we should keep in mind their limited role and treat
the findings implied by them as only useful guidelines. In any case, we should
be concerned about the range of the plausible number of clusters rather than a
single value.

1.7. EXTENSIONS OF OBJECTIVE FUNCTION-BASED
FUZZY CLUSTERING

The objective function given by (1.16) is generic in terms of its composition and
the distance function being used. There are several interesting extensions of this
objective function that are helpful in exploring a broad range of geometry of
the clusters.

1.7.1. Augmented Geometry of Fuzzy Clusters: Fuzzy C Varieties

The search for structure (clusters) is always biased by the selection of the distance
function. Changing the distance function imposes different “computing lenses”
of the algorithm and causes the clustering technique to favor some geometry of
the clusters. There are many possible variations of the distance function. Instead
of expressing the distance between two patterns (one of them being a prototype),
we may imagine that the prototypes are more complex geometric constructs. This
is the rationale behind constructs such as fuzzy c-lines, fuzzy c-ellipsoids, and so
on. The concept of fuzzy c-varieties studied by Bezdek et al. (1981) addresses
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the geometry of clusters. So far, these are just points. Here we consider a variety
of geometric constructs. Each cluster represents an r-dimensional variety, where
r ∈ {0, 1, 2, . . . , n − 1}, and is described by a prototype vi and the collection of
orthogonal unit vectors ei1, ei2, . . ., eir and in essence becomes an affine subspace
of Rn:

{y ∈ Rn|y = vi +
r∑

j=1

tj ei1, t ∈ Rr} (1.32)

In the case where r = 0, we end up with the generic version of the FCM
confined to a single prototype. If r = 1, this variety represents a straight line.
The value of r set to 2 returns a plane. In general, if r = p − 1, we end up
with a hyperplane. The distance between any pattern x and the ith c-variety is
computed in the form

d(x; vi , ei) = ||x − vi ||2 −
r∑

j=1

((x − vi )
T eij )

2 (1.33)

These distances for n = 2 (here the c-variety reduces to a straight line) are
illustrated in Figure 1.10.

The geometry of fuzzy clusters becomes of paramount importance when we
use clustering for image processing, that is, processing of geometric objects such
as circles, ovals, boxes, elongated edges of machine parts, and the like. While in
this domain we are generally confined to two-dimensional spaces (digital images),
it is apparent that the diversity of geometric shapes poses a serious challenge.
If we are interested in searching for a specific geometric form, then this search
should be driven by the geometry in question. For example, if we are interested
in circular shapes, the distance function of the form d(x; v, r) = |||x − v|| − r|
would reflect our interest in looking for these type of clusters (see Figure 1.11).
Its minimal values are distributed on the circle we are interested in revealing in
the data.

The number of clustering studies in this area is extensive. The research mono-
graph by Hoppner et al. (1999) forms a comprehensive compendium.

1.7.2. Possibilistic Clustering

Possibilistic clustering arose as a challenge to the probabilistic-like character
required for the membership grades in clusters. The limitation of the form does
not allow us to distinguish between a situation in which a pattern is shared
between clusters and one in which it is simply atypical and we would like to
see this effect quantified in some way. The unity constraint does not allow this.
Possibilistic clustering, as advocated by Krishnampuram and Keller (1993, 1996),
drops the requirement that the sum of membership grades must equal 1. This is
reflected in the form of the augmented objective function:

Q =
c∑

i=1

N∑
k=1

um
ik||xk − vi ||2 +

c∑
i=1

βi

N∑
k=1

(1 − uik)
m (1.34)
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Figure 1.10. Three-dimensional and contour plots of the distance for the c-variety for
selected values of e: (a) e = [1.0 5.0]T ; (b) e = [3.0 3.0]T ; (c) e = [7.0 0.5]T . In all
cases v = [1 2]T .

Note that in addition to the standard term, the second sum expresses our desire
to have the membership grades sum to 1 (but this is not the constraint articulated
in the standard FCM algorithm). The positive weight factor βi (which depends
on a specific cluster) helps us set up a suitable balance between the structure-
seeking term and the departures from the unity requirement of the membership
grades. From the standpoint of the second term, we prefer the membership grades
to be closer to 1; this may have led to very high values of the first sum. This
weighted sum is critical when we want to articulate a sound balance. Because of
the character of the membership constraint, we refer to the resulting algorithm as
a possibilistic fuzzy C-Means (P-FCM). The derivations of the partition matrix
lead to the following expression:

uik = 1

1 +
( ||xk − vi ||2

βi

) 1
m−1

(1.35)
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Figure 1.11. Expressing the distance between x and a circle with center v (= [1 1]T ) and
radius r(= 5); ||. || is specified as the Euclidean distance.

The formula for the prototypes is the same as that used the FCM method.
The choice of an optimal value of βk impacts the results; a sound selection of
these weight factors was proposed by Krishnampuram and Keller (1996) to be
in the form

βi =

N∑
k=1

um
ik||xk − vi ||
N∑

k=1

um
ik

(1.36)

1.7.3. Noise Clustering

The method used to cope with noisy data is another important application-driven
issue in searching for structure in experimental data. The technique of Ohashi
(1984) and Dave (1991) is to introduce a special cluster, the noise cluster, whose
role is to “localize” the noise and place it in a single auxiliary cluster. By
assigning patterns to this noise cluster, we declare them to be outliers in the
data set. The objective function that helps capture this effect is represented in
the form

Q =
∑∑

um
ik||xk − vi ||2 +

N∑
k=1

δ2

(
1 −

c∑
i=1

uik

)m

(1.37)

The weight coefficient δ2 reflects the distance between all data and the noise
cluster. Note that we end up with c + 1 clusters, with the extra cluster serving
as the noise cluster. The difference in the second term of the objective function
expresses the degree of membership of each pattern in the noise cluster. The sum
over the first c is less than or equal to 1. The derivation of the partition matrix
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produces the following expression:

uik = 1

c∑
j=1

( ||xk − vi ||
||xk − vj |

) 2
m−1 +

c∑
j=1

( ||xk − vi ||
δ

) 2
m−1

(1.38)

1.8. SELF-ORGANIZING MAPS AND FUZZY OBJECTIVE
FUNCTION-BASED CLUSTERING

Objective function-based clustering forms one of the main optimization paradigms
of data discovery. To put this in a broader perspective, we elaborate on the alter-
native arising in neurocomputing, namely, self-organizing maps. This helps us
contrast the underlying optimization mechanisms and look at various formats of
results generated by different methods.

The term self-organizing map (SOM) was coined by Kohonen (1982, 1989,
1995 Kohonen et al, 1996). As usually emphasized in the literature, SOMs are
regarded as regular neural structures (neural networks) composed of a grid of
artificial neurons that attempt to visualize highly dimensional data in a low-
dimensional structure, usually in the form of a two- or three-dimensional map.
To make such visualization meaningful, this low-dimensional representation of
the originally high-dimensional data has to preserve the topological properties
of the data set. This means that two data points (patterns) that are close to each
other in the original feature space should retain this similarity (or closeness) in
their representation (mapping) in the reduced, low-dimensional space in which
they are visualized. And, reciprocally, two distant patterns in the original feature
space should retain their distant location in the low-dimensional space. Put it
differently, we can state that the SOM acts as a computer eye that helps us
gain insight into the structure of the data set and observe relationships occurring
between the patterns originally located in a highly dimensional space. In this way,
we can confine ourselves to the two-dimensional map that apparently reveals all
essential relationships between the data, as well as dependencies between the
software measures themselves. In spite of the existing variations, the generic
SOM architecture (as well as the learning algorithm) remains basically the same.
Below we summarize the essence of the underlying self-organization algorithm
that achieves a certain form of unsupervised learning (Kohonen et al., 1996;
Vesanto and Alhoniemi, 2000).

Before proceeding with the detailed computations, we introduce the necessary
notation. Here n software measures are organized in a vector X of real numbers
situated in the n-dimensional space of real numbers, Rn. The SOM is a collection
of linear neurons organized in the form of a regular two-dimensional grid (array)
(Figure 1.12).

In general, the grid may consist of p rows and r columns; commonly we
confine ourselves to the square array of p × p elements (neurons). Each neuron
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Figure 1.12. A basic topology of the SOM constructed as a grid of identical processing
units (neurons).

is equipped with modifiable connections w(i,j ) that form an n-dimensional vector
of connections w(i, j) = [w1(i, j)w2(i, j) . . . wn(i, j)]. It completes computing
of the distance function d(. , .) between its connections and the corresponding
input x

y(i, j) = d(w(i, j), x) (1.39)

where the pair (i,j ) denotes a certain (i,j ) position of the neuron in the array. x is
an input to all neurons. The distance can be chosen from the list of alternatives
presented earlier. The same input x affects all neurons. The neuron with the
shortest distance between the input and the connections becomes activated to the
highest extent and is called the winning neuron. Let us denote its coordinates by
(i0, j0). More precisely, we have

(i0, j0) = arg min(i,j) d(w(i, j), x) (1.40)

The winning neuron matches (responds to) x. Because it is the winner of this
competition, we reward the neuron and allow it to modify the connections so
that they are even closer to the input data. The update mechanism is governed
by the expression

w new(i0, j0) = w(i0, j0) + α(x − w(i0, j0)) (1.41)

where α denotes a learning rate, α > 0. The higher the learning rate, the more
intensive the updates of the connections. In addition to the changes of the
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connections of the winning node (neuron), we allow this neuron to affect its
neighbors (viz., the neurons located at similar coordinates of the map). The way
in which this influence is quantified is expressed via a neighbor function �(i,
j , i0, j0). In general, this function satisfies two intuitively appealing conditions:
(a) it attains a maximum equal to 1 for the winning node, i = i0, j = j0, and
(b) when the node is apart from the winning node, the value of the function gets
lower (in other words, the updates are less vigorous). Evidently, there are also
nodes where the neighbor function equals 0. Considering the above, we rewrite
(1.41) in the following form:

w new(i, j) = w(i0, j0) + α�(i, j, i0, j0)(x − w(i, j)) (1.42)

The typical neighbor function comes in the form

�(i, j, i0, j0) = exp(−β((i − i0)2 + (j − j0)2)) (1.43)

with the parameter β usually assuming small positive values.
The above update expression (1.42) applies to all the nodes (i,j ) of the map.

As we iterate (update) the connections, the neighbor function shrinks: at the
beginning of updates, we start with a large region of updates, and when the learn-
ing settles down, we start reducing the size of the neighborhood. For instance,
its size may decrease linearly.

The number of iterations is specified in advance or the learning terminates
once there are no significant changes in the connections of the neurons.

SOM and FCM are complementary, and so are their advantages and shortcom-
ings. FCM requires the number of groups (clusters) to be defined in advance. It
is guided by a certain performance index (objective function), and the solu-
tion comes in the clear form of a certain partition matrix. In contrast, SOM is
more user-oriented. No specific number of clusters (group) needs to be specified
in advance.

1.9. CONCLUSIONS

We have reviewed the paradigm of clustering, and fuzzy clustering in particular,
and have discussed its role in revealing structure in data sets. Fuzzy cluster-
ing leads to information granulation in terms of fuzzy sets or fuzzy relations.
Membership grades are important indicators of the typicality of patterns or their
borderline character. We discussed various categories of fuzzy clustering and
extensions of the underlying objective functions. The cluster indexes are use-
ful in identifying the most relevant number of clusters. Each objective function
implies a search for structure in data driven by some superimposed geometry, and
we have shown that different distance functions emphasize a certain geometry
we intend to find in the data set. Stated differently, clustering predisposes the
search toward a certain geometry that is favored when the clusters are built. For
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instance, the Euclidean distance focuses the search on spherical shapes of the
clusters. The Mahalanobis distance expands this search by allowing hyperellip-
soidal shapes in the data set. Having said that, we should interpret the notion of
unsupervised learning (which is often synonymous with clustering) in a suitable
manner. There is no direct supervision (as encountered, for example, in classifier
design), but there is still a mechanism of implicit supervision in the form of the
geometric bias of search accompanying the accepted distance function.
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2 Computing with Granular
Information: Fuzzy Sets and Fuzzy
Relations

This chapter provides an introduction to the fundamentals of fuzzy sets, regarded
as essential information granules supporting human-centric computing. We dis-
cuss the key concepts and show how they translate into detailed algorithmic
constructs. This discussion provides only limited coverage of the fundamentals
of fuzzy sets. The reader may refer to one of the many comprehensive treatises
on this subject (see, e.g., Pedrycz and Gomide, 1998; Zadeh and Kacprzyk, 1999;
Zimmermann, 2001). We start with a general framework of granular computing
that helps cast fuzzy sets in the setting of information granules and enhances
understanding of the differences between them and other forms of knowledge
representation.

2.1. A PARADIGM OF GRANULAR COMPUTING: INFORMATION
GRANULES AND THEIR PROCESSING

Information granules tend to permeate human endeavors (Bargiela and Pedrycz,
2003; Pedrycz, 2001; Zadeh, 1979, 1996, 1997, 1999; Zadeh and Kacprzyk,
1999). Regardless of the task, we usually cast it into a certain conceptual frame-
work of basic entities we consider relevant in the given formulation. This is the
framework in which we formulate generic concepts at some level of abstraction,
carry out processing, and communicate the results. Consider image processing:
in spite of continuous progress in this area, human beings assume a dominant
position when it comes to understanding and interpreting images. We do not
focus on individual pixels and process them afterward, but instead group them
together into semantically meaningful constructs—objects we deal with in every-
day life. They involve regions that consist of pixels or groups of pixels drawn
together because of their proximity in the image, similarity of texture, color,
and so on. This remarkable and unchallenged ability is based on our effort-
less ability to construct information granules and manipulate them. As another
example, consider a collection of time series. We can describe them in a semi-
qualitative manner by pointing at specific regions of such signals. Specialists can
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effortlessly interpret electrocardiographic signals. They distinguish some seg-
ments of such signals and interpret their combinations. Again, the individual
samples of the signal are not the focus of the analysis and signal interpretation.
We granulate all phenomena (regardless of whether they are originally discrete
or analog). Time is a variable that is subject to granulation. We use seconds,
minutes, days, months, and years. Depending on the specific problem and the
user, the size of the information granules (time intervals) can vary dramatically.
For high-level management, a time interval of quarters of a year or a few years
could be a meaningful basis on which to develops a model. For the designer of
high-speed digital systems, the temporal information granules consist of nanosec-
onds, microseconds, and, rarely, microseconds. Even such common and simple
examples are convincing enough to lead us to believe that (a) information gran-
ules are key components of knowledge representation and processing; (b) the
level of granularity of information granules (their size, to be more descriptive)
is crucial to the problem’s description; and (c) there is no universal level of
granularity of information; the size of granules is problem-oriented and user-
dependent.

What has been said so far touches on the qualitative aspect of the problem.
The challenge is to develop a computing framework within which all these rep-
resentation and processing endeavors can be formally achieved. The common
platform emerging within this context is called granular computing. In essence,
it is an emerging paradigm of information processing. While we have already
noted a number of important conceptual and computational constructs developed
in the domains of system modeling, machine learning, image processing, pattern
recognition, and data compression in which various abstractions (and ensuing
information granules) came into existence, granular computing is innovative and
intellectually proactive in several fundamental ways:

ž It identifies the essential commonalities among surprisingly diversified prob-
lems and technologies, which can be cast into a unified framework we
usually refer to as a granular world. This is an operational processing entity
that interacts with the external world (which could be another granular or
numeric world) by collecting necessary granular information and returning
the outcomes of the granular computing.

ž The unified framework of granular processing, allows us to understand more
clearly the role of the interaction among various formalisms and visualize
the way in which they communicate.

ž It brings together the existing formalisms of set theory (interval analysis),
fuzzy sets, rough sets, and so on under the same roof by clearly demon-
strating that in spite of their visibly distinct underpinnings (and ensuing
processing), they also have fundamental commonalities. In this sense, gran-
ular computing establishes a stimulating environment of synergy among the
individual approaches.
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ž By focusing on the commonalities of the existing formal approaches, gran-
ular computing helps build heterogeneous and multifaceted models of pro-
cessing of information granules by clearly recognizing the orthogonal nature
of some of the existing and well-established frameworks (e.g., probabil-
ity theory, with its probability density functions, and fuzzy sets with their
membership functions).

ž Granular computing fully acknowledges a notion of variable granularity
ranging from detailed numeric entities to abstract and general information
granules. It considers the compatibility of such information granules and the
ensuing communication mechanisms of the granular worlds.

To cast granular computing in historic perspective, we should note that there
have been several fundamental mechanisms of granulation ranging from inter-
val analysis (Hansen, 1975; Jaulin et al., 2001; Moore, 1966; Warmus, 1956) to
fuzzy sets (Zadeh, 1965), uncertain variables (Bubnicki, 2002, 2004), and rough
sets (Pal and Skowron, 1999; Pawlak, 1991; Polkowski and Skowron, 1998;
Skowron, 1989) (see Figure 2.1).

In spite of the main emphasis of this chapter on fuzzy sets, it is helpful to
contrast these to key technologies such as sets and probability.

Sets and Interval Analysis. The two-valued world of sets and interval anal-
ysis (Moore, 1966) ultimately focuses on a collection of intervals in the line
of reals: [a,b], [c,d], and so on. Conceptually, sets are rooted in a two-valued
logic with their fundamental predicate of membership (∈). There is an impor-
tant isomorphism between the structure of two-valued logic endowed with truth
values (false-true) and set theory, with sets described by characteristic functions.
Interval analysis is a cornerstone of so-called reliable computing that is ulti-
mately associated with digital computing in which the accuracy of any variable

Interval analysis (mathematics)

Fuzzy sets

Rough sets

1956

1965

1982

Uncertain variables
2002

Figure 2.1. Some milestones contributing to the development of granular computing
(GC); note that their emergence and growth were independent of each other.
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comes is finite (implied by the fixed number of bits used to represent numbers).
This limited accuracy gives rise to a certain pattern of propagation of comput-
ing error. For instance, the addition of two intervals [a,b] and [c,d] leads to
a broader interval of the form [a + c, b + d]. Here the accumulation of uncer-
tainty (or decreased granularity of the result) depends upon the specific algebraic
operation completed for given intervals. Interestingly, intervals formed uniformly
in a certain space achieve an analog-to-digital conversion; the greater the num-
ber of bits, the finer the intervals and the higher their number. The well-known
fundamental relationship states that with n bits we can build a collection of 2n

intervals of width (b − a)/2n for the original range of [a,b]. Traditionally, given
a universe of discourse X, a family of intervals (sets) defined therein is denoted
by P (X).

Probability and Probabilistic Information Granules. The theory of probabil-
ity concerns constructs of probability functions or probability density functions
(pdf’s) that can be treated as information granules. We determine the frequency of
occurrence of some event and on this basis combine our observations in the for-
mat of the corresponding pdf. In this sense, the pdf captures a general view of the
given phenomenon. The granularity of such information granules is conveniently
captured through its standard deviation.

2.2. FUZZY SETS AS HUMAN-CENTRIC INFORMATION GRANULES

The striking difference between sets (intervals) and fuzzy sets (Zadeh, 1965) is
that in fuzzy sets we admit a concept of partial membership so that we can dis-
criminate between elements that are typical of the concept and those of borderline
character. Information granules such as high speed, warm weather, and fast car
are examples of information granules falling into this category. We cannot specify
a single well-defined element that forms a solid border between full belonging-
ness and full exclusion. Fuzzy sets, with their soft transition boundaries, are an
ideal vehicle to capture the notion of partial membership. Formally, fuzzy set A

defined in X is defined by its membership function

A : X →[0, 1] (2.1)

where A(x) denotes a degree of membership of x in A. A family of fuzzy sets
defined in X is denoted F (X). As the semantics of A is far richer than that
encountered in sets, fuzzy sets have several important characteristics. These are
summarized in Table 2.1.

Fuzzy sets are provided in the form of membership functions in either a
continuous or discrete format. In the first case, we have an analytical expression
for the membership function:

A(x) =
{

exp(−0.2x) if x ≥ 0
0 otherwise

(2.2)
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TABLE 2.1. Main Descriptors Used in the Characterization of Fuzzy Set A

Notion and Definition Description

α-cut Aα = {x | A(x) ≥ α} Set induced by some threshold consisting of
elements belonging to A to an extent not lower
thanα. By choosing a certain threshold, we
convert A into the corresponding representative
set. α-cuts provide important links between
fuzzy sets and sets.

Height of A, hgt(A) = supx A(x) Supremum of the membership grades; A is normal
if hgt(A) = 1. The core of A is formed by all
elements of the universe for which A(x)

equals 1.
Support of A,

supp(A) = {x | A(x) > 0}
Set induced by all elements of A belonging to it

with nonzero membership grades.
Cardinality of A,

card(A) = ∫
X

A(x) dx (assuming

that the integral does exist)

Counts the number of elements belonging to A;
characterizes the granularity of A. Higher
card(A) implies higher granularity (specificity)
or, equivalently, lower generality.

In the second case, the membership function is defined in discrete elements
of the universe of discourse and could be expressed by some formula (say,
A(xi) = i/100, i = 1, 2, . . . , 100) or in a tabular format:

xi 1 2 3 4 5 6
A(xi) 0.6 1.0 0.0 0.5 0.3 0.9

Fuzzy sets defined in the line of real numbers (R) whose membership functions
have several intuitively appealing properties such as (a) unimodality, (b) conti-
nuity, and (c) convexity are referred to as fuzzy numbers. They generalize the
concept of a single numeric quantity by providing an envelope of possible values
it can assume.

The calculus of fuzzy numbers generalizes the idea of operations on inter-
vals and follows the so-called extension principle. Given two fuzzy numbers A

and B, their function C = f (A, B) returns a fuzzy number with the member-
ship function

C(z) = supx,y:z=f (x,y)[min(A(x), B(y))] (2.3)

For the sake of completeness, Table 2.2 presents the results of algebraic oper-
ations (addition, multiplication, and division) on two intervals, A = [a, b] and
B = [c, d].

2.3. OPERATIONS ON FUZZY SETS

Fuzzy sets defined in the same space are combined logically through logic opera-
tors of intersection, union, and complement. These operations are completed via
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TABLE 2.2. Algebraic Operations on Numeric Intervals A and B

Operation Result

Addition [a, b] + [c, d] [a + c, b + d]
Multiplication [a, b]∗[c, d] [min(ac, ad , bc, bd), max (ac, ad , bc, bd)]
Division [a, b]/[c, d] [min(a/d , a/c, b/c, b/d), max(a/d , a/c, b/c, b/d)]

t- and s-norms commonly used as models of the logic operators and and or,
respectively. This gives rise to the expression

A ∩ B : (A ∩ B)(x) = A(x) t B(x)

A ∪ B : (A ∪ B)(x) = A(x) s B(x) (2.4)

A : A(x) = 1 − A(x)

The negation operation, denoted by an overbar, is usually performed by subtract-
ing the membership function from 1, that is, A(x) = 1 − A(x). Let us recall that
a t-norm is a two-argument function

t : [0, 1]2 → [0, 1]

that satisfies the following conditions (Butnariu and Klement, 1983):

xty = ytx commutativity
xt (ytz) = (xty) tz associativity
if x ≤ y and w ≤ z, then xtw ≤ ytz monotonicity
0 tx = 0, 1 tx = x boundary conditions

Several examples of commonly encountered t-norms are presented in Table 2.3.
The most commonly used t-norms are the minimum (min), product, and

Lukasiewicz and operator. Given any t-norm, we can generate a so-called dual
s-norm through the expression

asb = 1 − (1 − a) t (1 − b) (2.5)

a, b ∈ [0, 1], which is nothing but the Morgan law (recall that A ∪ B = A ∩ B).
In other words, we do not need a separate table for s-norms, as these can be easily
generated. Again, the list of s-norms in common use involves the operation of
the maximum (max), the probabilistic sum, and the Lukasiewicz or operator.

2.4. FUZZY RELATIONS

Fuzzy sets are defined in a given space. Fuzzy relations are defined in Cartesian
products of some spaces and represent composite concepts. For instance, the
notion “high price and fast car” can be represented as a fuzzy relation R defined
in the Cartesian product of price and speed. Note that R can be formally treated



34 FUZZY SETS AND FUZZY RELATIONS

TABLE 2.3. Examples of Selected t-Norms

t-Norm Comments

xty = min (x, y) The first model of the and
operation used in fuzzy sets (as
proposed by Zadeh in his
seminal 1965 paper). Note that
this model is noninteractive,
that is, the result depends on
only a single argument. More
specifically, min(x, x + ε) = x,
regardless of the value of ε.

xty = max(0, (1 + p)(x + y − 1) − pxy), p ≥ −1 For p = 0, this yields the
Lukasiewicz and operator

xty = xy The product operator is commonly
encountered in applications; the
operator is interactive.

xty = 1 − min(1, p
√

(1 − x)p + (1 − y)p), p > 0 The parametric flexibility is
assured by the choice of values
of p.

xty = xy

p + (1 − p)(x + y − xy)
, p ≥ 0 As above, this family of t-norms

is indexed by the auxiliary
parameter, whose value can be
adjusted.

xty = xy

max(x, y, p)
, p ∈ [0, 1] As above.

xty =



x if y = 1
y if x = 1
0 otherwise

Drastic product—exhibits a
“drastic” behavior, that is, it
returns a nonzero argument if
one of the arguments is equal
to 1; otherwise, it returns 0.

as a two-dimensional fuzzy set, R: X × Y → [0, 1], with X and Y being the
corresponding spaces of price and speed.

Fuzzy partition matrices generated by fuzzy clustering provide a discrete char-
acterization of fuzzy relations. Given c clusters, the partition matrix consists of
c fuzzy relations A1, A2, . . ., Ac whose membership grades consist of individual
rows of the matrix. In other words, U can be written down in the form

U =




A1

A2

Ac


 (2.6)

The partition matrix results from granulation of the original numeric data.
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2.5. COMPARISON OF TWO FUZZY SETS

Given two fuzzy entities (fuzzy sets, relations, numbers, etc.) defined in the
same universe of discourse X, a fundamental question arises as to their similarity
or proximity. How similar (or different) are two fuzzy sets? To address this
matter, we should note that there is no unique way of producing a single numeric
characterization of such matching. In fact, this problem is the same as that of
expressing similarity between two real functions (and membership functions are
just special cases) and coming up with a single number.

Several fundamental approaches have been introduced in the literature and are
encountered in various applications.

Possibility Measure. The possibility measure, denoted by Poss(A,X), describes
a level of overlap between two fuzzy sets or fuzzy relations and is expressed in
the form

Poss(A, X) = supx∈X[A(x)tX(x)] (2.7)

The plot visualizing the computations of the possibility is shown in Figure 2.2a.
Computationally, we note that the possibility measure is concerned with the
determination of the intersection between A and X, A(x)tX(x) that is followed
by the optimistic assessment of this intersection. It is done by picking up the
highest values among the intersection grades of A and X that are taken over all
elements of the universe of discourse X.

Necessity Measure. The necessity measure expresses a pessimistic degree of
inclusion of A in X and is computed as follows:

Nec (A, X) = infx∈X[(1 − A(x))sX(x)] (2.8)

The computational details are presented in Figure 2.2b. In contrast to the pos-
sibility measure, the necessity measure is asymmetric (which is obvious, as we
are concerned with the inclusion predicate).

X

x x

A

Poss(A,X )

X
A

Nec(A,X )

(a) (b)

Figure 2.2. Computations of possibility (a) and necessity (b) measures; t-norm: mini-
mum, s-norm: maximum. The dotted line in (b) shows a complement of A, 1 − A(x).
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By its nature (as a measure of overlap), the possibility measure is symmetric,
Poss(A, X) = Poss(X, A). The necessity measure, expressing the extent of inclu-
sion, is not symmetric. Because only a single number is returned as the result of
this operation, this may not be enough to secure highly discriminative abilities of
the possibility and necessity measures. In other words, we may have two quite
different fuzzy sets, X1 and X2, with the possibility measure assuming the same
value, Poss(A, X1) = Poss(A, X2).

Compatibility Measure. Rather than returning a single number, this measure
(Zadeh, 1979) produces a function defined in [0,1] that is computed as follows:

Comp(X, A)(u) = supx:u=A(x) X(x), u ∈ [0, 1] (2.9)

Note that the compatibility measure is not symmetric, so Comp(A,X) is different
from Comp(X,A). As we return here a function (rather than a single number,
as in the two previous measures), the result is more informative and has higher
discriminative abilities (that is, we can quantify the difference in a more refined
manner even when the possibility or necessity measure may not be able to pro-
duce any discrimination abilities). If A = X, then Comp(A,X) returns an identity
function, Comp(A, X)(u) = u, u ∈ [0,1].

Various Distance Functions. These matching instruments view membership
functions as real functions and compute the distance between A and X. in general,
the Minkowski distance d(A, X) is taken as an integral (we assume that it makes
sense):

d(A,X) = p

√√√√∫
X

| A(x) − X(x)|p dx, p ≥ 1 (2.10)

By changing the value of the parameter (p) used in the above definition, we
sweep through the entire collection of distance functions including the Ham-
ming (p = 1), Euclidean (p = 2), and Tchebyschev (p = ∞) functions. Note
that these are the same distance functions we will be discussing in conjunction
with objective function–based clustering.

A Hausdorff distance, another example of distance, is used to compare two
information granules (Diamond and Kloeden, 1994). It was originally proposed
for intervals or sets. Let A and B be two sets defined in the same space X. Then
the Hausdorff distance is expressed in the form

d(A, B) =, max{supa∈A infb∈B ||a − b||, supa∈A infb∈B ||a − b||} (2.11)

where || || is the distance between two elements.
For illustrative purposes, consider two sets, A = {1, 2, 3, 4} and B = {6, 7, 8}.

It is convenient to compute distances, say Hamming ones, between the pairs of



GENERALIZATIONS OF FUZZY SETS 37

elements belonging to A and B and organize them into a matrix where the rows
are indexed by values of a and the columns by values of b:

1
2
3
4




5 6 7
4 5 6
3 4 5
2 3 4




6 7 8

the operations inf and sup are replaced here by min and max, respectively. Then
the first component in the Hausdorff distance (supa infb) is computed by finding
the minima in each row of the matrix above and then taking their maximal value.
In other words, maxa minb ||a − b|| = max (5, 4, 3, 2) = 5. The second expres-
sion, maxb mina ||a − b||, is realized by taking minima over each column and
returning their maximal value, that is, maxb mina ||a − b|| = max (2, 3, 4) = 4.
Finally, the maximum operation is taken over these two results: max(5, 4) = 5.

In fuzzy sets, the generalization is straightforward: we consider an α-cut of A

and B, determine the corresponding Hausdorff distance for this cut, denote it by
dα(A, B), and integrate these specific distances over all possible α-cuts:

D(A, B) =
1∫

0

dα(A, B) dα (2.12)

2.6. GENERALIZATIONS OF FUZZY SETS

Fuzzy sets are constructs with membership grades in the unit interval. There are
several interesting generalizations (Mendel and John, 2002; Pal and Skowron,
1999) whose use is justified by specific applications. Two of them are of partic-
ular interest.

Second-Order Fuzzy Sets. These are fuzzy sets whose membership grades are
fuzzy sets defined in [0,1]. Thus we depart from the individual numeric member-
ship grades and acknowledge that the degrees of membership themselves could
be stated in an approximate way. This implies the model of fuzzy sets as mem-
bership valuation. In particular, we can admit some ranges of membership, thus
arriving at so-called interval-valued fuzzy sets. The generalization along this line
is of particular interest when dealing with situations where the granularity in
quantification of membership cannot be ignored and has to be incorporated in
further processing. An example of second-order fuzzy sets is shown in Figure 2.3;
there we illustrate both an interval-valued fuzzy set and a second-order fuzzy set,
with fuzzy sets regarded as their memberships.

Fuzzy Sets of Type 2. This is another conceptual extension of fuzzy sets where
we define a certain fuzzy set over a universe of several reference fuzzy sets.
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x x

Lower bound 

Upper bound 

(a) (b)

Modal
value

Figure 2.3. Examples of second-order fuzzy sets: (a) interval-valued and (b) membership
functions as grades of belongingness.

cold ~0C warm hot

0.1

0.2 0.9
0.5

Comfortable
temperature

Figure 2.4. Fuzzy set of type 2 of comfortable temperature; note the collection of refer-
ential fuzzy sets over which the type-2 fuzzy set is formed.

For instance, a term of comfortable temperature can be defined in a collection
of referential terms such as cold temperature, around zero, warm, hot, and so
on. Fuzzy sets of type-2 are more abstract than fuzzy sets of type-1 (that is,
standard fuzzy sets). We portray fuzzy set of type 2 of comfortable temperature
in graphical form in Figure 2.4.

Some further generalizations and extensions become possible as well; for
example, we can consider fuzzy sets of type-2 of order 2.

2.7. SHADOWED SETS

Fuzzy sets help describe and quantify concepts of continuous boundaries. By
introducing a certain α-cut, we convert a fuzzy set into a set. By choosing a
threshold level (α) that is high enough, we admit elements whose membership
grades are sought meaningful (as viewed from the standpoint of the imposed
threshold). This may create the impression that any fuzzy set could be made
equivalent to some set. This view is highly deceptive. In essence, by building any
α-cut, we elevate some membership grades to 1 (full membership) and eliminate
others with lower membership grades (total exclusion). Surprisingly, no account is
taken of the distribution of elements with partial membership, so this effect cannot
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be quantified in the resulting construct. The idea of shadowed sets (Pedrycz,
1998; Pedrycz, 1999; Pedrycz and Vukovich, 2000) is aimed at alleviating this
problem by constructing regions of complete ignorance about membership grades.
In essence, a shadowed set A∼ induced by given fuzzy set A defined in X is an
interval-valued set in X that maps elements of X into 0,1 and the unit interval
[0,1]. Formally, A∼ is a mapping

A∼ : X → {0, 1, [0, 1]} (2.13)

Given A∼(x), the two numeric values, 0 and 1, take on a standard interpreta-
tion: 0 denotes complete exclusion from A∼, and 1 stands for complete inclusion
in A. A∼(x) equal to [0,1] represents complete ignorance—nothing is known
about membership of x in A∼: we neither confirm its belongingness to A∼ nor
commit to its exclusion. In this sense, such an x is the most questionable point
and should be treated as such (e.g., triggering action to analyze this element
in more detail, exclude it from further analysis). The name shadowed set is a
descriptive reflection of a set that comes with “shadows” positioned around the
edges of the characteristic function (see Figure 2.5).

Shadowed sets are isomorphic with a three-valued logic. Operations on shad-
owed sets are the same as those proposed in this logic. The underlying principle
is to retain the vagueness of the arguments (shadows of the shadowed sets
being used in the aggregation). The following tables capture the description of
the operators:

Union
0
1

[0, 1]


 0 1 [0, 1]

1 1 1
[0, 1] 1 [0, 1]




0 1 [0, 1]

Intersection
0
1

[0, 1]


 0 0 0

0 1 [0, 1]
0 [0, 1] [0, 1]




0 1 [0, 1]

A~

[0,1] [0,1]

Figure 2.5. An example of a shadowed set A∼; observe the “shadows” produced at the
edges of the characteristic function.
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Complement
0
1

[0, 1]


 1

0
[0, 1]




From the design point of view, shadowed sets are induced by fuzzy sets, and
in this setting their role is to help interpret results given in the form of fuzzy
sets and eventually reduce the computational overhead. Since shadowed sets do
not concentrate on detailed membership grades and process only 0, 1, and 1/2
(considering that the last numeric value is used to code the shadow), all ensuing
processing is very simple and computationally appealing.

The development of shadowed sets starts from a given fuzzy set. The trans-
formation criterion governing this transformation is straightforward: maintain a
balance of uncertainty in the sense that while reducing low membership grades
to 0 and bringing high membership grades to 1, maintain the overall balance
of membership grade changes. The changes of membership grades to 0 and 1
are compensated for by the construction of the shadow that “absorbs” the pre-
vious elimination of partial membership at low and high ranges of membership.
This design principle for a unimodal fuzzy set is illustrated in Figure 2.6. This
transformation is guided by the value of the threshold β; specifically, we are
concerned with the two individual thresholds, that is, β and 1 − β.

The retention of balance translates into the following dependency:

�1 + �2 = �3

where the corresponding regions are illustrated in Figure 2.6. Note that we are
dealing with the increasing and decreasing portions of the membership functions

1

1-b

b

a b

Ω3

Ω2

Ω1

A(x)

x

a1 a2

Figure 2.6. Induced shadowed set: elimination of regions of partial membership is bal-
anced by the formation of the shadows “absorbing” the reduction in the region of partial
membership grades.
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separately. The integral form of the above relationship is in the form

a1∫
a

A(x) dx +
b∫

a2

(1 − A(x)) dx =
a2∫

a1

dx (2.14)

See again Figure 2.6. A certain threshold value of β, β ∈ [0,1/2), that sat-
isfies this expression is treated as a solution to the problem. Based on this,
we form a shadow of the shadowed set. In the commonly encountered mem-
bership functions, the optimal value of β can be determined in an analytical
manner. For the triangular membership function, we consider that each seg-
ment (viz., the increasing and decreasing portions of the membership function)
is treated separately and concentrate on the linearly increasing portion of the
membership function governed by the expression(x − a)/(b − a). Simple calcu-
lations reveal that the cutoff points a1 and a2 are equal to a + β(b − a) and
a + (1 − β)(b − a). Subsequently the resulting optimal value of β is equal to
23/2 − 2

2
= 0.4142. Similarly, when dealing with a square root type of mem-

bership function of the form A(x) =
√

x − a

b − a
in x ∈ [a, b] and 0 outside this

interval, we get a1 = a + β2(b − a) and a2 = a + (1 − β)2(b − a). The only root
satisfying the requirements imposed on the threshold values is equal to 0.405.

In discrete membership grades, the computations follow the sum-based ver-
sion of the criterion where the individual components of the expression assume
the form of finite sums. To analyze this in more detail, let us consider a par-
tition matrix U = [uik], i = 1, 2, . . . , c, k = 1, 2, . . . , N . Then the segments of
membership grades are given in the form

�1 =
∑

i,k:uik≤β

uik �2 = card{uik|β < uik < 1 − β} �3 =
∑

i,k:uik≥1−β

(1 − uik)

(2.15)

There is no analytical solution to this problem. It is then advisable to form a
performance index V such that

V (β) = |�1 + �3 − �2| (2.16)

whose values are minimized with respect to β, that is, βopt = arg Minβ V (β).
The shadowed sets are instrumental in fuzzy cluster analysis, especially the

results produced there. Consider the data set shown in Figure 2.7. The standard
FCM run for c = 2 clusters returned the partition matrix whose membership
grades are then transformed into the shadowed set.

The prototypes are equal to v1 = [5.51 2.48]T , v2 = [1.05 4.71]T and reflect
the structure of the data set. The membership function of one cluster (fuzzy
relation) is visualized in Figure 2.8.
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Figure 2.7. Two-dimensional synthetic data set.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2500

Figure 2.8. Membership grades of one of the clusters developed by the cluster-
ing algorithm.

The optimization of the threshold level (β) inducing the shadowed set is com-
pleted through a simple enumeration; following the graph in Figure 2.9, we obtain
β = 0.4322. This, in turn, highlights several patterns to be treated as potential
candidates for further thorough analysis.

When we complete clustering with c = 12 (which is substantially higher than
in the first case), the results become quite different (see Figure 2.10). First, the
optimal value of β becomes equal to 0.3636; refer to Figure 2.11. The overlap
between the clusters has also been visibly reduced.

Interestingly, with the optimized threshold β, the standard classification rule

Accept x to class i if membership grade ui(x) is maximal (i =
arg maxj=1,2,...,c uj (x))



SHADOWED SETS 43

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

0 0.1 0.2 0.3 0.4 0.5 b 0.6

V

Figure 2.9. V viewed as a function of β.
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Figure 2.10. V viewed as a function of β for c = 12 clusters.
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Figure 2.11. Distribution of membership grades of one of the clusters developed by the
clustering algorithm.



44 FUZZY SETS AND FUZZY RELATIONS

can be now augmented by admitting the threshold level, eliminating the pattern
being classified if it falls within the region of the shadow:

Accept x to class i if membership grade ui(x) is maximal (i =
arg maxj=1,2,...,c uj (x)) and ui(x) > 1 − β.

The addition provision takes the threshold b into account:

If ui(x) ∈ [β, 1 − β], then consider x to be a boundary character with respect
to the ith class.

2.8. ROUGH SETS

The fundamental concept represented and quantified by rough sets concerns a
description of a given concept in the language of a certain collection (vocabulary)
of rather generic terms. Depending upon this collection relative to the concept,
there can be situations where it cannot be fully and uniquely described with the
aid of the given vocabulary (Pawlak, 1991). This may give rise to an approximate
or, better, rough description of the given concept. To illustrate this effect, let us
consider a concept of temperature in range [a, b] that we intend to describe with
the vocabulary of uniformly distributed intervals, as visualized in Figure 2.12.
Apparently the concept (shown in the solid thick line) to be described fully
“covers” (includes) one interval, that is, I3. There are also some intervals that
have at least some limited overlap with it, that is, I2, I3, and I4. In other words,
we say that the concept, when characterized by the predefined vocabulary of
intervals, does not lend itself to a unique description and the best characterization
we can produce consists of some bounds. The tighter the bounds, the better the
description.

Rough sets are directly related to the families of clusters that could be formed
through fuzzy clusters. As schematically visualized in Figure 2.13, the first clus-
tering algorithm operates on data set X and returns its partition into c[1] clusters.
The same occurs for the second clustering algorithm, which produces a different
partition of X into c[2] clusters.

Denote these clusters by A1, A2, . . . , Ac[1]. Some other clustering algorithm
(for the sake of argument, let us assume that this one operates on the same data)
produces c[2] clusters. We denote them by B1, B2, . . . , Bc[2], respectively. Each

I1 I2 I3 I4 I5

[a, b]

Figure 2.12. Concept (set) [a, b] represented in the language of uniformly distributed
intervals; note the upper and lower bounds forming its representation.
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C1

Data

C2

Clusters formed by C1

Rough set
Representation

Figure 2.13. Emergence of rough sets through the description problem: clusters devel-
oped by clustering algorithm C2 are represented (described) in the setting of information
granules constructed by C1.

cluster Bi can be characterized in the language of information granules designed
by the first clustering algorithm. The result of this description is a rough set.
More specifically, we identify those Aj ’s that are fully “covered” by Bi’s (that
is, they are fully included there):

Bi∗ = {Aj |Aj ⊂ Bi} (2.17)

Similarly, we list all Aj ’s such that their intersection with Bi is nonempty:

B∗
i = {Aj |Aj ∩ Bi �= ∅} (2.18)

For the given family {Ai} the resulting rough set is fully characterized by its
upper and lower bounds: 〈Bi∗ , B∗

i 〉.
As an illustrative example, let us consider that the partition matrix of the first

clustering algorithm is given in the form (c[1] = 5)

U [1] =




100101100001000
11000000000000
00010010000000
00000001010000
00000000000111
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The partition matrix, being the result of optimization provided by the second
clustering with c[2] = 2, yields the partition matrix with the following entries:

U [2] =
[

000101100110000
11010011001111

]

Then B1 expressed in the language of the first partition matrix comes with the
lower and upper bounds where

B1∗ = {A1, A3} B1
∗ = {A1, A3, A4} (2.19)

In other words, we have arrived at the rough set representation of B1. From
the application standpoint, note that the granularity of the information granules
formed by the first clustering (that is, directly implied by the number of clusters)
implies the character of the lower and upper boundaries of the rough set repre-
sentation. The larger the granules (the smaller the number of clusters), the closer
the bounds of the resulting rough set. It is also apparent that the choice of the
value of c[1] is application-oriented.

2.9. GRANULAR COMPUTING AND DISTRIBUTED PROCESSING

Information granulation and the resulting information granules form a conceptual
framework within which all processing activities take place (Pedrycz, 2001). As
already noted, the selection of information granules, their size, and their formal
representation framework are problem-dependent issues. The flexibility we are
provided in this manner is essential to the efficient handling of the problem. The
size of the information granules helps us capture the level of required specificity
of the solution to the problem. The decision about the design of the formal
setting is essential and is based on the available domain knowledge, the format
of the experimental numeric or granular data, and the expected outcomes of the
modeling activities (that could result in control, classification, or decision-making
algorithms). As various types of computing processing could be going on at the
same time with ongoing communication, we can envision a distributed model in
which each process can be treated as an individual agent (Figure 2.14).

Each agent operates in its environment of granular computing and communi-
cates with others. From the high-end architectural standpoint, we can envision
two-layer architectures with a core supporting all computing, with a communica-
tion layer surrounding it. Computing processes occur within the framework set up
via some formalism of granular computing. For instance, there could be an agent
operating on fuzzy sets and fuzzy relations. For the other one the pertinent comput-
ing framework results in interval calculations. The purpose of the communication
layer is to facilitate acceptance of data and support the exchange of results pro-
duced by other agents. As the heterogeneity of information granulation is profound,
the functional demands on this layer are immense. First, it is necessary to ensure
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Figure 2.14. Granular computing in the realization of autonomous agents; their comput-
ing and communication layers are distinguished.

communication between the same formal frameworks whose information granules
exhibit very different levels of granularity (specificity). In other words, we should
be able to handle specificity (abstraction) incompatibilities. Second, there should
be mechanisms that support the exchange and translation of information granules
formed within different formal settings (intervals, fuzzy sets, rough sets, etc.). This
critical matter of communication is discussed in Bargiela and Pedrycz (2003).

2.10. CONCLUSIONS

We have covered the fundamentals of fuzzy sets that are regarded as a solid oper-
ating framework for fuzzy clustering. Information granules subsume fuzzy sets
as one of their conceptual architectures. Fuzzy sets have several obvious advan-
tages. Their nature is user-centric. Modeling linguistic concepts and articulating
them in the format of membership function is highly appealing. The diversity
of membership functions available for the quantification of information granules,
along with a vast array of realizations of logic connectives supported in terms
of t- and s-norms, is an important operational facet of fuzzy computing. The
associated machinery of shadowed sets (which, as discussed here, are constructs
induced by fuzzy sets) serves as a computationally efficient processing vehicle.
We have also discussed several interesting generalizations of fuzzy sets that are of
particular relevance in the context of fuzzy clustering. The essence of computing
with rough sets has to be highlighted as well.
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3 Logic-Oriented Neurocomputing

Neurocomputing is one of the pillars of computational intelligence. It brings a
host of learning abilities to intelligent systems that can be realized in both super-
vised and unsupervised modes. Our objective is to develop a logic-based mode
of neurocomputing in which learning goes hand in hand with the transparency
of the resulting structure. The logic facet of the introduced types of neurons
is essential in delivering significant interpretation abilities. Once developed, the
network can be interpreted in the form of logic expressions.

3.1. INTRODUCTION

Neural networks (Golden, 1996; Jang et al., 1997; Kosko, 1991; Mitra and Pal,
1994, 1995; Pal and Mitra, 1999) are regarded as synonymous with nonlinear and
highly plastic (adaptive) systems equipped with significant learning. The univer-
sal approximation theorem accompanying neural networks is highly appealing,
at least at the theoretical end. By stating that any continuous function can be
approximated to any desired accuracy by a certain neural network, assuming that
we are given enough neurons organized in a certain multilayer topology, the
basic processing unit (neuron) achieves a certain level of nonlinear processing.
The plethora of learning paradigms is impressive. We have many fundamental
schemes of supervised learning, including perceptron learning and backpropaga-
tion. In unsupervised learning mode, we often refer to SOMs (Kohonen maps)
as a typical neural architecture. Learning itself may pertain to the optimization
of the parameters of the network or it can deal with the structural optimization
of the network where its topology (configuration) becomes affected. Paramet-
ric learning involves various gradient-based techniques. Structural optimization
(for which we cannot compute any gradient) requires other optimization tools.
Here we usually confine ourselves to evolutionary optimization (Michalewicz,
1996) with this category, including genetic algorithms, genetic programming,
evolutionary programming, and alike.

Owing to the highly distributed character of processing achieved by neu-
ral networks and a lack of underlying semantics of processing carried out at
the level of the individual neuron, we end up with a “black-box” character
of computing. In essence, once the network has been designed (trained), we
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do not have any mechanism with which to directly examine the character of
the produced mapping and investigate it vis-à-vis the data at hand. This may
hamper its future usage because of the lack of comprehension of the structure
achieved through the optimization (learning) process. The black-box character of
the network does not increase our confidence in the generalization abilities of
the network.

This lack of interpretability raises an important question concerning the future
development of the networks (Casillas et al., 2003; Dickerson and Lan, 1995).
Undoubtedly it would be highly desirable to design transparent neural networks.
There are evident benefits behind them. First, we can easily interpret the result
of learning and produce the corresponding highly compact description of data.
Second, the learning of such networks could be greatly facilitated. In solving any
problem, we usually have some prior domain knowledge. We can take advan-
tage of it by “downloading” such knowledge onto the given structure of the
network. This could set up a highly promising starting point for further weight
adjustments carried out through some well-known scheme of supervised or unsu-
pervised learning. In order to take advantage of this preliminary knowledge, we
have to be in a position to do this download in an efficient manner. This, however,
requires the transparency of the network itself so that we know how to affect its
structure or set up initial values of the connections. In this context, it is worth
stressing that when using the standard learning schemes, we usually assume ran-
dom values of the connections and start from this configuration (which might
result in slow, inefficient learning). The transparency of the network in this case
becomes a genuine asset.

The category of fuzzy neurons (or fuzzy logic neurons) discussed in this
chapter addresses these burning issues of transparency of neural networks. We
build a network with the aid of conceptually simple and logically appealing nodes
(neurons) that complete generic and and or logic operations. By equipping the
neurons with a set of connections, we furnish them with the badly required
plasticity; the values of the connections can be easily adjusted by standard
gradient-based learning schemes. Likewise, the resulting network could be trans-
formed into a collection of conditional logic statements (rules), thus resulting in
a rule-based system.

We start by introducing the main categories of the fuzzy neurons, elaborate
on their main properties, move on to the architectures of networks composed of
such neurons, and then discuss various facets of network interpretation.

3.2. MAIN CATEGORIES OF FUZZY NEURONS

The logic aspect of neurocomputing we intend to achieve requires a clearly
delineated logic structure of the processing elements. We discuss several types of
aggregative and referential neurons. Each of them comes with a clearly defined
semantics of its underlying logic expression and has the parametric flexibility
necessary to facilitate substantial learning.
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3.2.1. Aggregative Neurons

Formally, these neurons realize a logic mapping from [0, 1]n to [0, 1]. Two main
classes of processing units exist in this category (Hirota and Pedrycz, 1994, 1999;
Pedrycz, 1991a, 1991b; Pedrycz and Rocha, 1993; Pedrycz et al., 1995).

OR Neurons. OR neurons achieve an and logic aggregation of inputs x =
[x1, x2, . . . , xn] with the corresponding connections (weights) w = [w1, w2, . . . ,

wn] and then summarize the partial results in an or-wise manner (hence the
name of the neuron). The concise notation underlines this flow of computing,
y = OR(x; w), while the realization of the logic operations gives rise to the
expression (referred to as an s-t combination)

y =
n

S
i=1

(xi twi) (3.1)

Bearing in mind the interpretation of the logic connectives (t- and s-norms),
the OR neuron achieves the following logic expression, viewed as an underlying
logic description of the processing of the input signals:

(x1 and w1) or (x2 and w2) or . . . or (xn and wn) (3.2)

Apparently the inputs are logically “weighted” by the values of the connections
before producing the final result. In other words, we can treat y as a truth value
of the above statement where the truth values of the inputs are affected by the
corresponding weights. Notably, lower values of wi discount the impact of the
corresponding inputs; higher values (especially those being positioned close to 1)
do not affect the original truth values of the inputs resulting in the logic formula.
In limit, if all connections wi , i = 12, . . . , n are set to 1, then the neuron produces
a plain or-combination of the inputs, y = x1 or x2 or . . . or xn. The values of
the connections set to 0 eliminate the corresponding inputs. Computationally,
the OR neuron exhibits nonlinear characteristics (that is, inherently implied by
the use of the t- and s-norms that are evidently nonlinear mappings). The plots of
the characteristics of the OR neuron shown in Figure 3.1 visualize this effect (note
that the characteristics are affected by the use of some norms). The connections
of the neuron contribute to its adaptive character; the changes in their values
form the crux of the parametric learning.

AND Neuron. AND neurons, denoted by y = AND (x; w), with x and w being
defined as in the case of the OR neuron, are governed by the expression

y =
n

T
i=1

(xiswi) (3.3)

Here the or and and connectives are used in the reverse order: first, the inputs are
combined with the use of the s-norm and the partial results are aggregated and-
wise. Higher values of the connections reduce the impact of the corresponding
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Figure 3.1. Characteristics of the OR neuron for selected pairs of t- and s-norms. In
all cases, the corresponding connections are set to 0.l and 0.7 to visualize their effect
on the input-output characteristics of the neuron: (a) product and probabilistic sum;
(b) Lukasiewicz and and or connectives.

inputs. In limit, wi = 1 eliminates the relevance of xi . With all wi set to 0, the
output of the AND neuron is just an and aggregation of the inputs

y = x1 and x2 and . . . and xn (3.4)

The characteristics of the AND neuron are shown in Figure 3.2; note the
influence of the connections and the specific realization of the triangular norms
on the mapping completed by the neuron.

Let us conclude that the neurons are highly nonlinear processing units depend-
ing upon the specific realizations of the logic connectives. They also come with
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Figure 3.2. Characteristics of AND neurons for selected pairs of t- and s-norms. In all
cases, the connections are set to 0.l and 0.7 to visualize their effect on the characteristics
of the neuron: (a) product and probabilistic sum; (b) Lukasiewicz logic connectives.

potential plasticity whose usage becomes critical when learning the networks
involving these neurons.

At this point, it is worthwhile to contrast these two categories of logic neurons
with standard neurons we encounter in neurocomputing. The typical construct
comes in the form of a weighted sum followed by a nonlinear (usually mono-
tonically increasing) function:

y = g

(
n∑

i=1

wixi + τ

)
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Figure 3.3. Characteristics of the neurons: (a) additive, with τ = 0.2, w1 = 1.0, w2 =
2.0, and (b) multiplicative, where w1 = 0.5, w2 = 2.0, t1 = 1.0, and t2 = 0.7. In both
cases the nonlinear function is a sigmoid function, g(u) = 1/(1 + exp(−u)).

where w is a vector of connections, τ is a constant term (bias), and g denotes the
nonlinear mapping. The other, less commonly encountered neuron is a so-called
π-neuron. There can be variations in the parametric details of this construct; we
can envision the following expression

y = g
(∏

|xi − ti |wi

)

where t = [t1 t2 . . . tn] denotes a vector of translations and w (> 0) collects all
connections. The plots of the two types of the neurons are presented in Figure 3.3.
As before, the nonlinear function is denoted by g. While some superficial and
quite loose analogy between these processing units and logic neurons could be
derived, one must realize that these neurons do not demonstrate any underlying
logic fabric.

3.2.2. Referential (Reference) Neurons

The essence of referential computing deals with processing logic predicates. The
two-argument (or generally multivariable) predicates such as similar, included
in, and dominates (Pedrycz and Rocha, 1993) are essential components of any
logic description of a system. In general, the truth value of the predicate is the
degree of satisfaction of the expression P(x, a), where a is a certain reference
value (reference point). Depending upon the meaning of the predicate (P ), the
expression P(x, a) means “x is similar to a,” “x is included in a,” “x dominates
a,” and so on. In case of many variables, the compound predicate comes in the
form P(x1, x2, . . . , xn, a1, a2, . . . , an) or, more concisely, P (x; a), where x and
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a are vectors in the n-dimensional unit hypercube. We envision the following
realization of P(x; a):

P(x; a) = P(x1, a1) and P(x2, a2) and . . . and P(xn, an) (3.5)

meaning that the satisfaction of the multivariable predicate relies on the satisfac-
tion achieved for each variable separately. As the variables may have different
levels of relevance to the overall satisfaction of the predicates, we represent this
effect by some weights (connections) w1, w2, . . ., wn so that (3.5) is rewritten
in the form

P(x; a, w) = [P(x1, a1) or w1] and [P(x2, a2) orw2]

and . . . and [P(xn, an) or wn] (3.6)

Taking another look at the above expression and using a notation zi =
P(xi, ai), it converts to a certain AND neuron y = AND(z; w), with the vector
of inputs z resulting from the computations done for the logic predicate. Then
the general notation to be used is REF(x; w, a), and using the explicit notation
we have

y =
n

T
i=1

(REF(xi, ai)swi) (3.7)

In essence, as visualized in Figure 3.4, we may conclude that the reference
neuron is realized in a two-stage construct where we first determine the truth
values of the predicate (with a treated as a reference point) and then treat these
results as the inputs to the AND neuron.

So far, we have used the general term predicate computing, not confining our-
selves to any specific nature of the predicate. Among a number of possibilities,

AND

REF

X1

Xn

a1

an

Figure 3.4. A schematic view of computing achieved by a reference neuron a involving
two processing phases (referential computing and aggregation).
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we discuss three predicates that tend to play an important role: inclusion, domi-
nance, and match (similarity) predicates. As their names indicate, these predicates
return truth values of satisfaction of the relationships of inclusion, dominance,
and similarity of a certain argument x with respect to the given reference a. The
essence of all these calculations is the determination of the truth values. This
is done in a carefully developed logic framework so that the operations retain
their semantics and interpretability. What makes our discussion coherent is the
fact that the proposed operations originate from triangular norms. The inclusion
operation, denoted by ⊂, is modeled by an implication → that is induced by a
certain left continuous t-norm (Pedrycz and Gomide, 1998):

a → b = sup{c ∈ [0, 1]|atc ≤ b}, a, b ∈ [0, 1] (3.8)

For instance, for the product the inclusion takes the form a → b = min(1,

b/a). The intuitive form of this predicate is self-evident: the statement “x is
included in a” and modeled as INCL(x, a) = x → a comes with the truth value
equal to 1 if x is less than or equal to a (which means that x is included in a) and
produces lower truth values once x starts exceeding the truth values of a. Higher
values of x (those above the reference point a) start generating lower truth values
of the predicate. The dominance predicate acts in a dual manner. It returns 1 once
x dominates a (so that its values exceed a) and values below 1 for x lower than
the given threshold. The formal model can be stated as DOM(x, a) = a → x.
With regard to the reference neuron, the notation is equivalent to the one used
in the previous case, that is, DOM(x; w, a) with the same meaning of a and w.

The similarity (match) operation is an aggregate of these two, SIM(x, a) =
INCL(x, a)t DOM(x,a), which is appealing from the intuitive standpoint: we say
that x is similar to a if x is included in a and x dominates a. Notably, if x = a,
the predicate returns 1; if x moves away from a, the truth value of the predicate
is reduced. The resulting similarity neuron is denoted by SIM(x; w, a) and is
stated as

y =
n

T
i=1

(SIM(xi, ai)swi) (3.9)

The reference operations form an interesting generalization of the threshold
operations. Consider that we are viewing x as a signal of time whose behavior
needs to be monitored with respect to some bounds (α and β). If the signal does
not exceed some threshold α, then the acceptance signal should go off. Likewise,
we require another acceptance mechanism indicating a situation where the signal
does not go below another threshold value, β. In fuzzy predicates, the level
of acceptance assumes values in the unit interval rather than being a Boolean
variable. The strength of acceptance reflects how much the signal adheres to the
assumed thresholds. An example illustrating this behavior is shown in Figure 3.5.
Here the values of α and β are set to 0.6 and 0.5, respectively.

The plots of the referential neurons with two input variables are shown in
Figures 3.6 and 3.7. Here we have included two realizations of the t-norms to
illustrate their effect on the nonlinear characteristics of the processing units.
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Figure 3.5. Temporal signal x(t) and its acceptance signals (levels of the signals—thick
lines) formed with respect to its lower and upper thresholds, (a) and (b). The complements
of the acceptance are then treated as warning signals.
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Figure 3.6. Characteristics of the reference neurons for the product (t-norm) and proba-
bilistic sum (s-norm). In all cases the connections are set to 0.l and 0.7 to visualize the
effect of the weights on the relationships produced by the neuron. The point of reference
is set to (0.5, 0.5): inclusion neuron (a), dominance neuron (b), similarity neuron (c).
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Figure 3.7. Characteristics of the reference neurons for the Lukasiewicz t-norm and
s-norm (that is, atb = max(0, a + b − 1) and asb = min(1, a + b)). In all cases the con-
nections are set to 0.l and 0.7 to visualize the effect of the weights. The point of reference
is set to (0.5, 0.5): inclusion neuron (a), dominance neuron (b), similarity neuron (c).

It is worth noting that by moving the reference point to the origin and 1-vertex
of the unit hypercube (with all its coordinates being set up to 1), the referential
neuron starts resembling the aggregative neuron. In particular:

For a = 1 = [1 1 1 . . . 1] the inclusion neuron reduces to the AND neuron.
For a = 0 = [0 0 0 . . . 0] the dominance neuron reduces to the AND neuron.

One can draw a loose analogy between some types of referential neurons
and the two categories of processing units encountered in neurocomputing. The
analogy is based upon the local versus global character of processing realized
therein. Perceptrons involve global processing. Radial basis functions involve
local processing focused on receptive fields. In the same vein, the inclusion and
dominance neurons are concerned with global processing, while the similarity
neuron deals with, local processing.

3.3. ARCHITECTURES OF LOGIC NETWORKS

The logic neurons (aggregative and referential) can serve as building blocks of
more comprehensive and functionally appealing architectures. The diversity of
the topologies one can construct with the aid of these neurons is surprisingly high.
This diversity is important from the application point of view, as we can fully
reflect the nature of the problem in a flexible manner. It is essential to capture
the problem in a logic format and then set up the logic skeleton (by forming and
refining it parametrically through a thorough optimization of the connections).
Throughout the development process, we can monitor the optimization of the
network as well as interpret its meaning (an issue that will be discussed later on).

The typical logic network that is at the center of logic processing origi-
nates from the two-valued logic and consists of the famous Shannon theorem
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of decomposition of Boolean functions. Let us recall that any Boolean function
{0, 1}n → {0, 1} can be represented as a logic sum of its corresponding minterms
or a logic product of maxterms. By a minterm of n logic variables x1, x2, . . . , xn

we mean a logic product involving all these variables in either direct or com-
plemented form. Having n variables, we have 2n minterms starting from the one
involving all complemented variables and ending at the logic product with all
direct variables. Likewise, by a maxterm we mean a logic sum of all variables
or their complements. Now, in terms of the decomposition theorem, we note
that the first representation scheme involves a two-layer network where the first
layer consists of AND gates whose outputs are combined in a single OR gate.
The converse topology occurs for the second decomposition mode: there is a
single layer of OR gates followed by a single AND gate aggregating or-wise all
partial results.

The proposed network (referred to here as a logic processor) generalizes
this concept as shown in Figure 3.8. The OR-AND mode has the two types
of aggregative neurons swapped.

The logic neurons generalize digital gates. The design of the network (viz.,
any fuzzy function) is realized through learning. If we confine ourselves to {0, 1}
values, the network’s learning becomes an alternative to a standard digital design,
especially a minimization of logic functions. The logic processor translates into
a compound logic statement (we skip the connections of the neurons to underline
the underlying logic content of the statement)

if (input1 and . . . and inputj) or (inputd and . . . and inputf ), then output

The logic processor’s topology (and underlying interpretation) is standard.
Two logic processors can vary in terms of the number of AND neurons and their
connections, but the format of the resulting logic expression is quite uniform (as
a sum of generalized minterms).

AND
neurons

OR
neuron

Figure 3.8. A topology of the logic processor in its AND-OR mode.
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3.4. INTERPRETATION ASPECTS OF THE NETWORKS

While each neuron in the network comes with a well-defined semantics and
can be easily interpreted, the result of interpretation could lead to a lengthy
description in multivariable systems. To facilitate the process of interpretation
and reduce the detailed logic expression to its essential substructure with the
most meaningful topology, we prune the weakest (unnecessary) connections. Fol-
lowing is a discussion of the detailed thresholding expressions supporting such
pruning activities.

OR Neurons. For OR neurons y = OR(x; w), we note that low values of the
connection make the contribution to the corresponding input xi quite limited. If
wi tends to 0, then given of the properties of t-norms, the expression xi t wi

approaches 0 as well: lim (xi t wi) = 0. The inputs associated with connections
of low values can be dropped, and the neurons become pruned in this way. The
most essential connections and input variables are retained. In this way, we end
up with a compact description of the underlying logic. Two ways of pruning are
envisioned:

(a) Retention of the most significant connections. For a given threshold level
λ in [0, 1], we retain the connection wi if its value is equal to or exceeds
λ. Otherwise, it is dropped (or effectively replaced by 0).

(b) Binarization of the most significant connections. Here we not only retain
the most significant connections (following the previous rule) but convert
them into 1s.

AND Neurons. Here the pruning procedure is complementary to the one devel-
oped for OR neurons. The connections of high values are less relevant and, as
such, could be eliminated. We have two ways of pruning:

(a) Retention of the most significant connections. For a given threshold level
λ in [0, 1], we retain the connection wi if its value is equal to or less than
λ. Otherwise, it is dropped (or effectively replaced by 1).

(b) Binarization of the most significant connections. Here we not only retain
the most significant connections (following the previous rule) but convert
them into 0s.

Referential Neurons. y = REF(x; w, a). Here we use the following pruning
mechanism: connection wi is binarized, producing a connection w∼

i assuming
Boolean values

w∼
i =

{
1 if wi > λ

0 if wi ≤ λ
(3.10)

where λ denotes a certain threshold level. Because that we are concerned with the
AND neurons, the connections higher than the assumed threshold are practically
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eliminated from the computing. Apparently we have (w∼
i sxi)tA ≈ 1t = A, where

A denotes the result of computing realized by the neuron for the rest of its inputs.
In referential neurons, their reference point ai requires different treatment,

depending upon the specific referential operation. For the inclusion operation,
INCL(x, ai) we can use the threshold operation to come in the form

INCL∼(x, ai) =
{

INCL(x, ai) if ai ≤ µ

1 − x if ai > µ
(3.11)

with µ being some fixed threshold value. In other words, we consider that
INCL(x, ai) is approximated by the complement of x (where this approximation
is implied by the interpretational feasibility rather than being dictated by any
formal optimization problem), INCL(x, ai) ≈ 1 − x. For the dominance neuron
we have the expression for the respective binary version of DOM, DOM∼

DOM∼(x, ai) =
{

DOM(x, ai) if ai ≤ µ

x if ai > µ
(3.12)

The connection set up to 1 is deemed essential. If we accept a single threshold
level of 0.5, apply this consistently to all the connections of the network, and set
the threshold of 0.1 for the inclusion neuron, the statement

y = [x1 included in 0.6] or 0.2 and [x2 included in 0.9] or 0.7

translates into a concise (yet approximate) version assuming the form of the
following logic expression:

y = x1 included in 0.6

The choice of the threshold value could be the subject of a separate optimization
phase, but we can also admit some arbitrarily values, especially if we focus on
the interpretation issues.

3.5. GRANULAR INTERFACES OF LOGIC PROCESSING

The logic processing discussed in this chapter operates on information gran-
ules, viz., the model operates on logic values in [0, 1] and returns truth values
as their outputs. Information granules serve as a communication layer between
the external world and the logic processing module operating on truth values.
As is well known in fuzzy modeling, there are two categories of communi-
cation mechanisms, commonly referred to as fuzzifiers (granular coders) and
defuzzifiers (granular decoders; Figure 3.9). The role of the granular coder is to
convert a numeric input coming from the external environment into the internal
format of membership grades of the fuzzy sets (or relations) defined for input
variable(s). The decoder takes the results produced at the level of information
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Logic
processing

granular encoder (fuzzifier)

granular decoder (defuzzifier)

Figure 3.9. A general layered structure of logic processing; the use of granular encoders
and decoders is essential in the development of communication mechanisms with the
modeling environment.

granules coming through the module of logic processing and transforms them
into a numeric value that is compatible with the numeric environment.

There are several ways of building a granular encoder. The most common one
deals with the calculations of the given input numeric vector x with respect to the
prototypes of the clusters formed over the input space. In this sense, the scheme
of logic processing is closely related to fuzzy clustering (this will be revealed in
detail in the following chapters).

The purpose of the granular decoder is to return a numeric value given some
truth values as the consequence of logic processing and associated with informa-
tion granules defined in the output space. For the finite number of information
granules B1, B2, . . . , Bc, each of them coming with its prototypes v1, v2, . . . , vc

and the results of logic processing coming in the form of truth values µ1,

µ2, . . . , µc, we produce a numeric result y∼ through some weighted average
of the prototypes

y∼ =

c∑
i=1

µivi

c∑
i=1

µi
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3.6. CONCLUSIONS

Neurocomputing combined with the underlying logic fabric builds a unique archi-
tecture of fuzzy neurocomputing. We have shown that fuzzy neurons with clearly
defined semantics give rise to transparent models (Casillas et al., 2003; Dicker-
son and Lan, 1995; Setnes et al., 1998) whose interpretation results in a certain
logic characterization of experimental data. The parametric flexibility accompa-
nying the connections of the neurons supports all necessary learning abilities.
The introduced topologies of the networks lead to the logic-based approximation
of data. The unique aggregation of learning and transparency is of paramount
importance to user-centric models.
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4 Conditional Fuzzy Clustering

So far, the idea of clustering regarded as an algorithmic framework for building
information granules has not been directed by external hints (points of view or
navigation guidelines). Conditional clustering is an interesting way to develop
clusters by focusing on a certain portion of the original data. This gives rise to
the modularization of clustering and helps carry out more focused data analysis.
The provided point of focus puts the ensuing clustering in a certain context;
we also refer to the proposed scheme as context-based clustering. We develop an
algorithmic setting, elaborate on its application aspects (including those arising in
the setting of granular models), and study the numeric efficiency of the proposed
approach by looking at the decomposition (modularization) aspect of the problem
of conditional clustering.

4.1. INTRODUCTION

Let us imagine a situation where, in addition to a multivariable data set X, we
have been advised that our search for structure must be confined to (narrowed
down to) a certain context. The idea looks attractive: not only must we focus
on a subset of X where the discovery of structure looks more promising, but we
can make computing more manageable, especially when dealing with large data
sets. We can regard the advice (context) as a certain vehicle to decompose the
problem. Given several contexts, we concentrate on the corresponding subsets of
X. More descriptively, a scenario of context-based clustering can be treated as a
conditional clustering task. Consider a large data set of customers of a chain store.
We are interested in learning about the structure of customers (X) doing regular
shopping. Many interesting questions could be posed: Is this a homogeneous
population? Could we distinguish between some groups of customers falling
within this category? How different are these groups? Here the characterization
of a regular shopper serves as a context we would like to focus on in our cluster
analysis. The task can be reformulated in the following way:

Determine structure in X under condition (context) of regular shoppers.

Similarly, we could envision a task of data clustering when the context concerns
customers characterized by significant spending patterns:

Knowledge-Based Clustering, by Witold Pedrycz
ISBN 0-471-46966-1 Copyright  2005 John Wiley & Sons, Inc.
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Determine structure in X under condition (context) of customers characterized
by significant spending.

We note that the quest for conditional clustering can be formulated in a uniform
manner as follows:

Determine structure in X under condition (context) D.

In each case, the clustering algorithm focuses only on a subset (eventually a fuzzy
subset) of X implied (or conditioned) by the context D. In contrast, the clustering
we have discussed so far can be referred to as condition-free clustering:

Determine structure in X.

Quite often the context D can be treated as a fuzzy set defined in the space
over which the condition has been expressed. We can also take another look
at the conditional clustering treating such tasks within the domain of software
agents whose activities are focused on the exploration of data structure in the
given context. In fact, we are concerned with a number of software agents, each
equipped with its own specific context. Thus conditional clustering can be viewed
as a generic clustering task endowed with some context, with the crux of the
problem illustrated in Figure 4.1. Here we portray several clustering tasks implied
by different contexts (F , G, H ) focusing attention on pertinent subsets of X.

In the sequel, each conditional clustering gives rise to a certain number of
clusters (say, c, c′, c′′, etc.), so in essence we develop a net of information granules
(fuzzy relations); see Figure 4.2. It is important to realize that by introducing
contexts we imposed some directionality on our data analysis by starting from
the given context and carrying out the clustering implied by it. The directionality
becomes important in fuzzy modeling and will be explored intensively further on.

F

G

H

Figure 4.1. The concept of conditional (context-based) fuzzy clustering; note several
individual clustering tasks running on the same data set X and induced by contexts F , G,
and H .
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F G H

Figure 4.2. Conditional clustering in the development of a web of information granules;
we construct families of clusters induced by given contexts.

In the remainder of this chapter, we present a formal formulation of context-
based clustering, develop a detailed algorithm, illustrate its performance, and
work on some extensions.

4.2. PROBLEM STATEMENT: CONTEXT FUZZY SETS
AND OBJECTIVE FUNCTION

Formulation of the clustering problem must incorporate the context constraints.
As we have learned through the illustrative examples, the context is viewed as
a fuzzy set or fuzzy relation defined in the context space (viz., the space of
conditional variables). The data set X is endowed with context F, meaning that
with each xk, k = 1, 2, . . . , N , we are provided with the value of the context
(membership grade) associated with it. We denote its membership grade by fk.
In other words, we form pairs of objects (xk, fk) that are then involved in the
clustering process. As an example, consider xk as descriptors of customers. We
record each transaction where zk is an amount spent. This gives rise to the data
in the following format:

x1 z1

x2 z2

. . .

xN zN

(4.1)

Over the amount being spent by each customer we express a context fuzzy set
of “significant spending.” Denote it by F ; see also Figure 4.3.

Then each zk can be transformed through F by computing its membership
degree, fk = F(zk). The original data set (4.1) is now augmented by the context
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zk

fk

F

Figure 4.3. Construction of a context fuzzy set (F ) with constraints fk by transforming
zk’s through the given context fuzzy set F (significant spending).

(condition) and is expressed as pairs of data:

x1 f1

x2 f2

. . .

xN fN

(4.2)

The data set in this format becomes a starting point of the clustering proce-
dure. The formal formulation of the problem has to be expressed in such a way
that we directly take into account the context values fk. The objective function
(Q) assumes the standard form

Q =
N∑

k=1

c∑
i=1

um
ik||xk − vi ||2 (4.3)

with the prototypes vi and the partition matrix U being the components to be
optimized. The constraints on the membership grades (partition matrix) are mod-
ified and incorporate the values of the context fk. We introduce the following
requirement:

c∑
i=1

uik = fk (4.4)

By doing this, we request that the membership grades of the kth pattern sum to
the context constraint fk. Note that the context set up identically to 1, fk = 1 for
all k, returns the original formulation of the standard FCM. The partition matrices
implied by context F can be denoted by U(F), with the argument being used
there to emphasize the dependency upon the context constraint.

As mentioned, the context F can assume various forms. It could be a fuzzy
set or a fuzzy relation (which happens with a composite requirement such as
“significant spending and good credit record”), which is not relevant to the for-
mulation of the optimization problem—we still perceive this constraint through
the membership grades of F . The optimization problem of conditional clustering
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can be expressed as follows (Pedrycz, 1996; Pedrycz and Sosnowski, 2000):

minU∈U(F),v1,v2,...,vc

N∑
k=1

c∑
i=1

um
ik||xk − vi ||2 (4.5)

where U(F) denotes a family of partition matrices induced by condition F ,
meaning that it satisfies the normalization condition expressed by (4.4).

On the subject of the formation of fuzzy sets or fuzzy relations, it is worth
stressing that these could be in two different forms:

ž Expert-oriented constructs. We consider that the domain knowledge consists
of linguistic terms formed by the user who intends to focus data analysis
within a certain scope. The contexts are these interesting focal points. They
could be dynamically adjusted, depending on the previous findings about
the structure in the data set. In particular, one can move on to more specific
(detailed) contexts if the structure detected so far is not informative enough.
The contexts can be made more general (abstract) if the structure already
revealed concerns very few patterns and cannot be made meaningful enough.

ž The result of auxiliary clustering completed separately for the context vari-
able(s). The main advantage of this approach is that these contexts are based
on experimental evidence available as part of the data set.

Context-based clustering has several features that are implied by the character
of the contexts. More specific contexts imply more focused, refined clustering.
Given contexts A and A′ such that A′ ⊂ A, context-based clustering guided by
A′ tends to reveal more structural details than clustering guided by A. Like-
wise, we get a straightforward boundary condition: D = X leads to context-free
clustering. Composite contexts are built by forming Cartesian products of their
contributing components, say, D = A × B × C. The membership grade of the
vector of outputs z = [z1 z2 z3]T is expressed as D(z). When A, B, and C are
specified in an explicit manner, we obtain D(z) = A(z1) t B(z2) t C(z3), with a
certain t-norm used to model the type of aggregation of the coordinates.

4.3. THE OPTIMIZATION PROBLEM

The optimization algorithm involves two phases: computations of the partition
matrix and the prototypes. The latter is straightforward: we end up with the
same formula as in the standard FCM. This is not surprising. We compute the
prototypes based on the objective function, which does not depend upon the
context constraints. The calculations of the partition matrix are concerned with
the use of the context constraints. Following a standard technique of Lagrange
multipliers, we form the expression

V =
c∑

i=1

um
ik||xk − vi ||2 − λ

(
c∑

i=1

uik − fk

)
(4.6)
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which holds for each pattern; k = 1, 2, . . . , N . The minimization of V is com-
pleted with respect to the elements of the partition matrix. The constraint fk

enters the picture and gives rise to the following expression:

uik = fk

c∑
j=1

( ||xk − vi ||
||xk − vj ||

)2/(m−1)
(4.7)

As noted, the calculations of the prototypes are the same as those in context-
free FCM. Interestingly, the contexts do not show up explicitly in the formula.
Obviously they still impact the prototypes, and this happens through the values
of the partition matrix.

Let us move on to some illustrative examples.

Example 1. We start with a simple two-dimensional set of 10 patterns with
the given context variable, which assumes values for the patterns given in
Table 4.1.

The plot of the patterns is included in Figure 4.4.

TABLE 4.1. Two-Dimensional Patterns to Be Clustered Along with Their Context
Values (fk )

xk1 0.6 1.5 1.6 2.2 3.5 5.1 5.0 6.1 7.8 7.3
xk2 0.9 2.0 1.8 1.5 3.3 5.4 4.7 5.4 9.6 8.9
fk 0.8 0.7 1.0 1.0 0.5 0.2 1.0 1.0 0.9 0.6

0

2

4

6

8

10

12

20 4 6 8 10

Figure 4.4. Two-dimensional patterns.
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We consider c = 2 clusters and carry out the series of iterations starting from
a random configuration of the partition matrix. The obtained partition matrix is



0.72 0.08
0.70 0.00
1.00 0.00
1.00 0.00
0.42 0.08
0.05 0.15
1.00 0.00
0.14 0.86
0.04 0.86
0.00 0.60




The prototypes of the clusters are equal to v1 = [ 1.71 1.68 ] and v2 = [6.98
7.72].

It is instructive to compare these results with the structure produced by ‘stand-
ard’ (viz., context-free) clustering, where fk are set to 1 for all patterns. Again,
considering c = 2 and starting with the same random configuration of the initial
values of the partition matrix, we produce the following results:



0.96 0.04
1.00 0.00
1.00 0.00
1.00 0.00
0.82 0.18
0.15 0.85
0.27 0.73
0.07 0.93
0.08 0.92
0.05 0.95




with the prototypes being equal to v1 = [ 1.86 1.89 ] and v2 = [ 6.38 7.00 ]. In
the most visible way, we end up with different prototypes that have been shifted
because of the existing context constraints.

Example 2. We consider a Boston housing data set that concerns a number of
houses characterized by several features. As each house comes with its own
price, it is of interest to treat the price as a conditional variable that sets up a
context (framework) for the search of the structure in the data. In particular, it
would be of interest to learn about the characteristics of the houses, depending
on their price. We set up three contexts for the price variable by considering
linguistic terms of low, medium, and high price. All of them are described by
some membership functions and shown in Figure 4.5.

For each context we consider three clusters. Again, this number is arbitrary
fashion and can be revisited in the course of the experiments. The fuzzification
factor is set up to 2 and the clustering is run for 20 iterations.
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1

0
0 20 40

0.5

Figure 4.5. Membership functions of three contexts of conditional clustering: small,
medium, and high .

The corresponding prototypes computed for the contexts are as follows:

Price is low :

v1 = [ 15.53 0.57 18.17 0.02 0.68 6.04 90.64 2.00 21.70 640.86

19.94 155.63 22.61 ]

v2 = [ 1.79 6.14 9.69 0.02 0.53 5.99 71.12 4.19 5.34 342.22

19.05 373.33 13.85 ]

v3 = [ 17.11 0.43 18.26 0.01 0.68 5.72 94.60 1.79 21.95 645.65

20.01 351.93 23.49 ]

Price is medium:

v1 = [ 0.75 6.59 8.25 0.07 0.50 6.38 57.71 4.01 5.95 318.04

18.09 384.31 8.98 ]

v2 = [ 0.26 41.76 5.04 0.03 0.44 6.57 32.65 6.39 4.95 312.12

17.27 386.63 6.67 ]

v3 = [ 1.68 5.33 10.96 0.12 0.54 6.34 70.01 3.41 8.49 380.26

18.05 374.80 10.11 ]

Price is high:

v1 = [ 1.06 9.06 7.35 0.14 0.52 7.33 69.55 3.29 6.85 316.61

16.84 385.49 5.58 ]

v2 = [ 0.23 65.18 3.47 0.06 0.43 7.25 31.67 6.02 4.18 302.23

15.93 390.11 4.43 ]
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v3 = [ 1.27 9.50 8.21 0.17 0.53 7.31 71.82 3.15 7.31 331.20

16.68 384.26 5.63 ]

The membership grades organized in successive rows of the partition matrix
for the last context are illustrated in Figures 4.6 to 4.8. This gives us a certain
view of the revealed structure. We can learn which patterns form the correspond-
ing clusters.

As the feature space is multidimensional, it is more illustrative to underline
some variables that seem to be quite descriptive of the characterization of the
real estate.

The web of the information granules visualizing the contexts and the associated
prototypes generated by the corresponding contexts is shown in Figure 4.9. It
shows that with the increasing price of housing the quality of the environment
goes up: the crime rate decreases, the nitric oxide concentration decreases, and
the student-teacher ratio changes significantly.

The clustering can be repeated for different number of clusters for each con-
text, which helps us learn about the induced structure of the parts of the data
set involved in the clustering process. The plot in Figure 4.10 shows how the
objective function varies with respect to the number of clusters c. Interestingly,
while we note that its value decreases, there seem to be “critical” values of c,
and searching for more detailed structure (more induced clusters) does not reveal
too much.

Example 3. Here we consider synthetic two-dimensional patterns whose inputs
(x1, x2) are shown in Figure 4.11, while the output variable is shown in
Figure 4.12.

The context fuzzy sets have trapezoidal (T ) membership functions, and we
consider four of them (the parameters of these membership functions denote its
lower bound, region of modal values—two intermediate numbers on the list and
the upper bound):

T1(x; 8, 9, 12, 15) T2(x; 12, 15, 23, 29)

T3(x; 23, 29, 39, 32) T4(x; 39, 42, 50, 55)

The prototypes obtained for different number of clusters (c = 2, 3, and 4) are
equal to:

Context T1:

c = 2: v1 = [ 152.26 13.57 ]T v2 = [ 199.65 12.75 ]T

c = 3: v1 = [ 181.83 11.52 ]T v2 = [ 205.80 14.41 ]T v3 = [ 148.23 13.77 ]T

c = 4: v1 = [ 167.91 12.10 ]T v2 = [ 205.31 14.64 ]T v3 = [ 147.07 14.04 ]T

v4 = [ 208.69 10.92 ]T
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low
price

15.53
0.65

19.94

Crime rate
Nitric oxide concentration
Student-teacher ratio

1.79
0.53

19.05

17.11
0.68

20.01

medium
price

0.75
0.50

18.09

Crime rate
Nitric oxide concentration
Student-teacher ratio

0.26
0.44

17.27

4.68
0.54

18.05

high
price

1.06
0.52

16.84

Crime rate
Nitric oxide concentration
Student-teacher ratio

0.23
0.43

15.93

1.27
0.53

16.68

Figure 4.9. A web of information granules describing Boston real estate with prices
quantified as low, medium, and large (characterization in terms of the indicators of quality
of life: crime rate, nitric oxide concentration, and student-teacher ratio).

Context T2:

c = 2: v1 = [ 148.30 12.67 ]T v2 = [ 96.06 16.73 ]T

c = 3: v1 = [ 103.28 15.14 ]T v2 = [ 91.21 18.38 ]T v3 = [ 155.88 12.23 ]T

c = 4: v1 = [ 140.10 13.41 ]T v2 = [ 90.34 18.68 ]T v3 = [ 176.02 10.92 ]T

v4 = [ 99.21 15.51 ]T

Context T3:

c = 2: v1 = [ 79.10 14.84 ]T v2 = [ 68.53 18.56 ]T

c = 3: v1 = [ 81.21 14.27 ]T v2 = [ 67.12 19.38 ]T v3 = [ 72.01 16.47 ]T

c = 4: v1 = [ 80.34 15.34 ]T v2 = [ 66.66 19.58 ]T v3 = [ 81.36 13.88 ]T

v4 = [ 69.02 16.97 ]T
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Figure 4.10. The values of objective functions treated as a function of c for the three
contexts defined in the price of real estate.
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Figure 4.11. Two-dimensional synthetic data.
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Figure 4.12. The output data over which context fuzzy sets are defined.
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Context T4:

c = 2: v1 = [ 68.98 15.38 ]T v2 = [ 49.56 22.72 ]T

c = 3: v1 = [ 70.55 14.17 ]T v2 = [ 49.07 23.04 ]T v3 = [ 64.49 18.34 ]T

c = 4: v1 = [ 65.07 18.15 ]T v2 = [ 48.05 21.60 ]T v3 = [ 70.54 14.15 ]T

v4 = [ 50.07 24.16 ]T

4.4. COMPUTATIONAL CONSIDERATIONS
OF CONDITIONAL CLUSTERING

The context introduced into the clustering leads to problem decomposition.
Rather than dealing with the complete data set all at once, we decompose it by
using some context and focus on its corresponding segment. This segmentation,
or decomposition of data before clustering, helps reduce the computational
effort (Hirota and Pedrycz, 1999). For the sake of argument, let us assume that
the data set is split into P subsets, each of which is partitioned into c/P clusters
(we assume that this ratio is an integer number). In this way, P subsets taken
together have the same number of clusters as the overall data set. The original
data set is now dealt with in the reduced form consisting of N /P patterns (again,
we assume that this ratio returns an integer number). As most computing is
concerned with the determination of the partition matrix [uik], we use this in
calculations of the computational effort. For the entire data set with N patterns
and c clusters, the determination of the partition matrix requires c∗ (c + 1)∗N
computing of the distance function. The cost of computing a single entry of the
partition matrix is assumed to be µ. In total, we obtain

T0 = c∗(c + 1)∗N∗µ (4.8)

For a single subset of patterns, their partition matrix requires the computing effort
equal to

Ti = c′∗(c′ + 1)∗N ′∗µ (4.9)

i = 1, 2, . . . , P . Here c′ = c/P and N ′ = N/P . As we are concerned with P

subsets, the overall effort leads to T = P ∗Ti . To quantify how much improvement
has been gained, we compute the ratio κ = T /T0:

κ =
N∗c
P

( c
P

+ 1)∗µ
c∗(c + 1)∗N∗µ

= 1

P

∗ ( c
P

+ 1)

c + 1
(4.10)

The value of this relationship depends upon the number of clusters (c) and
the number of splits of the data set (P ). To get a sense of the reduction of the
computing effort, let us plug in some numbers. Take c = 8 and P = 4; this yields
κ = 0.083. If we are concerned with c = 50 clusters while splitting the data set
into P = 5 subsets, this combination produces κ = 0.043 The split to P = 10 sets
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Figure 4.13. Plots of κ as a function of c for selected values of P .

while we are still looking for the same total number of clusters yields κ = 0.012.
The detailed graphs of the above relationship are shown in Figure 4.13.

It is interesting to note that the decomposition of the data set into smaller
segments is highly beneficial from the computational standpoint. One should be
aware that the results of such decomposition tend to become more “brittle,” as
each subset of data within a certain context becomes processed independently of
the others. Obviously, some interaction is still retained because of the overlap
between the context fuzzy sets, but this tends to be confined to the relatively
small segments of the output space.

4.5. GENERALIZATIONS OF THE ALGORITHM THROUGH
THE AGGREGATION OPERATOR

The context-driven nature of this class of fuzzy clustering can be generalized
in several different ways. The first thing to note is that the constraint formed

by the context that is
c∑

i=1

uik = fk is nothing but a certain equation involving

a collection of the corresponding membership grades. Let us rewrite the above
expression in the following form:

1

c

c∑
i=1

uik = 1

c
fk (4.11)

Here we can immediately recognize that the mean value of the corresponding
row of the partition matrix is equal to the average context value:

uk = f k (4.12)
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where the overbar denotes a mean value. Put it differently,

c

(
1

c

c∑
i=1

uik

)
= fk (4.13)

This observation led to generalization of the aggregation of the membership
grades to the weighted generalized mean, where we have (Leski, 2003)

Ave(u1k, u2k, . . . , uck; α, β1, β2, . . . , βc) =
(

c∑
i=1

βi (uik)
α

) 1
α

(4.14)

The weighted generalized mean, as shown above (Dyckhoff and Pedrycz,
1984), comes equipped with the weights βi ≥ 0 that sum to 1 and exponent
α ∈ R\{0}. This aggregation operator can be treated as a general logic connec-
tive of membership values. It encompasses a number of well-known cases, such
as the weighted arithmetic mean (α = 1), weighted geometric mean (α → 0), and
weighted harmonic mean (α = −1 and uik �= 0).

Having this aggregation criterion, the derivations of detailed context-based
clustering (Leski, 2003) lead to the following expressions for the entries of the
partition matrix:

uik =
fk

c
 c∑

j=1

βj

( ||xk − vi ||
||xk − vj ||

) 2α

1 − α




1
α

(4.15)

with the general flow of optimization remaining the same as that presented in the
earlier discussion.

Some other types of logic operators, such as ordered weighted average (OWA),
are also worth pursuing (Karayiannis, 2000; Pedrycz, 1997).

4.6. FUZZY CLUSTERING WITH SPATIAL CONSTRAINTS

So far, the generic objective functions used to guide the clustering process view
individual patterns as unrelated entities. This means that we treat them as com-
pletely independent, and cluster allocation of one pattern has no impact on the
allocation of any other patterns. In some situations, we may envision a nat-
ural spatial or temporal neighborhood. For instance, if there are two closely
located pixels or regions of an image, we may expect them to be potentially
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linked together in terms of their cluster membership. In other words, their clus-
ter allocation could be potentially similar; otherwise, we may encounter a great
surprise. Analogously, if we are concerned with a time series and its differences,
the samples of such signals taken in successive discrete time moments could
potentially have similar membership grades or at least their cluster assignment
should not be radically different.

The formulation of the clustering problem of this nature requires some modi-
fications to the objective function so that the information about spatial, temporal,
or some other form of closeness (neighborhood) is incorporated into the function.
The augmented objective function comes in the following form:

Q =
c∑

i=1

N∑
k=1

u2
ikd

2
ik + β

c∑
i=1

N∑
k=1

N∑
l=1

(uik − uil)
2ψkld

2
ik (4.16)

The second term of this function weighted by some nonnegative weight factor
β deals with the differences between patterns that have been identified by the
neighborhood (vicinity) relationship. It identifies the pairs of patterns that are
deemed similar because of their neighborhood �. In the simplest case, we can
assume that the neighborhood function has a binary character such that

ψkl =
{

1 if xk and xl belong to �

0 otherwise
=

{
1 if |k − l| ≤ ε

0 otherwise
(4.17)

so the difference uik − uil becomes relevant if the pair k and l gives rise to the
value equal to 1. In other words, the difference |k − l| should no exceed some
threshold level ε. Obviously there are many other candidates for the neighborhood
function that may reflect the specificity of the problem. In general, this function
should have finite support. The reader may refer to other available alternatives
when formulating the objective function with some spatial constraints (Liew
et al., 2000, Liew and Yan, 2001, 2003; Pham, 2001, 2002).

The optimization is completed in the usual manner and is divided into two
tasks: calculation of the partition matrix and the prototypes. Starting with the
optimization of the partition matrix, we use the technique of Lagrange multipliers
and consider each pattern separately. For the t th pattern we have the constraint-
free objective function

V =
c∑

i=1

u2
it d

2
it + β

c∑
i=1




N∑
l=1
l �=t

(uit − uil)
2ψt ld

2
it +

N∑
k=1
k �=t

(uik − uit )
2ψktd

2
ik




− λ

(
c∑

i=1

uit − 1

)
(4.18)
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Taking its partial derivative with respect to ust and zeroing it, we obtain

∂V

∂ust

= 2ustd
2
st + 2β




N∑
l=1
l �=t

(ust − usl)ψt ld
2
st −

N∑
k=1
k �=t

(usk − ust )ψktd
2
sk


 − λ = 0

(4.19)

Then, after regrouping, we produce the following expression:

ust


2d2

st + 2β

N∑
l=1
l �=t

ψt ld
2
st − 2β

N∑
k=1
k �=t

ψkt d
2
sk




− 2β

N∑
l=1
l �=t

uslψt ld
2
st − 2β

N∑
k=1
k �=t

uskψktd
2
sk − λ = 0 (4.20)

With some additional notation

Ast = 2


d2

st + β

N∑
l=1
l �=t

ψt ld
2
st − β

N∑
k=1
k �=t

ψkt d
2
sk




Bst = 2β




N∑
l=1
l �=t

uslψt ld
2
st +

N∑
k=1
k �=t

uskψkt d
2
sk


 (4.21)

Then we rewrite the expression above in the format

ustAst − Bst − λ = 0

and then

ust = λ + Bst

Ast

Given the constraint imposed on the partition matrix, one has
c∑

i=1

uit = 1, and

from this
c∑

i=1

λ + Bit

Ait

= 1
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Hence

λ =
1 −

c∑
i=1

Bit

Ait

c∑
i=1

1

Ait

(4.22)

Finally, the partition matrix is in the form

ust =
1 +

c∑
i=1

Bst − Bit

Ait

c∑
i=1

Ast

Ait

(4.23)

Confining ourselves to the Euclidian distance, we compute the prototypes. As
they do not involve any constraints, the computations follow the zero gradient
of the objective function taken with respect to the prototypes vs , ∇vs

Q = 0. To
make the calculations more explicit, we rewrite the objective function as follows:

Q =
c∑

i=1

N∑
k=1

u2
ik

n∑
j=1

(xkj − vij )
2 + β

c∑
i=1

N∑
k=1

N∑
l=1

(uik − uil)
2ψkl

n∑
j=1

(xkj − vij )
2

(4.24)

Then, taking the derivative
∂Q

∂vst

, s = 1, 2, . . . , c; t = 1, 2, . . . , N to be equal to

0, we obtain the expression for the corresponding coordinates of the prototypes:

−2
N∑

k=1

u2
sk(xkt − vst ) − 2β

N∑
k=1

N∑
l=1

(usk − uil)
2ψkl(xkt − vst ) = 0 (4.25)

Regrouping the terms produces

vst

[∑
u2

sk + β

N∑
k=1

N∑
l=1

(usk − usl)
2ψkl

]

=
∑

u2
skxkt + β

N∑
k=1

N∑
l=1

(usk − usl)
2ψklxkt (4.26)

which leads to the following expression:

vs =

∑
u2

skxk + β

N∑
k=1

N∑
l=1

(usk − usll)
2ψklxk

∑
u2

sk + β

N∑
k=1

N∑
l=1

(usk − usl)
2ψkl

(4.27)



86 CONDITIONAL FUZZY CLUSTERING

4.7. CONCLUSIONS

Conditional clustering is a form of directed clustering where a direction or focus
is achieved through some context fuzzy set. This results in knowledge-based nav-
igation of clustering, as the origin of the context is usually a direct manifestation
of domain knowledge available in the problem. Obviously, the context fuzzy sets
or relations could be sought as a result of some auxiliary clustering completed
in advance on an external data set.
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5 Clustering with Partial
Supervision

Commonly, fuzzy clustering is used to discover structure in data on the basis of
unlabeled patterns. This structure determination is guided (or predisposed) by an
introductory objective function whose value is minimized through an allocation
of patterns to different clusters. We have shown that different distance functions
used in the objective function help focus the search for structures with specific
geometry of the clusters (spheres, hyberboxes, etc.). In this chapter, we develop a
scheme of partial supervision in which the subset of patterns has been labeled, and
we use it for guiding the clustering achieved for the remaining part of the data set.

5.1. INTRODUCTION

Partially supervised fuzzy clustering is concerned with a subset of patterns whose
labels have been provided. A mixture of labeled and unlabeled patterns may be
encountered in many practical situations.

Consider a large data set of handwritten characters (say, digits extracted from
various postal codes). We want to build a classifier for these characters. The struc-
ture of the character sets (groups of digits) revealed through clustering becomes
helpful in the design of the classifier. The characters are not labeled; hence,
the unsupervised mode of learning is an obvious alternative. Suppose that we are
now provided with some knowledge-based hints, that is, a small subset of labeled
digits. These characters could be labeled by an expert (those that are difficult to
decipher might have been a reasonable choice). Such labeled characters can play
an important role in enhancing the clustering process. More descriptively, they
serve as “anchor” points when launching clustering: we expect that the structure
discovered in the data will conform to the class membership of the reference
(labeled) patterns. Practically, with hundreds of thousand of handwritten charac-
ters, only a small fraction of them could be labeled. This class assignment comes
with an extra cost, and it is always worth while to analyze how much labeling
is useful and helpful in the ensuing clustering.

Another scenario in which partial supervision could play an important role
originates at the conceptual end. Consider that the patterns have been labeled,
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0 100%

% of labeled patterns

Unsupervised
learning

Supervised
learning

PARTIAL
SUPERVISION

Figure 5.1. A schematic visualization of (infinite) possibilities of partial supervision
quantified on the basis of the fraction of labeled patterns.

so we can conclude that they imply the use of full supervision and call for
the standard mechanisms of supervised learning used in classifier design. The
labeling may have been unreliable, and therefore our confidence in the already
assigned labels could be questioned. Then we resort to the clustering mode and
accept only a small fraction of patterns that we deem to be labeled reliably.
The design scenarios similar to those presented above occur often. We need to
remember that labeling is a time-consuming process and comes with an extra
cost. Clustering may be far more effective. There is a spectrum of learning
between “pure” models of unsupervised and supervised learning, as schematically
visualized in Figure 5.1. Here the criterion discriminating among various cases is
a mixture of labeled and unlabeled patterns. In the two extreme situations, 100%
of patterns fall into one of the two modes.

There are more refined situations where we are provided with different formats
of supervision: proximity-based guidance, entropy-oriented hints, and the like.
These issues are discussed in Chapter 6. As the use of partially labeled data
seems to be common, here we discuss this matter in great detail.

5.2. PROBLEM FORMULATION

Partial supervision involves a subset of labeled patterns, which come with their
class membership. These knowledge-based hints have to be included in the objec-
tive function and indicate that some patterns have been labeled. In optimization,
we expect that the structure to be discovered conforms to the membership grades
already provided for these selected patterns. More descriptively, we can treat the
labeled patterns as forming a grid of anchor points with which we attempt to dis-
cover the entire structure of the data set. Stated differently, the labeled data should
help us use our discovery process. An objective function becomes an essential
component in the clustering process. Bearing this in mind, we consider an addi-
tive form of the objective function that has a plausible interpretation (Pedrycz,
1985; Pedrycz and Waletzky, 1997a, 1997b):

Q =
c∑

i=1

N∑
k=1

u2
ikd

2
ik + α

c∑
i=1

N∑
k=1

(uik − fikbk)
2d2

ik (5.1)
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The first term is used to discover the structure of data and is the same as
in the standard FCM. We have used the standard notation. The second term
(weighted by the scaling factor α) addresses the effect of partial supervision. It
requires careful attention because of the way in which it has been introduced
into the objective function and the role it plays during its optimization. There
are two essential data structures containing information about the initial labeling
process:

The vector of labels, denoted by b = [b1 b2 . . . bN ]T . Each pattern xk comes
with a Boolean indicator: we make bk equal to 1 if the pattern has been
already labeled and equal to 0 otherwise.

The partition matrix F = [fik], i = 1, 2, . . . , c; k = 1, 2, . . . N , which contains
membership grades assigned to the selected patterns (already identified
by the nonzero values of b). If bk = 1, then the corresponding column
shows the provided membership grades. If bk = 0, then the entries of the
corresponding kth column of F do not matter; technically; we could set
them equal to 0.

The nonnegative weight factor (α) helps set up a suitable balance between
the supervised and unsupervised modes of learning. Apparently, when α = 0, we
end up with the standard FCM. If there are no labeled patterns (b = 0), then the
objective function is

Q = (1 + α)

c∑
i=1

N∑
k=1

u2
ikd

2
ik (5.2)

and becomes merely a scaled version of the standard objective function encoun-
tered in the FCM optimization process. If the values of α increase significantly,
we start discounting any structural aspect of optimization (where properly devel-
oped clusters tend to minimize) and rely primarily on the information in the
labels of the patterns. Subsequently, any departure from the values in F would
lead to a significant increase in the values of the objective function.

One could consider a slightly modified version of the objective function

Q =
c∑

i=1

N∑
k=1

u2
ikd

2
ik + α

c∑
i=1

N∑
k=1

(uik − fik)
2bkd

2
ik (5.3)

where the labeling vector b shows up in a slightly different format. This function
captures the essence of partial supervision.

For slight variations on the issue of partial supervision, the reader is referred
to the work by Bensaid et al. (1996), Abonyi and Szeifert (2003), Coppi and
D’Urso (2003), Kersten (1996), Liu and Huang (2003), and Timm et al. (2002).
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5.3. DESIGN OF THE CLUSTERS

As usual, the optimization of the objective function Q is completed with respect to
the partition matrix and prototypes of the clusters. The first step is a constraint-
based minimization, which involves Langrage multipliers to accommodate the
constraints of the membership grades. The augmented objective function takes
the form

V =
c∑

i=1

u2
ikd

2
ik + α

c∑
i=1

(uik − fikbk)
2dik − λ

(
c∑

i=1

uik − 1

)
(5.4)

To compute the gradient of V with respect to the partition matrix U , we note that
making the value of the fuzzification factor equal to 2 is helpful; by doing that,
we avoid solving a high-order polynomial equation with respect to the entries of
the partition matrix.

The resulting entries of the partition matrix U take the form

uik = 1

1 + α




1 + α

(
1 − bk

c∑
i=1

fik

)

c∑
j=1

(
dik

djk

)2
+ αfikbk


 (5.5)

Moving on to the computations of the prototypes, the necessary condition for
the minimum of Q taken with respect to the prototypes takes the form ∂Q

∂vst
= 0,

s = 1, 2, . . . , c; t = 1, 2, . . . , n. Calculating the respective partial derivatives, one
arrives at

∂Q

∂vst

= ∂

∂vst


 c∑

i=1

N∑
k=1

u2
ik

n∑
j=1

(xkj − vij )
2

+ α

c∑
i=1

N∑
k=1

(uik − fikbk)
2

n∑
j=1

(xkj − vij )
2




= ∂

∂vst


 c∑

i=1

N∑
k=1

[u2
ik + α(uik − fikbk)

2]
n∑

j=1

(xkj − vij )
2




(5.6)

Let us introduce the following shorthand notation:

ψik = [u2
ik + α(uik − fikbk)

2] (5.7)
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This leads to the optimality condition of the form

∂Q

∂vst

= 2
N∑

k=1

ψsk(xkt − vst ) = 0 (5.8)

Finally, we derive

vs =

N∑
k=1

ψskxk

N∑
k=1

ψsk

(5.9)

5.4. EXPERIMENTAL EXAMPLES

For illustrative purposes, we consider a small, synthetic two-dimensional data
set in the (x1, x2) plane, as shown in Figure 5.2. Partial supervision comes with
the classification results of several patterns; their labels are shown in Figure 5.2
as well. These are patterns 5 and 7, with the membership grades [0.5 0.5] and
pattern 10 with [0.0 1.0], respectively. These hints indicate two classes, so we
set up two clusters; c = 2.

Clustering was completed for several increasing values of α, giving a detailed
picture of the impact the classification hints have on the revealed structure of the
patterns. This is shown in two different ways: by visualizing the partition matrices
(Figure 5.3) and by locating the prototypes (Figure 5.4). In both cases, we note
that by changing α, the discovered structure tend to conform to the classification
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Figure 5.2. A two-dimensional synthetic data set; visualized are the classification hints—
labeled patterns that are used to guide the clustering process.
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Figure 5.3. Membership grades of patterns for selected values of α: (a) α = 0.0 (no
supervision); (b) α = 0.5; (c) α = 3.0; (d) α = 5.0. The arrows point at labeled patterns.
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Figure 5.4. Migration of the prototypes of the clusters illustrated for selected values of α.

constraints. For reference, we have shown the results for α = 0 when no supervi-
sion effect is taken into consideration. The prototypes (Figure 5.4) migrate from
the original position when no labeled patterns have been made available. The
movement of the first prototype tends to be more “plastic,” while that of the
second prototype is far more limited.

The alternative version of the objective function (5.3) produced very similar
results; obviously, there could be some calibration of the weight factor, as its
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contribution to the membership functions being formed there is different from
the one occurring in the previous objective function.

5.5. CLUSTER-BASED TRACKING PROBLEM

The effect of partial supervision can emerge in different ways. The one we
discussed in the previous sections concerns a small subset of labeled patterns
whose usage impacts the discovery of the overall structure in the data. While
this is the most intuitively straightforward scenario, there are several alternatives
reflecting the problem at hand. The structure-tracking problem is one of them.
Figure 5.5 shows a series of snapshots of data taken in a sequence of discrete
time moments. At the beginning of the tracking, a cloud of patterns is located
at the origin and then starts moving along some trajectory. The shape of the
migrating cloud is also affected. At some observation points the cloud becomes
quite compact; at others, it expands significantly by changing from a circular
to a more elongated and rotated shape. Our intent is to discover the structure
of this data set. As there is a steady influx of data, clustering should encounter
the dynamics of the data and react accordingly. The conceptual model we can
envision is based upon the moving clusters that wander in the data space, tracking
the data and capturing the main trends observed in the patterns.

What happens if the moving cloud of patterns (data) is affected by noise?
To avoid the impact of noise, the consecutive clusters should “talk” to their
predecessors. The intuitive requirement we adopt here is to avoid sudden jumps
between two successive clusters. Smooth trajectories formed by the centers of
the clusters could be taken as feasible development guidance in this clustering.
The cluster-based tracking problem is a generalization of the standard tracking
encountered in control, signal filtering, and the like. The partial supervision occurs
through the interaction at the level of the prototypes of the clusters.

Before formulating the detailed optimization problem that casts this data anal-
ysis problem in a context of fuzzy clustering, it is helpful to set up some notation.

Figure 5.5. Dynamic accumulation of data: a concept of moving clusters that follow the
data and communicate among themselves.
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Figure 5.6. A schematic visualization of accumulation of data and their clustering.

This is of particular interest, as we are concerned with a global population-driven
analysis. The data stream occurs on a continuous basis. We monitor the data and
explore the structure at discrete time moments T , 2T , 3T , and so on. Within
these intervals (windows of clustering) of length T , we see some accumulation
of data (Figure 5.6).

In essence, we act on new data (those patterns accumulated during the window
of clustering) while taking into consideration the structure we have developed
so far during the previous window of clustering). This prudent method of using
current data and relying on the structure (clusters) developed for the previous
data has several benefits. First, the data collected during the current clustering
window may be heavily biased by structural noise (so that a structure discovery
based only on this data set could be questionable). Therefore, it is helpful to
rely on the structure we designed for the current data and eventually use the
previously discovered regularities (clusters) to help build those using the current
data set. The simple mapping of data from two successive clustering windows
is not an option because of the possible nonstationarity of data (and ensuing
clusters). We can achieve a sound balance between eventual structural impurities
in data structure (structural noise) and the nonstationary character of data by
setting up a trade-off in the clustering problem treated as an optimization task.

As a result of our explanation, an objective function outlined below becomes
a convex combination of the following components:

Q = α

c∑
i=1

∑
xk∈W

u2
ik||xk − vi (T + 1)||2 + (1 − α)

c∑
i=1

∑
xk∈W

||vi (T + 1) − vi (T )||2

(5.10)

The first component determines the structure in the new data set and is a standard
FCM objective function. The second component maintains the position of the pro-
totypes. Here we rely on the “history” and try to keep the prototypes of the new
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data set close to the already existing prototypes constructed during the previous
clustering window of the algorithm. The crucial parameter of the objective func-
tion is denoted by α ∈ [0,1]. In boundary cases we end with complete adherence
to the current data or a complete follow-up of the existing structure. The value
of α = 1 gives rise to the standard FCM being applied to the current data set. At
the opposite extreme, the value of α = 0 makes the prototypes vi(T + 1) equal
to those computed for the past data. The most interesting scenarios occur for the
values of α located between these two extreme situations.

Before deriving detailed formulas for the partition matrix and prototypes, it
is educational to relate the tracking fuzzy clustering to the standard tracking
algorithms that are well known in signal processing. In addition, note that the
introduced objective function (5.10) resembles the smoothing expression applied
in signal analysis and signal recovery. Consider a nonstationary discrete time
series {xk}. The intent is to “discover” the original signal on the basis of some
readings {zk} whose values consist of the original signal affected by some noise.
For instance, a typical additive model assumes that zk = xk + µk , with µk denot-
ing a noise component (commonly treated as a random variable that is normally
distributed, with a zero mean value and a nonzero standard deviation). The esti-
mation formula producing the recovery of the original signal is a weighted sum
of the form

x̂k+1 = αzk+1 + (1 − α)x̂k

with α playing the role of a smoothing factor. Here x̂k is an estimate of the
true signal, xk. We note the same behavior of this relationship as described in
clusters: high values of α place more emphasis on the current readings, which
are considered to play a dominant role. A decrease in the values of α implies a
stronger filtering effect and less impact of the current reading. The choice of α

depends on the dynamics (nonstationarity) of the signal and the intensity of noise.
Evidently, there is a profound difference between signal processing and struc-

ture tracking. Whereas signal processing is concerned with a single signal (and
individual samples), structure tracking deals with populations of data, which
elevates the problem to the next higher level of sophistication.

Going back to the optimization of the objective function (5.10), we note that
its second term does not explicitly involve the membership grades. In essence,
we arrive at the same expression for the partition matrix as in the standard FCM.
The computations of the prototypes are completed by setting up the necessary
minimum condition for Q with respect to vs :

∂Q

∂vst

= 0, s = 1, 2, . . . , c; t = 1, 2, . . . , n (5.11)

In the sequel, this leads to the expression

∂Q

∂vst

= 2α
∑
k∈W

u2
sk(xkt − vst ) + 2(1 − α)(dst − vst ) = 0 (5.12)
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Next, we obtain

∂Q

∂vst

= 2α
∑
k∈W

u2
sk(xkt − vst ) + 2(1 − α)(dst − vst ) = 0 (5.13)

Finally

vst =
α

∑
k∈W

u2
skxkt + (1 − α)dst

α
∑
k∈W

u2
sk + (1 − α)

(5.14)

5.6. CONCLUSIONS

Supervision hints are an important component augmenting standard techniques of
unsupervised learning. We have shown two typical cases of partial supervision.
One involves a small subset of labeled patterns. The other concerns nonstationary
data with supervision carried out at the level of prototypes of consecutive clusters.
The proposed modifications of the objective functions result in their augmentation
by some additive component, with a trade-off achieved by choosing a suitable
value of the weight factor.
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6 Principles of Knowledge-Based
Guidance in Fuzzy Clustering

As we have repeatedly stated, fuzzy clustering is synonymous with the unsuper-
vised mode of learning used to determine structure in multidimensional data. The
algorithms act on data while being directed by some predefined objective func-
tion (criterion) for which they discover a structure (clusters) that yields a minimal
value of this criterion. In this chapter, we discuss the process of exploiting and
effectively incorporating auxiliary problem-dependent hints that are part of the
domain knowledge associated with the pattern recognition problem at hand. As
such hints are usually expressed by experts/data analysts at the level of clusters
(information granules) rather than individual data (patterns), we refer to them as
knowledge-based indicators and allude to a set of them as knowledge-based guid-
ance available for fuzzy clustering. The proposed paradigm shift in which fuzzy
clustering incorporates this type of knowledge-based supervision is discussed
and contrasted with the “pure” (that is, data-driven) version of fuzzy clustering.
We introduce and discuss several types of guidance mechanisms, such as partial
supervision, proximity-based guidance, and uncertainty-driven knowledge hints.

6.1. INTRODUCTION

Fuzzy clustering evolves around an objective function regarded as a optimization
criterion. When such an objective function has been accepted, this criterion guides
the process of forming groups of patterns. In spite of the diversity of the objective
functions (e.g., distance functions, detailed algorithmic developments), all of them
can be positioned in a general framework that emphasizes the underlying principle
of predominant reliance on data , as visualized in Figure 6.1 (Hoppner et al.,
1999; Jain and Dubes, 1988).

Figure 6.1 shows how the processing of data is realized by the clustering algo-
rithm and indicates the character of communication (interaction) with the user.
This communication is primarily unidirectional; the results are communicated in
the form of the resulting partition matrix (or, equivalently, in a set of proto-
types or centroids; obviously, the language of prototypes or partition matrices is
equivalent, meaning that given one construct, we can infer the other). Note that
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U

Data

Data description

Figure 6.1. Fuzzy clustering as a data-driven search for data.

the resulting partition matrix is a direct consequence of the computing process
carried out by the FCM algorithm.

The numeric data are the exclusive source of processing and guidance of
the search process. In some cases, there is domain knowledge that could be
incorporated to support clustering mechanisms. In a nutshell, we want to build
a clustering environment based on numeric data and domain knowledge. This
paradigm shift has to do with a way in which auxiliary knowledge can be injected
into the clustering mechanisms. As visualized in Figure 6.2, some knowledge
hints inserted by the user/analyst are accommodated at the level of results and
start interacting with the FCM in an attempt to reconcile the data-driven opti-
mization (the FCM itself) and the additional source of directing the mechanisms
of clustering.

The notion of knowledge hints requires more attention. So far, we have not
described them in detail (this will be done later on). We define knowledge hints
as auxiliary information available at the time of data clustering and reflecting
additional sources of problem domain knowledge. They may be very diversified.
In general, they do not associate with all patterns but only with a small fraction of
them. The hints may deal with a single pattern or pairs of patterns. The partition
matrix is a reflection of information granules. Thus, any guidance is quantified
and expressed in the language of fuzzy sets or fuzzy relations constructed at this
level of generality.

This chapter is organized as follows. We start with several examples of
knowledge-based guidance to illustrate the underlying concept and demonstrate
their diversity. Then, we move on to the algorithmic issues, showing how these
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U

Data

Data description

Knowledge-
based hints

Figure 6.2. Knowledge-based paradigm shift in fuzzy clustering resulting in acceptance
of various knowledge-based hints; note that the communication links point at the clustering
results (e.g., partition matrix) rather than being linked with data.

hints impact the optimization algorithm and what optimization aspects requires
special attention. The diversity of the hints reflects the variety of applications.
To illustrate this, we discuss a specific application to the search for structure in
Web pages.

6.2. EXAMPLES OF KNOWLEDGE-ORIENTED HINTS
AND THEIR GENERAL TAXONOMY

Several formats of knowledge-based hints are provided by the user or data ana-
lyst. These can be problem-dependent. We elaborate on three of them that seem
to be quite general and somewhat problem-independent. The first one is con-
cerned with uncertainty of class membership. Using this format, we quantify our
confidence or difficulty in the categorization (allocation) of a certain pattern. In
the second category of guidance mechanisms, we encounter proximity-oriented,
knowledge-based hints where we quantify knowledge about the proximity of
pairs of patterns. The third is concerned with labeling of some patterns so that
their class assignment is known and the hints are helpful in exploring the data
and discovering their structure.

The taxonomy of knowledge hints is governed by several criteria concerning
their generality, detailed knowledge, or required assumptions about the structure
of the data. Table 6.1 elaborates on this in a more coherent manner.
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TABLE 6.1. Knowledge-Based Hints and Their Characterization

Type of
Knowledge Hint Description Formalism Notes

Uncertainty Reflects uncertainty
about categorization
of a pattern (e.g., the
difficulty of
assigning it to any
category, borderline
character of the
pattern, assessing the
pattern’s class)

Entropy measure of
fuzziness H (.)
commonly
accepted as a
suitable measure;
applies to an
individual pattern;
no requirement
concerning
knowledge about
the number of
clusters

Proximity Reflects proximity
between selected
pairs of patterns and
quantifies a
subjective judgment
about the closeness
of some pairs of
patterns

Proximity measure;
applies to specified
pairs of patterns;
does not require
any fixed number
of clusters to be
given in advance

Discussed in the
context of Web
mining; modification
of the FCM to its
P-FCM version
(Pedrycz et al.,
2004)

Labeling Reflects the fact that
some patterns are
labeled (with classes
assigned) and are
part of the domain
knowledge

Distance between
provided
membership grades
and those contained
in the partition
matrix; requires the
number of clusters
to be specified in
advance

Discussed in terms of
clustering with
partial
supervision (Pedrycz
and Waletzky, 1997)

While viewing these knowledge hints in a broader applied context, it is worth-
while to highlight the general rationale behind them.

Completeness of the Feature Space. The number of applications in which vari-
ous knowledge hints become essential is directly implied by the effect of limited
and incomplete feature spaces. A comprehensive feature space is an asset in any
pattern recognition problem and implies potentially high recognition rates, par-
ticularly in classification tasks performed by or involving humans. Obviously, a
number of essential features may not be available or cannot be easily quantified
at the algorithmic end; however, these are the components that are implicitly
used in human-based classification. The same argument holds in clustering: the
available feature space cannot involve some of the critical features. In this case,
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any additional knowledge-based hints concerning the relationships between pairs
of patterns or individual patterns start playing a pivotal role in enhancing the
clustering activities. These hints compensate for the reduced character of the
feature space. More formally, we envision the following model represented by
Figure 6.3: the original feature space F (⊂ Rn) is available in its reduced version
G (⊂ Rm), where usually m � n. The clustering realized in G is augmented by
the logic predicates φ, ξ, and so on, whose active role compensates for the real-
ization of classification activities in G. Ideally, one can anticipate achieving the
close resemblance of results of clustering in F and knowledge-based clustering
in G; refer again to Figure 6.3. We believe that the structures revealed in both
cases are close enough, S ≈ T.

Logic predicates (knowledge-based hints) can arise in different formats. In
particular, the referential nature of the predicates can be indicated by proximity-
based information about pairs of patterns (e.g., quantifications such as that two
patterns are similar , with some level of closeness, or are very different). While
the effect of availability of the reduced feature space is quite common, its impact
is clear in the realm of Web-based exploration, classification, and organization.
The crux of Web information lies in its inherently heterogeneous character: its
textual layer (and resulting dictionaries) is a small fraction of what is really
becomes available in the form of video, links, audio, graphics, etc. The formation
of the complete associated feature space cannot be realized. This means that the
navigation preferences of the user or designer about the proximity of selected Web
information (pages) is essential. The studies in this involving fuzzy clustering
with proximity-based hints are reported in Pedrycz et al. 2004. These papers are
concerned with the development of taxonomies of Web pages based on textual
information and exploiting information about proximities between selected pairs
of the pages. These taxonomies are an alternative to other approaches existing in
the literature (Boley et al., 1999; Guillaume and Murtargh, 2000).

F

G

S

T

Clustering

Clustering

f, g, h...

Figure 6.3. Knowledge-based clustering as a compensation mechanism for the use of the
reduced feature space (G).
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ClusteringF S

Class membership

f, g, h...

Figure 6.4. The functional aspects of knowledge-based guidance in clustering with im-
plicit class information.

Knowledge-Based Guidance About Patterns. This category includes a variety
of approaches where some information is available about class assignment of
patterns. In general, the feature space becomes available in a complete form.
Depending upon the form in which categories of patterns are incorporated in the
knowledge-based guidelines, two essential directions are envisioned:

(a) Explicit information about class membership of selected patterns. For
these patterns, we are given their membership grades (either by Boolean
assignment or represented by some membership values). This assignment
requires a fixed number of classes (categories). This situation is typical in
the realm of fuzzy clustering under partial supervision (cf. Pedrycz and
Waletzky, 1997a, b), where a relatively small subset of patterns has been
fully labeled. This occurs, for example, in cases where labeling of all
patterns is impractical but a subset of patterns can be handled quite effec-
tively. For instance, we can label some OCR symbols, but classifying all
of them is not feasible

(b) Implicit information about class membership. This type of information is
less detailed than explicit information and focuses on the quantification of
typicality of patterns. We do not have detailed information about allocation
to classes; instead, we have a single numeric quantity (and thus implicit
class characterization) expressing how typical or relevant a certain pattern
is believed to be. For instance, to state that a pattern is a typical (represen-
tative) element of a certain class, we envision that its uncertainty measure
(entropy) (Bezdek, 1981) is close to zero, H ≈ 0. By stating that H ≈ 1,
we hint at the low level of typicality of the pattern.

The implicit class allocation is visualized in Figure 6.4.

6.3. THE OPTIMIZATION ENVIRONMENT
OF KNOWLEDGE-ENHANCED CLUSTERING

Given the general observations in the previous section and the architectural inves-
tigations, we can now translate these into more operational details. This will lead
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us to the detailed algorithmic environment. First, we discuss a way in which
ideas of uncertainty, proximity, and labeling can be incorporated into the general
scheme of clustering. In what follows (as has already been envisioned in the
communication scheme between data and knowledge-oriented processing), the
knowledge hints are expressed at the level of the partition matrix (and specific
membership grades). This becomes obvious in the following notation, with uik

denoting the degree of membership of the kth pattern in the ith cluster.

Uncertainty. The typical model of uncertainty and its quantification comes in
the form of an entropy function (Klir and Folger, 1988). Given a variable u

assuming values in a unit interval, an entropy function H(u) is defined as a con-
tinuous function from [0,1] to [0,1] such that (a) it is monotonically increasing
in [0, 1

2 ] and (b) monotonically decreasing in [ 1
2 , 1] and satisfies the bound-

ary conditions H(0) = H(1) = 0 H(1/2) = 1 (as intuitively expected, here the
entropy function attains its maximum). Given a collection of membership grades
w = [w1, w2, . . . , wc]T , the entropy easily generalizes to the form

H(w) = 1

c

c∑
i=1

H(wi) (6.1)

with H(wi) being the entropy defined for the ith coordinate (variable). The form
of the specific function coming from the class formulated above could vary. A
typical example is a piecewise linear function or a quadratic function such as

H(u) =
{

2u if u ∈ [0, 1/2]
2(1 − u) if u ∈ [1/2, 1]

(6.2)

and
H(u) = 4u(1 − u) (6.3)

where u ∈ [0, 1]. The plots of these realizations of the entropy function for two
variables are shown in Figure 6.5.

Proximity Hints. Proximity is a fundamental concept to use when assessing the
mutual dependency between membership occurring in two patterns. Consider two
patterns with their corresponding columns in the partition matrix denoted by k

and l, that is, uk and ul , respectively. The proximity between them, Prox(uk, ul),
is defined in the form

Prox(uk, ul) =
c∑

i=1

min(uik, uil) (6.4)

Note that the proximity function is symmetric and returns 1 for the same pattern
(k = l); however, this relationship is not transitive. Given the properties of any
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Figure 6.5. Entropy function for two membership grades: piecewise linear function
(a) and quadratic function (b).

partition matrix, we immediately obtain

Prox(uk, ul) =
c∑

i=1

min(uikuil) = Prox(ul , uk)

Prox(uk, uk) =
c∑

i=1

min(uikuik) = 1

(6.5)

Let us illustrate the concept of proximity for c = 2. In this case u1k = 1 − u2k,
so we can confine ourselves to a single argument. The resulting plot (with the
first coordinates of the patterns, u1k and u1l) is presented in Figure 6.6.
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Figure 6.6. Proximity relationship as a function of entries of the partition matrix.

In addition to the proximity or uncertainty guidance expressed in terms of spe-
cific thresholds, we can envision their relaxed versions allowing for quantification
in the form of containment predicates, say “low uncertainty level,” “uncertainty
not exceeding about 0.5,” “high proximity,” where the terms quantifying these
constraints are regarded as fuzzy sets. Or, equivalently, we can relax the predi-
cates “less than,” and so on by allowing their truth values and consider these to
be modeled by fuzzy sets. This makes these expressions more in keeping with
the language of the user, and their use in forming the interfaces with the clus-
tering environment contributes to the enhanced relevance and readability of the
knowledge hints.

6.4. QUANTIFICATION OF KNOWLEDGE-BASED GUIDANCE HINTS
AND THEIR OPTIMIZATION

As the hints are driven by preferences of the designer/data analyst, we can envi-
sion a situation in which the ensuing quantification can be more linguistic rather
than purely numeric. This triggers our interest in linguistic-like quantification
by admitting an interpretation of constraints in the language of fuzzy predicates.
Thus the statement “x is less than λ,” where both x and λ are positioned in
the unit interval, can be regarded as a multivalued (fuzzy) predicate whose truth
value is confined to the unit interval. Two pertinent logic models of predicates
of inclusion and similarity are envisioned:

The predicate “x is less than λ” (or, equivalently, “x does not exceed λ”)
returns a truth value τ(x less than λ) ∈ [0,1] being a degree of inclusion
of x in λ, x ∈ λ. In the language of fuzzy sets, this inclusion constraint is
modeled by any implication that x → λ, where this operator has three
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Figure 6.7. Example of the inclusion (a), dominance (b), and similarity (c) predicates
(t-norm: product). The threshold level (λ) is equal to 0.3.

self-explanatory properties: (a) it returns 1 if x ≤ λ; (b) it is a mono-
tonically decreasing function of x, that is, for a fixed value of λ, the
decrease in the value of x returns a higher value of the predicate. The
logic-motivated model of this predicate is defined as x ϕλl = x → l =
sup(c ∈ [0, 1]|xtc ≤ λ}, where t denotes a t-norm being used in fuzzy
sets as a model of some and operator (and connective). Let us recall (see
Chapter 2) that a t-norm is a two-argument function t : [0, 1]2 → [0, 1] such
that it is (a) symmetric, (b) commutative, (c) monotonically increasing, and
(d) meets boundary conditions 0ta = 0 and 1ta = a, which are the ones
satisfied for the and connectives in two-valued logic. The specific form
of the t-norm depends upon the choice of the t-norm. For instance, for
the t-norm treated as an algebraic product, we obtain xtλ = xλ. The plots
of the predicates for some fixed values of λ are visualized in Figure 6.7.
Interestingly, if x exceeds λ, the predicate reflects this effect of partial
satisfaction of inclusion by returning lower truth values of the predicate.

With the inclusion predicate already defined, we can define a dominance pred-
icate in which we determine the degree to which x dominates λ. In essence,
the order of the variables is swapped and we have λϕx.

The similarity predicate is built upon the already introduced inclusion predi-
cate by combining these two, that is, sim(x, a) = incl(x, a)t incl(a, x). The
origin of this operation can be found in set theory; note that two sets A and
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B are deemed equal (similar) if A is included in B and vice versa. With
the inclusion operation already in place, we get A ⊂ B and B ⊂ A.

6.5. ORGANIZATION OF THE INTERACTION PROCESS

As fuzzy clustering and incorporation of knowledge-based hints are the two
streams of cooperating and intertwined activities, we can portray the following
scheme of computing.

Fuzzy Clustering. We deal here with a general class of clustering techniques
that return results of clustering arranged as a partition matrix U . Minimization
of the underlying objective function induces the clustering to become a certain
minimization problem, min Q(U ), where minimization is carried out for U as
well as for the associated prototypes (centroids) of the clusters. The number of
clusters (c) is specified in advance. The minimization of Q is a result of an
iterative process: we cycle through computations of the partition matrix and the
resulting prototypes.

Knowledge-Based Hints. Here we are concerned with optimization of the logic
predicates leading to the maximization of the assumed performance index.
Accommodation of the knowledge hints is achieved by maximization of the
truth value of the corresponding predicates realized with respect to the mem-
bership grades (entries of the partition matrix), max P(U ) where P stands for
the general form of the predicate (inclusion or similarity) computed over the
entire set of patterns and the associated maximum computed over the partition
matrix.

Before proceeding with the detailed learning schemes, it is useful to build
a general taxonomy of the logic predicates and the knowledge-based hints of
entropy and proximity (see Table 6.2).

The condition that the entropy or proximity exceeds some threshold is given by
repeating the first column of Table 6.2 with the reversed order of the arguments
of the predicate so that we have

V =
N∑

k=1

ϕ[λk, H(uk), ]bk (6.6)

and

V =
N∑

k1=1

N∑
k2=1,

k1≥k1l

ϕ[λk1,k2, Prox(uk1 , uk2)]bk1,k2 (6.7)

respectively.
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TABLE 6.2. A General Taxonomy of Knowledge-Based Guidance and Types of
Logic Predicates and Their Interpretation

Type of Hint
and Logic
Predicate ϕ ψ

Entropy (H ) V =
N∑

k=1

ϕ[H(uk), λk]bk V =
N∑

k=1

ψ[H(uk), µk]bk

Entropy less than some specified
threshold (λk)

Entropy similar to some specified
value (µk)

Proximity
(Prox)

V =
N∑

k1=1

N∑
k2=1,

k1≥k1l

ϕ[Prox(uk1 , uk2),

λk1,k2 ]bk1,k2

V =
N∑

k1=1

N∑
k2=1,

k1≥k1l

ϕ[Prox(uk1 , uk2),

λk1,k2 ]bk1,k2

Proximity between pairs of
patterns less than some
predefined level given as λk1k2

Proximity between pairs of
patterns attains a predefined
level given as λk1k2

Considering the optimization (maximization) problem in the above form, the
general gradient- based computing is governed by the expression

u(iter + 1) = u(iter) + α ∇uV (6.8)

where ∇uV denotes the gradient computed with respect to the individual entries
of the partition matrix. Note that we use the plus sign because of the maximization
of the objective function.

The detailed formulas depend upon the specific details of the predicate and
the form of the hint. We consider the entropy and assume that the uncertainty
should not exceed 1. The starting point of our derivations is the maximized sum
of the truth values of the predicates

V =
N∑

k=1

ϕ[H(uk), λk]bk (6.9)

where bk is a binary variable (indicator) that assumes a value of 1 if the kth
pattern is assessed with respect to the constraint under consideration. Otherwise,
bk is set to 0, meaning that there is no indication of this pattern. The calculations
of the gradient of V taken with respect to ust (s = 1, 2, . . . , c, t = 1, 2, . . . , N )
lead to the expression

∂V

∂ust

= ∂

∂ust

N∑
k=1

ϕ[H(uk), λk]bk =
N∑

k=1

∂ϕ[H(uk), λk]

∂H(uk)

∂H(uk)

∂ust

bk (6.10)
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If we assume that the implication is defined as shown in Figure 6.7 and that the
entropy function is specialized in the form given by (6.3), then we obtain

∂ϕ

∂H(uk)
=




1 if H(uk) ≤ λ

− λ

H(uk)2 otherwise

(6.11)

∂H(ut )

∂ust

= ∂

∂ust

[
1

c

c∑
i=1

4uit (1 − uit )

]
= 4

c
(1 − 2ust ) (6.12)

As an illustrative example, we discuss the two-dimensional synthetic data set
shown in Figure 6.8. There are three visible clusters. When running the standard
FCM (with the fuzzification coefficient m equal to 2), the partition matrix (three
fuzzy sets) reflects the structure of the data (Figure 6.8). With the optimized pro-
totypes being equal to v1 = [1.91 9.99]T , v2 = [5.50 5.71]T , v3 = [0.38 0.19]T ,
the computed membership functions are shown in Figure 6.9.

Figure 6.8. A two-dimensional synthetic data set.
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Figure 6.9. Plots of membership functions of the clusters.
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Figure 6.10. Membership functions of fuzzy sets.

Consider now six knowledge-based hints where the patterns have relatively
high entropy values between 0.7 and 0.9 (Figure 6.10). Following the optimiza-
tion of V (in which we use the product operator and the induced implication oper-
ator), we end up with the revised prototypes that are now equal to [2.08 9.15]T ,
[5.13 5.44]T , and [0.40 0.50]T , with the ensuing partition matrix visualized in
Figure 6.11. As a result of this optimization of the logic predicate, we end up
with the adherence to the assumed values of λs. More specifically we get the
following entries:

2162

Optimized Entropy Knowledge-Based Constraint

0.90 0.89
0.70 0.76
0.80 0.81
0.90 0.89
0.70 0.77
0.80 0.82
0.80 0.83

In what follows, we consider proximity-based knowledge-based guidance,
where, for some pairs of patterns, the proximity must not be below a certain
threshold. Formally, the maximized performance index is

V =
N∑

i=1

N∑
k=1

Incl(λi,k, Proxi,k)bi,k (6.13)

where λi,k and Proxi,k denote the threshold values and the proximity values
coming from the partition matrix. The Boolean indicator function bi,k identifies



ORGANIZATION OF THE INTERACTION PROCESS 111

1
S1

0

0.2

0.4

0.6

0.8

1

Figure 6.11. Membership functions resulting from knowledge-based clustering.

the pairs of patterns involved in knowledge-based guidance of the clustering
process. The gradient of V taken with respect to ust is equal to

∂V

∂ust

=
N∑

i=1

N∑
k=1

∂

∂Proxi,k

Incl(λi,k, Proxi,k)bi,k

∂Proxi,k

∂ust

(6.14)

Let us define the inclusion in the form

Incl(a, b) =
{

1 if a ≤ b

b/a otherwise
(6.15)

We obtain

∂Incl(λi,k, Proxi,k)

∂Proxi,k

=




0 if λi,k ≤ Proxi,k

1

λi,k

otherwise
(6.16)

The second term can be calculated by plugging in the entries of the parti-
tion matrix

∂Proxi,k

∂ust

= ∂

∂ust

c∑
j=1

min(uji , ujk) (6.17)

which leads to the following expression:

∂Proxi,k

∂ust

=



1 if usi ≤ usk and i = t

1 if usk ≤ usi and k = t

0 otherwise
(6.18)
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FCM

Max V

Figure 6.12. General flow of cooperative computing in knowledge-based fuzzy clustering.

To focus our attention, we have concentrated on the FCM clustering scheme;
however, any other iterative model based on the minimization of some objective
function (performance index) would be of interest as well. The general organi-
zation of the computing flow of the clustering is displayed in Figure 6.12. The
process is composed of the cycle consisting of a single iteration of the clustering
computing followed by the sequence of iterations maximizing V .

Note also that as (6.9) does not return the membership grades whose sum is
normalized to 1, we normalize these before returning the result to the iteration of
the FCM computing. The other issue worth mentioning relates to the landscape
of V treated as a function of the membership grades. The two-dimensional case
(in which we encounter only two patterns, and therefore deal with u1 and u2) and
two clusters (so that for u11 given, the second membership grade u12 is available
as 1 − u11) are visualized in Figure 6.13 Here the entropy function is given by
(6.2) and (6.3), the implication (inclusion) is expressed by (6.14), and λ1 = 0.4,
λ2 = 0.8.

The maximized performance index V is multimodal, so potentially there could
be several solutions. This nonuniqueness is a result of the nature of the fuzzy
predicates expressing the knowledge hints. While one might argue that this lack
of uniqueness could be detrimental to the optimization process, it is not that
important. Note that as the clustering algorithm has already produced the partition
matrix, its values form a starting point for the optimization of V (and it is very
likely that we end up with the maximum that is the closest to the configuration
of the membership grades returned by the fuzzy clustering).

Alluding to the general flow of computing visualized schematically in
Figure 6.12, it is worth stressing that any overhead caused by the processing
of knowledge-based hints that could become essential when dealing with large
data sets is not critical. Even though the data sets could be large, the number of
knowledge hints is quite limited. Consequently, the optimization phase involving
these hints would not be very time-consuming.

6.6. PROXIMITY-BASED CLUSTERING (P-FCM)

In this section, we look more closely at proximity-based clustering (P-FCM)
as an interesting and practically appealing clustering environment. Let us recall
that knowledge-based hints are available as user-given experimental assessments
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Figure 6.13. The landscape of V for selected combinations of predicates and knowl-
edge-based guidance: (a) entropy and the inclusion predicate, (b) entropy and the domi-
nance predicate, (c) entropy and the similarity predicate.

of proximity between selected pairs of patterns denoted here by Prox∧
i,k. The

generic objective function is the same as that encountered in the standard FCM.
The gradient-based part of optimization minimizes the sum of squared differences
(denoted by V ) between the supplied proximity values and those computed on the
basis of the already determined partition matrix. The overall minimization process
cycles through the minimization of the objective function and the proximity
performance index V .

Two illustrative experiments are helpful in presenting P-FCM.

Experiment 1. Here we are concerned with the small amount of two-dimensional
synthetic data shown in Figure 6.14. Evidently, there is some structure with
several visible but not necessarily clearly distinguishable clusters. The standard
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Figure 6.14. Two-dimensional data (a) and boundaries of the clusters resulting from the
FCM algorithm (b).

FCM with c = 3 clusters gives rise to the cluster boundaries (Figure 6.14b) that
distinguish between the produced groups. The prototypes of the clusters shown
there are v1 = [0.95 1.15], v2 = [1.70 1.86], and v3 = [0.15 0.25].

As we can observe, the proximity hints substantially affect the clusters and
their boundaries. To illustrate this point more clearly, we added several proximity
hints (constraints) to selected pairs of patterns. Two scenarios are presented in
Figures 6.15 and 6.16. They show the proximity constraints and the resulting
boundaries of the clusters. It is apparent that they are substantially affected by
the proximities being a result of the prototypes being moved by them. Because
of the low values of the proximities on the pairs of patterns, the region occupied
by the second class has expanded compared to that of the first class (without
any proximity constraints). The prototypes are equal to v1 = [0.25 0.37], v2 =
[1.65 1.78], and v3 = [1.06 1.36].

The situation in Figure 6.15 is completely remote from the previous cases. The
proximity constraints (that are quite “decisive,” assuming mostly binary values)
have radically changed the landscape of the clustering. Notably, the proxim-
ity constraints throw some patterns with a visible neighborhood in the feature
space into different groups (because of their low proximity values). The proto-
types are now equal to v1 = [0.67 0.77], v2 = [0.58 0.79], and v3 = [1.42 1.68].
The resulting boundaries shown in Figure 6.16 are very distinct from those in
Figures 6.14 and 6.15.

Experiment 2. Whereas in the previous case the proximity constraints were intro-
duced freely, primarily to visualize how they impact the results of clustering by
their interplay with the structure “discovered” within the original data, in this
experiment the origin of the proximity values is very different. The general
scheme we are using here is as follows: start with the original pattern positioned
in an n′-dimensional space, pick up the subset (n) of the features (where n < n′),
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Figure 6.15. Proximity constraints (a) and resulting cluster boundaries (b).
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Figure 6.16. Proximity constraints—labeled patterns (a): (1 7 0.9), (2 6 0.0), (2 9 1.0),
(7 12 0.9), (9 13 0.0), (8 14 0.0), (13 14 0.0), (1 2 0.0) and cluster boundaries (b).

and cluster them in this reduced feature space with some additional proximity
constraints. These constraints are constructed in a systematic way: we cluster
patterns in the n′-dimensional space and then build the proximities based on the
resulting partition matrix. The overall setup of the experiment is portrayed in
Figure 6.17.

The data set consists of three clusters of four-dimensional synthetic data with
a Gaussian distribution:

m = [ 0.0 0.0 3.0 0.0 ]T
∑

=




1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.5
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Figure 6.17. Experimental setup—from a highly dimensional feature space to its reduced
version and proximity hints.

m = [ 0.5 0.8 1.0 2.0 ]T
∑

=




1.2 0.0 0.0 0.0
0.0 1.5 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.5




m = [ 6.0 6.0 3.0 3.0 ]T
∑

=




2.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 2.0 0.0
0.0 0.0 0.0 0.5




Each cluster consists of 100 patterns. The use of the FCM with c = 4 clusters
leads to the prototypes v1 = [0.04 0.13 3.00 0.33], v2 = [5.90 6.01 3.34 3.08],
and v3 = [0.72 1.27 1.22 2.04], with the partition matrix illustrated in Figure 6.18.
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Figure 6.18. Membership functions produced by the FCM for the four-dimensional set
of patterns (three clusters).
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Figure 6.19. Membership grades of the patterns in three clusters (reduced two-dimen-
sional data).

Now we take only the two first variables of the patterns. This leads to sub-
stantial overlap between the clusters (which becomes apparent by looking at
the statistical parameters of the generated groups). This is also reflected in the
more visible overlap between the clusters, as portrayed in Figure 6.19. The pro-
totypes of the clusters are given as v1 = [0.16 − 0.03], v2 = [1.65 3.56], and
v3 = [6.51 6.28].

Consider the P-FCM algorithm with randomly selected proximity hints; we
consider 30 and 150 hints (that is, pairs of patterns for which we calculate
the proximity level on the basis of the partition matrix obtained for the four-
dimensional patterns). The resulting partition matrices (membership grades) are
shown in Figure 6.20; the prototypes are:

No. of hints = 30 : v1 = [0.13 − 0.29], v2 = [0.76 2.07], v3 = [6.21 6.25]

No of hints = 150 : v1 = [0.21 − 0.13], v2 = [0.96 2.25], v3 = [5.97 6.09]

Another way to quantify the impact of the proximity constraints is to calculate
the Hamming distance between the two partition matrices, namely, the one for
the original four-dimensional patterns and the other corresponding to the reduced
two-dimensional patterns without and with the proximity hints. The tendency is
clear; if there are no hints, this distance is equal to 171.0 and is gradually reduced
to 151. 6 and 146.4 for 30 and 150 hints, respectively. It becomes evident that the
P-FCM can compensate for the unseen features by guiding the clustering process.

6.7. WEB EXPLORATION AND P-FCM

Considering the rapidly growing size of the Web, it is evident that any kind
of manual classification and categorization of Web sources (sites, pages, etc.) is
prohibitively time-consuming. Here is an important role for rapid, automatic, and
accurate hypertext clustering algorithms. The main problem with the development
of automated tools is related to finding, extracting, parsing, and filtering the user
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Figure 6.20. Membership grades for (a) 30 and (b) 150 proximity hints.

requirements from Web knowledge. A number of approaches help to automat-
ically retrieve, categorize, and classify web documents. Clustering techniques
have been proposed by Hoppner et al. (1999) as generic information retrieval
tools. Two cluster-based approaches exploit graph partitions to induce clusters.
One is based on a hypergraph to define an association rule able to gather items
that appear together frequently in many transactions. The other method produces,
through recursive splitting, a binary tree of clusters in which the root is the start-
ing document set, while each leaf node is a partition of the whole set. A recent
proposal of a fuzzy-based approach to Web mining concerns the use of medoids,
a form of relational fuzzy clustering. Some other clustering-oriented approaches
are more closely related to user interaction; the LOGSOM system was developed
in order to mine Web log data and provide a visual tool to guide the user during
the navigation, based on a SOM and organizing Web documents into a two-
dimensional map according to the user’s navigation behaviors. Clustering can be
used to discover semantic relationship among specified concepts and organize
them into messages created during electronic meetings. There is a broad range
of existing approaches (see, e.g., Boley et al., 1999).
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Owing to its concept, P-FCM plays an interesting role in Web mining. A few
observations can place the discussion in a general setting. First, in assessing the
proximity of two Web pages, we are faced with extremely heterogeneous infor-
mation including text, images, video, and audio. Many factors play a significant
role in our judgment of the proximity of Web pages, such as the layout of indi-
vidual pages, form of the background, and intensity of links to other sites, as well
as the origin in cyberspace that leads us to a specific page. Most importantly,
many of these factors are difficult to quantify and translate into computationally
meaningful features. The textual information is the most evident feature, and it is
almost the only contributor to the feature space when determining structures in a
collection of Web pages. This tendency is clear in the literature, and it is related
to the extensive studies on information retrieval. Here we can envision a role
for proximity hints, whose use can compensate for the consideration of a subset
of the feature space. For instance, we can cluster Web pages in the subspace
of textual information, and the proximity values provided by the user augment
(and implicitly expand) this subspace by incorporating other features capturing
the multimedia and layout portions of the description of the pages.

The schematic view of Web mining using P-FCM is presented in Figure 6.21;
here we emphasize the origin of two sources of information: the data sets them-
selves and hints provided by the user/designer.

The usual approach to document categorization is based on analysis of its
content, since information for categorizing a document is extracted from the
document itself. Current (semi)-automatic attempts are too recent to be oper-
ative components of powerful Web search engines that prefer the work done
by humans. ODP (Open Directory Project http://dmoz.org, informally known
as Dmoz, e.g., Mozilla Directory) is the most widely distributed database of
Web content classified by a volunteer force of more than 8,000 editors. ODP
organization provides the means to manage the Web growth via editor/subeditor
chains, whose integration covers all possible Web contents. This “collective”

CYBERSPACE

Proximity
hints

USER

P-FCM

Figure 6.21. A schematic view of Web mining in the environment of P-FCM.
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brain represents the human technology at the base of the most popular Web
search engines and portals, including Netscape Search, AOL Search, Google,
Lycos, HotBot, DirectHit, and hundreds of others.

For our testbed we considered three ODP categories:

1. Top:Computers:Software:Graphics:Image Manipulation

(www.dmoz.org/
Computers/Software/Graphics/Image Manipulation)

2. Top:Shopping:Gifts: Personalized:Photo Transfers

(www.dmoz.org/
Shopping/Gifts/Personalized/Photo Transfers)

3. Top:News:Media:Journalism:Photojounalism:Music Photography

(www.dmoz.org/News/Media/Journalism/Photojounalism/
Music Photography)

The open structure of ODP allowed us to analyze the structure of these three
categories in order to acquire the necessary information to categorize the related
Web pages. In fact, for each category, Dmoz provides a descriptive Web page,
such as the one given in Figure 6.22, explaining the category in terms of related
terms and keywords.

Table 6.3 presents the keywords used in the case study associated with each
category.

The representation of each Web page is treated as a 14-dimensional vector,
where each component is the frequency of occurrence (probability) of the term
on the specific page. Although in our approach the features can be keywords,
hyperlinks, images, animations, etc., in this experiment we consider just keyword-
based features in order to comply with the Dmoz statistical classification (which
is based on term frequency analysis).

TABLE 6.3. Selected Keywords Chosen as Features of the Data Set

Category Keywords

Top:Shopping:Gifts:
Personalized:Photo Transfers

Transfer, gift, photo∗,
logo

Top:Computers:Software:Graphics:Image Manipulation Image, software, filter,
digital, manipulat∗

Top:News:Media:Journalism:Photojounalism:
Music Photography

Concert, music, journal,
promot∗, portrait

Note: Some keywords are stemmed to capture words with a common prefix denoted by an asterisk
(for instance, photo or manipulat).
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Figure 6.22. Selection of keywords from a descriptive Web page dealing with the cate-
gory Top:Computers:Software:Graphics:Image Manipulation.

Our test was performed on 20 Web pages per category, 60 pages in total.
For the reference, we applied a standard FCM algorithm and partitioned the 60
pages into three clusters (see Figure 6.23). Figure 6.23 portrays the distribution
of membership grades of the Web pages in each cluster: for the first 20 pages, the
membership grades are highest in the 3 (white bars), while they become quite
irrelevant in clusters 1 and 2 (denoted by black and gray bars, respectively).
Analogous observations can be made for pages belonging to two other categories:
pages 21 to 40 comprise cluster 1 (although some pages in this category assume
higher membership values in cluster 2), while pages 41 to 60 form cluster 2. The
prototypes of the clusters formed in this process of grouping are visualized in
Figure 6.24.

Web navigation is in part a cognitive process that may be influenced by several
factors. If the user wants to express proximity values between pairs of Web pages,
these values can be established on the basis of personal judgment. In this situation,
the P-FCM approach can be useful to capture the user’s feedback and reflect its
impact on reshaping the clusters.

In our test, the user identifies several pairs of Web pages and assigns to them
some proximity values, as summarized in Table 6.4. For instance, the proximity
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Figure 6.23. The results (membership grades) of the FCM clustering of Web pages.

TABLE 6.4. Proximity Values Between Selected Pairs
of Web Pages Reflecting the User’s Evaluation

Web Pages Proximity

1 16 0.8
1 18 0.9
1 21 0.1
7 10 0.9

25 42 0.1
40 57 0
32 22 0.8
22 42 0.1
37 59 0.1
37 5 0.1
21 38 0.9
33 37 0.8

value for page 1 and 18 is equal to 0.9, and this value indicates that the pages
are closely analogous. On the other hand, page 1 is very different from page 21,
as reflected by the very low proximity value (e.g., 0.1) associated with this pair
of pages (see Figure 6.25).

This user’s feedback conveyed in terms of proximity values has an impact on
the previous clustering results (refer to Figure 6.11). Figure 6.26 illustrates the
results of P-FCM. It is evident that some pages have improve their membership
in the right cluster. For instance, pages 1 and 21 are now in the right cluster,
with higher values.

For comparative reasons, Figures 6.23 and 6.27 visualize the prototypes (high-
est membership values in corresponding clusters) produced by the FCM and
P-FCM, respectively.
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Figure 6.24. Typical Web pages (prototypes) for each cluster constructed by the FCM
algorithm.

Figure 6.25. Web pages for which the user expressed proximity preferences (hints).
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Figure 6.26. Results of P-FCM clustering.

Figure 6.27. Typical Web pages (prototypes) for each cluster built by the P-FCM
algorithm.

In many real-world cases, the user may disagree with a textual Web search
classification. In our test, this situation may occur since the categorization has
been based only on textual information; no other media (components of the
hypertext) have been considered. Figure 6.28 shows this scenario; here the user
defines the following proximity values between the pairs of the Web pages:
(53 8 0.9) and (8 20 0.1).
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Figure 6.28. Subjective evaluation of the proximity between selected Web pages.
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Figure 6.29. Results produced by P-FCM; note the shift in the values of the member-
ship grades.

The user’s intention is to assert that pages 53 and 8 are very similar, while
page 20 is very different from page 8 (although both pages are in the same
cluster); in fact, according to the user evaluation, pages 53 and 8 are similar
because they show photo galleries, while page 20 is concerned with plugin tools.

After the use of P-FCM, see the results shown in Figure 6.29. Page 20 moves
to cluster 1 (black bars), because it assumes the highest membership in that
cluster (circled in the figure), while page 8 remains in cluster 3 (whitish bar),
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as expected. Finally, page 53 does not change its cluster, but its membership
value is lowered. This effect follows the low proximity values introduced by
the user.

6.8. LINGUISTIC AUGMENTATION OF KNOWLEDGE-BASED HINTS

So far, we have discussed a case where the knowledge-based hints assume
numeric values and the designer/user must supply these values. To make this
interaction more user-centric, we may admit linguistic values of the hints. To
focus our discussion, let us concentrate on the category of proximity hints. These
are modeled as fuzzy sets defined in the unit interval and describe well-defined
semantic concepts such as, low, medium, and high proximity. Obviously, more
linguistic terms could be introduced (depending upon the application), and those,
in turn, could be augmented by linguistic modifiers that contribute to the semantic
richness of the description of proximity between pairs of patterns. Figure 6.30
illustrates selected fuzzy sets used in this linguistic representation.

In light of this proposed extension, the original performance index introduced

earlier, which takes the form of the sum V =
N∑

k11 =1

N∑
k2=1,

k1≥k1l

ϕ[λk1,k2, Prox(uk1 , uk2)]

bk1,k2 (where ϕ stands for the similarity predicate) must be revisited. Let us denote
the linguistic terms (fuzzy sets) by A1, A2, . . . , Ar , assuming that we are pro-
vided with an r level of quantification. The proximity value resulting from the
fuzzy partition matrix U , Prox∧(.,.) is mapped through the linguistic term used
by the user to quantify the level of proximity, so it tells us to what extent this
preference is consistent with the proximity produced by the fuzzy clustering. For
instance, suppose that the user has quantified the proximity as high , correspond-
ing to fuzzy set Ai . The proximity computed on the basis of fuzzy clustering
generates the value Prox∧ (uk, ul). The computed membership degree Ai(Prox∧
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Figure 6.30. Examples of fuzzy sets used in the linguistic characterization of proximity.
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(uk, ul)) reflects how much the results coincide. As we are interested in achieving
the maximum level of agreement, the optimization focuses on maximum of the
following sum:

V =
N∑

k=1

N∑
l=1,

k≥l1

Ai[Prox∧(uk, ul)]bk,l (6.19)

(As before, the Boolean indicator bk,l points at the pairs of patterns for which
the proximity hints have been supplied.) As a standard, we use gradient-based
optimization, that is, we update the values of the partition matrix following the
formula u(iter + 1) = u(iter) + α∇uV .

6.9. CONCLUSIONS

The knowledge-based guidance augmentation of unsupervised learning opens up
some new and promising avenues of exploration of data structures. By build-
ing a unified optimization framework in which we seamlessly combine data
and knowledge-based computing activities, we are able to address the funda-
mental matter of hybrid information processing. The interface between data and
knowledge-based computing exploits models of logic optimization, where we
develop a certain predicate and maximize its truth value by determining the
underlying structure of the clusters (partition matrix). The fuzzy predicates are
helpful in expressing linguistic relational constraints (such as less than, approx-
imately equal, etc.) that are in line with the assessment of designers and data
analysts. We have presented an array of possible scenarios arising in various
applications ranging from Web exploration to uncertainty guidance in pattern
classification to partial supervision involving labeling of selected patterns.
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7 Collaborative Clustering

So far, knowledge-based clustering has operated on a single data set. In this
chapter, we discuss a situation that arises when there are several data sets. A
structure we are interested in revealing concerns all of them, but they need to
be processed separately. This leads to the fundamental concept of collaboration:
the clustering algorithms operate locally (namely, on individual data sets) but
collaborate by exchanging information about their findings. We formulate two
fundamental development scenarios referred to as vertical and horizontal collab-
oration. In the ensuing algorithms critical is a strength of collaboration and a way
in which it is quantified within the network of clustering algorithms. The level
of granularity at which this collaboration occurs reflects the requirement of data
confidentiality and security to which one must adhere.

7.1. INTRODUCTION AND RATIONALE

Imagine a situation in which we have a collection of data sets existing at different
organizations. These could be data describing customers of banking institutions,
retail stores, and medical organizations. The data could include records of dif-
ferent individuals. They could also deal with the same individuals, but each data
set may have different descriptors (features) reflecting the activities of the orga-
nization. The ultimate goal of each organization is to discover key relationships
in its data set. These organizations also recognize that as there are other data
sets, it would be advantageous to learn about the dependencies there occurring
in order to reveal the overall picture of the global structure. We do not have
direct access to other data, which prevents us from combining all data sets into a
single database and carrying out clustering there. Access may be denied because
of confidentiality requirements (e.g., medical records of patients cannot be shared
and confidentiality of banking data has to be assured). There could also be some
hesitation about the possibility of losing the identity of the data of the individ-
ual organization. We are more comfortable with revealing relationships in our
own organization’s data set. While appreciating the value of additional exter-
nal sources of information, it is helpful to control how the findings there could
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affect the results from the data within the company. In some cases, there could
be technical issues; processing (clustering) of a single huge data set may not be
feasible or sufficiently informative.

It is instructive to discuss two illustrative examples.

Security Issues and Discovery of Data Structures Across Different Data
Sets. Consider the situation where information about the same group of clients
is collected in different databases while an individual company (bank, store, etc.)
builds its own database. Because of confidentiality and security requirements,
the companies cannot share information directly. However, all of them are
interested in deriving some associations that will help them learn about their
customers (namely, their profiles and needs). As they are concerned with the
same population of clients, we may anticipate that the basic structure of the
population of such patterns, in spite of possible minor differences, should hold
across all databases. The approach taken in this case would be to construct
clusters specific to each database and exchange information at the level of the
clusters, that is, information granules. In this way, security is not compromised
and a sound mechanism of collaboration/interaction between the databases could
be established.

Conceptual Split of Data as a Means of Structure Reconciliation. In cluster-
ing multivariable data, we can often split variables into distinct groups (e.g.,
in describing countries, we can distinguish between economic indicators, vari-
ables capturing cultural aspects, geography and climate). As the variables in each
group are conceptually quite close (they deal with the same general concept), we
may be interested in deriving the structure for each subset while maintaining
links between the subsets in order to reconcile eventual structural differences
and emphasize similarities. Here the data sets become disjoint, yet whatever we
attempt to discover at the local level has to be consistent to some extent with the
findings obtained at the level of other databases.

Collaboration in Processing Visual Data. Fuzzy clustering has been applied to
a vast array of problems in image processing (e.g., image segmentation, edge
detection). Given the multifaceted character of data, we can take into account
various low- and high-end features of images (texture, color, gradient, etc.) and
geometric features (location of objects or pixels). Naturally, we can envision
clustering that focuses on these groups of features and operates on them while
still completing active collaboration activities.

In this chapter, we refine the concept of collaboration at the level of informa-
tion granules and distinguish between two fundamental models of collaboration,
horizontal and vertical clustering (Pedrycz, 2002). We show that this approach
stands in sharp contrast to the existing trends of clustering and data analysis
(Bezdek, 1981; Duda et al., 2001; Hoppner et al., 1999). With the detailed nota-
tion in place, we design a suite of detailed clustering algorithms.
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7.2. HORIZONTAL AND VERTICAL CLUSTERING

While collaboration can include a variety of detailed schemes, two of them are the
most essential. We refer to them as horizontal and vertical modes of collaboration
or simply horizontal and vertical clustering. More descriptively, given data sets
X[1], X[2], . . . X[P ] where P denotes their number and X[ii] stands for the iith
data set (we adhere to the practice of using square brackets to identify a certain
data set), in horizontal clustering we have the same objects that are described
in different feature spaces. In other words, these could be the same collection
of patients whose records are developed within each medical institution. The
schematic illustration of this mode of clustering portrayed in Figure 7.1 shows
that every collaboration occurs at the structural level, viz., through the information
granules (clusters) built over the data; the clusters are shown as an auxiliary
interface layer surrounding the data. The net of directed links shows how the
collaboration between different data sets takes place. The width of the links
emphasizes the fact that the intensity of collaboration can differ, depending on
the data set involved and the purpose of the collaboration (e.g., the willingness
of an organization to accept findings from external sources).

Vertical clustering (Figure 7.2) is complementary to horizontal clustering.
Here the data sets are described in the same feature space but deal with differ-
ent patterns. In other words, we consider that X[1], X[2], . . . , X[P ] are defined
in the same feature space, while each of them consists of different patterns,
dim(X[1]) = dim(X[2]) = . . . dim(X[P ]), while X[ii] �= X[jj ]. We can show the
data sets as being stacked on each other (hence the name of this clustering mode).

Collaboration involves mechanisms of interaction. While the algorithmic de-
tails are presented in the next section, it is instructive here to describe the nature
of the possible collaboration.

In horizontal clustering we deal with the same patterns and different fea-
ture spaces. The communication platform is based on through the partition

Clustering

Data sets

Figure 7.1. A general scheme of horizontal clustering.



132 COLLABORATIVE CLUSTERING

Data sets Clustering

Figure 7.2. A general scheme of vertical clustering; note the stack of data sets commu-
nicating through a granular layer.

matrix. As we have the same objects, this type of collaboration makes
sense. The confidentiality of data has not been breached: we do not oper-
ate on individual patterns but on the resulting information granules (fuzzy
relations, that is, partition matrices). As this number is far lower than the
number of data, the low granularity of these constructs moves us far from
the original data.

In vertical clustering we are concerned with different patterns but the same
feature space. Hence communication at the level of the prototypes (which
are high-level representatives of the data) becomes feasible. Again, because
of the aggregate nature of the prototypes, the confidentiality requirement
has been satisfied.

There are also many hybrid models of collaboration involving data sets with
possible links of vertical and horizontal collaboration. An example of collabora-
tive clustering involving this hybrid scenario is presented in Figure 7.3.

7.3. HORIZONTAL COLLABORATIVE CLUSTERING

Here we introduce all necessary notation, formulate the underlying optimization
problem implied by objective function-based clustering, and derive the detailed
algorithm. There are P sets of data located in different spaces (viz., the patterns
there are described by different features). As each subset deals with the same
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Data sets

Clustering

Figure 7.3. Example of hybrid collaboration involving horizontal and vertical clustering.

patterns (that is, each pattern is a concatenation of the corresponding subpatterns),
the number of elements in each subset is the same and is equal to N . We are
interested in partitioning the data into c fuzzy clusters. The clustering completed
for each subset of data results in a partition matrix and a collection of prototypes.
We use square brackets to point to the specific subset. That is, we use the notation
U [ii] and v[ii] to denote the partition matrix and the ith prototype produced by
the clustering realized for the ii-set of data. Similarly, the dimensionality of the
patterns in each data set could be different; to show this, we use a pertinent index,
say n[ii]. The distance function between the ith prototype and the kth pattern in
the same subset is denoted by dik

2[ii], i = 1, 2, . . . , c, k = 1, 2, . . . , N .
The objective function guiding the formation of the clusters that is completed

for each subset assumes a well-known form of FCM clustering:

N∑
k=1

c∑
i=1

u2
ik[ii]d2

ik[ii]

ii = 1, 2, . . . , P . The collaboration between the subsets is established through a
matrix of connections (or interaction coefficients or interactions; see Figure 7.4).

Each entry of the collaborative matrix describes the intensity of the interac-
tion. In general, α[ii,kk] assumes nonnegative values. The higher the value of
the interaction (collaboration) coefficient, the stronger the collaboration between
the corresponding data sets. Note that the collaborative links along with the indi-
vidual clustering algorithms form a directed graph where the nodes represent
the clustering activities at the level of the individual data sets and the directed
edges indicate the level of collaboration. Evidently α[ii,kk] need not be equal to
α[kk,ii], as the impact from the kkth structure on the development of the iith
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iiU[ii ]

U[ jj]

α[ii, jj]

α[ii,kk]

U[kk]

kk

jj

Figure 7.4. Collaboration in the clustering scheme represented by the matrix of collab-
oration levels between the subsets; the partition matrices generated for each data set
are shown.

structure could be quite different from the one where the structure in the kkth
data set is developed in collaboration with the iith structure.

To accommodate the collaboration mechanism in the optimization process, the
objective function is expanded into the form

Q[ii] =
N∑

k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

α[ii, jj ]
N∑

k=1

c∑
i=1

{uik[ii] − uik[jj ]}2d2
ik[ii]

(7.1)

ii = 1, 2, . . . , P . The second term in the above expression makes the clustering
based on the iith subset “aware” of other partitions. It is obvious that if the struc-
tures in data sets are similar, then the differences between the partition matrices
tend to be lower, and the resulting structures start becoming more similar.

As usual, we require the partition matrix to satisfy standard requirements of
membership grades summing to 1 for each pattern and the membership grades
contained in the unit interval. All in all, collaborative clustering converts into the
following family of P optimization problems with the membership constraints

minU∈U,v1,v2,...vc
Q

subject to

U ∈ U
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where U is a family of all fuzzy partition matrices. The minimization is carried
out with respect to the fuzzy partition and the prototypes.

7.3.1. Optimization Details

The above optimization task splits into two problems, namely, determination
of the partition matrix U [ii] and the prototypes v1[ii], v2[ii], . . . , vc[ii]. These
problems are solved separately for each of the collaborating subsets of patterns.

To determine the partition matrix, we exploit a technique of Lagrange multi-
pliers so that the constraint occurring in the problem becomes merged as a part
of constraint-free optimization. This leads to the new objective function V [ii]:

V [ii] =
c∑

i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

α[ii, jj ]
c∑

i=1

{uik[ii] − uik[jj ]}2d2
ik[ii]

− λ

(
c∑

i=1

uik[ii] − 1

)
(7.2)

for k = 1, 2, . . . , N , where λ denotes a Lagrange multiplier. The necessary con-
ditions leading to the local minimum of V [ii] are

∂V [ii]

∂ust [ii]
= 0

∂V [ii]

∂λ
= 0 (7.3)

s = 1, 2, . . . , c, t = 1, 2, . . . , N . The derivative computed with respect to the
partition matrix is

∂V

∂ust

= 2ust [ii]d
2
st [ii] + 2

∑
jj �=ii

α[ii, jj ](ust [ii] − ust [jj ])d2
st [ii] − λ = 0

(7.4)

In other words,

ust [ii] =
λ + 2d2

st [ii]
∑
jj �=ii

α[ii, jj ]ust [jj ]

2


d2

st [ii] + d2
st [ii]

∑
jj �=ii

α[ii, jj ]




(7.5)

Introduce the following shorthand notation:

ϕst [ii] =
∑
jj �=ii

α[ii, jj ]ust [jj ]

ψst [ii] =
∑
jj �=ii

α[ii, jj ]
(7.6)
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In light of the constraint imposed on the membership values
c∑

j=1

ujk[ii] = 1,

the use of the above expression yields the result

c∑
j=1

λ + 2d2
jk[ii]ϕjk[ii]

2d2
st [ii](1 + ψ[ii])

= 1 (7.7)

Next, the Lagrange multiplier computes in the form

λ = 2

1 − 1

1 + ψ[ii]

c∑
j=1

ϕjk[ii]

c∑
j=1

1

d2
jk[ii]

(1 + ψ[ii])

Plugging this multiplier into the formula for the partition matrix produces the
final expression:

ust [ii] = ϕst [ii]

1 + ψ[ii]
+

1 − 1

1 + ψ[ii]

c∑
j=1

ϕj t [ii]

c∑
j=1

d2
st [ii]

d2
j t [ii]

(7.8)

In the calculations of the prototypes, we confine ourselves to the Euclidean
distance between the patterns and the prototypes. The necessary condition for the
minimum of the objective function is of the form ∇v[ii]Q[ii] = 0. Let us rewrite
Q[ii] in an explicit manner to emphasize the character of the distance function:

Q[ii] =
N∑

k=1

c∑
i=1

u2
ik[ii]

n[ii]∑
j=1

(xkj − vij [ii])2 +
P∑

jj=1
jj �=ii

α[ii, jj ]

×
N∑

k=1

c∑
i=1

{uik[ii] − uik[jj ]}2
n[ii]∑
j=1

(xkj − vij [ii])2 (7.9)

The patterns in this expression come from the iith data set. Computing the
derivative of Q[ii] with respect to vst [ii] (s = 1, 2, . . . , c, t = 1, 2, . . . , N ) and
setting it to 0, we obtain

∂Q[ii]

∂vst [ii]
= −2

N∑
k=1

u2
sk[ii](xkt − vst [ii])

− 2
N∑

k=1

c∑
jj �=ii

α[ii, jj ](usk[ii] − ujk[jj ])2(xkt − vst [ii]) = 0 (7.10)
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After some grouping of the terms, we derive the expression

vst [ii]




N∑
k=1

u2
sk[ii] +

N∑
k=1

c∑
jj �=ii

α[ii, jj ](usk[ii] − usk[jj ])2




=
N∑

k=1

u2
sk[ii]xkt +

N∑
k=1

c∑
jj �=ii

α[ii, jj ](usk[ii] − usk[jj ])2xkt (7.11)

We rewrite this in a compact format by introducing auxiliary notation:

vst [ii] = Ast [ii] + Cst [ii]

Bs[ii] + Ds[ii]
(7.12)

s = 1, 2, . . . , c, t = 1, 2, . . . , n[ii], ii = 1, 2, . . . P

where

Ast [ii] =
N∑

k=1

u2
sk[ii]xkt (7.13)

Bs[ii] =
N∑

k=1

u2
sk[ii] (7.14)

Cst [ii] =
P∑

jj=1
jj �=ii

α[ii, jj ]
N∑

k=1

(usk[ii] − usk[jj ])2xkt (7.15)

Ds[ii] =
P∑

jj=1
jj �=ii

α[ii, jj ]
N∑

k=1

(usk[ii] − usk[jj ])2 (7.16)

7.3.2. The Flow of Computing of Collaborative Clustering

The general clustering scheme consists of two phases:

Generation of clusters without collaboration. This phase involves the appli-
cation of the FCM algorithm to each data set. Obviously, the number of
clusters has to be the same for all data sets. During this phase we carry out
an independent search for a structure in each subset of data.

Collaboration between the clusters. Here we start with the already computed
partition matrices, set up the collaboration level (through the values of the
interaction coefficients arranged in the collaboration matrix α[ii,jj ]), and
proceed with a simultaneous optimization of the partition matrices.
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Moving on to the formal algorithm, the computational details are arranged in
the following fashion:

Given: subsets of patterns X1, X2, . . . , XP

Select: distance function, number of clusters (c), termination criterion, and
collaboration matrix α[ii,jj ].

Compute: initiate randomly all partition matrices U [1], U [2], . . . , U [P ]

Phase I
For each data

repeat
compute prototypes {vi[ii]}, i = 1, 2, . . . , c and partition matrices U [ii] for

all subsets of patterns
until a termination criterion has been satisfied

Phase II

repeat
For the given matrix of collaborative links α[ii,jj ], compute prototypes and

partition matrices U [ii] using (7.4) and (7.7)
until a termination criterion has been satisfied

The termination criterion relies on the changes to the partition matrices
obtained in successive iterations of the clustering method; for instance, a
Tchebyschev distance could serve as a sound measure of changes in the partition
matrices. Subsequently, when this distance is lower than an assumed threshold
value (ε > 0), the optimization is terminated.

The flow of optimization can be captured in terms of the values of the collab-
oration matrix. In the first phase, we consider that all values of α[ii,jj ] are equal
to 0 (implying no collaboration) and then, after some iterations, they assume
nonzero values. In this sense, we can collapse the two phases into a single step
(see Figure 7.5).

7.3.3. Quantification of the Collaborative Phenomenon of Clustering

The intensity of collaboration between the clusters, can be assessed at two levels:
the level of data and the level of information granules (that is, fuzzy relations
contained in the partition matrix). In this latter quantification, we use the results
of clustering without any collaboration as a point of reference.

The level of data involves a comparison of the numeric representatives of
the clustering, that is, the prototypes (centroids). The impact of the collaboration
is then expressed in the changes of the prototypes occurring as a result of the
collaboration.
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iter

α[ii, jj]

Figure 7.5. Values of the collaboration coefficients treated as functions of iterations of
the algorithm (the noncollaborative phase comes with the 0 values of the α[ii,jj ]’s).

At the level of information granules (partitions and fuzzy sets), the effect of
collaboration is expressed in two ways. The first one quantifies how much the
collaboration impacts the clustering results. Using Uref[ii] to denote the partition
matrix produced independently of other sources, we compute a distance ||U [ii] −
Uref[ii]|| (the distance expressed in any way that is relevant when comparing two
partition matrices) and treat it as a function of the intensity of collaboration:

δ = ||U [ii] − Uref[ii]|| (7.17)

The other measure expressing the effect of collaboration deals with the dif-
ferences between the partition matrices. Intuitively, we can envision that once
the level of collaboration increases, the structures within data sets start to exhibit
smaller differences. The index (consistency measure)

φ[ii, jj ] = ||U [ii] − U [jj ]|| (7.18)

indicates the structural differences between the partition matrices defined over
two data sets (ii and jj , respectively). The level of collaboration can be adjusted,
allowing for a certain maximal value of changes of the membership grades
(entries of the partition matrix).

There is another option worth considering when selecting the collaboration
level. Noting that the collaborative clustering is aimed at forming a consensus
and that each external source of information should be used to refine the already
developed structure within the given data set, we can consider entropy as a
measure of enhancement of structure discovery. The process of setting up a level
of collaboration is then performed in a stepwise manner: we start with a very low
value of α[ii,jj ] (which reflects a very loose form of interaction or collaboration)
and increase it gradually by watching the values of the entropy. The increase is
stopped once the entropy values start to increase, meaning that the collaboration
tends to produce some mechanisms of competition rather than harmonious and
supportive interaction.
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7.4. EXPERIMENTAL STUDIES

To illustrate horizontal collaborative clustering, we carry out some experiments
to get some insight into the performance of this method.

Experiment 1. We consider the data set distributed in two subspaces (see
Figure 7.6). It is apparent that the structure of the data visible in these two
subspaces is quite different. While we can eventually envision three clusters,
these are positioned differently and their distinction is not clear. In space X1, we
note one cluster that is quite distinct, while the two others are far less clearly
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Figure 7.6. Synthetic data sets and their visualization in space X1 (a) and X2 (b).
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delineated, forming almost a single elongated structure (which nevertheless could
be split into spherical clusters). The data located in X2 (Figure 7.6b) exhibit a
far less visible structure.

We start with no collaboration by setting all the values of the collaboration
matrix to 0; α[ii, jj ] = 0 for all values of ii and jj . The clustering is completed
for c = 3 clusters. After clustering, the prototypes and the corresponding partition
matrices are equal to

space X1: v1 = [2.62 2.79]T v2 = [6.90 7.28]T v3 = [0.82 0.85]T


0.002403 0.000220 0.997376
0.073337 0.010147 0.916516
0.006531 0.000642 0.992827
0.139116 0.007933 0.852952
0.217786 0.012458 0.769756
0.767185 0.012808 0.220007
0.993295 0.001160 0.005545
0.963953 0.008303 0.027745
0.981568 0.003061 0.015372
0.009651 0.985867 0.004482
0.016653 0.974473 0.008874
0.021377 0.967951 0.010673
0.008137 0.987674 0.004190
0.009604 0.985596 0.004800
0.065701 0.905631 0.028668




space X2: v1 = [3.81 4.52]T v2 = [2.09 1.44]T v3 = [6.29 6.49]T


0.026211 0.965828 0.007961
0.093903 0.871662 0.034434
0.505755 0.388633 0.105613
0.607660 0.080534 0.311806
0.713268 0.055687 0.231046
0.947006 0.019349 0.033645
0.351095 0.601909 0.046996
0.499791 0.229903 0.270306
0.152238 0.063779 0.783983
0.922959 0.052719 0.024322
0.132055 0.024279 0.843666
0.420602 0.363174 0.216224
0.448355 0.450673 0.100972
0.693879 0.190041 0.116080
0.031356 0.008891 0.959753




The plots of the membership functions formed on the basis of the proto-
types are presented in Figure 7.7. This figure visualizes the class boundaries
discriminates between the patterns belonging to different clusters.
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Figure 7.7. Contour plots of the clusters (dotted lines) and decision boundaries (solid
lines) for space X1 (a) and X2 (b).
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Figure 7.8. Contour plots of the clusters (dotted lines) and decision boundaries (solid
lines) for space X2 with the prototypes given as [4.84 6.25]T , [4.55 3.20]T , and [2.24
2.79]T .

We now introduce the collaboration involving the first data set, where we
increase the values of α[2,1] (that entry of the collaboration matrix pointing at
impact X1 starts exhibiting on X2). The results of clustering for α[2, 1] = 0.3 are
shown in Figure 7.8. The prototypes in X2 are quite different when compared
with the previous clustering involving no collaboration.
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The corresponding partition matrix produced in this space has the following
entries:

U [2] =




0.052927 0.121152 0.825921
0.097542 0.167998 0.734460
0.118145 0.134497 0.747358
0.701552 0.065291 0.233157
0.544363 0.232398 0.223239
0.589833 0.261475 0.148691
0.239626 0.029546 0.730828
0.569272 0.185798 0.244930
0.678707 0.206891 0.114401
0.118356 0.633631 0.248013
0.664368 0.308076 0.027555
0.112732 0.736714 0.150554
0.060555 0.754855 0.184590
0.010806 0.976463 0.012730
0.522629 0.404842 0.072529




The measures of collaboration are plotted in Figure 7.9; obviously, the impact
is visible on the entries of the partition matrix in X2. As anticipated, the dif-
ferences between the partition matrices start to be reduced over the increasing
value of α. Interestingly the changes in the membership grades get lower when
we increase the value of α. We note that there is some value of α above which
any further changes in the values of δ or φ are quite limited. For instance, the
value of α equal to 0.1 seems to be critical in this regard; higher values of α do
not impact the values of δ, meaning that the structures in these two data sets are
able to collaborate at the 0.1 level. Likewise, the differences between the two
partition matrices are reduced visibly when we start applying nonzero values of
α; however, stronger collaboration (with the values of α greater than 0.1) does
not lead the differences between the partition matrices.
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Figure 7.9. Indexes of structural differences treated as a function of collaboration (α).
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Figure 7.10. Contour plots of clusters and their classification boundaries for selected
cases of collaboration: (a) α[1, 2] = 2.0; α[2, 1] = 0.1 and (b) α[1, 2] = α[2, 1] = 0.8.

By modifying the values of the collaboration matrix, we end up with different
distributions of the prototypes. The plots presented in Figure 7.10 illustrate this
effect for selected cases. First, α[1,2] set to 2.0 and α[2,1] set to 0.1 reflects a case
where there is relatively high impact from the patterns in X2; thus, the search for
structure in X1 is significantly affected by that impact (Figure 7.10a). The two
values of α[1,2] and α[2,1], both set to 0.6, produce the prototypes visualized
in Figure 7.10b. All these scenarios need to be contrasted with the prototypes
constructed without any collaboration, as shown in Figure 7.8.

Experiment 2. In this experiment, we consider two synthetically generated data
sets formed by the same patterns defined in two feature spaces X1 and X2. There
are 2,000 patterns. In space X1 they form a clearly visible structure composed
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Figure 7.11. Synthetic data sets defined in X1 (a) and X2 (b).

of two well-delineated spherical clusters (Figure 7.11a). The patterns in X1 are
governed by two Gaussian distributions m1 = [2.0 5.0]T and m2 = [8.0 3.0]T ,

with the diagonal covariance matrices �1 = �2 = � =
[

1.0 0.0
0.0 1.0

]
. The second

pattern, defined in X2, is governed by a uniform distribution, so no structure
becomes visible (Figure 7.11b).

The clustering is completed for c = 2. In the case of no collaboration, we
obtain a structure where the prototypes are given in the form

X1: v1 = [2.08 5.13]T v2 = [7.92 2.98]T

X2: v1 = [4.19 7.47]T v2 = [5.80 3.03]T

and the partition matrix (one cluster shown) are visualized in Figure 7.12. It is
apparent that the structure in X1 is fully revealed and quantified by the prototypes
and the clear distinction between the groups. The membership grades are close to
1 in one group, and very few patterns in the second cluster exceed the membership
grade of 0.6 of their allocation to the other group.
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Figure 7.12. Results of clustering: partition matrices for patterns in X1 (a) and X2 (b).

Let us now consider a collaboration mechanism implemented via the link
α[2,1] set to 1 (the other entries of the collaboration matrix were equal to 0). This
affects the structure revealed in X2. The prototypes have changed their location
and are equal to v1 = [4.98 5.27]T and v2 = [5.00 5.31]T . More interestingly, the
partition matrix shows a significant shift in comparison to the situation reported in
Figure 7.13, where we see no structure and membership grades indicate clusters
with a high level of overlap. We distinguish between two clusters. The first is
formed by patterns with membership grades assuming values close to 0.8. The
others started lowering their membership grades, thus discriminating between the
clusters. In this way, the collaboration has helped build a structure by using some
well-distinguished topology available in the other space.

To continue this experiment, we reverse the direction of the collaboration,
allowing the patterns (and structure) in X2 to affect X1, so we set α[1,0] to 1
while keeping the remaining entries of the matrix equal to 0. As a result, the pro-
totypes in X1 are shifted and now assume the location v1 = [3.77 4.45]T , v2 =
[6.27 3.63]T . A more profound effect shows up when it comes to the membership
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Figure 7.13. Partition matrix (one cluster shown) resulting from the collaboration defined
by α[2, 1] = 1.0.
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Figure 7.14. Partition matrix (one cluster shown) resulting from the collaboration quan-
tified by α[1, 2] = 1.

grades. The patterns tend to be affected in a way so that they become less
“declared” to belong to the specific cluster and start sharing their membership
among the two of them. First, the patterns start losing their membership grades,
originally equal to 1 (which is clear from Figure 7.14, especially the first pat-
terns). Second, there is a group of patterns with membership degrees of about
0.5, in contrast to the clusters portrayed in Figure 7.13.

Experiment 3. Boston housing data are one of the data sets available in the
Machine Learning Repository, ftp://ftp.ics.uci.edu/pub/machine-learning-data-
bases/housing/. They consist of 506 patterns describing real estate in the Boston
area. There are 14 features describing the patterns, including the crime rate,
nitric acid concentration, and median value of the house. Several scenarios of
collaborative clustering are envisioned (Figure 7.15).

X1 is a data set including all features but the price of real estate. X2 involves
the patterns described by their price. We arbitrarily proceed with four clusters.
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Figure 7.15. Several experimental setups of collaborative clustering.

Without any collaboration, the results are as follows:

X1 :

v1 = [2.21 3.59 12.37 0.08 0.57 6.14 79.42 3.11 7.00 385.16 18.68 361.36 13.92]

v2 = [1.02 6.23 8.26 0.05 0.51 6.31 61.78 4.12 5.32 313.75 18.32 380.00 10.35]

v3 = [10.04 0.55 17.97 0.03 0.67 6.03 91.17 2.09 21.98 639.04 19.96 322.80 18.68]

v4 = [0.58 39.36 5.16 0.04 0.45 6.62 38.61 6.08 4.85 313.26 17.07 383.91 7.39]

X2 : v1 = 31.45 v2 = 21.46 v3 = 47.65 v4 = 12.86

We consider collaboration where the search for the structure in X1 becomes
affected by the topology discovered in X2 (that is, it is driven by the price of
real estate). The collaboration link is set to α[1, 2] = 1.0. The impact on X1 is
profound: the prototypes there start shifting, yielding the following configuration:

v1 = [0.60 30.24 5.36 0.07 0.47 6.75 48.16 5.10 5.15 303.99 17.05 385.30 7.13]

v2 = [1.29 8.78 10.36 0.06 0.53 6.11 63.00 4.18 7.15 366.82 18.64 379.20 11.57]

v3 = [1.73 17.86 8.78 0.18 0.53 7.20 67.58 3.53 7.48 347.13 16.75 377.51 6.74]

v4 = [10.38 0.59 17.35 0.03 0.67 5.92 92.09 2.22 18.46 587.79 19.79 294.12 20.41]

One can easily identify patterns whose membership grades are shifted because
of the collaboration; a snapshot of the results is shown in Figure 7.16, which
demonstrates the differences in membership grades for selected clusters produced
with and without collaboration. These changes to the membership grades of the
patterns are candidates for a thorough analysis as potential outliers.

In the next experiment, we allow X1 to impact X2 by setting the collaborative
link α[2,1] equal to 1. This allows us to affect the clusters built on the real estate
price by the properties of the real estate. The prototypes in X2 are affected and
are now v1 = 20.61, v2 = 24.45, v3 = 14.61, and v4 = 30.93 (Figure 7.17).

In the next scenario, we consider nonzero values of α[1,2] and α[2,1]. As we
envision different combinations of the collaborative links, it may be instructive to
quantify the effect of collaboration on the consistency of the resulting information
granules, that is, their partition matrices. A series of experiments was carried out
for combinations of the collaborative links, with the results reported in Table 7.1.
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Figure 7.16. Difference between membership grades with and without collaboration:
(a) first cluster, (b) third cluster, and (c) fourth cluster.

TABLE 7.1. Consistency Measure φ Computed for
Different Values of the Collaborative Links

α[1,2]

α[2,1] 0.0 0.5 1.0 1.5

0.0 0.328 0.164 0.114 0.091
0.5 0.156 1.112 0.089 0.074
1.0 0.115 0.093 0.073 0.063
1.5 0.091 0.077 0.064 0.054
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Figure 7.17. Differences in membership grades for patterns in X2 reported for succes-
sive clusters.

Note, that as the intensity of the collaboration increases, the revealed structures
move close to each other.

7.5. FURTHER ENHANCEMENTS OF HORIZONTAL CLUSTERING

As the formulation of the problem demonstrates, horizontal clustering relies on
the assumption that all sets of patterns X1, X2, . . . , XP deal with the same patterns
(objects) described in different spaces. In this sense, the established collabora-
tion hinges on the existence of these patterns so that the knowledge about their
allocations to clusters in different spaces can be shared and used in a collec-
tive manner. There could be cases where some patterns may not be present in
every data set. As a consequence, they do not contribute to the effect of col-
laboration. We have to exclude them from the optimization process. To do so,
we introduce a Boolean matrix B[ii, jj ] = [bk[ii, jj ]], k = 1, 2, . . . , N , with
the two-valued valuation characterizing the allocation of the patterns (k) to two
data sets.

The original objective function minimized at the level of the iith data set is
refined to take into account the patterns not shared between the sets. We augment
the second term of the function in the form

Q[ii] =
N∑

k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

α[ii, jj ]

×
N∑

k=1

c∑
i=1

{uik[ii] − uik[jj ]}2bk[ii, jj ]d2
ik[ii] (7.19)
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so only the relevant patterns are involved in the optimization. We can eventually
relax the binary requirements by allowing partial involvement in the collabora-
tion; in this case, we assume the values of bk[ii, jj ] to be in the unit interval.

7.6. THE ALGORITHM OF VERTICAL CLUSTERING

The concept of vertical collaborative clustering comes into play when we are
dealing with different data sets where all patterns are described in the same
feature space. Bearing this in mind, we cannot establish communication at the
level of partition matrices (as their dimensions would vary from set to set). The
other alternative consists of prototypes of the data sets. They are defined in the
same feature space, so in contrast to the previous model of collaboration, they
could be a viable option. The proposed objective function governing a search for
structure in the iith data set is

Q[ii] =
N[ii]∑
k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

β[ii, jj ]
c∑

i=1

N[ii]∑
k=1

u2
ik[ii]||vi[ii] − vi[jj ]||2

(7.20)

where β[ii, jj ] is a collaboration coefficient supporting an impact of the jj th data
set and affecting the structure to be determined in the iith data set. The number
of patterns in the iith data set is denoted by N [ii]. We use different letters
to distinguish between horizontal and vertical collaboration. The interpretation
of (7.20) is quite obvious: the first term is the objective function used to search for
the structure of the iith data set, and the second term articulates the differences
between the prototypes (weighted by the partition matrix of the iith data set)
which have to be made smaller through the refinement of the partition matrix
(or, effectively, the movements of the prototypes in the feature space).

The optimization of Q[ii] involves the determination of the partition matrix
U [ii] and the prototypes vi[ii]. As before, we solve the problem for each data
set separately and allow the results to interact, forming a collaboration between
the sets. The minimization of the objective function with respect to the partition
matrix requires the use of Lagrange multipliers because of the existence of the
standard constraints imposed on the partition matrix. We form an augmented
objective function V incorporating the Lagrange multiplier λ and deal with each
individual pattern (t = 1, 2, . . . , N [ii]):

V =
c∑

i=1

u2
it [ii]d

2
it [ii] +

P∑
jj=1
jj �=ii

β[ii, jj ]

×
c∑

i=1

u2
it [ii]||vi[ii] − vi[jj ]||2 − λ

(
c∑

i=1

uit − 1

)
(7.21)
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Taking the derivative of V with respect to ust [ii] and making it 0, we have

∂V

∂ust

= 2ust [ii]d
2
st [ii] + 2

P∑
jj=1
jj �=ii

β[ii, jj ]ust [ii]||vs[ii] − vs[jj ]||2 − λ = 0

(7.22)

For notational convenience, let us introduce the shorthand expression

Dii,jj = ||vs[ii] − vs[jj ]||2 (7.23)

From (7.22) we derive

ust [ii] = λ

2


 d2

st [ii] +
P∑

jj=1
jj �=ii

β[ii, jj ]Dii,jj,s




(7.24)

Given the standard normalization condition
c∑

j=1

ujt [ii] = 1, one has

λ

2
= 1

c∑
j=1

1

d2
j t [ii] +

P∑
jj=1
jj �=ii

β[ii, jj ]Dii,jj,j

(7.25)

With the following abbreviated notation

ϕ[ii] =
P∑

jj �=ii

β[ii, jj ]Dii,jj,j (7.26)

the partition matrix is

ust [ii] = 1
c∑

j=1

d2
st [ii] + ϕs[ii]

d2
j t [ii] + ϕj [ii]

(7.27)

For the prototypes, we complete calculations of the gradient of Q with respect
to the coordinates of the prototype v[ii] and then solve the following equations:

∂Q[ii]

∂vst [ii]
= 0, s = 1, 2, . . . , c; t = 1, 2, . . . n (7.28)
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We obtain

∂Q[ii]

∂vst [ii]
= 2

N∑
k=1

u2
sk[ii](xkt − vst [ii]) + 2

P∑
jj �=ii

β[ii, jj ]

×
N∑

k=1

u2
sk[ii](vst [ii] − vst [jj ]) = 0 (7.29)

Next,

vst [ii]


 P∑

jj �=ii

β[ii, jj ]
N[ii]∑
k=1

u2
sk[ii] −

N[ii]∑
k=1

u2
sk[ii]




=
P∑

jj �=ii

β[ii, jj ]
N[ii]∑
k=1

u2
sk[ii]vst [jj ] −

N[ii]∑
k=1

u2
sk[ii]xkt (7.30)

Finally, we get

vst [ii] =

P∑
jj �=ii

β[ii, jj ]
N[ii]∑
k=1

u2
sk[ii]vst [jj ] − 2

N[ii]∑
k=1

u2
sk[ii]xkt

P∑
jj �=ii

β[ii, jj ]
N[ii]∑
k=1

u2
sk[ii] −

N[ii]∑
k=1

u2
sk[ii]

(7.31)

An interesting application of vertical clustering occurs when dealing with huge
data sets. Instead of clustering them in a single pass, we split them into individual
data sets, cluster each of them separately, and reconcile the results through the
collaborative exchange of prototypes.

7.7. A GRID MODEL OF HORIZONTAL AND VERTICAL
CLUSTERING

In addition to the horizontal and vertical clustering that constitute two generic
modes of collaboration, we can envision a variety of intermediate situations where
patterns from various sources give rise to common subsets of data as well as being
positioned in the same feature space. In other words, one can invoke mechanisms
of horizontal and vertical collaboration at the same time. This leads to the grid
mode of clustering, with examples of collaboration shown in Figure 7.18.

The objective function formulated for the iith pattern as a subject of mini-
mization is an aggregation (sum) of the components used in the previous modes
of collaborative clustering. In general, we have
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(a) (b)

(c)

Figure 7.18. Illustrative examples of grid-based clustering: (a) data structure with a dom-
inant component of horizontal clustering and some linkages of vertical clustering; (b) data
structure with a dominant component of vertical clustering; (c) data structure with bal-
anced mechanisms of collaborative activities where vertical and horizontal clustering
become equally visible.

Q[ii] =
N∑

k=1

c∑
i=1

u2
ik[ii]d2

ik[ii] +
P∑

jj=1
jj �=ii

D1

α[ii, jj ]
N∑

k=1

c∑
i=1

{uik[ii] − uik[jj ]}2d2
ik[ii]

+
P∑

jj=1
jj �=ii

D2

β[ii, jj ]
c∑

i=1

N[ii]∑
k=1

u2
ik[ii]||vi[ii] − vi[jj ]||2 (7.32)
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using the same notation used earlier. Note that the summation points at the
corresponding data sets (operating in either mode of collaboration), that is, D1

involves all data sets that operate in the horizontal mode of clustering, whereas
D2 concerns those using horizontal collaboration.

7.8. CONSENSUS CLUSTERING

In this model of clustering, which nicely complements the vertical mode of
collaborative clustering, we consider data sets defined in the same feature space,
X[1], X[2], . . . , X[P ].

The clustering is carried out without any interaction between the data sets
and the results produced there. In contrast to collaborative clustering, the group-
ing here can involve different numbers of clusters, say c[1], c[2], . . . , c[P ]. The
results are provided in terms of prototypes and partition matrices. Because of
the same feature space, the prototypes are of interest here. With P sets of data
and the same number of clusters, the total number of prototypes is then equal
to

∑P
i=1 c[i]. The prototypes are the aggregates summarizing the individual data

sets. They, in turn, are treated as patterns to be clustered at the next higher level.
This implies two-level clustering (Figure 7.19).

The fundamental question concerns the structure revealed at the higher end
and what this implies with respect to the structures relevant to the data sets at the
lower end. As the prototypes are clustered at the second level, we start building a
metastructure that in the sequel gives rise to metaclusters. A convenient way to
visualize and understand the structural dependencies (especially how the clusters

FCM Data X[i]

Figure 7.19. Two-level clustering—the development of structural consensus.
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relate to each other) is to stress that the partition matrix built at the higher level
of clustering is formed on the basis of the prototypes of the data sets, that is,
v1[1], v2[1], . . . vc[1][1], . . . , v1[P ], v2[P ], . . . vc[P ][P ].

Recalling that each prototype at the lower level comes with a fuzzy relation
formed there, each row of the above partition matrix is in essence built on
top of the family of fuzzy relations, say A1[1], A2[1], . . . , Ac[1][1], . . . , A1[P ],
A2[P ], . . . , Ac[P ][P ]. As an example, consider a partition matrix with the entries
(P = 4, c[1] = 2, c[2] = 2, and c = 3 at the upper end).

U =

 0.7 0.5 0.0 0.1 0.9 0.3 0.0 0.0

0.1 0.4 1.0 0.7 0.0 0.6 0.1 0.0
0.2 0.1 0.0 0.2 0.1 0.1 0.9 1.0




It produces three fuzzy sets of order −2 (Kandel, 1986; Pedrycz, 1995), as
visualized in Figure 7.20.
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Figure 7.20. Fuzzy sets of order −2 formed on the “local” structure developed within
the individual data sets (only nonzero membership grades are shown).
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Interestingly, each fuzzy set B1, B2, and B3 captures information about the
complexity of the overall structure and how each of the metaclusters is formed
as a mixture of fuzzy sets built in X[1], X[2], . . . , X[P ]. We note that B3 is
homogeneous, being expressed (described) primarily over A3[3] and A4[3]. The
most heterogeneous one is the first cluster (B1).

7.9. CONCLUSIONS

Collaborative clustering is useful to achieve interaction between different sources
of information for the purpose of revealing underlying structures and regularities
within data sets. It can be treated as a process of consensus building where we
attempt to reveal a structure that is common across all sets of data. The introduced
models of horizontal and vertical clustering achieve an active form of collabo-
ration. We highlighted the aspect of data security and confidentiality: the level
of granularity at which the communication takes place is a useful and practical
way of retaining these features. The principle of collaborative clustering could
be of interest in the design of intelligent agents operating within limited domains
and benefiting from various forms of interaction and collaboration; needless to
say, this must occur in an active mode, and that is what happens in collaborative
clustering. Vertical, horizontal, and hybrid clustering are essential mechanisms of
communication at some granular level. Various collaborative activities provide
insight into the structure of data and help identify patterns that require more
attention or could be labeled as outliers.

The models of collaborative clustering were designed under the assumption
that each data set has the same number of clusters. While not being particularly
limiting, in some cases this requirement could be relaxed, especially if we are
interested in forming granular mappings where the assumption we have made so
far does not seem to be fully justifiable. We link collaborative clustering with
conditional clustering, which does not support active interaction (relying more on
passive constraints) but allowing for various levels of granularity and different
number of clusters in each data set, say c[1], c[2], . . . , c[P ].
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8 Directional Clustering

Clustering is commonly regarded as a direction-free (or relational) activity aimed
at the determination of structure in data (Duda et al., 2001). In this chapter, we
develop methods that help endow clustering with some directional aspects of
information granulation, recognizing that there may be some underlying mapping
between information granules expressed in the corresponding spaces. We discuss
various generalized objective functions aimed at striking a sound balance between
the relational and directional optimization facets of fuzzy clustering.

8.1. INTRODUCTION

As we have emphasized, given multidimensional numeric experimental data,
fuzzy clustering produces information granules (fuzzy sets or fuzzy relations).
In the most generic version, we are concerned with a single multivariable data
set for which a structure has to be revealed. Consider now a situation where
we are given two separate data sets. Obviously, fuzzy clustering can discover
the structure in each of these data sets treated separately or en bloc (assuming
that they both have the same patterns with different features so that their feature
vectors can be concatenated). In addition to the clustering itself, we are inter-
ested in forming a map between the information granules developed for these two
data sets. Ideally, we would like to construct the granules in such a way that the
mapping itself is optimized as well, that is, so that it transforms information gran-
ules defined in one space (domain) into granules in the other space (codomain)
with no significant distortion (mapping error). Evidently, this problem statement
goes far beyond the standard clustering optimization discussed so far. It exhibits
some properties of collaborative clustering but contains new elements. Figure 8.1
highlights the crux of the problem: we cluster data set X[1] (the notation will
be clarified in Section 8.2) according to some performance criterion. The second
data set X[2] has to be clustered so that it reveals its granular structure, but here
we also require these information granules to result from some logic mapping
of information granules already constructed in X[1]. As the clustering in X[2] is
guided by two essential criteria, one of which pertains to the direction-sensitive
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X[1]

X[2]

Figure 8.1. A general scheme of directional clustering: clusters in X[2] are directional
constructs affected by the mapping between information granules in X[1] and X[2].

transformation from the information granules in X[1] to those in X[2], we refer
to the ensuing optimization as directional clustering.

We start with the formulation of the objective function that helps capture the
essence of the problem. Next, we describe its optimization and develop an overall
algorithm, including a general flow of the corresponding optimization activities.

8.2. PROBLEM FORMULATION

Let us start by establishing a certain notation. Given are two data sets X[1]
and X[2], where X[1] = {x1[1], x2[1], . . . , xN [1]} and X[2] = {x1[2], x2[2], . . . ,
xN [2]}, where xk[1] ∈ Rn1 and xk[2] ∈ Rn2 . Information granulation carried out in
X[1] involves c[1] fuzzy clusters. For the second data set, the clustering gives rise
to c[2] clusters. The clusters constructed in X[1] are denoted by A1, A2, . . . , Ac[1].
For X[2] the corresponding clusters are B1, B2, . . . , Bc[2]. As is obvious, in the
data as well as in granular constructs we use square indexes to distinguish between
the data sets. We are interested in a mapping from X[1] to X[2] or, to be more
precise, a correspondence between information granules defined in X[1] and
those developed in X[2]. Because of the level at which these mappings are
formulated (they deal with information granules rather than numbers), we are
interested in the logic–based form of transformations (aggregations). In other
words, we express information granule Bi as a logic aggregation (φ) involving
the information granules developed in X[1]:

Bi = φ(A1, A2, . . . , Ac[1], wi )

i = 1, 2, . . . , c[2]. More descriptively, Bi combines Aj ’s in a logic format to
return the corresponding fuzzy relation (fuzzy set) defined in X[2]. The above
expression comes with a weight vector (parameters) wi that is used to calibrate
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the links between Aj and Bi . We discuss the details of the logic expression in
the next section. At this point, it is worth mentioning that we are interested in the
development of information granules {Ai} and {Bj } that satisfy the requirements
of relational and directional character of constraints being imposed on data.

8.2.1. The Objective Function

The entire optimization starts with the objective function defined in such a way
that it reflects the corresponding computing activities taking place in X[1] and
X[2]. They have been discussed separately because of the very different character
of the required optimization. The activities in X[1] are straightforward: we are
concerned with the formation of information granules that capture the essence
of the existing structure. Hence the minimized objective function assumes the
well-known format

Q[1] =
c[1]∑
i=1

N∑
k=1

u2
ik[1]d2

ik[1] (8.1)

where
d2

ik[1] = ||xk[1] − vi[1]||2

is a distance function between the pattern (that is, xk[1]) and the prototype
(denoted here by vi[1]), with both of them being located in X[1]. At this point, it
is instructive to emphasize that the partition matrix formed by this optimization
yields a collection of fuzzy relations:

U [1] = [A1 A2 . . . Ac[1]]
T =




A1

A2

. . .

Ac[1]




Note that each Ai is defined in the finite space X[1] (which implies that Ai

has a discrete membership function).
In other words, the objective function in X[1] can be regarded as a weighted

sum of the distances between the prototypes and the data points, with the weights
being the membership grades of the fuzzy relations:

Q[1] =
c[1]∑
i=1

AižDi (8.2)

where

A2
i
žDi =

N∑
k=1

u2
ikd

2
ik (8.3)

In more detail, we have
Ai = [u2

i1u
2
i2 . . . u2

ic[1]]
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The minimization of (8.1) or, equivalently, (8.2) is standard as being completed
with respect to the partition matrix and the prototypes.

In X[2], the optimization activities are more comprehensive, as we are faced
with the two main objectives, that is, relational (finding a structure in X[2])
and directional (achieving granular mapping between information granules in
X[1] and X[2]). Because there are two optimization components, the objective
function has to reflect this situation. We take into consideration an additive form
of Q[2]:

Q[2] =
c[2]∑
i=1

N∑
k=1

u2
ik[2]d2

ik[2] + β

c[2]∑
i=1

N∑
k=1

(uik[2] − φi (U [1]))2d2
ik[2] (8.4)

The first term is just a standard component encountered in the FCM that looks
after the optimization of the structure in X[2]. The second term captures the dif-
ferences between U [2] and the mapping of the structure detected in X[1] (viz.,
the fuzzy partition U [1]) to X[2], that is, φi (U [1]). In this sense, it charac-
terizes the performance of the mapping between the information granules. The
weight coefficient (β) is used to strike a sound balance between the relational
and directional facets of the optimization.

The optimization of (8.1) is standard. The optimization of (8.4) requires de-
tailed investigation. The minimization of the objective function Q[2] is completed
with respect to the partition matrix U [2] (structure), the prototypes, and the
parameters of the logic transformation (φi).

8.2.2. The Logic Transformation Between Information Granules

The granular mapping from X[1] to X[2] consists of a logic transformation
between the information granules. It is worth stressing that there are many pos-
sible types of mappings. Our choice is implied by the transparency of the logic
mapping that comes with the logic type of the spaces between which the mapping
takes place. Two classes of mappings are discussed.

The first is OR-based. As the name indicates, we consider the information
granule Bi to be an OR aggregation of the granules in the input space:

Bi = A1 or A2 or . . . or Ac[1] (8.5)

Not all fuzzy relations in the input space contribute to the formation of Bi ,
and not all of them have an equal impact on the membership of Bi . To gain this
flexibility, we allow for a weight vector (connections) wi whose role is to artic-
ulate (quantify) the contribution coming from Aj ’s. The following modification
is made to (8.5):

Bi = (A1 and wi1) or (A2 and wi2) or . . . or (Ac[1] and wic[1]) (8.6)
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where wi = [wi1wi2 . . . wic[1]] are weights with values confined to the unit inter-
val. The logic operations are realized by t- and s-norms, leading to the equivalent
expression of (8.6) (s-t realization of the logic expression)

Bi = (A1 t wi1) s (A2 t wi2) s . . . s(Ac[1] t wic[1])

and (8.7)

Bi =
c[1]

S
j=1

(Aj twij )

Note that the above logic mapping concerns a single fuzzy relation in X[2]. In
similar fashion, we can map the remaining information granules. After a careful
examination of the mappings viewed together, we come up with the following
concise notation. Arrange all weights in a matrix form

R = [rij ] =




w11 . . . w1c[2]

. . .

wlj

wc[1]1 . . . wc[1]c[2]


 (8.8)

Then the mapping from information granules in X[1] to information granules
in X[2] is nothing but a fuzzy relational equation with a standard s-t composition
(Di Nola et al., 1989) denoted here by a small dot

B = A ◦ R (8.9)

where A = [A1 A2 Ac[1]] and B = [B1 B2 Bc[2]].
The second type of mapping is AND-based aggregation of the information

granules, meaning that we consider Bi to be a combination of Aj ’s aggregated
AND-wise:

Bi = A1 and A2 and . . . and Ac[1] (8.10)

The straightforward generalization of this aggregation includes a weight vector
and, subsequently, the combination of the t-s type

Bi = (A1 or wi1) and (A2 or wi2) and . . . and (Ac[1] or wic[1]) (8.11)

Bi = (A1 s wi1) t (A2 s wi2) t . . . t (Ac[1] s wic[1]) =
c[1]

T
j=1

(Aj swij ) (8.12)

These two aggregation mechanisms are dual in the sense of their logical func-
tionality. Owing to the character of the AND and OR operations, their use depends
on the number of information granules in the respective spaces. Intuitively, if c[1]
is greater than c[2], we consider the OR type of aggregation (anticipating that
the element in the output space is constructed as a union of several information
granules in the input space; see Figure 8.2). Similarly, for c[1] less than c[2],
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OR

(a)

AND

(b)

Figure 8.2. Logical character of mapping between information granules: (a) a general-
ization effect produced by the OR type of combination and (b) a specialization effect
provided by the AND type of aggregation of information granules.

the AND type of aggregation is more appealing (as we project that Bi is made
more specific in relation to the information granules existing in X[1]).

8.3. THE ALGORITHM

At this point we, are ready to proceed with the computational details for Q[2]
that lead to the complete algorithm. The objective function implies the following
optimization task:

minU [2],v1[1],v2[2],...,vc[2]] Q[2]

subject to
U [2] ∈ U

and
R ∈ R (8.13)

where the family of partition matrices U is defined in the usual manner (namely,
we require that the elements in each column of U [2] sum to 1 and that the sum
of the elements in each row of R is nonzero and lower than N ). R is an element
of the family of the fuzzy relations R (viz., matrices with elements confined
to the unit interval). The above optimization problem concerns a way of form-
ing a structure in X[2] with inclusion of the mapping properties. The clustering
mechanisms in X[1] follow the standard FCM and will not be discussed here.

The optimization of the partition matrix U [2] in the objective function uses
Lagrange multipliers (because of the constraint in the development of the partition
matrix). For a given data point (k), we form an augmented objective function

V =
c[2]∑
i=1

N∑
k=1

u2
ik[2]d2

ik[2] + β

c[2]∑
i=1

N∑
k=1

(uik[2] − φi (U [1]))2d2
ik[2]

+ λ

(
c[2]∑
i=1

uik[2] − 1

)
(8.14)
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where λ is a Lagrange multiplier. Proceeding with the necessary conditions for
the minimum of V

∂V

∂ust [2]
= 0

∂V

∂λ
= 0

we calculate

2ust [2]d2
st [2] + 2β(ust [2] − yst )d

2
st [2] + λ = 0 (8.15)

yst stands for a logic-based mapping between the information granules:

yst =
c[1]

S
j=1

(ust [1]trsj )

Computing ust [2] from (8.15), we obtain

ust [2] = βystd
2
st [2] − λ

2d2
st [2](1 + β)

As the membership grades sum to 1, this leads us to the expression

c[2]∑
j=1

βyjtd
2
j t [2] − λ

2d2
j t [2](1 + β)

= 1

and in the sequel

λ

1 + β
=

−1 + β

1 + β

c[2]∑
j=1

yjt

c[2]∑
j=1

1

d2
j t [2]

We introduce the notation

ũst [2] = 1
c[2]∑
j=1

d2
st [2]

d2
j t [2]

Finally, we get

ust [2] = ũst [2] + β

1 + β


yst − ũst [2]

c[2]∑
j=1

yjt


 (8.16)

s = 1, 2, . . . , c[2], t = 1, 2, . . . , N .
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The above formula has an interesting interpretation: if β = 0, then it reduces to
the well-known formula for the partition matrix encountered in the FCM. When
β increases, ust [2] is affected by the second term in (8.16).

The calculations of the prototypes do not come with any constraints, so we

follow the necessary condition for the minimum of Q[2], namely,
∂Q[2]

∂vst [2]
= 0,

s = 1, 2, . . . , c[2], t = 1, 2, . . . , n2.
In light of the weighted Euclidean distance governed by the expression

d2
ik[2] =

n2∑
j=1

(xk[j ] − vij [2])2

σ2
j [2]

(8.17)

(where σ2
j [2] denotes a variance of the j th variable), the above derivative is

equal to

∂Q[2]

∂vst [2]
= 2β

N∑
k=1

u2
sk[2]

(xk[t] − vst [2])

σ2
t [2]

− 2β

N∑
k=1

ψsk

(xk[t] − vst [2])

σ2
t [2]

(8.18)

with the following notation:

ψsk = (usk[2] − ysk)
2

Bearing in mind the necessary condition for the minimum of Q[2] with respect
to the prototypes, they are equal to

vst [2] =

N∑
k=1

xk[t](u2
sk + βψsk)

N∑
k=1

(u2
sk + βψsk)

(8.19)

Note that, when β = 0, we arrive at the standard expression for the prototypes
that is identical to the one in the FCM method.

Finally, we optimize the fuzzy relation R describing the logic mapping between
the spaces. In general, the solution is not expressed analytically and we have to
use iterative optimization. The expression governing this optimization is

R(iter + 1) = R(iter) − β∇R(iter)Q (8.20)

where the fuzzy relation is transformed on the basis of the gradient of the per-
formance index Q. The learning rate shown above (β > 0) controls the rate of
changes of the updates of the fuzzy relation. The gradient itself is computed
for specific triangular norms. In what follows (and all experiments shown in
Section 8.5 will exploit these assumptions), we consider two common models
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of the logic connectives, such as a product (t-norms) and a probabilistic sum
(s-norm). On this basis, the gradient is

∂ysk

∂rst

= (1 − Ast )utk[1] (8.21)

where Ast denotes an s-t composition that excludes the currently optimized ele-
ment of the fuzzy relation

Ast =
c[1]

S
j=1
j �=t

(ujk[1]trsj ) (8.22)

8.4. THE DEVELOPMENT FRAMEWORK
OF DIRECTIONAL CLUSTERING

The way in which the information granules are built stipulates a certain flow
of optimization activities. These can be organized into two main phases (see
Figure 8.3). The initial phase concentrates on the clustering completed indepen-
dently for the two data sets X[1] and X[2]. The intent here is to establish some
preliminary structure in the data so that we can have a reasonable starting point to
proceed with the collaboration and further refine the initial relationships. During
the second phase, the clustering processes start to collaborate through the map-
ping. At the same time, the fuzzy relation is subject to gradient-based optimization
(as illustrated in Figure 8.3, this is an integral portion of the collaboration pro-
cess and negotiation of the granular structures). Because of the direction of the
mapping, the clustering in X[1] is not affected, while the relational and directional
facets of the clusters emerge at the side of X[2].

Initial (relational)
phase

Flow of optimization

X[1] X[2]

Relational
&

directional
phase

R

Q[1]

Q[2]

Figure 8.3. Relational and directional optimization of information granules—an overall
development scheme.
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Figure 8.4. Plots of the synthetic data in the input space (x1, x2) and the output data (y).

8.5. NUMERICAL STUDIES

The proposed algorithmic framework is illustrated by numeric experiments. They
include synthetic as well as real-world data available on the World Wide Web.

Synthetic Data. This experiment concerns three-dimensional data. The first data
set includes input variables (x1 and x2), and the second involves one-dimensional
data (y) (see Table 8.1 and Figure 8.4).

The same data points are shown in a three-dimensional space in Figure 8.5.
This helps reveal the structure. The output variable has two clearly visible
clusters. Moreover, the three clusters in the input space relate to the two clusters
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TABLE 8.1. Synthetic Data Used in the Experiment

x1 1.2 0.8 0.2 0.9 3.5 4.2 4.3 4.8 6.1 6.5 6.9 6.6 6.4 6.1
x2 1.8 1.5 1.6 1.2 3.9 3.4 4.7 4.1 7.0 6.2 6.4 5.7 5.8 5.7
y 1.5 1.1 1.4 0.9 3.5 3.2 2.9 3.4 3.6 2.7 2.5 2.8 3.7 3.9

x1

x2

y

0

1

2

3

6.0

4.8

3.6

2.4

1.2 1.5
3.0

4.5
6.0

Figure 8.5. Three-dimensional plot of the synthetic data.

in the output space. In more detail, we note that the two clusters in the input
space X[1] map on a single cluster in X[2].

Following these observations (which are easy to arrive at, as we are dealing
with low-dimensional synthetic data), we set up c[1] = 3 and c[2] = 2. In the
experiment, the learning rate of the gradient-based learning is equal to 0.1. This
relatively low value helps avoid oscillations (which is more important than an
eventual slowdown of the learning process itself). With no collaboration (β =
0.0), the obtained clusters are described in terms of the partition matrices:

Partition—space of input variables

U [1] =




0.017434 0.005164 0.977402
0.000068 0.000022 0.999910
0.013630 0.004868 0.981502
0.007460 0.002543 0.989997
0.938615 0.030536 0.030849
0.936182 0.032897 0.030921
0.894294 0.082808 0.022897
0.946818 0.039856 0.013326
0.069128 0.914942 0.015930
0.001119 0.998669 0.000212
0.020588 0.974971 0.004441
0.027533 0.967885 0.004582
0.015457 0.982032 0.002511
0.045319 0.948161 0.006520






NUMERICAL STUDIES 169

Partition—output variable

U [2] =




0.982731 0.017269
0.994259 0.005740
0.994833 0.005167
0.976867 0.023133
0.010273 0.989727
0.001394 0.998606
0.049299 0.950701
0.003565 0.996435
0.019316 0.980684
0.137239 0.862761
0.281143 0.718857
0.086491 0.913509
0.029929 0.970070
0.053702 0.946298




Subsequently, the prototypes are equal to

Input space: v1[1] = [ 4.204584 4.015867 ]

v2[1] = [ 6.439176 6.117275 ]

v3[1] = [ 0.777533 1.524844 ]

Output space: v1[2] = 1.265061 v2[2] = 3.272303

The clusters emerging in both spaces are well delineated, with a very lim-
ited overlap. The clustering is carried out for several levels of collaboration (β).

1 3 9

Cycle no.
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Figure 8.6. Performance index in successive development cycles (β = 0.1, α = 0.1).
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Following the general scheme (Section 8.4), we implement the collaboration after
the initial clustering of the individual data. This requires five iterations. The per-
formance index achieved throughout the clustering and learning of the relations is
visualized in Figure 8.6 (note that the term “cycle” used there concerns the per-
formance index recorded for a single clustering iteration and 20 learning epochs
of the gradient-based learning). The optimization is efficient, as the values of the
performance index are reduced from cycle to cycle.

Once the optimization has been completed, the fuzzy partition in the output
space is

U [2] =




0.980664 0.019336
0.994456 0.005544
0.993309 0.006691
0.976525 0.023475
0.010258 0.989742
0.001312 0.998688
0.045444 0.954556
0.003853 0.996147
0.023591 0.976409
0.128656 0.871345
0.259470 0.740530
0.082898 0.917102
0.033662 0.966339
0.055437 0.944563




We do not report the results of clustering in the input space, as in this model
these fuzzy sets have not been affected. When comparing this partition matrix
with the one obtained for the clustering without any collaboration, we conclude
that there are no substantial differences. Obviously, the collaboration effect is
quite limited, and this may be a reason for the evident coincidence in the infor-
mation granules (conveyed in the respective partition matrices). The prototypes
do not change when the collaboration effect comes into play at this level (namely,
for β = 0.1).

U [2] =




0.980664 0.019336
0.994456 0.005544
0.993309 0.006691
0.976525 0.023475
0.010258 0.989742
0.001312 0.998688
0.045444 0.954556
0.003853 0.996147
0.023591 0.976409
0.128656 0.871345
0.259470 0.740530
0.082898 0.917102
0.033662 0.966339
0.055437 0.944563
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What becomes of interest is a fuzzy relation revealing the main relationships
between the information granules (fuzzy sets) in the input and output spaces:

R =
[

0.000000 0.063547 0.738940
0.710587 0.889359 0.005974

]

There is a strong dependency (relationship) between the granules quantified
by high membership grades. Denoting the fuzzy sets by A1, A2, and A3 (input
space) and B1 and B2 (output space), we translate the above fuzzy relation into
two logic expressions:

B1 = A3 (0.73)

B2 = A1 (0.71) or A2 (0.89)

(Note that we have included only the terms with high levels of association;
the associations themselves are simply the corresponding entries of the fuzzy
relation.)

Now we increase the value of β to 0.4. This change becomes reflected in
the partition matrix, whose entries now start to diverge from the ones without
any collaboration. Figure 8.7 illustrates these new membership grades of the
partition matrices.
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Figure 8.7. Changes in membership grades as a result of collaboration.
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The differences between the prototypes are still negligible, as they are equal
to v1[2] = 1.25503 and v2[2] = 3.255817, respectively. The fuzzy relation of the
associations is now equal to

R =
[

0.000000 0.060559 0.947464
1.000000 0.908921 0.005793

]

Subsequently, the list of logical expressions is similar to the one obtained before:

B1 = A3 (0.95)

B2 = A1 (1.00) or A2 (0.91)

However, now the strength of the associations between the information granules
has been increased.

Higher values of β may lead to some instability, as the mechanisms used
in the method tend to compete. This is visible in Figure 8.8; for higher β, the
performance index tends to oscillate. These oscillations become more visible
once the structures rely on each other more significantly (β increases). The lack
of stability indicates that the structures no longer collaborate but tend to compete.

Auto-mpg dataset comes from the UCI repository of machine learning
(http://www.ics.uci.edu/∼mlearn/MLSummary.html) and concerns a collection of
vehicles described in terms of their displacement, weight, country of origin, and
so on. We consider all features but fuel efficiency (expressed in miles per gallon)
as inputs. Fuel efficiency is treated as the output variable.

Clustering is carried out for different number of clusters in the input and output
spaces. The level of collaboration (β) is maximized as much as the stability
is retained. The results are summarized in the form of fuzzy relations (with
the most essential links being highlighted) and the prototypes in the input and
output spaces. Table 8.2 contains a sample of the findings. Notably, there are no
significant changes to the information granules. The granules in the input space
start to become more specific once their number increases.
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Figure 8.8. Objective function Q[2] in successive cycles of optimization for two selected
values of β.
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TABLE 8.2. Results of Collaboration Between Clusters in the Input and Output
Spaces for a Selected Number of the Clusters in the Input Space, c[1] = 4, 5, and 7
and c[2] = 2, and Maximal Values of the Collaboration Factors (β) and Obtained
Prototypes of the Clusters

β = 0.1

R =
[

0.00 1.00 0.62 0.00
0.85 0.00 0.00 0.36

]

Prototypes

INPUT SPACE

v1[1] = [ 4.08 103.92 76.34 2219.61 16.55 77.51 2.66 ]
v2[1] = [ 7.94 347.37 160.89 4164.82 12.66 73.349 1.01 ]
v3[1] = [ 5.88 218.63 99.789 3196.26 16.62 75.81 1.11 ]
v4[1] = [ 4.23 127.19 83.87 2475.72 16.14 77.31 1.42 ]

OUTPUT SPACE

v1[2] = 17.53 v2[2] = 31.19

β = 0.15

R =
[

1.00 0.00 0.51 0.00 0.02
0.63 1.00 0.31 0.52 0.35

]

Prototypes

INPUT SPACE

v1[1] = [ 4.08 102.48 73.39 2188.47 16.73 78.91 2.79 ]
v2[1] = [ 7.96 350.07 162.00 4189.60 12.61 73.22 1.01 ]
v3[1] = [ 4.27 137.07 85.29 2578.33 16.20 79.02 1.18 ]
v4[1] = [ 6.068 230.51 102.26 3290.02 16.56 75.63 1.06 ]
v5[1] = [ 4.16 113.299 84.54 2359.73 15.94 74.03 2.03 ]

OUTPUT SPACE

v1[2] = 31.11 v2[2] = 17.78

β = 0.2

R =
[

0.21 0.26 0.03 0.00 0.01 0.75 1.00
0.22 1.00 1.00 0.62 0.18 0.13 0.32

]

Prototypes

INPUT SPACE

v1[1] = [ 4.09 108.24 83.89 2309.29 15.86 73.81 2.21 ]
v2[1] = [ 7.97 362.46 168.89 4264.13 12.25 72.36 1.00 ]
v3[1] = [ 7.79 309.14 138.76 3885.15 13.94 76.40 1.02 ]
v4[1] = [ 5.95 226.26 99.46 3241.93 16.69 75.18 1.057 ]
v5[1] = [ 4.33 130.68 84.46 2507.56 16.51 76.25 1.50 ]
v6[1] = [ 4.217 135.32 84.60 2569.33 16.17 79.53 1.18 ]
v7[1] = [ 4.04 99.76 71.44 2154.74 16.82 79.41 2.86 ]

OUTPUT SPACE

v1[2] = 31.25 v2[2] = 17.65
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TABLE 8.3. Fuzzy Relations of Connections for c[1] = c[2] = 2, 3, and 6 with
β = 0.05

R =
[

0.000000 0.949054
0.420400 0.000000

]

R =

 0.110320 0.025040 0.247469

0.000000 0.877086 0.000000
0.210435 0.000000 0.000000




R =




0.090541 0.003166 0.000000 0.000788 0.000000 0.003596
0.004518 0.012588 0.076320 0.017965 0.106748 0.006710
0.000000 0.051439 0.156852 0.109466 0.000000 0.000000
0.160533 0.000564 0.000000 0.000000 0.000000 0.037163
0.031722 0.004176 0.000000 0.003358 0.117081 0.075881
0.000000 0.706356 0.000000 0.000000 0.000000 0.000000




It is interesting to note that the collaboration can be made more vigorous with-
out sacrificing stability when the number of clusters in the input space increases.
This could have been expected, as the resulting information granules tend to be
smaller (of higher granularity) and therefore could be moved around more freely,
causing little distortion (and hence instability) during the collaboration process.
The dependencies between the information granules, as expressed by the fuzzy
relations, discriminate quite well between strong and weak links. In other words,
the fuzzy relations start to contain values close to either 0 or 1. This shows that
some information granules relate very strongly.

Now let us consider the same number of clusters in both spaces (Table 8.3).
This arrangement helps us reveal how the granules relate in the two spaces.
Because the number of fuzzy sets is the same, the logic formula may consist of
one-to-one mapping, namely, mapping a single information granule in the input
space to an information granule in the output space. Obviously, this happens at
the level of information granules rather than numeric quantities. If we consider
the entries of the fuzzy relations, the observation about this one-to-one map-
ping is completely legitimate. In each row of the fuzzy relation, there is only
one dominant membership grade (indicated in boldface in Table 8.3). Notably,
these are not necessarily high membership values. This is, however, justified, as
the entries for the partition matrices start to lower once the number of clusters
increases (recall that these membership grades must add up to 1).

The graph of links between the information granules for c = 2 and 3 is
included in Figure 8.9 (we show only the most dominant connections).

8.6. CONCLUSIONS

In this chapter, we raised the issue of designing information granules (fuzzy sets
or fuzzy relations) that take into consideration the structure in a data set, as well
as addressing the mapping occurring at the level of these information granules.
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Figure 8.9. A graphical illustration of linkages between information granules in X[1]
and X[2].

The novelty of this approach lies in this multifaceted aspect of information
granulation. Fuzzy clustering itself is concerned with the structure of the data,
not the nature of possible mappings. It is evident that fuzzy clustering, no mat-
ter which technique it involves, tackles the relational nature of data (so, when
searching for a structure, no direction is taken into consideration). The augmented
objective function includes an additional component to make the information
granules consonant with the mapping requirements (which comes with a direc-
tional component). The additive form of the objective function with a modifiable
component of directional activities makes it possible to model the level of influ-
ence attained at the level of the mapping formed by the granules in X[1]. In this
way, it helps avoid potential competition in case of incompatible structures and
the associated mapping.

Logic-based mapping (which relates to the use of fuzzy relational equations) is
a consequence of the logic framework of information granules. One can, however,
apply other types of mapping, including those implemented via neural networks.
This generalizes the approach and promotes it as a general model of collaborative
granular computing.

It is interesting to contrast directional clustering with collaborative clustering.
While there is some similarity, primarily caused by the fact that a number of data
sets are involved in the construction of information granules, the differences are
quite significant. First, in collaborative clustering, we make an assumption about
the equal number of clusters (so that collaboration can be invoked). Second, in
collaborative clustering, we are considering the clustering algorithms operating
at both data sets to send collaboration messages. In the directional approach, we
emphasize the collaborative nature of the message generated within X[1] and
transmitted to X[2] through logic granular mapping. The unidirectional nature of
this communication is inherently associated with the mapping.

One can envision some extensions. While they do not affect the principles of
directional clustering, they seem to be helpful in formulating the problem. The
first extension deals with several data sets serving as inputs. The formalism is not
modified, but the logic transformation can be established in the way it operates
on input information granules formed for each dataset.
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Figure 8.10. Bi-directional clustering: the concept and communication mechanism.

The second extension is concerned with the directional mapping achieved
by two separate logic transformations. This evidently brings us closer to the
model of collaborative clustering; the only exceptions are the different number
of clusters in each data set and the message about the structure sent through the
logic mapping. Through bidirectional clustering (this term is more reflective of
the functionality of this algorithm), we construct a pair of mappings (R and G)
whose domains and codomains are the reverse of each other. The computational
concept is displayed in Figure 8.10. Both objective functions Q[1] and Q[2]
involve the directional component in their formulation.

The directional model of information granulation is also in line with a broad
range of techniques of fuzzy modeling; see Jang (1993), Delgado et al. (1998),
Kandel (1986), Ma et al. (2000), Pedrycz and Vasilakos (1999), and Setnes
(2000). The development of transparent models and building information gran-
ules consistent with the structure in the data and complying with the mapping
requirements has been accomplished through the composite objective function of
directional clustering.
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9 Fuzzy Relational Clustering

The patterns we have discussed so far are characterized by a vector of features and
thus are considered to be points in a feature space. In practice, we can envision
situations where, instead of individual patterns, specification and characterization
are given for individual pairs of patterns. In this case, we say that such patterns
are described in relational form, hence the name of the clustering algorithm.

9.1. INTRODUCTION AND PROBLEM STATEMENT

As their name indicates, relational data are concerned with structures that are
formed on the basis of relationships (or relations) defined among original patterns.
The typical predicate or relation we can define may deal with the concept of
similarity or dissimilarity between pairs of patterns. The other predicate may
be one of complementary character, such as a predicate expressing a degree of
difference or dissimilarity between pairs of patterns. Imagine that we have a
set of N cities and compute the distances between pairs of them. Denote the
result by dij . Now these distances are treated as new relational patterns. Within
these patterns we characterize distance-oriented similarity clusters that could be
discovered between the cities. This structure in the distance space is usually
different from the one we could have expected to find in the original data (see
Figure 9.1).

As another example, consider a typical biometric problem involving a collec-
tion of faces that need to be classified. It is natural to compare them in a pairwise
manner. For instance, it makes sense to determine that face 1 is similar to face 4
to a certain degree. Next, we wish to cluster these proximity degrees. Clustering
the original faces could have been more challenging for several reasons. First and
foremost, constructing a meaningful feature space could be difficult. Second, even
if this can be accomplished in a meaningful manner, the dimensionality of the
resulting feature space may lead to a sparse distribution of patterns. The structure
in such a data set may be quite unstable. A similar problem of sparse data arises
when searching for structure in a collection of Web pages. A simple scenario
in this search is to envision the use of textual information to form the feature
space. In this sense, keywords could be plugged in as the entries of the feature
vectors. Given the immense diversity of textual information, one can expect the
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x1

x2

dij

Figure 9.1. A collection of cities in two-dimensional space and the relational character-
istics involving distances between them.

feature vectors to be very long. This high dimensionality could easily make the
clustering of the data quite unreliable. The same patterns compared pairwise lead
to the highly reduced feature space where the clustering takes place.

9.2. FCM FOR RELATIONAL DATA

The relational version of the FCM algorithm, that is, a clustering method appli-
cable to relational data was introduced by Bezdek and Hathaway (1987), along
with its extensions (Hathaway et al., 1996; Hathaway and Bezdek, 1994, 2002;
Hathaway, et al., 1989; Runkler and Bezdek, 2003). The relational format of data
assumes that there are degrees of dissimilarity between patterns rather than origi-
nal patterns. Denote them by Rij , where i, j = 1, 2, . . . , N . They are conveniently
organized in the matrix form R = [Rij ]. The following intuitively straightforward
properties of Rij are assumed to occur:

Rij (nonnegativity)
Rij = Rji (symmetry)
Rii = 0 (dissimilarity of any pattern compared to itself is equal to zero)

Alternatively, one could define similarity as a complement of Rij (assuming
that these values are normalized), Dij = 1 − Rij . Clustering is then carried out
on the basis of information about dissimilarities. Taking into account the above
properties, we note that N patterns give rise to N2/2 − N = N(N − 1)/2 differ-
ent pairs of dissimilarity values for the existing pairs of patterns. Those are now
the entries (relational patterns) used to guide the relational clustering.

Like the standard FCM, its relational version is an iterative optimization
scheme composed of the following phases. We first go through the process of
computing the structure and then elaborate on several crucial components

Initialization. As in the standard FCM, we pick up the number of clusters (c),
distance function || ||, fuzzification factor (m), and stopping threshold ε. In addi-
tion, we set a spreading factor equal to 0, β = 0. Initiate a partition matrix
U = [uik ], i = 1, 2, . . . c, k = 1, 2, . . . N to some random values (obviously, we
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assume that this initialization satisfies the set of requirements imposed on parti-
tion matrices).

Iterate. Update cluster centers vi , i = 1, 2, . . . , c in the following way:

vi =



um
i1

um
i2

um
iN




/
c∑

k=1

um
ik (9.1)

Compute distances based on the given dissimilarity matrix R:

(dik )
2 = (Rβvi )k − 1

2 vT
i Rβvi (9.2)

where

R
β

ik =
{

Rik + β if i �= k

0 if i = k
(9.3)

and ( )k denotes the kth entry of the given vector.
Check if the nonnegativity condition is satisfied for all entries of (dik )

2, that
is, do the following: If (dik )

2 < 0 for any i and k, calculate

�β = maxi,k

{
− 2(d ik )

2

||vi − ek||2
}

(9.4)

and modify the values of (dik )
2 as follows:

(dik )
2 = (dik )

2 + �β

2
||vi − ek||2 (9.5)

Subsequently, increase the value of the spread factor β by the increment defined
above:

β = β + �β (9.6)

Above, ek denotes the kth unit vector in [0, 1]N .
Update partition matrix U in the usual way, that is, compute the membership

grades:

uik = 1

c∑
j=1

(
d2

ik

d2
jk

) 1
m−1

(9.7)

until the given stopping criterion with the threshold value ε has been satisfied.
The above algorithm requires some explanation concerning the formation of

the cluster centers. First and foremost, we learn that the prototypes are computed
on the basis of the partition matrix U and do not directly involve the patterns.
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This is easily explainable; we search the structure based on relational data (that
is, dissimilarity or similarity values). The dimensionality of centers is equal to
N , dim (vi ) = N . As no assumption has been made with regard to the character
of dissimilarities (with the exception of the properties listed above), there may
be situations in which (dik )

2 could assume negative values. In essence, these are
not distanced values. The purpose of the spreading transformation guided by the
values of β is to “spread” the nondiagonal values of Rij so that the we end up with
the nonnegative values of the distance. As discussed in Bezdek and Hathaway
(1987), higher values of β yield a significant spread effect, which could affect
the discovery of the structure. Being aware of that, we should avoid reaching
high values of β and keep it at the lowest level that still leads to the nonnegative
values. It has also been shown that if R satisfies the conditions listed above but
is not Euclidean (meaning that its entries are not expressed as Rij = ||xi − xj ||2,
with || · || being the Euclidean distance function), then there exists a positive
value of β, say β0, such that Rβ is Euclidean for all β ≥ β0 and does not satisfy
this property whenever β < β0. This again suggests that the values of β should
be kept as low as necessary.

While the determination of the prototypes (centers) in this clustering is quite
different from that in data-driven FCM, the calculations of the partition matrix
are done in the usual manner.

9.3. DECOMPOSITION OF FUZZY RELATIONAL PATTERNS

Relational data can be translated into the pattern-class membership dependency
by using the idea of decomposition of fuzzy relations (Pedrycz, 1996). As before,
we consider a collection of the similarity degrees rij collected into an N by
N matrix (relation) R = [rij ], i, j = 1, 2, . . . , N , with N being the number of
patterns (Zadeh, 1971). As usual, we assume reflexivity (rii = 1) and symme-
try (rij = rji ). There are c categories (classes) of patterns. We are interested in
designing a pattern-class relation G = [gij ], i = 1, 2, . . . N, j = 1, 2, . . . , c that
captures the allocation of patterns to individual classes. The essence of relation
decomposition (Di Nola et al., 1985) concerns the way in which information
about class membership is inferred from R. We request that R is decomposed
into G in the following manner:

R = G ◦ GT (9.8)

where GT denotes its transpose and “◦” is a certain relation-relation composition
operator. In general, we can treat it as an s − t convolution, which translates the
problem into the following format:

rij =
c

S
k=1

(gik tg jk ) (9.9)

The solution to this problem (fuzzy relation G) is the one that decomposes
R. Finding an exact solution seems optimistic and would not be manageable.
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Treating this as an optimization task leading to the approximation of G is more
manageable. The typical formulation along this line is the one using the sum of
the squared performance index

Q = ||R − G ◦ GT ||2 (9.10)

that is,

Q =
N∑

i=1

N∑
j=1

[
rij −

c

S
k=1

(gik tgjk )

]2

(9.11)

Here the goal is to find G so that the values of Q become minimized, that is,
MinGQ. Note that the values of G are confined to the unit interval, but this can
be easily assured by clipping the values produced by applying any optimization
algorithm. In what follows, we elaborate on two approaches. The first is the
standard gradient-based technique that is guided by the values of the gradient
of Q. The second approach maps the decomposition problem onto a certain
fuzzy neural network and then translates the problem into the issue of supervised
learning of this network.

9.3.1. Gradient-Based Solution to the Decomposition Problem

In the gradient-based approach, we compute the gradient of Q with respect to
the fuzzy class assignment relation and update it following the scheme

G = G − β∇GQ (9.12)

with β(>0) standing for the learning rate. In more detail, we get the updated
expression

gik = gik − β
∂Q

∂gik
(9.13)

The starting point of this iterative scheme is a fuzzy relation with random entries
between 0 and 1.

Let us carry out detailed computations of the gradient

∂Q

∂glu
= −2

N∑
i=1

N∑
j=1

[
rij −

c

S
k=1

(gik tg jk )

]
∂

∂glu

(
c

S
k=1

(gik tg jk )

)
(9.14)

The inner derivative requires some attention, as there are four combinations of
indexes that should be considered separately:

(i) i �= l, j �= l

(ii) i �= l, j = l

(iii) i = l, j �= l

(iv) i = l, j = l
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Furthermore, as t- and s-norms are involved here, we have to specify their
format. As an illustration, we consider the standard product (viewed here as a
t-norm) and a probabilistic sum (recall that this computes as a + b − ab). For
(i) the derivative is equal to 0, as there are no variables (entries of G) over which
the calculations of the derivative take place. For (ii) we obtain

∂

∂glu

(
c

S
k=1

(gik tgjk )

)
= ∂

∂glu
(A + glugju − Aglugju) (9.15)

with the aggregate A defined in the form

A =
c

S
k=1
k �=u

(gik tg jk ) (9.16)

Then we get
∂

∂glu

(
c

S
k=1

(gik tg jk )

)
= gju(1 − A) (9.17)

Carrying out detailed computations for the two remaining cases, we finally arrive
at the following derivative:

∂

∂glu

(
c

S
k=1

(gik tg jk )

)
=




0 if i �= l and j �= l

gju(1 − A) if i = l and j �= l

glu(1 − B) if i �= l and j = l

2glu(1 − C) if i = l and j = l

(9.18)

The above expressions come with the auxiliary abbreviated notation

B =
c

S
k=1
k �=u

(gik tg lk ) C =
c

S
k=1
k �=u

(glk tg lk ) (9.19)

Example 1. To illustrate the performance of this optimization approach, we take
the two-dimensional data set shown in Figure 9.2.

Here we visualize three quite apparent clusters. The first one is formed by
patterns 5-6-7 and 2-3-4. The other two patterns (8 and 1) can be treated as
types of outliers; however, they exhibit a different character. Pattern 8 is located
between the well-formed, condensed clusters, whereas pattern 1 is an outlier.
To convert the two-dimensional patterns into their relational counterparts, we
determine the level of similarity between the pairs of patterns using the following
logic-driven format:

a ≡ b = 0.5[min(a → b, b → a) + min(a → b, b → a)] (9.20)

with a and b denoting the values of a certain feature of two patterns. The impli-
cation operator is taken as the one proposed by Lukasiewicz, namely,

a → b = min(1, 1 − a + b) (9.21)
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Figure 9.2. Two-dimensional synthetic patterns.

As the patterns are two-dimensional, we compute the similarity degree along
each variable, average the results, and return the overall degree of similarity
(match) between the patterns. We choose c = 2 classes and start the gradient-
based optimization. The returned value of the performance index is equal to
0.3513. The fuzzy relation G reveals details about the structure of the classes:

G =




0.693 0.062
0.235 0.973
0.295 0.980
0.265 0.953
0.973 0.504
0.967 0.542
0.972 0.533
0.797 0.745




It is remarkable that the entries of G quantify well our intuitive observations.
Patterns 5-6-7 (noted in boldface) are located in the same class, and all of them
have high membership grades (∼0.96). The same observation applies to patterns
2-3-4 (again, all the membership grades are over 0.95, marked in boldface).
Pattern 8 shares its membership between two classes (again, as expected, as it
serves as a bridging element between the two well-formed, highly condensed
clusters). Finally, pattern 1 is classified as belonging to the second class but with
a far lower membership degree. This could have been anticipated considering its
limited proximity to the first class (cluster).

9.3.2. Neural Network Model of the Decomposition Problem

An alternative to the gradient-based learning discussed in the previous section is
to map the problem onto a neural network and solve it via its training. As the
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Figure 9.3. A topology of the fuzzy neural network formed with the use of OR neurons;
connections between the entries of the unknown fuzzy relation G are indicated. Also
shown are the dimensions of the successive layers of the network.

decomposition is inherently logical, the network has to comply with the character
of the problem. We show that the decomposition can be translated into an input-
output representation that is required to prepare a learning framework of the
network and then develop its detailed topology.

We start with the structure of the logic network shown in Figure 9.3 and demon-
strate that it delivers a network representation of the decomposition problem. Note
the values of the connections of the network that form a distributed network-
oriented model of the decomposition problem. The entries of the unknown relation
G are treated as the connections of the network; the character of the problem
dictates a structure with a single hidden layer.

Let us consider the following input xl in the following binary format:

xl = [0 0 0 . . . 0 1 0 . . . 0]

all of whose coordinates except the lth one are equal to 0. The lth coordinate is
set to 1. We propagate this input through the network. The outputs of the OR
neurons at the hidden layer are equal to

zk =
N

S
i=1

(gik tx i ) = glk (9.22)

k = 1, 2, . . . , c. Then these intermediate signals generate the outputs computed as

yj =
c

S
k=1

(gjk tz k) =
c

S
k=1

(gjk tg lk ) (9.23)

j = 1, 2, . . . , N . Note that this output should be made equal to rjl (refer to the
formulation of the original decomposition problem). We can accomplish this by
adjusting the connections of the network, that is, the components of G. as we
have N outputs of the network, the input xl produces the lth column of R. By
varying index l from 1 to N , we keep concentrating on (learning) the successive
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columns of R. In essence, the entire learning set can be constructed by inputting
Boolean vectors starting from [1 0 . . . 0] and ending up at [0 . . . 0 1]. Having
formed the finite collection of input-output pairs of data, we are ready to carry
out supervised learning.

While this learning is quite standard (referred to as error backpropagation),
it is helpful to review the successive derivations that can help us follow the
flow of computing. In what follows, we consider an on-line mode of learning in
which the connections of the network are updated after the presentation of the
individual input-output pair, which we denote as (x, target). For instance, when
x = xl , the output target occurs as the corresponding row of R. The performance
index assumes a standard form of a sum of squared errors

Q = (target − Net(x, G))T (target − Net(x, G))

that is,

Q =
N∑

j=1

(targetj − yj )
2 (9.24)

with Net denoting the vector of outputs of the fuzzy neural network while being
activated by x. The derivations of the learning scheme invoke computations of
the partial derivatives of Q with respect to the unknown connections (G):

∂Q

∂gil
= −2

N∑
j=1

(targetj − yj )
∂yj

∂gil
(9.25)

i = 1, 2, . . . , n, l = 1, 2, . . . , m. The inner derivative consists of two components
(note that the same connection occurs at two different locations of the network):

∂yj

∂gil
=

(
∂yj

∂gil

)
hidden−output

+
(

∂yj

∂gil

)
input−hidden

(9.26)

Further calculations are possible after the specification of the s- and t- norm. As
before, with the product and probabilistic sum involved here, we derive(

∂yj

∂gil

)
hidden−output

=
{

0 if j �= i

zl(1 − A) if j = i
(9.27)

and

A =
c

S
u �=l

(giu tz u) (9.28)

For the connections occurring between the input and hidden layers we obtain

(
∂yj

∂gil

)
input−hidden

=
c∑

u=1

∂yj

∂zu

∂zu

∂gil
(9.29)



DECOMPOSITION OF FUZZY RELATIONAL PATTERNS 187

The corresponding derivatives are then computed in the form

∂yj

∂zu

= gju(1 − B ′)
∂zu

∂gil
= xi(1 − C′) (9.30)

with the abbreviations describing the following compositions:

B ′ =
c

S
w �=u

(gjw tz w) C′ =
c

S
w �=i

(gwl tx l) (9.31)

Example 2. Returning to this example, we decompose the fuzzy relation using
the fuzzy neural network. Now the performance index attains the value of 0.3254
with the fuzzy relation G with the entries

G =




0.000 0.717
0.979 0.334
0.983 0.385
0.971 0.348
0.417 0.980
0.460 0.979
0.450 0.981
0.705 0.832




Example 3. This example comes from Tamura et al. (1971) and deals with the
classification of portraits of members of three families (c = 3). The number of
patterns is 16. The subjective similarities between the pairs of patterns collected
in R are shown below (because of the symmetry, we show only the upper part
of the relation).

The classification results are collected in the class membership matrix

G =




0.752 0.000 0.000
0.011 0.929 0.000
0.142 0.006 0.467
0.274 0.067 1.000
0.030 0.599 0.000
0.903 0.002 0.089
0.000 0.937 0.004
0.770 0.016 0.083
0.000 0.433 0.612
0.000 0.132 0.524
0.000 0.733 0.123
0.000 0.000 0.787
0.743 0.000 0.114
0.038 0.895 0.037
0.059 0.000 0.648
0.809 0.062 0.000
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Its interpretation (by identifying the most dominant membership grades) returns
the structure of three classes: class 1: {1, 6, 8, 13, 16}, class 2: {2, 5, 7, 11, 14},
class 3: {3, 4, 9, 10, 15, 17}.
Example 4. This experiment concerns the data set of Gowda and Diday, (1992),
which deals with five-dimensional patterns concerning eight different types of oil.
In, this experiment, the entries of the original similarity relation are normalized
to 1. The result of the decomposition achieved with the use of the fuzzy neural
network is presented in the following relation:

G =




0.609 0.007
0.767 0.237
0.810 0.432
0.822 0.361
0.768 0.368
0.763 0.478
0.069 0.905
0.114 0.921




We have highlighted in boldface the allocation of the patterns to the two
classes; we conclude that class 1 involves all but the two last patterns. Class 2
is compact, with class membership grades over 0.90. Interestingly, the same data
set, once clustered with the use of the relational form of the FCM (Hathaway
and Bezdek, 1994), returns the membership grades in the first cluster equal to
[0.704 0.818 0.935 0.924 0.816 0.834 0.036 0.028].

9.4. COMPARATIVE ANALYSIS

There are several distinctive features that distinguish direct and relational patterns.
The patterns are different. In the first case, we use patterns directly. This implies
that the clustering occurs in the feature space that comes with the patterns. In
the second case, the pairs of patterns are formed and assessed with regard to
their similarity, dissimilarity, or any other relative association, and the clustering
takes place in this new relation-based induced feature space. The main advantage
here starts to occur when the original (direct) patterns are defined in a highly
dimensional space; in essence, we have far higher dimensionality of the feature
space (on the order of hundreds or thousands) and a very limited number of
patterns. This makes the set of patterns very sparse when they are located in the
highly dimensional space. If the patterns themselves are difficult to describe, the
feature space may not be able to fully capture the essence of the patterns and,
subsequently, the structure of the data set.

Computationally, these two clustering methods are very different. Denoting by
M and n the number of patterns and their dimensionality, respectively, we note
that the relational clustering operates on M2 − M new patterns. In general, we
assume that the relation capturing the pairs of patterns is not symmetrical, so we
need information about the value of the relational constraint predicate defined
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TABLE 9.1. Direct and Relational Clustering: A Comparative Overview

Direct Clustering Relational Clustering

Number of patterns: M Number of relational patterns:
M2/2 − M > M

Dimensionality of the feature space: n Dimensionality of the feature space: r

r 	 n

Design recommendation: ability to form
a suitable feature space, M 
 n

Design recommendation: ability to form
a relational space

Representation: prototypes and partition
matrix

Representation: partition matrix

for the pairs (i, j ) and (j, i). The value of the predicate on the same patterns
(i, i) is not relevant, and such pairs do not enter into the clustering process. The
dimensionality of the feature space of the relational patterns could be far lower
than the original one. In particular, it could be equal to 1. Here let us assume
that we have dimensionality equal to r . The main relationships are summarized
in Table 9.1.

9.5. CONCLUSIONS

Clustering relational patterns is of significant interest when we are concerned with
highly dimensional patterns in which no meaningful structure may be detected.
We have discussed two main and conceptually diverse categories of algorithmic
approaches. The first includes relational FCM and its generalizations (Bezdek).
The second is based on decomposition of a relational matrix into pattern-class
relations, and uses the calculus of fuzzy relational equations and ensuing gradient-
based and fuzzy neural network learning schemes.
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10 Fuzzy Clustering
of Heterogeneous Patterns

So far, we have discussed clustering of numeric patterns represented as points
in Rn. It is of interest to discuss situations where the patterns are described as
granular entities whose features take on nonnumeric values and therefore can be
represented as, for example, intervals or fuzzy sets. In this chapter, our purpose
is to revisit fuzzy clustering and extend the fundamental algorithm in such a
way that it can deal with these augmented types of granular data. Because of
the nature of the data, we refer to this process of structure determination as
heterogeneous fuzzy clustering. We develop two fundamental modes of granular
clustering by introducing parametric and nonparametric schemes of representation
of granular data. Using on these models, we discuss the organization of the
optimization process.

10.1. INTRODUCTION

So far, our primary emphasis in describing clustering has been to reveal structure
in numeric data. The algorithmic diversity arose with regard to various ways of
coping with the topology of numeric data. The issue of granular or heterogeneous
data has not been a focal point of previous research and applications. Surprisingly,
heterogeneous patterns are quite common. Four examples serve as an introduction
to the subject.

(a) Imagine that we are given the results of polls where the respondents’
replies are given in the form of information granules, say intervals (the
individual indicates a certain range of possible outcomes, say [a, b], rather
than specifying a single numeric value).

(b) A physical variable (e.g., temperature) can be measured in a precise way
but can also be assessed subjectively and in this case represented by fuzzy
sets (given their typical values along lower and upper bounds). In this way,
we end up with a heterogeneous collection of data whose structure needs
to be revealed.

Knowledge-Based Clustering, by Witold Pedrycz
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(c) We may have incomplete data when some records come with missing
values. As out data set is quite small and hence we are not allowed to
remove incomplete patterns, the data set is carefully examined by an expert
who provides estimates of the missing entries. These estimates are distin-
guished from other data in the sense that their granularity becomes lower.
The expert may give assessments of the missing values that have to be
treated as intervals or fuzzy sets. We end up with a heterogeneous data set
where patterns are numeric as well as granular. The level of granularity
of the data depends on various factors, especially the confidence of the
expert in estimating the missing values. In some cases, the confidence
level could be very high (hence the missing value is a narrow interval).
In others, it could be very low and the results of data imputation may be
speculative (and hence have broad intervals or highly spread fuzzy num-
bers). In an extreme case, the expert may hesitate to come up with any
meaningful assessment and the result becomes totally unknown (modeled
as a fuzzy set with the membership functions being identically equal to 1,
that is, unknown (x) = 1 for all x in X).

(d) In some cases, the experimental data are preprocessed, which gives rise
to granular entities. These are more abstract constructs than the original
physical variables. For instance, we may have histograms of pixels in
image processing. To reveal a structure in the collection of images, we
operate on histograms. In signal processing, we may encounter temporal
or spatial aggregates of signals that are afterward a subject of clustering.
For instance, temporal granulation of signals (Pedrycz et al., 2000) gives
rise to fuzzy sets, and these, in turn, need to be clustered. When there
are several sources of signals processes en bloc (a situation that is typical
of sensor fusion or multi-lead biomedical signals), we aggregate these
spatially distributed readings in the form of aggregate information granules
that are later clustered.

Given such needs, in this chapter we discuss ways of augmenting the existing
clustering environment so that granular data (patterns) can be accommodated.
The two main approaches proposed here deal with so-called parametric and non-
parametric representation of granular data. The representation mechanisms are
important to the ensuing clustering mechanism invoked in this new representa-
tion space. We are concerned with understanding the main features of these two
representation schemes and identifying their impact on the ensuing clustering
process. We also elaborate on the format of clustering outcomes implied by the
assumed representation model used for heterogeneous data

10.2. HETEROGENEOUS DATA

By heterogeneous data we mean experimental entities arising at different levels
of granularity. Such patterns appear quite often. We estimate a value of the
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temperature and state that it is warm. Instead of making a precise measurement
(which might not be of practical relevance), we express our perception and build
its formal model in a form of a triangular fuzzy number (Figure 10.1a). We cannot
give a numeric value of the time duration of a software project; we are convinced
that it should take no more than 10 months, but it is very likely to take 6 to 8
months. Finally, no matter how many resources we allocate, its completion time
will be no less than 4 months. Again, we develop a fuzzy number, now consisting
of a trapezoidal fuzzy number (Figure 10.1b). The reading of the sensor has some
variability, and in our experience this variability is 5%. In this sense, a sound
model that could work in this scenario has an interval of a predefined width.
These are examples of granular data. Another area with granular data is digital
image processing. Here we have individual pixels, but in essence, all processing
that occurs afterward attempts to compress the detailed data first and then work
on these granular entities. In fact, each block (window) of pixels (typically 4 by
4 or 8 by 8) gives rise to the information granules of brightness levels, texture
description, and so on.

Heterogeneity of data arises in two ways. First, data have different level of
granularity. Our perception can vary when we switch between large, nonspecific
information granules and numeric data (as we have discussed so far). They can
occur as a unique mix of data in the problem under consideration. Second, the
heterogeneous nature of data emerges because of the diversity in membership
functions. There could be a immense mix of main categories of membership
functions, including triangular, trapezoidal, Gaussian, parabolic, and other cate-
gories.

Distance

Membership
1.0

a b

(c)

Temperature

Membership

1.0

(a)

Duration

Membership

1.0

6 8

(b)

Figure 10.1. Examples of granular data: (a) a perception of warm temperature,
(b) duration of a software project, (c) imprecise measurement of a sensor.
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10.3. PARAMETRIC MODELS OF GRANULAR DATA

In this approach, information granules are represented in a parametric form, mean-
ing that each of them is fully described in terms of a vector of parameters. The
basic requirement is that all granular data come from the same family of mem-
bership functions so that we can create a homogeneous feature space (Hathaway
et al., 1996). Consider trapezoidal fuzzy numbers. Each of them is uniquely
described by a vector of four parameters of the corresponding membership func-
tion. In other words, if we confine ourselves to this family of fuzzy numbers
(denote it by T), each element from T is given as a four-argument vector (a,
m, p, b). Any fuzzy number in T comes with this representation and is uniquely
described in this way. If we discuss Gaussian fuzzy numbers, each of them is fully
described by a modal value and its spread (m, σ). We denote this family of fuzzy
numbers by G. Each information granule can be expressed in the form of a two-
argument vector. This representation fully justifies the name of the model, as each
fuzzy number (or information granule) is fully captured by a vector of parame-
ters. The information granules must come from the same family of membership
functions (so that they can be uniquely described in this parametric manner). If
some granules have different membership functions, we must choose one model
(say, Gaussian fuzzy numbers) and approximate any other number outside this
family by the two parameters of the Gaussian membership function. This mixed
mode realization will come with some associated approximation error.

From the design standpoint, given a certain family of parametric represen-
tation, we should be confident that this form is rich enough to represent our
granular data. For instance, trapezoidal fuzzy numbers seem quite convincing:
by setting up the values of the four parameters, we can easily produce various
subtypes of the fuzzy sets; for example:

m = n: triangular fuzzy number

a = m,p = b: interval (for different values of m and p)

a = m = p = b: single numeric entity (R)

Interestingly, a granular datum characterized by this type of membership func-
tion is equivalent to a four-dimensional vector. Considering information granules
X, Y, and Z, all located in an n-dimensional feature space where along each
dimension we encounter a certain level of granularity, the overall representation
of X is a concatenation of the four-dimensional tuples contributing to its para-
metric description. We end up with 4 ∗ n coordinates of the overall parametric
representation. Obviously, there can be other forms of representation. The same
trapezoidal membership function can be given in an incremental format of (da,
m, db), where da = m − a and db = b − p.

All of these forms are equivalent as representation models (and a transforma-
tion between them is pretty straightforward). The new feature space formed in
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this manner (either through the original cutoff points of membership functions or
their incremental format) sets up an arena for fuzzy clustering. The multidimen-
sional granular data are represented feature after feature, so that the final result
becomes a vector of cutoff points of the membership functions defined for each
dimension separately:

x = [a1 m1 p1 b1 | a2 m2 p2 b2 | . . . an mn pn bn] (10.1)

Obviously, as a multidimensional construct, the data can be displayed as
Cartesian products of fuzzy sets, that is, X1 × X2 × . . . × Xn with the oper-
ation completed by the minimum operator (or any t-norm in general). A two-
dimensional example involving triangular fuzzy numbers is shown in Figure 10.2.
The minimum operation is noninteractive; the use of other t-norms introduces
some interaction in the sense that the result is affected by the values of the two
arguments involved in the calculations.

10.4. PARAMETRIC MODE OF HETEROGENEOUS
FUZZY CLUSTERING

Once we have decided how information granules are to be represented (and this
obviously depends upon the character of the information granules in the problem),
this gives rise to a certain feature space. In comparison to the original space of
dimensionality n, here we end up with h ∗ n variables, with h corresponding to
the number of parameters required to represent fuzzy numbers. The minimization
of the objective function in this new augmented feature space is standard. The
results are in the generic format of a partition matrix (which now captures the
relationships between information granules and the clusters). The prototypes are
granular constructs (which is not surprising, considering that we started with
information granules in the first place).

Example 1. The collection of two-dimensional granular data consists of a mixture
of triangular fuzzy numbers (see Figure 10.3).

For clustering purposes they are represented as cutoff points, so we discuss
their lower bounds, two boundary values representing the range of the modal
values and the upper bound. This produces a six-dimensional feature space.
The clustering is first completed for c = 2 clusters (Figure 10.4). The prototypes
reflect the structure existing in the data; however, they try to compensate for the
relatively small number of clusters allocated to this problem in comparison to the
topology of the data set. What is more important is the shape of the prototypes
along with their granularity. When we decided to move on to c = 3 clusters,
this changes the form of the prototypes, which become far more compact and
confined to a small portion of the data space. For c = 2 and the value of the
fuzzification factor equal to 2 we get larger prototypes.
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Figure 10.2. Examples of granular data treated as Cartesian products of fuzzy sets A1 and
A2 defined in X1 and X2: A1 = (1.0, 1.5 3.2 4.0) and A2 = (−4.0 − 1.0 3.0 7.0):
(a) minimum operator, (b) product, (c) Lukasiewicz and operator of the form
max (0, a + b − 1).
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Figure 10.3. A collection of granular data represented as triangular fuzzy relations.
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Figure 10.4. Prototypes of the two clusters (three-dimensional view and contour plot).

As expected, the partition matrix identifies several patterns with intermediate
membership grades:

U =




0.978624 0.021376
0.989139 0.010861
0.997283 0.002717
0.616445 0.383555
0.483051 0.516949
0.012404 0.987596
0.021460 0.978540
0.005118 0.994882
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Figure 10.5. Granular prototypes formed in clustering completed for three clusters.

Now we change the fuzzification factor to 1.1. The prototypes start to “expand,”
while the entries of the partition matrix become closer to 0 and 1 and the “uncer-
tain” data start vanishing:

U =




1.0 0.00
1.00 0.00
1.00 0.00
0.99 0.01
0.99 0.01
0.00 1.00
0.00 1.00
0.00 1.00




For three clusters constructed with the fuzzification factor equal to 2, we produce
the granular prototypes shown in Figure 10.5.

10.5. NONPARAMETRIC HETEROGENEOUS CLUSTERING

The second mode of representation of heterogeneous data is not concerned with
any specific class of membership functions, meaning that we are not confined
to a fixed format of the vector of parameters of these fuzzy sets, hence their
nonparametric representation (Pedrycz et al., 1998).

10.5.1. A Frame of Reference

So far, we have discussed clustering of information granules that are represented
in a properly chosen parameter space. This representation requires that the gran-
ules come from the same category of fuzzy sets (triangular, Gaussian, etc.) so
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that they can be uniquely described by means of the available parameters. The
increased diversity in the information granules, say a mixture of triangular, expo-
nential, and Gaussian fuzzy sets existing in the data, requires another type of
treatment. One possible solution is to approximate membership functions so that
they can be represented (approximated) in the format used to develop parametric
heterogeneous clustering. If we are dealing with trapezoidal fuzzy numbers, a
Gaussian membership function of a certain information granule with given val-
ues of the mode of the fuzzy set (u) and its spread (σ) has to be approximated by
trapezoidal fuzzy sets. In other words, we seek values of the parameters (a,m, n,
and b) such that the membership G(x, u, σ) becomes approximated by T (x;
a,m, n, b) to the highest extent. An obvious optimization criterion would be

V (a, m, n, b) =
∞∫

−∞
(T (x, a, m, n, b) − G(x, u, σ))2 dx (10.2)

where the minimization is carried out over the parameters of the trapezoidal fuzzy
number

mina,m,n,b V (a, m, n, b) (10.3)

Obviously, by approximating fuzzy numbers coming from one category by the
elements of another category, we always end up with some approximation error.
We must realize that the ensuing clustering has to deal with approximate infor-
mation granules. The results of clustering, such as prototypes, are also directly
impacted by such approximation error.

Another computationally appealing alternative would be to convert all fuzzy
sets into the corresponding shadowed sets and perform clustering in this new
augmented feature space. The attractiveness of this approach stems from the fact
that the transformation from fuzzy sets into shadowed sets is quite apparent. In
fact, for some classes of membership functions, the values of the thresholds have
been derived in an analytic way and could be directly used. The representation
scheme involving four parameters of each shadowed set is also fixed in advance so
that it determines the dimensionality of this new feature space. Another attractive
aspect of the clustering completed in this setting is that we can arrive at a
transparent interpretation of the results of clustering, in particular its prototypes.
Then the shadows of the prototypes become of particular interest, especially when
it comes to their shadows and assessment of uncertainty regions.

The other alternative is to look for a so-called nonparametric representation of
information granules that allows us to free the method from any assumption about
the parametric format that is required to describe the granules. The central concept
underlying the nonparametric model is a space of referential fuzzy granules. As
the name implies, the proposed space in which clustering takes place consists of
a collection of reference information granules—using which we characterize any
information granule. The crux of such a frame of reference lies in its centrality in
describing a certain variable or a collection of variables. In the first case, we are
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dealing with information granules such as intervals or fuzzy sets. In the second
case, we are concerned with Cartesian products or fuzzy relations.

As an example, consider the speed of a vehicle. The frame of reference con-
sists of a collection of generic information granules such as low, medium, high,
and very high. The other frame of reference may involve terms like low, safe,
and dangerous speed (obviously this one is conceptually more complex, as the
granules of reference could be strongly affected by some other variable, such as
driving conditions or weather). In either case, the frame of reference (or frame of
cognition) serves as an important and practically sound setting within which we
are interested in carrying out processing, moving on to future decision making,
and so on. We can easily change the frame of reference, and this immediately
modifies our view of the problem. The granularity of the frame of reference,
which is strongly associated with the number of building blocks (conceptual
constructs), defines the level of specificity of the problem. We may need a more
detailed model, and this requires more information granules. A less detailed,
more general look at the problem calls for a less specific frame of reference in
which a few (say, five to seven) information granules are more than enough.
The other option is to form a hierarchy of frames and start looking at data from
different points of view. Given a frame of reference, any information granule can
be expressed in the language of those granules. The form of the representation
is not unique. In what follows, we discuss one alternative: a possibility-necessity
transformation.

10.5.2. Representation of Granular Data Through the Possibility-Necessity
Transformation

Any information granule can be represented through a frame of reference F con-
sisting of r information granules. Denote them by M1, M2, . . . , Mr . The specific
character of F can vary from case to case: it can be formed by sets (inter-
vals), fuzzy sets, rough sets, or shadowed sets. To focus our attention, we start
with fuzzy sets and discuss the simplest scenario of a single variable (X), that
is, Mi : X →[0, 1]. Several fundamental and intuitively appealing requirements
are formed concerning the elements of F (cf. Pedrycz, 1992, 1994; Pedrycz and
Gacek, 2002; Pedrycz and Valente de Oliveira, 1995; Pedrycz and Vukovich,
2002):

Focus of attention (distinguishability criterion)—fuzzy sets of F should have
a clear semantic meaning, implying that the corresponding reference fuzzy sets
(linguistic terms) express a well-understood semantic range over the universe
of discourse.

Justifiable number of referential fuzzy sets—the number of linguistic values
(conceptual landmarks) should be compatible with the number of conceptual
entities a human being can efficiently store and utilize during further processing.
A rule of thumb in psychology suggests the number of such terms to be 7 ± 2.
We may not insist on this requirements, but we should keep in mind that too
many fuzzy sets defined in X may prevent their clearly defined semantic identity.



NONPARAMETRIC HETEROGENEOUS CLUSTERING 201

Coverage of the universe of discourse—the universe of discourse of the given
variable should be “covered” by the supports of Mis. Formally we require that⋃r

i=1 supp(Mi) = X, where supp(.) denotes the support of the corresponding
fuzzy set. This requirement ensures that each element of X can be associated
with at least one referential fuzzy set.

Unimodality and normality—each Mi must have at least one membership
grade equal to 1 (these points can be treated as the prototypes of the fuzzy set).
The unimodality reinforces the uniqueness of the prototype.

Now our objective is to represent any granular datum X in terms of elements
of F. In a nutshell, we are concerned with the development of a matching scheme
between X and Mi . The possibility and necessity measures come as an intuitive
computing environment in this regard. As discussed earlier (see Chapter 2), the
possibility measure expresses the degree of overlap between X and Mi . The
necessity measure quantifies the extent to which X is included in Mi and as such
is a measure of containment of X in the element of F.

When X and Mi are given in the Cartesian product of spaces (so that the
information granules are effectively fuzzy relations), the calculations proceed in
the same manner. Overall, the result of the possibility-necessity transformation
becomes an element in the 2r unit hypercube, and the mapping itself can be
described in the form

Rn→[0, 1]2r (10.4)

It is worth noting that from a computational perspective, this transformation
is a nonlinear normalization of input information granules (and numeric data in
particular). The nonlinear character of the reference fuzzy sets plays a pivotal
role in the development of the nonlinear transformation; any changes made to
the membership functions are reflected in the elements in the unit hypercube.
The dimensionality of the data can be changed significantly, depending upon the
number of referential fuzzy sets. As this number is quite limited (around seven)
and as the original feature space can be highly dimensional (n being in the range
of hundreds), this transformation contributes to the significant dimensionality
reduction with the reduction rate of 2r/n.

Several interesting observations can be made about the character of informa-
tion granules, their diversity, and their relationship with the frame of reference.
First, the possibility-necessity transformation is a general method of determin-
ing matching levels that does not impose any restrictions on the form of the
membership function of the information granules to be clustered. Two “bound-
ary” conditions are worth stressing. If X = {x} is a numeric entity, then Poss
({x}, Mi) = Nec ({x}, Mi) = Mi(x). If the specificity of X goes down, the pos-
sibility and necessity values start to reflect this (see Figure 10.6).

If we plot the results on the (Poss, 1-Nec) plane, we observe that with the low-
ered specificity (in limit X becomes unknown, that is, X = X), we start moving
to the right upper corner of the region. Here we get Poss (X, Mi) = 1, while the
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Figure 10.7. D as a function of a and σ.

necessity becomes equal to 0. The difference between the possibility and neces-
sity values, D = Poss − Nec, is a useful indicator of the granularity of the data.
When we have numeric data, D = 0. Less specific data produce higher values
of D. As already indicated, for the unknown information granule, D = 1. Obvi-
ously, the level of granularity is relative to the granularity of the elements of F.
An input X treated as an interval distributed around 0 and width of 2a matched
with the referential fuzzy set Mi (with Mi being Gaussian and centered around
0, with the spread equal to σ) has a possibility value equal to 1. The necessity
value is equal to exp(−a2/σ2) and depends on the values of a and σ. Hence the
values of the difference are given by D = 1 − exp(−a2/σ2). The effect of the
parameters capturing the granularity of X and Mi is illustrated in Figure 10.7.

At this point, we are ready to cluster data using their representation in the
unit hypercube. The nonlinear normalization is a useful feature of this prepro-
cessing. The FCM algorithm applied to the transformed patterns in the [0,1]2r

space is quite typical. With the nonlinear transformation comes an interesting
effect showing how the distance function in [0,1]2r is affected by the choice of
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Figure 10.8. Distance function d(x, y) treated as a function of its arguments.

membership function or changes in its parameters. Consider two data points x, y

in R. The distance function d(x, y) = (x − y)2 is smooth and exhibits the same
shape across the entire space of its arguments (see Figure 10.8).

Now let us transform these two patterns through a collection of three refer-
ence fuzzy sets A1, A2, and A3 that are described by Gaussian membership
functions with modal values 1, 3, and 5 and the same spread σ. Compute
the distance between x and y in the space of membership grades D(x, y) =∑3

i=1(Ai(x) − Ai(y))2 (Figure 10.9). Obviously, if x = y, then D(x, y) returns
0. In all remaining cases, the nonzero values of D are driven by the member-
ship functions of the reference fuzzy sets. This effect is clearly visible when we
start changing the value of σ. Low values give rise to a fairly rigged landscape
with some regions that serve as regions (basins) of attraction. The increase in
the spread values produces a smooth surface whose curvature is higher than the
original quadratic function used in the original space of reals.

The interpretation of the results requires some attention, as these results are
produced again in the unit hypercube and need to be brought back to the origi-
nal space where the granular patterns are given. This transformation is referred
to as granular dereferencing (an interesting analogy to the pointers and their
usage in programming languages). To clarify the processing phases nonparamet-
ric heterogeneous clustering, refer to Figure 10.10. We have already discussed
the representation (encoding) of granular data via the possibility-necessity trans-
formation. The clustering in the unit hypercube is the second phase, and its
calculations are standard.

The reference information granules can be constructed in three main ways:

(a) As a result of the of designer’s preferences and domain knowledge. The
reference fuzzy sets are the conceptual landmarks identified by the designer
to establish a sound framework of data analysis. It is the designer who
sets up the environment (specificity of granular information, number of
information granules) within which the discovery of the data structure
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Figure 10.9. Plots of D(x, y) for selected values of σ; membership functions of the
reference fuzzy sets are also shown: σ = 0.75 (a), σ = 1.5 (b), σ = 2.0 (c).
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Figure 10.10. A flow of computing in the nonparametric fuzzy clustering of heteroge-
neous data.
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takes place. As these results, especially prototypes of the clusters, are
expressed in the language of the reference information granules, they must
be of direct interest to the user so that their choice allows the user to
become actively engaged in the search for the structure.

(b) By some other clustering process involving another previously available
data set before the current data set was used. In this way, the previous
data set builds an environment in which all further clustering techniques
are “embedded.”

(c) As a hybrid of (a) and (b). The initial membership values for some data are
given by the designer, and the structure (partition matrix) is further refined
by using patterns from the data set. We can envision a mode of clustering
with partial supervision that contributes to this hybrid design mode.

10.5.3. Dereferencing

The results of fuzzy clustering in the unit hypercube need to be communicated
back to the environment where the original data set was located. The clustering
is completed for the logically transformed data (which contributed to its elevated
level of abstraction), and now we must produce results that are “readable” in
the original space. First, let us emphasize that there are no unique way of doing
this. This is not surprising since we are concerned here with a higher level of
conceptual abstraction. The prototypes are formed as a mixture of the reference
information granules. If those were fuzzy sets, we can interpret the prototypes in
[0,1]2r as an aggregate fuzzy set of order-2. More specifically, let us denote by
vi

∼ the ith prototype located in the unit hypercube. Its coordinates link to the
possibility and necessity measures of the information granules A1, A2, . . . Ar :

vi
∼ = [Poss (x, A1) Poss(x, A2) . . . Poss (x, Ar) Nec(x, A1) Nec(x, A2)

. . . Nec(x, Ar)] (10.5)

Alluding to the graphic notation shown in Figure 10.11, we emphasize the
fact that the prototype is formed on the basis of Ai’s with the “activation” levels
quantified by the corresponding possibility and necessity measures.

A1 A2 Ar

vi
~

Poss
Nec

Figure 10.11. Prototype represented as a fuzzy set of order-2 with their membership
grades expressed as possibility and necessity measures.
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The representation shown in Figure 10.11 clearly emphasizes the abstract char-
acter of the prototype. If we want to translate it back to the original space, several
interesting options are available. In view of the heterogeneous nature of data, the
alternatives can be divided into three categories:

(a) Numeric representation of the prototype. This is the simplest version of
the transformation where a single numeric realization of the prototypes
is sought. Considering the modal values (or other representatives) of the
information granules to be z1, z2, . . . , zr , the numeric description of the
prototype is computed as a weighted sum of the form

r∑
i=1

Poss(xAi)zi

r∑
i=1

Poss(xAi)

(10.6)

(b) Interval-valued representation of the prototype. This is the second level
of refinement of the prototype. As we encounter various classes of mem-
bership functions forming the frame of reference, a set-like form of the
information is most preferred (as we cannot come up with a more specific
form of the membership function). The lower and upper bounds of the
interval are formed on the basis of the modes of the reference granules
and the possibility and necessity measures.

(c) In this scenario, we construct an interval-valued fuzzy set of the prototype
by solving an inverse problem of the necessity and possibility measures
(which is regarded as a solution to some fuzzy relational equations).

The first set of alternatives, in which we generate a numeric prototype, poses
an interesting question of reconstructability. Suppose that we get a numeric scalar
datum x0 (real number), transform it through the frame of reference, and derive
possibility and necessity measures. Then we use these measures to complete
dereferencing using the weighted sum of the form

x̃ =
c∑

i=1

wizi (10.7)

where zi are the modal values of the corresponding reference fuzzy sets and wi

are the corresponding membership grades of these fuzzy sets. It is of interest to
determine the conditions under which the result of dereferencing (denote it by x̃0)
is equal to x0 and this result holds for any x0 in R. A surprising and interesting
finding arises in the case of triangular membership functions with a one-half
overlap between any two successive fuzzy sets (Pedrycz, 1994). In this case, x0

is equal to x0 for any value in R. Because the possibility measures are equal to
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zi zi+1 zi+2

Sensitivity

x

Figure 10.12. The sensitivity relationship for the reference fuzzy sets with triangular
membership functions of one-half overlap. The stepwise character of the function reflects
the distance between successive modal values of the fuzzy sets.

the necessity values, it is enough to keep only the possibility measures. Owing to
this level of overlap (which is critical to the performance of the dereferencing),
the sum of possibilities is equal to 1 and for each x0 only two adjacent fuzzy sets
contribute to the transformation formula. This yields x̃0 = wizi + (1 − wi)zi+1

The result reveals that the number of reference fuzzy sets does not matter, which
may seem somewhat counterintuitive. A closer look at the formulation of the
problem indicates that we made a strong assumption about the accuracy of the
values of the possibility measure. Let us compute the sensitivity of x0 with respect
to wi and take its absolute value. We have

sensitivity =
∣∣∣∣ ∂x̃

∂wi

∣∣∣∣ = |zi − zi+1| (10.8)

which is simply the absolute difference between the modal values of the succes-
sive fuzzy sets; the more fuzzy sets, the smaller the distances and the lower the
sensitivity. This dependency is a stepwise function, Figure 10.12 that assumes
constant values (equal to the differences between zi+1 and zi .

Thus, we can easily conclude that adding more reference fuzzy sets reduces
sensitivity.

10.6. CONCLUSIONS

We have elaborated on the general clustering framework required to cope with
heterogeneous data. We contrasted the two main representation approaches, dis-
cussing the advantages and shortcomings of parametric and nonparametric models
of representation of information granules. We also emphasized the differences
in the format of the clustering results. While the parametric approach is quite
straightforward (in the sense that the result is in the same parametric format),
nonparametric preprocessing results in several interesting opportunities that are
not necessarily equivalent.
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While we have concentrated on coping with information granules represented
in fuzzy sets, a similar approach could be taken with respect to information gran-
ules represented in shadowed and rough sets. In general, any parametric approach
would eventually increase the dimensionality of the new feature space, with the
increase being related to the parametric representation scheme involved. The
issue of coping with information granules represented in several fundamentally
different conceptual settings has not been addressed and may require attention
in the future exploration of this subject. This may eventually lead to interesting
developments in frame-based architectures (Di Nola et al, 1994)
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11 Hyperbox Models of Granular
Data: The Tchebyschev FCM

In this chapter, we propose a model of granular data emerging through summa-
rization and processing of numeric data. This model supports data analysis and
contributes to further interpretation activities. The structure of data is revealed
through the FCM equipped with the Tchebyschev (l∞) metric. The chapter offers
a novel contribution of gradient-based learning of the prototypes developed in the
l∞-based FCM. The l∞ metric promotes the development of easily interpretable
information granules, namely, hyperboxes. A detailed discussion of their geom-
etry is provided. In particular, we discuss the deformation effect of the hyperbox
shape of granules due to an interaction between the granules. We also show
how the deformation effect can be quantified. Subsequently, we show how clus-
tering gives rise to a two-level topology of information granules: the core part
of the topology consists of hyperbox information granules. A residual struc-
ture is expressed through detailed, yet difficult-to-interpret, membership grades.
Illustrative examples including synthetic data are studied.

11.1. INTRODUCTION

Clustering is widely recognized as one of the dominant techniques of data anal-
ysis. The variety of detailed algorithms and their underlying technologies (fuzzy
sets, neural networks, heuristic approaches) is impressive. In spite of this diver-
sity, the key objective remains the same: to understand the data. In this sense,
clustering becomes an integral part of data mining (Cios et al., 1998; Maimon
et al., 2001). Data mining is aimed at making the findings transparent to the end
user. Transparency is accomplished through suitable knowledge representation
mechanisms, namely, the ways in which generic data elements are formed, pro-
cessed, and presented to the user. Information granularity is a basic concept that
needs to be discussed in this context (cf. Bargiela, 2001; Zadeh, 1999).

The key idea we discuss here is that in any data set we can distinguish between
a core part of the data structure, which is easily describable and interpretable in a
straightforward manner, and a residual component, which has no clear pattern of
regularity. The core part can be described in a compact manner through several

Knowledge-Based Clustering, by Witold Pedrycz
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information granules, while the residual part exhibits no visible geometry and
requires formal descriptors such as membership formulas. The approach proposed
in this chapter focuses on the standard FCM method with a Tchebyschev distance
that promotes geometry of the information granules (hyperboxes). Starting from
the results of clustering, our objective is to develop information granules forming
a core structure in the data set, characterize them, and discuss the interaction
between the granules leading to their deformation.

The chapter consists of six sections. First, we formulate the problem and
then move on to the modified clustering algorithm (Sections 11.2 and 11.3).
Section 11.4 is concerned with the generation of granular prototypes. In Sec-
tion 11.5 we analyze the geometry of information granules and quantify the
deformation of regular hyperboxes. We then propose a general model of granular
data description (Section 11.6) and present conclusions in Section 11.7. The con-
cept and numerical studies are presented in parallel so that new ideas are made
more tangible by illustrative material.

11.2. PROBLEM FORMULATION

Using the well-known objective function (Bezdek, 1981)

Q =
c∑

i=1

N∑
k=1

u2
ikdik (11.1)

it is worth stressing that the choice of the distance function is critical to our
primary objective of achieving transparency of the findings. We are interested
in distances whose equidistant contours are “boxes” with the sides parallel to
the coordinates. The Tchebyschev distance (l∞ distance) satisfies this require-
ment (Bobrowski and Bezdek, 1991; Groegen and Jajuga, 2001; Jajuga, 1991;
Pedrycz and Gomide, 1998). The boxes are easily decomposable, that is, the
region within a given equidistant contour of the distance can be treated as a
decomposable relation R in the feature space:

R = A × B (11.2)

where A and B are sets (or, more generally, information granules) in the corre-
sponding feature spaces. Note that the Euclidean distance does not lead to the
decomposable relations in the above sense (as the equidistant regions in such
constructs are spheres or ellipsoids). The decomposability property is illustrated
in Figure 11.1.

The above clustering problem, known in the literature as an l∞ FCM, was
introduced and discussed by Bobrowski and Bezdek (1991) and Jajuga (1991)
more than 14 years ago. Some recent generalizations can be found in Groegen
and Jajuga (2001). The hyperbox aspects of clustering were discussed by Ker-
sten (1999). This type of distance was introduced to handle data structures with
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A

B

R

Figure 11.1. Decomposability property provided by the Tchebyschev distance; the region
of equidistant points is represented as a Cartesian product of two sets in the corresponding
feature space.

“sharp” boundaries (clearly, the Tchebyschev distance is more suitable in this
regard than the Euclidean distance). The solution proposed in Bobrowski and
Bezdek (1991) was obtained by applying a basis exchange algorithm.

In this chapter, as already noted, the reason for using the Tchebyschev distance
is different. We want to describe the data structure and the related interpretability
of the results of clustering so that the clusters can be viewed as basic models of
associations existing in the data. Here we derive a gradient-based FCM technique
enhanced with an additional convergence mechanism.

11.3. THE CLUSTERING ALGORITHM—DETAILED
CONSIDERATIONS

The FCM optimization procedure is standard to a large extent and consists of two
steps: determination of the partition matrix and calculation of the prototypes. The
use of Lagrange multipliers converts the constrained problem into its constraint-
free version. The original objective function (11.1) is transformed into the form

V =
c∑

i=1

N∑
k=1

u2
ikd

2
ik + λ

(
c∑

i=1

uik − 1

)
(11.3)

with λ being a Lagrange multiplier. The problem is then solved with respect to
each pattern separately, that is, we consider the following relationship for each
data point (t = 1, 2, . . . , N ):

∂V

∂ust

= 0 (11.4)

s = 1, 2, . . . , c, t = 1, 2, . . . , N . Straightforward calculations lead to the
expression

ust = 1
c∑

j=1

(
dst

djt

)2
(11.5)
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The determination of the prototypes is more complicated, as the Tchebyschev
distance does not lead to a closed expression (unlike the standard FCM with the
Euclidean distance). Let us start with the situation in which the distance function
is spelled out in an explicit manner:

Q =
c∑

i=1

N∑
k=1

u2
ik maxj=1,2,...,n |xkj − vij | (11.6)

The minimization of Q with respect to the prototype (more specifically, its
t th coordinate) follows a gradient-based scheme:

vst (iter + 1) = vst (iter) − α
∂Q

∂vst

(11.7)

where α is an adjustment rate (learning rate) assuming positive values. This
update expression is iterative; we start from some initial values of the prototypes
and keep modifying them, following the gradient of the objective function. The
detailed calculations of the gradient lead to the expression

∂Q

∂vst

=
N∑

k=1

u2
sk

∂

∂vst

{maxj=1,2,...,n |xkj − vsj |} (11.8)

Let us introduce the following shorthand notation:

Akst = max j=1,2,...,n

j �=t

|xkj − vsj | (11.9)

Evidently, Akst does not depend on vst . This allows us to concentrate on the
term that affects the gradient. We rewrite the above expression for the gradient
as follows:

∂Q

∂vst

=
N∑

k=1

u2
sk

∂

∂vst

{max(Akst , |xkt − vst |)} (11.10)

The derivative is nonzero if Akst is less or equal to the second term in the
expression

Akst ≤ |xkt − vst | (11.11)

Next, if this condition holds, we infer that the derivative is equal to either 1 or
−1, depending on the relationship between xkt and vst , that is, −1 if xkt > vst

and 1 otherwise. Putting these conditions together, we get

∂Q

∂vst

=
N∑

k=1

u2
sk




−1 if Akst ≤ |xkt − vst | and xkt > vst

+1 if Akst ≤ |xkt − vst | and xkt ≤ vst

0 otherwise
(11.12)
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The primary concern that arises about this learning scheme is not the piecewise
character of the function (absolute value, a concern that could be easily raised
from the formal standpoint) but the fact that the derivative zeroes for a significant
number of situations. This may result in poor performance of the optimization
method, so it could be easily trapped if the overall gradient becomes equal to
0. To enhance the method, we relax the binary character of the predicates (less
or greater than) in (11.15). These predicates are Boolean (two-valued), as they
return values equal to 0 or 1 (which translates into the expression “predicate is
satisfied or it does not hold”). The modification consists of a degree of satisfaction
of this predicate, meaning that we compute a multivalued predicate

Degree(a is included in b) (11.13)

that returns 1 if a is less than or equal to b. Lower values of the degree arise
when this predicate is not fully satisfied. This form of augmentation of the basic
concept was introduced in conjunction with studies of fuzzy neural networks and
relational structures (fuzzy relational equations).

The degree of satisfaction of the inclusion relation is equal to

Degree(a is included in b) = a → b (11.14)

where a and b are in the unit interval. The implication operation → is a residu-
ation operation. Here we consider a certain implementation of such an operation
where the implication is implied by the product t-norm:

a → b =
(

1 if a ≤ b

b/a otherwise
(11.15)

Using this construct, we rewrite (11.12) as follows:

∂Q

∂vst

=
N∑

k=1

u2
sk

{−(Akst → |xkt − vst |) if xkt > vst

(Akst → |xkt − vst |) if xkt ≤ vst

(11.16)

In the overall scheme, this expression will be used to update the prototypes of
the clusters (11.7).

Summarizing, the clustering algorithm arises as a sequence of the follow-
ing steps:

repeat

Compute partition matrix using (11.5).
Compute prototypes using the partition matrix obtained in the first phase. (Note

that the partition matrix does not change at this stage, and all updates of
the prototypes work with this matrix. This phase is more time-consuming
than the FCM method with the Euclidean distance.)

until a termination criterion satisfied
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Both the termination criterion and the initialization of the method are standard.
The termination takes into account changes in the partition matrices at two succes-
sive iterations that should not exceed a certain threshold level. The initialization
of the partition matrix is random.

As an illustrative example, we consider synthetic data involving four clusters
(Figure 11.2). The two larger data groupings consist of 100 data points, and the
two smaller ones have 20 and 10 data points, respectively.

Table 11.1 gives a representative set of clustering results for two to eight
clusters. As expected, the two larger data groupings have a dominant influence
on the outcome of the FCM algorithms. Both Euclidean and Tchebyschev dis-
tance–based FCM exhibit robust performance in that they find approximately the
same clusters in their successive runs (within the limits of the optimization con-
vergence criterion). While most of the identified prototypes fall within the large
data groupings, the Tchebyschev distance–based FCM consistently manages to
associate a prototype with one of the smaller data groupings (underlined in the
table). This is clearly a very advantageous feature of our modified FCM algorithm
and confirms our assertion that the objective of enhancing the interpretability
of data through the identification of decomposable relations is enhanced with
Tchebyschev distance–based FCM.

The above results are better understood if we examine the cluster membership
function over the entire pattern space. The membership function for one of the
two clusters, positioned in the vicinity of (0.2, 0.2) (c = 2), is visualized in
Figure 11.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

V
2

V1

Figure 11.2. Two-dimensional synthetic data with four visible clusters of unequal size.
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TABLE 11.1. Prototypes Identified by Two FCM Algorithms, with Euclidean and
Tchebyschev Distance Measures, Respectively, for the Varying Number of Clusters
(the Underlined Prototypes Correspond to the Smaller Data Groupings)

Number of
Clusters

Prototypes for FCM with
Euclidean Distance

Prototypes for FCM with
Tchebyschev Distance

2 0.6707 0.6706 0.2088 0.1998
0.2240 0.2236 0.6924 0.6831

3 0.2700 0.3011 0.7000 0.6847
0.6875 0.6841 0.2440 0.4914
0.2302 0.2127 0.2124 0.1852

4 0.2255 0.2035 0.7261 0.7377
0.2323 0.2479 0.2278 0.5178
0.6872 0.6814 0.2092 0.1846
0.6533 0.6588 0.6523 0.6498

5 0.2525 0.2784 0.2189 0.1451
0.2282 0.2014 0.2272 0.5188
0.6721 0.6757 0.1960 0.2258
0.2343 0.2389 0.6568 0.6868
0.6919 0.6841 0.7268 0.6593

6 0.2329 0.2562 0.7469 0.6650
0.6809 0.6777 0.2151 0.1364
0.6857 0.6830 0.2278 0.5208
0.2272 0.2206 0.6570 0.6840
0.2261 0.2008 0.2619 0.2648
0.6447 0.6500 0.1945 0.2239

7 0.6646 0.6697 0.1967 0.2255
0.7036 0.6619 0.2200 0.1450
0.6993 0.7100 0.7278 0.6594
0.2395 0.5019 0.2277 0.5183
0.2382 0.1935 0.3976 0.4051
0.2164 0.1955 0.6099 0.6117
0.2271 0.2018 0.6588 0.6923

8 0.6962 0.6892 0.6607 0.7615
0.2398 0.5088 0.2122 0.1327
0.2360 0.1980 0.3209 0.3097
0.2441 0.2203 0.6565 0.6830
0.6962 0.6882 0.7267 0.6590
0.6850 0.6756 0.6460 0.6492
0.2385 0.1942 0.2277 0.5191
0.2166 0.1965 0.2108 0.2249

It is clear that for higher values of the membership grades (e.g., 0.9), the
shape of contours is rectangular. This changes for lower values of the mem-
bership grades, when we witness a gradual departure from this geometry of the
clusters. This is an effect of the interaction between the clusters that manifests
in a deformation of the original rectangles. The deformation depends on the
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Figure 11.3. Visualization of the first cluster (membership function) centered around
(0.2088 0.1998): (a) three-dimensional space and (b) contour plots.

distribution of the clusters, their number, and the threshold β selected. The lower
the value of this threshold, the greater the departure from the rectangular shape.
For higher values of β, such deformation is quite limited. This suggests that when
high threshold level values are used, the rectangular (or hyperbox) form of the
core part of the clusters is completely legitimate.

Let us contrast these results with the geometry of the clusters constructed using
a Euclidean distance. Again, we consider two prototypes, as identified by the
Euclidean distance–based FCM (see Figure 11.4). The results are significantly
different: the clusters are close to the Gaussian-like form and do not closely
approximate rectangular shapes.
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Figure 11.4. Visualization of the first cluster (membership function) centered around
(0.2240 0.2236): (a) three-dimensional space and (b) contour plots. The Euclidean dis-
tance function was used in the clustering algorithm.

The above effect is even more pronounced when more clusters interact with
each other. We consider eight prototypes identified by the two FCM algorithms
(see Figure 11.5). In the case of the Tchebyschev FCM, it is clear that despite
strong interactions between the clusters, the rectangular shape of the cluster
membership function is preserved for a range of values of this function. These
undistorted rectangles cover a good proportion of the original data, which is rep-
resented by the selected prototype. On the other hand, the Euclidean FCM results
in contours of the membership function that are undistorted circles only in very
close proximity to the prototype itself. Thus linking the original data with the
prototype representing an association existing in the data is quite difficult for
most of the data points.
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Figure 11.5. Contour plots for one of the eight clusters (membership function) centered
around (0.2108 0.2248) for the Tchebyschev distance (a) and (0.2441 0.2203) for the
Euclidean distance (b).

11.4. DEVELOPMENT OF GRANULAR PROTOTYPES

As we are dealing with the Tchebyschev metric, its underlying geometry promotes
a rectangular shape of the information granules. Here we formalize how an infor-
mation granule can be seen as a union of appropriately constructed hyperboxes.
The essence of this construction is to move around the prototype by changing
only a single feature. The moves are made separately toward higher and lower
values (with the reference to the prototype) of the feature (see Figure 11.6).
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Bb
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b

Figure 11.6. Generation of information granules (two-dimensional case); the region
around the prototype is constructed by analyzing the membership grades of the clusters.

If we establish a certain threshold value (β), the resulting rectangle captures the
corresponding part of the data set. The threshold values are in the unit interval.
The development of the box uses the following method: move gradually from the
prototype along one of the directions (as indicated in Figure 11.6) and compute
the membership grade u(x, v) (see (11.8)) until it becomes equal to β. Note
that as we move away from the prototype, this membership grade continuously
decreases. Once we reach the threshold, the move stops and the corresponding x
is treated as the face of the box (rectangle). The construction is carried out for
all remaining directions. The final result is denoted by Bβ.

Obviously, higher values of β confine the core part of the cluster and produce
smaller information granules of the core of the data structure. The resulting
hyperbox is tied to the threshold level through an evident relationship

Bβ = {x ∈ [0, 1]n|u(x, v) ≥ β} (11.17)

where Bβ is a hyperbox with a threshold equal to β.
Second, for each β, the corresponding hyperbox is a relation in the feature

space. When looking at these relations globally (considering varying values of
β), we can represent them as a fuzzy relation, meaning that Bβ is a fixed β-cut
of it. We then have the following relationship:

B =
⋃
β

Bβ (11.18)

where B is a fuzzy relation of the core of the data structure. To make the core
meaningful, the threshold value should be high enough so that only the essential
part of the data set becomes qualified as the core. There is another aspect of
this design: deformation of the hyperboxes in the feature space caused by an
interaction between the clusters. Again, with lower values of β, the interaction
tends to be more critical, leading to more profound deformations of the hyperbox.

Following the discussion of the numeric example, a representative information
granule (box), taken from the set of prototypes calculated for c = 8 clusters, is
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Figure 11.7. Coordinates of the information granules (x1 and x2) of a selected cluster
(0.2277, 0.5191) for clustering with c = 8 clusters.

shown in Figure 11.7. Evidently, the box shrinks with increasing values of the
threshold; at some point, the changes to the size of the granule become very small.

11.5. GEOMETRY OF INFORMATION GRANULES

As the contour plots of the clusters reveal (Figure 11.5), interaction between the
clusters become responsible for the deformation of the hyperbox shape of the
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Figure 11.8. A concept of a deformation index—expressing departure from the hyperbox
nature of cores implied by the Tchebyschev distance.

cores. This poses an interesting question concerning the size of the core structure
of the data. The choice of the threshold level (β) needs to be controlled by
an acceptable level of deformation of the equidistant lines of the Tchebyschev
distance. We require quantification of this deformation effect. This can be done
by finding the differences between the theoretical values of the membership
(dictated by the Tchebyschev metric) and those resulting from the calculations of
the membership grades based on the prototypes. The details follow the notation
in Figure 11.8.

In the two-dimensional case, we identify four corner points of the box implied
by the fixed threshold β. This means that all four of them belong to the infor-
mation granule at the membership grade equal to β. Using (11.8) with x =
x(1), x(2), . . . , x(4) and the prototype v, the calculated membership grades could
be different from this threshold, say, u(1), u(2), u(3), u(4). Let us consider the
sum of differences

D = |β − u(1)| + |β − u(2)| + |β − u(3)| + |β − u(4)| (11.19)

Since u = β was calculated only in “white” points (by virtue of construc-
tion (11.20)), ideally it should also be satisfied by “gray” points, which are the
vertices spanned by the original vectors x(1), x(2), x(3), and x(4).

Therefore, (11.19) serves as a useful measure of deformation of the rectangular
shape of the granules. The above construct easily expands to any dimension of
the feature space; evidently, for n features, a search is completed for all corners
of the hypercube, that is, 2n.

Continuing the numeric example, we quantify the deformation of the boxes by
means of (11.19). The approximation of the resulting dependency between the
deformation measure D, viewed as a function of β, is done through a polynomial
fit. A representative set of results is given in Figure 11.9. The assessment of
information granules was carried out for every granule identified with two to eight
clusters. It is evident that the deformation of the hyperboxes can be approximated
by a low-order polynomial.
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Figure 11.9. Quantification of the deformation effect D for (a) prototype v6 obtained
with c = 8; (b) prototype v6 obtained with c = 6; and (c) prototype v4 obtained with
c = 4.
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11.6. GRANULAR DATA DESCRIPTION: A GENERAL MODEL

With the development of the granular prototypes guided by the clustering algo-
rithm, we can concisely describe the data in the form

D = Bi ∪ B2 ∪ . . . ∪ Bc ∪ R (11.20)

where D is a data set under discussion, Bi are granular prototypes, and R is a
residual structure of the data set. The brief characteristics of the this structure
are summarized in Table 11.2.

Any element x in the data space of interest can be characterized as belonging
to the core or being identified with the residual portion of the data. Membership in
the core is binary—we identify the hyperbox to which this new pattern belongs.
If x is identified to be a part of R, the degree of membership in the hyperbox
is determined through the standard membership expression, in which we now
consider the distance between a data point (x) and a set (relation) Vi :

ui(x) = 1
c∑

j=1

d(x, Vi )

d(x, Vj )

(11.21)

11.7. CONCLUSIONS

In the description of data, we have developed two main components, namely,
cores of the data that are well structured in the form of hyperboxes in the feature

TABLE 11.2. Main Structure Descriptors and their Features

Data Structure
Descriptor Description Main Features

Hyperboxes Capture the essence of the
data. Serve as focal
points of the structure.
Can be easily interpreted
as relations

Hyperboxes constructed on the basis
of the Tchebyschev distance for a
given threshold level. The choice
of this level depends on an
acceptable level of deformation of
the hyperboxes allowed in the
structure. The hyperboxes can be
decomposed into intervals for
individual features

Residual Deals with the remaining
data points and
concentrates on patterns
not clearly identified as
focal points of the data
structure

A lack of explicit description; more
complex geometry of the regions.
The degree of membership in the
hyperbox is expressed through
some formula
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space and a far less regular structure that is described analytically through an
expression for membership grades but has no clear geometric interpretation. The
computing backbone of this approach is based on the well-known FCM technique
using the Tchebyschev distance. We introduced a new way of optimizing the
prototypes in this method that uses a gradient-based technique augmented by
a logic-oriented mechanism of gradient determination. The geometry and the
design of the hyperbox information granules were discussed, along with the
important aspect of deformation of such granules. Quantification of this effect
was also discussed.

The proposed approach to data analysis can be exploited in many different
ways. A few options worth pursuing the following:

ž Data mining. Considering the main pursuit of data mining articulated in
the language of well-defined, semantically sound, and easily interpretable
constructs, the information granules envisioned in this way are legitimate
entities for data mining activities. They are easy to interpret, and thus cope
with the underlying structure of data while leaving out the residual portion
of data not exhibiting strong patterns of dependencies.

ž In any modeling pursuit, the above data description helps concentrate on
the design of local models assigned to the core parts. The residual part of
data can be handled separately, anticipating that these data points may not
lead to a model with a strongly manifested character.

ž In classification problems, the core part of the data implies a collection
of simple classifiers, while the residual part invokes more demanding and
conceptually advanced classifiers such as neural networks.
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12 Genetic Tolerance Fuzzy
Neural Networks

In this chapter, we introduce a genetically optimized fuzzy neural network that
reveals a hyperbox-based structure in numeric data. This type of network is devel-
oped around fuzzy tolerance neurons. Tolerance neurons produce a generalized
version of intervals (sets) arising in the form of fuzzy intervals. The architecture
of the network reflects a hierarchy of geometric concepts exploited in data analy-
sis: fuzzy intervals combined and-wise give rise to fuzzy hyperboxes, and these,
in turn, aggregated or-wise to generate a summary of the data as a collection
of hyperboxes. We discuss an overall development process that consists of two
main phases: (a) fuzzy clustering that initiates the search for the structure and
(b) genetic optimization of the networks. We provide an in-depth view of the
geometry of the individual hyperboxes as well as the overall topology of the
network. Numerical experiments deal with two-dimensional synthetic data.

12.1. INTRODUCTION

The design of logic-driven and interpretable neural networks has been an ongoing
challenge in the area of data analysis. The interpretability of such networks goes
hand in hand with the geometry of the constructs identified and described in
the highly dimensional space of data. The learning capabilities of the network
have some parametric flexibility exhibited by the geometric constructs. Granular
computing supports the first requirement (interpretability and transparency), with
its broad agenda of building semantically sound information granules and forming
environments for their processing (Gabrys and Bargiela, 2000; Ishibuchi et al.,
1995; Pedrycz et al., 2000; Simpson, 1993; Sudkamp and Hammel, 1998). Neural
networks help satisfy the second requirement (learning abilities). Evolutionary
computing is an important optimization environment in which we can adapt the
networks, aiming at global minimization of some performance measures. Together
these three paradigms form a highly synergistic environment of computational
intelligence (CI) (Pedrycz and Vasilakos, 1999).

The simplest interpretable information granules are those of intervals and
hypercubes (cf. (Simpson, 1993)), with their long history of computing (e.g.,
interval mathematics) originating in interval analysis. The networks based on

Knowledge-Based Clustering, by Witold Pedrycz
ISBN 0-471-46966-1 Copyright  2005 John Wiley & Sons, Inc.

226



FUZZY LOGIC–BASED GENERALIZATIONS 227

these constructs were named Min-Max architectures by Simpson (1993) and
enhanced by others (see Gabrys and Bargiela, 2000). We generalize this idea
by introducing fuzzy hyperboxes developed on the basis of fuzzy tolerance neu-
rons—basic logic processing units rooted in fuzzy logic and exhibiting parametric
flexibility required for learning purposes. While the Min-Max networks dwell on
hyperboxes, the approach taken here uses fuzzy hyperboxes, with their inherent
flexibility in modeling smooth boundaries.

The material is arranged into five sections. We briefly revisit the logic oper-
ations of dominance, inclusion, and tolerance and discuss their geometry and
parametric realization (Section 12.2). This leads us to the architectural consider-
ations in Section 12.3, where we present an overall topology of the network and
reveal the computing carried out at each of its layers. Section 12.4 elaborates
on the issue of genetic optimization of the network. We show how genetic algo-
rithms lead us to the minimization of some performance index (or maximization
of the corresponding fitness function). Experimental examples are presented in
Section 12.5 and conclusions in Section 12.6. In the experiments we use t- and
s-norms represented as a product operation and a probabilistic sum.

12.2. OPERATIONS OF THRESHOLDING AND TOLERANCE:
FUZZY LOGIC–BASED GENERALIZATIONS

The well-known Boolean operations (relational operators) “greater than” and
“less than” are self-explanatory. The predicates x > a or x < b are binary in the
sense that they become true or false, depending upon the relationship between the
arguments in the expression. The numeric interval [a, b] can be articulated in the
language of these two predicates by building a compound statement (conjunction
of the predicates)

x is in (a, b) = (x > a) & (x < b) (12.1)

where and is a logic connective (&) encountered in two-valued logic. Proceeding
with a multidimensional case, we build a hyperbox (or a box in a two-dimensional
case) by defining the corresponding intervals for each variable treated separately
and combining them and-wise.

The above Boolean predicates generalize to their continuous (fuzzy) logic
counterparts. We will refer to them as inclusion and dominance operators, respec-
tively. The operation of inclusion of x in a, denoted by incl(x; a) returns a
truth value (in [0,1]) expressing the extent to which x can be treated as being
included in a. Likewise, an operation of dominance dom(x; b) expresses the
extent to which x dominates b (again, this level of dominance is quantified in
the unit interval). Conceptually, these are intuitively appealing generalizations of
the two-valued relational operators.

From now on, consider all variables to be confined to the unit interval. Further-
more, the crux of the ensuing definitions is in the logic operation of residuation
(known as a φ-operator or a multivalued implication) used in fuzzy sets. For a
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continuous t-norm we define it in the form a → b = sup{c ∈ [0, 1]| atc ≤ b},
where a, b ∈ [0,1].

Definition 1. A degree of inclusion of x in a, incl(x; a) is expressed as

incl(x; a) = a → x (12.2)

The operation of inclusion quantifies the extent to which x is included in a.
Intuitively, it becomes obvious that if x is less than a, then this operation
should return 1 (this condition is satisfied because of the nature of the multi-
valued implication). The degree of inclusion decreases once x exceeds a. Again,
this monotonicity property holds because of the implication used in the defini-
tion. Obviously, the way in which the inclusion operation quantifies the fact of
inclusion depends upon the form of the t-norm. Every t-norm may affect the
characteristics of the operation, yet it retains the required monotonicity prop-
erty. Figure 12.1 illustrates inclusion for selected implications induced by two
t-norms, namely, a product operation and the Lukasiewicz &-connective, that is,
xty = xy, xty = max(0, x + y − 1):

incl(x; a) =



1 if x ≤ a
a

x
if x > a

(12.3)

incl(x; a) =
{

1 if x ≤ a

1 − x + a if x > a
(12.4)

In both cases, the functions monotonically decrease; for the Lukasiewicz impli-
cation, this decrease is linear.

Definition 2. A dominance of x over b, denoted by dom(x; b), is expressed as

dom(x; b) = x → b (12.5)
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Figure 12.1. Inclusion operation treated as a function of x for selected values of a:
(a) implication induced by the product operation; (b) implication induced by the
Lukasiewicz t-norm.
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Note that the position of the arguments in the above definition is interchanged in
comparison with the previous operation. The dominance returns 1 if x dominates
b, that is, x exceeds the value of b. Otherwise, the operation returns values lower
than 1. The monotonicity property holds: the lower the value of x in comparison
with b, the lower the value of the dominance.

The plots of the dominance for the two implications are presented in
Figure 12.2. Note that the essence of the operation is retained, while the changes
can be noted for the decreasing edge of the graph, whose form is affected by
the t-norm used to quantify the dominance effect. In these two cases, we note a
linear change in the dominance level.

The two definitions generalize the Boolean predicates to a continuous case
by showing how the concept can be enriched by admitting the notion of partial
satisfaction of the given concept.

Now we introduce the notion of a tolerance operation. It generalizes the idea
of an interval used in set theory and interval analysis.

Definition 3. A tolerance operation, tol(x; a, b) expresses the degree to which x

is contained in an interval [a, b]

tol(x; a, b) = incl(x; a) t dom(x; b)

where t is a certain t-norm (in fact, the choice of the t-norm in the above
expression does not really matter; we may take a t-norm that is computationally
the simplest, say, a minimum operation or product). Plots of two examples of
the tolerance operation are displayed in Figure 12.3.

The tolerance operation has an interesting interpretation. As indicated earlier,
it generalizes a tolerance interval by giving rise to a fuzzy interval. If a = b, then
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Figure 12.2. Dominance operation treated as a function of x for selected values
of a: (a) implication induced by the product operation; (b) implication induced by the
Lukasiewicz t-norm.



230 GENETIC TOLERANCE FUZZY NEURAL NETWORKS

0 0.5 1
0

0.5

1

0

0.5

1

10 x
(a)

0 0.5 1

10 x
(b)

Figure 12.3. Examples of tolerance for two t-norms and several values of a: (a) product
t-norm; (b) Lukasiewicz t-norm.
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Figure 12.4. Examples of similarity for two t-norms and several values of a: (a) product
t-norm; (b) Lukasiewicz t-norm.

we end up with a similarity operator; if x = a, then the similarity is equal to 1. It
gracefully reduces to 0 when we start moving away from this point (Figure 12.4).

From the operational point of view, it is advisable to control the “edges” of the
fuzzy interval and change their shape (i.e., sharpen or smooth them), depending
upon the experimental data. This edge control is achieved by augmenting the pre-
vious definitions by a linguistic modifier. The modified inclusion and dominance
operators are now

incl(x; a, p) = incl(x; a)p (12.6)

dom(x; b, r) = dom(x; b)r (12.7)

where p and r assume nonnegative values. This operation relates to what is
known in fuzzy sets as a linguistic modifier (hedge). Let us recall that a fuzzy
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Figure 12.5. Tolerance operation and effect of dilution and concentration on selected
values of p.

set (linguistic term) A can be transformed by linguistic modifiers that affect the
semantics of the linguistic term

very A(x) = A(x)2

more or less A(x) = A(x)0.5

The values of p(r) less than 1 dilute the original linguistic term, while
p(r) > 1 gives rise to the concentration effect. The same effect is present here.
Note that the edges of the operation are profoundly affected.

In a similar manner, we extend the definition of dominance and finally come
up with a tolerance definition of the form

tol(x; a, b, p, r) = incl(x; a, p) t dom(x; b, r) (12.8)

Refer to Figure 12.5. The above definition can be rewritten in a compact manner
by arranging all parameters in a single vector w = [a b p r]T , that is, tol (x;w).
Those are the parameters that provide the tolerance operation with a significant
level of parametric flexibility. In this sense we, can regard its implementation
as a tolerance neuron—a processing element with well-defined logic properties
and connections (parameters) that can be learned. In the next section we use this
neuron in the design of the neural network and discuss its properties.

12.3. TOPOLOGY OF THE LOGIC NETWORK

The tolerance neuron presented in Section 12.2 generalizes the concept of an
interval leading to a fuzzy interval. By combining several of them fuzzy intervals
we can construct fuzzy hyperboxes—a generic and easily interpretable geomet-
ric entity located in a multidimensional data space. More specifically, a fuzzy
hyperbox in an n-dimensional space [0,1]n is constructed by taking a Cartesian
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product of n fuzzy intervals formed in consecutive dimensions of the hypercube:

tol(x1, w1) × tol(x2, w2) × · · · × tol(xn, wn) (12.9)

Moving on to the realization of the hyperbox H, the outputs of the tolerance
neurons are combined and-wise using a certain t-norm. In other words, we form
another processing layer composed of an and operation (AND neuron):

z = H(x; W) = tol(x1, w1)t tol(x2, w2)t . . . t tol(xn, wn) (12.10)

The output of this AND neuron represents a degree of membership in a hyper-
box. As the parameters of the tolerance neuron (denoted here collectively by W)
can be learned, the hyperbox can change its position in the hypercube and modify
its size. The edges of the hyperbox can be easily adjusted as well.
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Figure 12.6. Characteristics of the AND neuron-hyperbox for several values of p and r:
p = r = 1 (a); p = r = 2.0 (b); p = r = 10 (c); p = r = 0.5 (d).
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Figure 12.6. (continued )

The characteristics of the AND neuron-hyperbox H(x; W) in the case where
n = 2 are shown in Figure 12.6. Note that with the increase of powers to around
5, the fuzzy boxes become practically (Boolean) boxes as the edges become very
steep. Also, when the tolerance regions shrink to single points, the landscape
becomes quite rugged (tolerance neurons convert into the matching neurons),
with a number of focal points at which full matching takes place (Figure 12.7).

The geometry of patterns (data) can be captured by a collection of hyperboxes
that again comes with a very clear interpretation: the patterns belonging to a
given class are “covered” by a family (union) of c fuzzy hyperboxes:

H(x; W1) or H(x; W2) or . . . or H(x; Wc) (12.11)
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Figure 12.7. Characteristics of the matching neurons for p = r = 1.0 (a) and
p = r = 5 (b).

In light of this, we require another OR neuron (realized by a certain s-norm) that
aggregates or-wise the outputs of the hyperboxes (AND neurons):

y = OR (H(x; W1), H(x; W2), . . . , H(x; Wc))

= H(x; W1) s H(x; W2) s . . . s H(x; Wc) (12.12)

where s is an s-norm (for instance, max or probabilistic sum). The output (y)
describes a degree of class membership (as we are concerned about the binary
0–1 class assignment, these will be the values close to 1 or 0).

Summarizing, the overall architecture of the logic neural network is shown
in Figure 12.8. Note that the first layer is constructed by means of the tolerance
neurons, whose outputs are then aggregated and-wise. Then all hyperboxes are
summarized or-wise by the OR neuron located in the output layer.
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Figure 12.8. An overall topology of the neural network with tolerance neurons.

12.4. GENETIC OPTIMIZATION

The network is heterogeneous, consisting of neurons belonging to three different
categories (tol, AND, and OR). For problems of high dimensionality that require
a significant number of hyperboxes, the number of parameters also becomes
quite high. This suggests the use of genetic computing as a suitable optimization
vehicle. Genetic optimization has already been found useful in the development
of rule-based systems (Ishibuchi et al., 1995). Because of the regular structure
of the network, a standard genetic algorithm (GA) is worth considering. The
parameters of the network are mapped onto a chromosome by grouping the
parameters describing each hyperbox (Figure 12.9). Altogether, for n inputs and
c hyperboxes, we end up with 4∗n∗c entries of the string (each tolerance neuron
is fully characterized by four parameters). The standard floating point coding
(instead of the binary one) is a preferred option, taking into account that the
ranges of the connections are fixed: the bounds of the fuzzy intervals (a, b, c . . .)
are located in the unit interval, while the modifiers (p, r, . . .) assume values from
0 to around 10–15 (it is clear that higher values of the modifiers make no visible
difference to the characteristics of the neuron).

The fitness function that is an essential component of any environment of
genetic computing reflects the performance of the network. In what follows, we
consider the following form of the fitness function to be maximized:

fit = 1 − 1

N

N∑
k=1

(targetk − NN(xk))
2 (12.13)
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Hyperbox Hi

Figure 12.9. Chromosome of the tolerance fuzzy neural network; a detailed portion
accommodating parameters of a fuzzy interval (tolerance neuron) and the ensuing single
hyperbox are shown.

The learning is achieved in a supervised mode: we are provided with a training set
{(xk, target)} k = 1, 2, . . . N . Owing to the nature of the classification problem,
the target values are made binary, namely, targetk = 0 or 1.

12.5. ILLUSTRATIVE NUMERIC STUDIES

In this section, we present four numeric examples that reveal the most essential
properties of the networks and elaborate on the efficacies of the resulting geomet-
ric structure. The examples are two-dimensional, as they can be easily visualized
(the topology and the ensuing optimization support multidimensional cases). In
all experiments we use the following parameters of genetic optimization:

population size: 200
number of generations: 200
crossover rate: 0.6
mutation rate: 0.2
selection strategy: elitist (the best individual is carried over from the previous

generation)

In the first three examples we construct a single hyperbox and analyze its geo-
metrical aspects—in particular, the edges of this construct vis-à-vis a distribution
of patterns occurring in the learning set.

Example 1. The data set comprising 600 patterns belonging to two classes (0–1)
is shown in Figure 12.10.

The genetic optimization progressed as shown in Figure 12.11 and achieved
a final value of the fitness function equal to 0.916156.

The values of the parameters of the tolerance neuron are collected in a single
weight vector (cf. Section 12.3):

W1 = [0.300211 0.694968 7.182305 7.514652 0.559465 0.447005

9.805124 8.653694]T
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Figure 12.10. Synthetic two-class data set: (a) three-dimensional plot and (b) two-
dimensional visualization.
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Figure 12.12. Genetically optimized hyperbox: (a) three-dimensional and (b) two-dimen-
sional visualization.

They translate into a fuzzy box, as shown in Figure 12.12. It is worthwhile
observing that high values of the power (around 7 and higher) lead to quite steep
edges of the box; this effect is especially visible for the second variable, where
the values of membership move down to zero very quickly.

Example 2. Here the data set exhibits a clear belt of patterns belonging to class
‘1’ that goes across the entire range of the second feature (Figure 12.13).

The value of the fitness function after 200 generations is equal to 0.992209, with
the parameters of the hyperbox equal to W1 = [0.767083 0.505051
9.924768 9.238625 0.010102 0.819453 8.146714 4.389990]T . Again the
result is very appealing, showing how the box was able to capture the geometry of
the data (Figure 12.14).

Example 3. The structure of the two-class data is shown in Figure 12.15. We
note a single cluster of patterns belonging to class 1 that are located in the
middle of the unit square, while four very condensed clusters of data are coming
from class 2 (0 patterns). In fact, these clusters were generated from a truncated
Gaussian distribution with σ = 0.05.

The resulting fuzzy box (Figure 12.16), is no surprise (as it tends to spread
across the unit square, with the exception of the corners occupied by the patterns
belonging to class 0).

Now we modify the data (see Figure 12.17), by adding some clusters to the
existing patterns (the new patterns being added belong to class 0) and analyze
what happens to the optimized box.

The size of the box is reduced substantially by being “repelled” by the patterns
in class 0. It now occupies a region where there are only patterns belonging to
class 1 or no patterns at all. In this case, the box overflows freely into an empty
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Figure 12.13. Synthetic two-class data: (a) three-dimensional and (b) two-dimensional
visualization.
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Figure 12.15. Synthetic two-class data set.
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Figure 12.17. Augmented data set with additional clusters of patterns (class-0).

region, as shown in Figure 12.18. Note that the edges of the fuzzy box reflect
the distribution of the patterns; if any possibility exists, the edges become less
steep; this helps the box partially occupy some regions of the data space.

Example 4. Now we consider data in which we can identify two regions (boxes)
positioned along the sides of the unit hyperbox (Figure 12.19).

In this case, we proceed with genetic optimization that involves two fuzzy
boxes. The final fitness function is equal to 0.993191 (which is very close to an
ideal case of the fitness function equal to 1), meaning that the network is able to
capture the geometry of the data. The components of the network—that is, two
boxes and their OR aggregation—are shown in Figure 12.20.

When carrying out genetic optimization using only one fuzzy box, we end up
with the lower fitness function (equal to 0.8879) and the box that attempts to
capture most of the data (but is not fully successful) (Figure 12.21). This attempt
is visualized by the box whose core is located at the intersection of the two
original boxes (Figure 12.20) and the steepness of the walls, which tend to stretch
to the regions where some patterns in class 1 are still not covered by the box.
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Figure 12.18. Optimized fuzzy box in the data space; note the difference between the
steepness of the walls of the box along the two coordinates (features).
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Figure 12.19. Synthetic data with two-box geometry.
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Figure 12.20. Fuzzy boxes generated by the neural network: two boxes shown separately
(a, b) and their OR aggregation (c).
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Figure 12.21. Capturing the geometry of the patterns by making use of a single geneti-
cally optimized fuzzy box.

12.6. CONCLUSIONS

We introduced and studied a class of logic networks composed of tolerance
neurons. These networks are examples of the synergy of neurocomputing and
fuzzy sets seamlessly accommodating learning, with profound transparency of
the underlying fuzzy hyperbox data constructs supported by the network.

The main features of this approach are (a) the logic-based fabric of the net-
work, (b) high interpretability of the resulting geometry, and (c) evolutionary
learning of the network supporting the global character of the optimization
processes.

The chapter focused mainly on the underlying concept and developed a genetic
optimization for this class of logic networks. There are several expansions and
enhancements worth pursuing within the framework of tolerance-based neuro-
computing:

ž Learning can be viewed as a two-phase optimization process in which the
genetic optimization is followed by a gradient-based refinement (a type of
backpropagation learning) in which the parameters of the network (W1,

W2, . . . Wc) are refined in more detail. This learning phase is attractive
and efficient, bearing in mind that it starts with optimal collection of the
connections, so the chances of further improvement are quite high.

ž The problems with which the network deals involve two-class binary classi-
fication tasks. Obviously, one can apply the network to continuous problems.
In this case, it is advantageous to equip the OR neuron located in the out-
put layer with a collection of adjustable weights (connections). Similarly,
the AND neurons in the hidden layer can come with additional calibration
capabilities residing within their connections.
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13 Granular Prototyping

In this chapter, we introduce a logic-driven clustering in which prototypes are
formed and evaluated in a sequential manner. A structure in data is revealed
by maximizing a certain performance index (objective function) that takes into
consideration an overall level of matching (to be maximized) and a similarity
level between the prototypes (the component to be minimized). We show how
the relevance of the prototypes translates into their granularity. The clustering
method helps identify and quantify the anisotropy of the feature space. We also
show how each prototype is equipped with its own weight vector describing
the anisotropy property and thus implying some ranking of the features in the
data space.

13.1. INTRODUCTION

Granular computing is an important method that focuses substantially on fuzzy
clustering, especially its niche-addressing aspects of granular prototypes and gran-
ular constructs in general. There have been several studies in this area (Bargiela,
2001; Gabrys and Bargiela, 2000; Ishibuschi et al., 1995; Pedrycz and Bargiela,
2002; Simpson, 1992, 1993; Sudkamp, 1993; Sudkamp and Hammel, 1998;
Zadeh, 1997), but it is still in its early development stage. This chapter pro-
poses a comprehensive design for logic-driven clustering culminating in granular
prototypes. There are several objectives. First, we wish to build prototypes in
a sequential manner so that they can be ranked with respect to their relevance.
Second, we want the clustering algorithm to exhibit significant explorative capa-
bilities. This will be done by defining a suitable performance index (objective
function). Third, the way in which the prototypes are formed should lead to their
granular extension.

From the methodological standpoint, we proceed with a top-down presenta-
tion by first discussing the essence of the method and then elaborating on all
pertinent details. The examples that follow consist of low-dimensional (mainly
two-dimensional) patterns, as our intent is to illustrate the efficacies of the pro-
posed clustering and granulation mechanisms. We contrast the algorithm with the
FCM, which is treated as a de facto standard in fuzzy clustering.

Knowledge-Based Clustering, by Witold Pedrycz
ISBN 0-471-46966-1 Copyright  2005 John Wiley & Sons, Inc.
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The material is organized into four sections. First, in Section 13.2 we for-
mulate the problem and elaborate on the underlying terminology and notation
(which are consistent with those in fuzzy sets). The two concepts fundamental
to the general clustering approach are matching (comparison) of fuzzy sets and
construction of an objective function (performance index) guiding development
of the structure of data. Section 13.3 is devoted to prototype optimization, where
we show detailed derivations of formulas for the prototypes. These derivations
and resulting formulas show the overall flow of computations: the essence of our
approach consists of iterative construction of clusters guided by the performance
index (so that they can be added if appropriate) without any up-front commit-
ment to a certain number of clusters. This is in contrast to other methods such as
FCM. The development of a granular version of the prototypes that builds on the
numeric prototypes designed earlier is discussed in Section 13.4. It is shown that
this design splits into two phases in which the performance index associated with
each prototype is transformed into its granular (interval) envelope by solving an
inverse matching problem. Conclusions are presented in Section 13.5.

13.2. PROBLEM FORMULATION

From now on, we are concerned with data (patterns) distributed in an
n-dimensional [0,1] hypercube. In what follows, we will be treating the data
as points in [0,1]n, say, x ∈ [0,1]n. In general, we are concerned with N patterns
(data points) x1, x2, . . . , xN . The standard objective of the clustering method
(regardless of its realization) is to reveal a structure in the data set and to present it
in a readable, easily comprehensible format. In general, we consider a collection
of prototypes to be a tangible and compact reflection of the overall structure.
In the approach used here, we adhere to the same principle. The prototypes
representing each cluster are selected as elements of the data set. They are selected
in such a way that they (a) match (represent) the data to the highest extent while
(b) being distinct from each other. These two requirements are represented in
the objective function guiding the clustering process. We then define the detailed
components of the optimization. Since the elements in the unit hypercube can
be viewed as fuzzy sets, we can take advantage of well-known logic operations
developed in this domain. The notion of similarity (equality) between membership
grades plays a pivotal role, and this concept is crucial to the development of the
clustering mechanisms.

13.2.1. Expressing Similarity Between Two Fuzzy Sets

The measure of similarity between two fuzzy sets (in this case, a datum and a
prototype) x = [x1 x2 . . . xn]T and v(= [v1 v2 . . . vn]T ) is defined by incorporating
the operation of matching (≡) encountered in fuzzy sets. The following definition
will be used (Pedrycz, 1997; Pedrycz and Rocha, 1993):

sim(x; v, w) =
n

T
i=1

(w2
i s(xi ≡ vi)) (13.1)
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In (13.1), T (.) and s(.) denote a t-norm and an s-norm, respectively. The
weights (wi) quantify the impact of each coordinate of the feature space [0,1]n

on the final value of the similarity index sim(.). When convenient, we will use
the notation sim(x, v; w) to emphasize the role played by the weight vector. A
careful look at (13.1) reveals that it is nothing but a referential logic neuron with
the similarity operation; the computational difference lies in the way in which the
connections (wi) enter the formula of the neuron. To achieve full compatibility,
one should consider that wi

′ = wi
2.

It is worth stressing that the similarity between two membership grades is
rooted in the concept of similarity (or equivalence) of two fuzzy sets (or sets).
Given two membership grades a and b (the values of a and b are confined to the
unit interval), a similarity level a ≡ b is computed in the form (Pedrycz, 1990)

a ≡ b = (a → b)t (b → a) (13.2)

where the implication operation (→) is defined as a residuation (φ-operator)
(Pedrycz, 1997):

a → b = sup{c ∈ [0, 1] | atc ≤ b} (13.3)

The above expression of the residuation is induced by a certain t-norm. The
implication models a property of inclusion; referring to (13.3), we note that it
just quantifies the degree to which a is included in b. The and connective used
in (13.2) translates it into a verbal expression

(a is included in b) and (b is included in a) (13.4)

that in essence quantifies the extent to which two membership grades are equal.
In fact, this definition traces back to what we know well in set theory: we say
that two sets A and B are equal if A is included in B and B is included in A.
The reader can refer to other measures used to compare two fuzzy sets; see, for
example, Bouchon-Meunier et al. (1996) and Hoppner et al. (1999).

The similarity index is substantially affected by the residuation operation (to be
more precise, a specific t-norm is used to induce it). For example, the Lukasiewicz
implication (induced by the Lukasiewicz t-norm) produces a series of piecewise
linear characteristics.

The similarity index in the case of two variables (n = 2) is illustrated in
Figure 13.1. The intent is to visualize the impact of the weights on the perfor-
mance of the index. It is apparent that high values of the weight reduce the
impact of the corresponding variable.

13.2.2. Performance Index (Objective Function)

The performance index reflects the character of the underlying clustering philos-
ophy. In this work, we use a performance index that can be concisely described
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Figure 13.1. Similarity index (three-dimensional plot and two-dimensional contours)
for selected values of weight factors: (a) w1 = 0.5, w2 = 0.5; (b) w1 = 0.2, w2 = 0.8;
(c) w1 = 0.8, w2 = 0.2. In all cases, v = [0.5, 0.4].
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in the following manner. A prototype of the first cluster v1 is selected as one
of the elements of the data set (v1 = xj for some j = 1, 2, . . . , N ) so that it
maximizes the sum of the similarity measures of the form

N∑
k=1

sim(xk, v1; w1) ⇒ Maxv1,w1 (13.5)

with sim(xk , v1, w1) defined by (13.1). Once the first cluster (prototype) has been
determined (through a direct search across the data space with a fixed weight
vector and subsequent optimization of the weights treated as another part of the
optimization process), we move on to the next cluster (prototype) v2 and repeat
the cycle. The form of the objective function remains the same throughout the
iterative process, but we now combine the maximization of the sum of similarity
measures (13.5) with a constraint on the relative positioning of the new prototype.
We want this new prototype, say v2, not to “duplicate” the first prototype by being
too close to it and thus not representing any new part of the data. To avoid this
effect, we now consider an expression of the form

(1 − sim(v2, v1; 0))

N∑
k=1

sim(xk, v2; w2) (13.6)

where the first factor 1 − sim(v1, v2; 0) expresses the requirement for v2 to be
as far apart from v1 as possible. The above expression must be maximized with
respect to v2, and this optimization has to be carried out with the weight vector
(w2) involved. We then proceed to determine the third prototype v3, and so on.
In general, the optimization of the Lth prototype follows the expression

Q(L) = (1 − sim(vL, vL−1; 0)(1 − sim(vL, vL−1; 0) . . .

(1 − sim(vL, v1; 0))

N∑
k=1

sim(xk, vL; wL) (13.7)

As noted, this expression takes into account all previous prototypes when looking
for the current prototype. Interestingly, the performance index to be maximized
is a decreasing function of the prototype index, that is, L1 < L2 implies that
Q(L1) ≤ Q(L2).

Another observation of interest is that the first prototype is the best repre-
sentative of the overall data set. Subsequent prototypes are, in effect, the best
representatives of the more detailed partitions of data.

So far, we have not considered the optimization of the weight vector associated
with the prototype that is an integral part of the overall clustering. The next
section provides a solution to this problem.
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13.3. PROTOTYPE OPTIMIZATION

Let us concentrate on the optimization of the performance index in its gen-
eral form given by (13.7). Apparently, the optimization consists of two phases:
(a) determination of the prototype (vL) and (b) optimization of the weight vec-
tor (wL). These two phases are intertwined, yet they exhibit different characters.
The prototype concerns enumeration out of a finite number of options (patterns
in the data set). The weight optimization has not been formulated in detail and
now requires a prudent formulation as a constraint type of optimization (with no
constraint, the task may return a trivial solution). Referring to (13.7), we observe
that it can be written in the form

Q(L) = G

N∑
k=1

sim(xk, vL; wL) (13.8)

Note that the first part of the original expression does not depend on wL and can
be treated as a constant in this regard:

G = (1 − sim(vL, vL−1; 0)(1 − sim(vL, vL−1; 0) . . . (1 − sim(vL, v1; 0)) (13.9)

We impose the following constraint on wL, requesting that its components be
located in the unit interval and sum to 1:

n∑
j=1

wLj = 1 (13.10)

The optimization of (13.8) with respect to wL for a fixed prototype vL takes the
following format:

max Q(L) = G

N∑
k=1

sim(xk, vL; wL) (13.11)

subject to
n∑

j=1

wLj = 1

The detailed derivations of the weight vector are completed with the use of
Lagrange multipliers. First, we produce an augmented form of the performance
index:

V = G

N∑
k=1

{
n

T
j=1

(w2
j s(xkj ≡ vLj ))

}
− λ


 n∑

j=1

wLj − 1


 (13.12)
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To shorten the expression, we introduce the notation uks = xks ≡ vLs . The deriva-
tive of V taken with respect to wLs (the sth coordinate of the weight vector) is set
to 0 and the solution of the resulting equations gives rise to the optimal weight
vector:

dV

dwLs

= 0
dV

dλ
= 0 (13.13)

The derivatives can be computed once we specify t- and s-norms. For the sake
of further derivations (and ensuing experiments), we consider a product and a
probabilistic sum as the corresponding models of these operations. Furthermore,
we introduce the abbreviated notation uks = xks ≡ vs for k = 1, 2, . . . , N and
s = 1, 2, . . . , n. Taking all of these into account, we have

dV

dws

= G

N∑
k=1

d

dws

{Aksw
2
s suks} − λ = 0 (13.14)

where

Aks =
n

T
j=1
j �=s

(w2
j suks)

The use of the probabilistic sum (s-norm) in (13.14) leads to the expression

d

dws

{Aksw
2
s suks} = Aks

d

dws

(w2
s + usk − w2

s usk) = 2Aksws(1 − uks) (13.15)

and, in the sequel

dV

dws

= 2Gws

N∑
k=1

Aks(1 − uks) − λ = 0 (13.16)

From (13.16) we have

ws = λ

2G

N∑
k=1

Aks(1 − uks)

(13.17)

The form of the constraint,
c∑

j=1

wj = 1, produces the following expression:

λ

2

c∑
j=1

1

G

N∑
k=1

Akj (1 − ukj )

= 1 (13.18)
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or
λ

2
= 1

c∑
j=1

1

G

N∑
k=1

Akj (1 − ukj )

(13.19)

Finally, when (13.19) is inserted in (13.17), the sth coordinate of the weight
vector is

ws = 1

c∑
j=1

N∑
k=1

Aks(1 − uks)

N∑
k=1

Akj (1 − ukj )

(13.20)

Summarizing the algorithm, it consists essentially of two steps. We try all
patterns as a potential prototype, for each choice optimize the weights, and find
a maximal value of Q(L) out of N available options. The one that maximizes
this performance index is treated as a prototype. It comes with an optimal weight
vector wL. Each prototype comes with its own weight vector, which may vary
from prototype to prototype. Bearing in mind the interpretation of these vectors,
we can say that they articulate the “local” characteristics of the feature space
of the patterns. As seen in Figure 13.1, the lower the value of the weight for a
certain feature (variable), the more essential the corresponding feature is. Note
that the importance of the features is not the same across the entire space. The
space becomes highly anisotropic where prototypes have different ranking of the
features (see Figure 13.2).

We now discuss a number of low-dimensional synthetic data sets that will
help us grasp the meaning of the resulting prototypes and interpret their weights.

Figure 13.2. Anisotropy of the feature space of patterns represented by weight vectors
associated with prototypes.
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Figure 13.3. Synthetic data; successive detected prototypes are identified by arrows and
corresponding numbers.

TABLE 13.1. Prototypes and Their Characterization

Cluster No. Prototype
Performance

Index w

1 [0.61 0.57] 8.490796 [0.43 0.57]
2 [0.90 1.00] 4.755118 [0.37 0.63]
3 [0.10 0.14] 3.523316 [0.25 0.75]
4 [0.20 0.50] 2.951507 [0.20 0.80]
5 [0.00 0.00] 2.193254 [0.30 0.70]
6 [0.00 0.23] 2.024915 [0.11 0.89]
7 [0.10 0.06] 1.845740 [0.26 0.74]

Note: The starting point where the values of the performance
index stabilize has been highlighted.

Example 1. The two-dimensional data set shown in Figure 13.3 exhibits several
not very strongly delineated clusters.

The clustering is completed by forming additional clusters one at a time. The
values of the performance index associated with the clusters, the position of
the prototypes, and their respective weights are summarized in Table 13.1. As
expected, the performance of successive clusters gets lower and the prototypes
start to move close to each other. This feature of the clustering approach helps us
investigate the relevance of the clusters on the fly and stop the search for more
structure once the respective performance indexes start assuming low values. In
this example, this happens for c = 5, at which point the values of the performance
index stabilize.
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Table 13.1 also includes the weight vectors associated with the prototypes.
They reflect upon the “local” properties of the feature space. From their analysis
(recall that a lower value of the weight means higher relevance of the feature in
the neighborhood of the given prototype), we learn that the first feature (x1)
is more relevant than the second one. This is a quantification of the visual
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Figure 13.4. Visualization (three-dimensional and contour plots) of the first three clusters
in the feature space: cluster no. 1 (a), no. 2 (b), and no. 3 (c).
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inspection: as seen in Figure 13.4, when are projected the data on x2, they tend
to be more “crowded” (start overlapping) in comparison with their projection
on x1.

The prototypes produce nonlinear classification boundaries, as shown in
Figure 13.5.

For comparative reasons, we carried out clustering using FCM; the resulting
prototypes and the boundaries between the clusters are presented in Figure 13.6. It
can be seen that the nonlinear boundaries between the clusters identified through
maximization of the similarity measure provide much more refined partition of
the pattern space.

Example 2. The two-dimensional data in Figure 13.7 show a structure that has
three condensed clusters but also includes two points that are somewhat apart
from the clusters.

The results are shown in Figure 13.8. The values of the performance index are
visualized in Figure 13.9. It can be seen that the performance index “flattens out”
for five clusters, which corresponds to the identification of significantly distinct
data groupings.
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Figure 13.5. Classification regions for (a) two clusters, (b) three clusters, and (c) four
clusters, identified through maximization of the similarity measure.
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Figure 13.6. FCM clustering and the implied partition of the pattern space for (a) c = 2,
(b) c = 3, and (c) c = 4 clusters.
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Figure 13.7. Two-dimensional synthetic data with the first three prototypes identified by
the clustering algorithm.
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0.6

2 4 6 8

1.1

1.6

2.1

2.6

Pe
rf

or
m

an
ce

 in
de

x

Figure 13.9. Performance index versus number of clusters (c).

Example 3. Four-dimensional data are given in Table 13.2.
The optimal number of clusters is equal to 4 (at this number we see “flattening

out” of the values of the performance index, which means that the maximiza-
tion of the similarity between data and prototypes is counterbalanced by the
increase in similarity between the prototypes; Figure 13.11). The weight vectors
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TABLE 13.2. Four-Dimensional Synthetic Patterns

Pattern No. Coordinates Prototype

1 0.80 0.10 0.60 0.30
2 0.50 0.20 0.40 0.31
3 0.60 0.30 0.10 0.35
4 0.40 0.18 0.87 0.40 ←2
5 0.90 0.15 0.50 0.32 ←4
6 0.20 0.95 0.65 0.30
7 0.20 0.40 0.30 0.31 ←3
8 0.70 0.20 0.63 0.28 ←1
9 1.00 0.00 1.00 0.31

10 0.05 0.15 0.42 0.33

TABLE 13.3. Weight Vectors of the First Four
Prototypes

Prototype No. Weight Vector

1 [0.12 0.12 0.16 0.60]
2 [0.16 0.18 0.14 0.52]
3 [0.04 0.04 0.06 0.86]
4 [0.06 0.09 0.15 0.70]

of the prototypes in Table 13.3 tell an interesting story: the feature space is quite
isotropic, and in all cases the first feature (x1) carries a higher level of rele-
vance (the first coordinate of the weight vector of each prototype is constantly
lower than the other). This is highly intuitive, as the patterns are more “dis-
tributed” along the first axis (x1), which makes it more relevant (discriminatory)
in this problem.

Example 4. This two-dimensional data set reveals two very unbalanced clusters.
The first group is evidently dominant (100 patterns) over the second cluster
(which consists of 5 data points) (Figure 13.10).

As we start building the prototypes, they start representing both clusters in
more detail. The second prototype in the sequence has been assigned to the small
cluster, meaning that the method is searching for still unrepresented parts of the
data structure. We may say that the form of the performance index promotes a
vigorous exploration of the data space and acts against “crowding” of the clusters
in close proximity to each other. The consecutive clusters are constructed in such
a way that they start unveiling some more specific substructures. Notably, the
sixth prototype is assigned to the small cluster (Table 13.4).

It is instructive to compare these results with the structure revealed by the
FCM. As anticipated (and this point was raised in the literature), FCM ignores
the smaller cluster and focuses on the larger cluster. With an increase in the
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Figure 13.10. Two-dimensional data set with two unequal clusters; the consecutive pro-
totypes produced by the method are identified by numbers.

number of clusters we start capturing the smaller clusters, but this happens later
than with the previous method.

Example 5. The glass data set comes from the repository of Machine Learning
(http://www.ics.uci.edu/∼mlearn/MLRepository.html) and concerns classification
of several categories of glass. The study was motivated by criminology inves-
tigations. Nine attributes (features) are used in the classification, including the
refractive index and the content of iron, magnesium, aluminum, and other ele-
ments in the samples. Seven classes (categories) are identified in the problem.

In the experiment, we use the first 100 patterns. The performance index for
the individual prototypes is shown in Figure 13.12. The plausible number of
clusters is five since the performance index again “flattens out” for larger number
of clusters.

The weight vectors of the individual prototypes (we confine ourselves to the
five most dominant prototypes) show some level of anisotropy, with the features
being ranked quite consistently in the context of the individual prototypes. The
mean values and standard deviations of the weights of the first five prototypes
are as follows:

Mean values

0.059757 0.025592 0.055397 0.063844 0.053884 0.070637 0.042023
0.610937 0.018282
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TABLE 13.4. Prototypes of the Clusters, Their Performance Index, and Their
Weight Vectors

Prototype No. Location Performance Index Weight Vector

1 (0.300100 0.400800) 83.694626 [0.44 0.56]
2 (0.508700 0.652100) 33.989677 [0.48 0.52]
3 (0.205200 0.305700) 26.135773 [0.39 0.61]
4 (0.399500 0.318400) 9.132071 [0.42 0.58]
5 (0.219200 0.489600) 5.200340 [0.42 0.58]
6 (0.555300 0.617200) 1.585717 [0.41 0.59]
7 (0.359900 0.496900) 0.598020 [0.51 0.48]

Note: The shadowed row highlights a sharp drop in the values of the performance index.
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Figure 13.12. Performance index versus number of clusters.

Standard deviations

0.027003 0.013059 0.024531 0.030855 0.020684 0.039291 0.024701
0.162367 0.007705

Feature 8 can be clearly identified as relatively insignificant, while the most
essential features are {2, 7, 9}. Their standard deviation is also quite low.
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13.4. DEVELOPMENT OF GRANULAR PROTOTYPES

The inherently logical nature of the clustering technique helps us handle another
interesting issue arising in the context of data summarization (and clustering per
se is aimed at this important target). As is obvious from the previous sections, the
prototypes, like the original data, are elements in the unit hypercube. One may
question whether this is the only valid way of representing them. Naturally, one
would expect the prototypes, as a form of summarization of the data, to reflect
the fact that the patterns being represented by them occupy a certain region in
the feature space. This lends itself to the notion of a granular prototype, that
is, a prototype that spreads in the feature space, where its spread is related to
the spatial characteristics of the original data. In a nutshell, we would like to
develop prototypes that are represented as Cartesian products of intervals in the
feature space. We believe that the granularity of the prototypes gives us greater
insight into the nature of the data, as well as the relevance of the prototype itself.
The formal framework for building granular prototypes is as follows. Consider
v to be the prototype v ∈ [0, 1]n already determined in the way discussed in
Section 13.3. It has a weight vector w. We can compute an average of similarity
(q) between this prototype and all patterns by taking the following sum:

q = 1

N

N∑
k=1

sim(xk, v; w) (13.21)

(Note that (13.21) is analogous to (13.8), except that here we do not consider an
interaction of v with other prototypes and we normalize the result.) This average
similarity serves as a useful indicator of the relevance of the prototype. Now let
us determine such values of ui for which (13.21) holds. As ui is effectively a
similarity level between xi and vi , in essence it implies the interval built around
vi . To see this, note that ui = xi ≡ vi , so if vi and ui are given, one can determine
the range into which xi should fall in order to satisfy this equality. This range is
just an interval (along the ith coordinate) that contains the prototype.

To form the granular prototype, we repeat the process for all features, i = 1,
2, . . . , n, and we formulate and handle explicitly two optimization tasks arising
here. The first one is to determine the values of ui, i = 1, . . . , n, so that they
satisfy (13.21). The second task is an inverse problem emerging in the setting of
the similarity index.

13.4.1. Optimization of the Similarity Levels

As part of the construction of the granular prototypes, we encounter the problem
of determining the matching levels along individual features given the weight
vector w and the overall matching level q. In other words, we are looking for
u = [u1u2 . . . un] such that

n

T
j=1

(w2
j suj) = γ (13.22)
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where u collects the matching levels between a given prototype v and some other
pattern x. The above problem is not trivial, and no closed-form solution can be
derived. Some iterative optimization should be used here. Bearing this in mind,
we reformulate (13.22) as a standard mean squared error approximation problem

P =
[

n

T
j=1

(w2
j suj ) − γ

]2

→ Min(u) (13.23)

whose solution is obtained by a series of modifications of u through the gradient-
based scheme:

u(new) = u − α ∇uP (13.24)

where α denotes a positive learning rate. The detailed expression for the update
can be derived for some predefined form of the triangular norm. Again, using
the product and the probabilistic sum, we produce a detailed expression for the
gradient:

uk(new) = uk − α
∂P

∂uk

(13.25)

k = 1, 2, . . . , n. The detailed expression for the derivative is

∂P

∂uk

= 2

[
n

T
j=1

(w2
j suj ) − γ

]
∂

∂uk

(
n

T
j=1

(w2
j suj )

)
(13.26)

The inner derivative can be handled for specific t- and s-norms. For a certain
pair of them (t-norm: product, s-norm: probabilistic sum), we have

∂

∂uk

(
n

T
j=1

(w2
j suj )) = ∂

∂uk

(Bk(w
2
k + uk − w2

kuk)) = Bk(1 − w2
k)

where Bk is computed using the t-norm when excluding the index of interest (k):

Bk =
n

T
j=1
j �=k

(w2
j suj )

13.4.2. An Inverse Similarity Problem

The inverse problem with the similarity index can be formulated as follows:
given b and γ (both in the unit interval), determine all possible values of ‘x’
such that x ≡ b = γ. The character of the solution can be easily envisioned by
augmenting this equality by its graphical interpretation, Figure 13.13.

This figure shows that the problem being formulated above requires some
refinement in order to enhance the interpretability of the solution and ensure that
it always exists. This can be done by moving from the equality to the inequality
format of the relationship (Pedrycz, 1990):

x ≡ b ≤ γ (13.27)
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Figure 13.13. Inverse matching problem: computing an interval of solutions to
x ≡ b ≤ γ.

The solution to it arises in the form of a confidence interval (or simply interval)
implied by a certain value of γ. This solution (interval) is a manifestation of the
granularity of the prototype for a given feature. The solution to (13.27) can be
obtained analytically for a specific type of the t-norm (or implication). As shown
in Figure 13.15, the solution always exists (that is, there is always a nonempty
interval for any given value of γ). The granularity of the prototype is a monotonic
function of γ: higher values of γ imply higher values of granularity, that is, narrow
intervals of the granular prototype. For some critical (low enough) value of γ,
the interval expands to the entire unit interval, so we have a granular prototype
of the lowest possible level of granularity.

Moving on to the detailed calculations, the interval of the granular prototype
[x−, x+] is equal to

for x → b = min(1, b/x)

x− = γb, x+ = min(1, b/γ) (13.28)

for x → b = min(1, 1 − x + b)

x− = max(0, γ − 1 + b), x+ = min(1, 1 − γ + b) (13.29)

the above expressions are determined by considering the increasing and decreas-
ing portions of the matching index as illustrated in Figure 13.15.

Continuing the previous examples, the resulting granular prototypes are shown
in Figures 13.14 and 13.15 for Examples 1 and 2, respectively. The granular pro-
totypes summarized as triples of the form {lower bound, mode, upper bound}
are included in Table 13.5. Note that, by the mode, we mean the original numeric
value around which the granular prototype is constructed. The optimization of the
degrees of matching (u) was completed by running the gradient-based learning
with α = 0.05 for 100 iterations. The initial values of u’s are set up as small
(near-zero) random numbers.
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Figure 13.14. Two-, three-, and four-granular prototypes calculated for data from
Example 1.

These granular prototypes reinforce and quantify our perception of structural
dependencies in data. In the first case, Figure 13.14, we note that the first com-
ponent of the structure resides in the right upper quadrant of the coordinates, and
this is shown very clearly in the distribution of the granules. In fact, prototypes 1
and 2 overlap (meaning that there is some redundancy). The next granule (implied
by the third cluster) is essential to the quantification of the structure; it occupies
the area close to the origin. The fourth cluster overlaps the third one. Notably, all
granules are elongated along the second variable, and this quantifies our obser-
vation about the limited relevance of this variable (note that all corresponding
weights for the second variable are quite high). The conclusion is that the gran-
ules tend to “expand” and occupy the space wherever possible; this expansion is
visible for x2. The granular character of the prototypes shown in Figure 13.15 is
again a meaningful manifestation of the structure. The two first granules are far
apart (and represent the two evidently distinct groups of data). The boxes do not
discriminate between the variables, viewing them as equally essential. The third
granule overlaps with the first one, as these two clusters are relatively close. The
fourth cluster has a strong resemblance (and overlap) to the second granule.

As this analysis reveals, we can envision the structure of the data by inspecting
the resulting granular prototypes. First, these granules help us position clusters
in the data space (it is worth stressing that the numeric representation does not
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Figure 13.15. Two-, three-, and four-granular prototypes calculated for data from
Example 2.

TABLE 13.5. Granular Prototypes Represented as Triples of Lower Bounds,
Modes (Numeric Values of the Prototypes), and Upper Bounds: (a) Example 1 and
(b) Example 2

(a)

Prototype 1: {0.431784 0.610000 0.861773} {0.302657 0.570000 1.000000}
Prototype 2: {0.570009 0.900000 1.000000} {0.507569 1.000000 1.000000}
Prototype 3: {0.035332 0.100000 0.283029} {0.015797 0.140000 1.000000}
Prototype 4: {0.091757 0.200000 0.435936} {0.081955 0.500000 1.000000}

(b)

Prototype 1: {0.545043 0.720000 0.951118} {0.457757 0.710000 1.000000}
Prototype 2: {0.042248 0.100000 0.236699} {0.035519 0.120000 0.405423}
Prototype 3: {0.784826 1.000000 1.000000} {0.477658 1.000000 1.000000}
Prototype 4: {0.017296 0.050000 0.144543} {0.016742 0.100000 0.597287}

support this form of analysis). Second, we can envision a general geometry of
data that could be helpful in designing more detailed classifiers or other models.
The granules may exhibit some level of overlap (no matter how such overlap
is expressed in a formal fashion). This may help us reason about the possible
relevance and redundancy of some of these clusters.
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13.5. CONCLUSIONS

We have introduced a new logic-based approach to data analysis by building
a certain clustering environment. Their main (and unique) features include the
following:

The logic-based character of processing. The search for structure in data is
accomplished by exploiting fuzzy set operations. In particular, this concerns
the matching operation, which is easily interpretable and comes with well-
defined semantics.

Successive (sequential) construction of the prototypes and an assessment of
their representation capabilities. The number of clusters is not fixed in
advance but can be adjusted dynamically, depending upon the performance
of the already constructed prototypes. The prototypes themselves are con-
structed starting from the most “significant” (relevant) one, so that they
come ranked.

Identification and quantification of possible anisotropy of the feature space.
The weight vectors with the individual prototypes help quantify the impor-
tance of the features. The importance of the features can be local, and their
ranking can vary from prototype to prototype.

Development of granular prototypes based on the results of clustering. We
showed how the relevance of the prototype can be translated into its gran-
ular extension.

These features of the clustering method could be of interest to data analysis. We
should stress, however, that the organization of the search for the structure as
arranged here could be computationally intensive, especially for large data, sets
so this method could be considered a complement to other clustering techniques.
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14 Granular Mappings

In this chapter, we are concerned with the granular representation of mappings
(or experimental data) in the form R: R → [0, 1] (for one-dimensional cases) and
R: Rn → [0, 1] (for multivariable cases), with R being a set of real numbers. As
the name implies, granular mapping is defined over information granules and
maps them into a collection of granules expressed in some output space. The
design of the granular mapping is discussed in terms of set- and fuzzy set–based
granulation. It is regarded as a two-phase process: (a) the definition of an interac-
tion between information granules and experimental evidence or existing numeric
mapping and (b) the use of these measures of interaction in building an explicit
expression for the granular mapping. We show how to develop information gran-
ules in the case of multidimensional numeric data using fuzzy clustering (FCM).
Experimental results serve as an illustration of the proposed approach.

14.1. INTRODUCTION AND PROBLEM STATEMENT

The notion of granularity has been formalized in several languages of infor-
mation granulation including sets (quite often alluded to in interval analysis),
fuzzy sets, rough sets, and shadowed sets. While information granules are the
building entities, the fundamental construct is mapping. When dealing with infor-
mation granules, the mapping can be referred to as a granular mapping, defined
as a transformation from an input space to an output space characterized at the
granular level; that is, the mapping operates on information granules defined in
the corresponding spaces. Granular mappings are frequently encountered in rule-
based systems (e.g., fuzzy rule-based systems), where the mapping is given in
the form of “if-then” statements. There are two fundamental types of problems in
such settings: (a) analysis of granular mappings (say, rule-based systems), which
is associated with various interpretation aspects, and (b) design of these map-
pings, which requires the development of the (experimentally meaningful and
transparent) associations between the information granules.

More formally, the problem we are interested in is posed as follows:

Given (a) a function R or a collection of experimental data (D) defined in some
input space X (X ⊂ R) and (b) a finite collection of information granules A =
{A1, A2, . . . , Ac} defined in the same input space X, represent R(D) as a granular
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mapping. That is, construct a transformation A → G(Y), with G(Y) denoting a fam-
ily of information granules (sets, fuzzy sets, rough sets, etc.) defined in the output
space Y.

To ensure clarity of presentation, the material is organized in a bottom-up format.
First, we elaborate on the concept and realization of interaction of granular probes
with the experimental environment and demonstrate that possibility and necessity
measures can be viewed as vehicles that help quantify such a concept. We then
move to the simplest one-dimensional scenario in which such granular mappings
arise and consider a family of sets (intervals) treated as granular probes in this
granular environment. Then in Section 14.4 we discuss a multidimensional case
in which fuzzy clustering plays an important role.

14.2. POSSIBILITY AND NECESSITY MEASURES AS THE
COMPUTATIONAL VEHICLES OF GRANULAR REPRESENTATION

In light of the overall scenario outlined in Section 14.1, we can see that a
sound starting point pertains to a way in which information granules inter-
act with the mapping (R) or experimental data over which such a granular
mapping has to be realized. Intuitively, one of the first realizations involves
the attempt to quantify the interaction between Ai’s and the mapping. As the
granules adhere to the fundamental concepts of granular mechanisms and com-
puting such as inclusion, intersection, complement, etc. (no matter how these
concepts become implemented, which, in turn, depends upon the nature of the
granular environment), it is appealing to revisit two of them. First, the notion
of intersection concerns the interaction between the probe (Ai) and the given
mapping. Second, a way in which inclusion of the probes in the mapping has
been realized leads to another point of view at this interaction. Interestingly,
these two ideas already exist in the literature in the form of possibility and
necessity measures. More specifically, given two information granules A and R

(here A stands for one of the granules from the family of the granular probes
A, while R is a mapping whose granular format we are about to develop),
the possibility measure, Poss(A, X), describes a level of overlap between these
two. The necessity measure, Nec(A,X), captures a level of inclusion of A

in X. While these descriptors are quite generic, their realization needs to be
described in more detail, depending upon the character of the granular envi-
ronment. In the case of fuzzy sets (and sets), we have (Dubois and Prade,
1980)

Poss(A, R) = sup
x∈X

[A (x)tR(x)] (14.1)

The plot visualizing the computations of the possibility and necessity measures
is shown in Figure 14.1. Computationally, we note that the possibility measure
looks at the intersection between A and R and then takes an optimistic aggrega-
tion of the intersection by picking up the highest values among the intersection
grades of A and R that are taken over all elements of the universe of discourse
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Figure 14.1. Computations of possibility (a) and necessity (b) measures treated as a vehi-
cle of interaction between a granular probe A and the numeric mapping R; t-norm:
minimum, s-norm: maximum. The dotted line in (b) shows a complement of A, 1 − A(x).

X. The necessity measure expresses a pessimistic degree of inclusion of A in R

and is computed as follows:

Nec(A, R) = inf
x∈X

[(1 − A (x))sR(x)] (14.2)

The computational details are presented in Figure 14.1. In contrast to the
possibility measure, the necessity measure is asymmetric (which is obvious, as
we are concerned with the inclusion predicate).

These two definitions are applied in the case of R given in an analytic (explicit)
fashion. If we are given the experimental data (namely, input-output pairs D =
{(xk, yk)}, k = 1, 2, . . . , N ), then the above calculations are modified, with the
supremum and infimum operations being replaced by the maximum and minimum
operations taken over all data D:

Poss(A, D) = max(xk,yk)[A (xk)tyk] (14.3)

Nec(A, D) = min(xk,yk)[(1 − A (xk))syk] (14.4)

The possibility and necessity measures articulate a way in which A interacts with
R or experimental data.

Considering the family of the information granules A, we compute the possi-
bility and necessity measures with respect to R or D and end up with the 2c-tuple
representation

λi = Poss(Ai, R), µi = Nec(Ai, R) (14.5)

which is a manifestation of R (or D) expressed in the granular language of A.
Notably, by changing elements of A, we end up with a different representation
of the same mapping. Let us reiterate that different types of A’s provide us with
different points of view (perspectives) on the same mapping R or experimental
evidence D.

14.3. BUILDING THE GRANULAR MAPPING

So far, we have arrived at the representation (manifestation) of R expressed in the
languages of Ai’s. This is a prerequisite to the construction of a granular mapping,
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as the elements of A are the basis for the granules in the output space. They are
related to Ai’s and result from the reconstruction process guided by (λi , µi).
From the computational standpoint, we can view this as a solution to a certain
inverse problem. Let us start with a single information granule (A) for which
the values of λ and µ are known. There is no unique solution to this problem.
There is, however, a maximal information granule denoted here by R̂ (14.6),
whose construction is supported by the theory of fuzzy relational equations (in
fact, (14.5) is a sup-t composition of R and A). The membership (characteristic)
function of this maximal fuzzy set (mapping) induced by A is (Bargiela and
Pedrycz, 2002; Bortolan and Pedrycz, 1997; Di Nola et al., 1989)

R̂(x) = A(x) → λ =
{

1 if A(x) ≤ λ

λ otherwise
(14.6)

The above formula applies for a t-norm realized as a minimum operator. In
general, (14.6) is in the form

R̂(x) = A(x) → λ = sup[a ∈ [0, 1]|atA(x) ≤ λ] (14.7)

When using the entire family of Ai’s (which leads to the intersection of R̂i’s)
we obtain

R̂ =
c⋂

i=1

R̂i (14.8)

From the theoretical point of view that arises in the setting of fuzzy relational
equations, we are dealing here with a system of equations λi = Poss(Ai, R), i =
1, 2, . . . , c to be solved with respect to R for a given λi and Ai .

The theory of fuzzy relational equations plays the same dominant role in the
case of necessity computations. It is worth noting that we are faced with so-called
dual fuzzy relational equations. Here the minimal solution to (14.5) for A and
µi is

R̃(x) = (1 − A(x))εµ =
{

µ if 1 − A(x) < µ

0 otherwise
(14.9)

Again, the above formula applies to the maximum realization of the s-norm. The
general formula takes the form

R̃(x) = (1 − A(x))εµ = inf[a ∈ [0, 1]|as(1 − A(x)) ≥ µ} (14.10)

Because of the minimal solution, the collection of granular probes leads us to
the partial results that are afterward combined through a union operation:

R̃ =
c⋃

i=1

R̃i (14.11)



274 GRANULAR MAPPINGS

In conclusion, (14.7) and (14.10) become the granular representations of the
mapping (R) arising in the collection of the information granules A given in
advance. The obvious containment relationship holds:

R̃ ⊆ R ⊆ R̂ (14.12)

where the granularity of the mapping manifests through the two different bounds
(lower and upper approximations of R).

As a simple yet highly illustrative example, consider a collection of sets
(intervals) regarded as granular probes of some nonlinear numeric mapping
(see Figure 14.2). A single information granule produces the result shown in
Figure 14.3a, which in fact produces membership values equal to 1 over any

Membership

x

R
Ai

1.0

Figure 14.2. Mapping (R) with a collection of superimposed sets (intervals) Ai .
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Figure 14.3. Computing the upper bound of R (solid staircase line) with the use of a
single set (A) (a) and a family {Ai} (b).
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Figure 14.4. The mechanism of reconstruction realized in terms of the necessity measure.

argument not belonging to A. The aggregation of all partial results gives more
specific results (see again Figure 14.3).

Interestingly, the reconstructed fuzzy set exhibits a stairwise type of mem-
bership function where the height of the individual jumps and their distribution
across the space depend on the distribution of Ai’s. The same effect that concerns
the lower bound of R is present in Figure 14.4. When combined, the result is
a granular mapping, Figure 14.5. It is worth noting that by changing the posi-
tion of the cutoff points (intervals), we end up with different granular mappings.
Eventually the mapping can be subject to optimization in which we develop
the collection of Ai’s in such a way that the granular mapping is as specific as
possible (so that the bounds are made tight).

14.4. DESIGNING MULTIVARIABLE GRANULAR MAPPINGS
THROUGH FUZZY CLUSTERING

The one-dimensional case can be generalized with the same design objective
as before. The primary step is to find a collection of information granules in
Rn so that they are meaningful constructs (in light of the available data). The
dimensionality of the input space suggests treating all inputs at the same time
rather than discussing each variable separately (which is impractical and leads
to a significant number pf combinations of such granules). In other words, we
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Figure 14.5. Building a granular mapping: upper and lower bounds of the mapping
(a) and interval-valued granules in the output space (b).

focus on forming granular relations (e.g., relations, fuzzy relations), and this
immediately raises the idea of fuzzy clustering. We recall that a fuzzy partition
matrix is in essence a collection of discrete fuzzy relations. Once the clusters
have been determined, the next part of the construction is the same as in the
one-dimensional case. To draw the linkages, note that the partition matrix can be
represented as c fuzzy relations A1, A2, . . . , Ac defined in the finite data set:

U =




A1

A2
...

Ac




By doing this, we explicitly form the collection of the information granules
A, as was done in the one-dimensional case. More specifically, the possibil-
ity and necessity computed for the granules are governed by the expressions
Poss(Ai, D) = maxxk

[Ai(xk)tyk] and Nec(Ai, D) = minxk
[(1 − Ai(xk))syk].

Alluding to the way in which information granules interact with the mapping
or data, we note that most of the interaction occurs in the region where the gran-
ules are normal (viz., they assume a membership grade equal to 1). As the FCM
imposes the unity constraint (viz., the membership grades in all clusters assumed
for the same point sum to 1), we normalize these grades by raising the highest
membership grade to 1.
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Two essential parameters of the granular mapping result from the use of fuzzy
clustering in the development of the underlying construct: the number of clusters
(c) and the shape of the probes and possible patterns of behavior (interaction)
between them.

We have already seen that the number of information granules dictates the
granularity of the mapping. This has been clearly demonstrated in the case
of sets (intervals) in the one-dimensional problem, in which a certain portion
of the data (or function) falls under the realm of the granule (become iden-
tified by it) and then implies the granularity of the mapping itself. We have
learned that in limit (which may not be of practical interest) the granularity
of the mapping is very high. This effect could be quantified by computing the
ratio of the average value of the σ-count (cardinality) of the information gran-
ules in the output space to the granularity of the probes (fuzzy relations in the
input space).

As the clusters in the design of the granular mapping play a primary role (as
our intuition might have already suggested), it is instructive to understand more
clearly the possibility of control over the shape of the clusters. An illustration
in a one-dimensional case is the best option. Figure 14.6 shows the membership
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Figure 14.6. Plots of membership functions of information granules generated by FCM
clustering for selected values of m: (a) m = 1.1, (b) m = 2.0, (c) m = 3.
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functions for selected values of the fuzzification coefficient (the values of the
prototypes are kept fixed and equal to 1, 2, and 3, respectively). Depending upon
the value of this coefficient, the resulting fuzzy sets tend to resemble sets (when
m approaches 1) or exhibit a significant overlap and interact among themselves
(which is quite obvious for the values of m around 2) or get “spiky” and lose
most of the interaction as the value of the fuzzification coefficient increases (a
good example is m = 3).

14.5. QUANTIFICATION OF GRANULAR MAPPINGS

As stated before, each segment of the granular mapping is formed within the
individual information granule occurring in the input space. The granularity of
the mapping (quantified at the end of the output space) is directly related to the
upper and lower bounds of the interval formed by the possibility and necessity
values. To quantify this granularity and relate it to the experimental data (which
is the entry point of the overall design), it is beneficial to introduce the following
index:

g = 1

N

N∑
k=1

(uk − lk) (14.13)

which tells us the average spread of the interval, with lk and uk denoting the
lower and upper bound, respectively. The average over ‘N ’ data points helps
us quantify the granulation effect and abstract it from the individual variations.
Higher values of ‘g’ imply lower granularity of the resulting mapping (that is,
larger differences between the bounds of the mapping).

14.6. EXPERIMENTAL STUDIES

The experiments presented here are designed to visualize the performance of
the granular mappings in numeric data. The data set comes from the Machine
Learning repository and deals with the fuel economy (in miles per gallon) of var-
ious vehicles described by a series of seven parameters including displacement,
weight, number of cylinders, and so on. The output has been normalized to the
unit interval. Furthermore, the data set was split randomly into 50–50% training
and testing sets. The training set was used to carry out clustering, and then we
computed the possibility-necessity characteristics of the granular mapping. The
FCM was run for 20 iterations (at which point there were no practically visi-
ble changes in the values of the objective function). The distance function was
assumed to be the normalized Euclidean distance (the weights were computed as
the standard deviations of the individual inputs).

There are two essential parameters of the mapping associated with the clus-
tering mechanism: the number of clusters (information granules to achieve the
mapping) and the fuzzification coefficient (m). We explore various combinations
of these parameters to obtain a sense of their role and some general tendencies.
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The main results are displayed in Figure 14.7. The figure helps us draw several
conclusions. First, as we could have intuitively expected, the increased num-
ber of clusters yields better performance of the mapping (the bounds start to
become tighter). This tendency becomes quite apparent; the changes in perfor-
mance become more evident for the smaller number of clusters (hence, there is
a significant difference when moving from two to six clusters and far less pro-
nounced differences for higher values of ‘c’). The number of clusters also affects
the optimal values of the fuzzification coefficient. In general, optimal values of
‘m’ tend to become lower as the number of clusters increases. Relating this to
the shape of the membership functions (see Figure 14.6), we could envision that
with more clusters their boundaries need to be shapes, as more set-oriented, and
with less spread and overlap with the neighboring information granules. More
specifically, the optimal fuzzification factors are given as: c = 2, m = 2.6; c = 4,
m = 1.6; c = 6, m = 1.6; c = 10, m = 1.2.

The testing set was used to assess the generalization abilities of the granular
mapping. The results shown in Table 14.1 indicate that the differences in per-
formance on the training and testing sets are not substantial, which leads us to
conclude that the mapping exhibits sound generalization abilities. In essence, with
c = 10, the performance on the training and testing sets is practically the same.

Figures 14.8 and 14.9 visualize the behavior of the granular mapping for selected
numbers of clusters (with the optimal values of the fuzzification coefficients). In
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Figure 14.7. Performance (granulation) index of the mapping as a function of the fuzzi-
fication coefficient of the FCM for selected numbers of clusters (c).

TABLE 14.1. Performance of the Granular Mapping
on a Training and Testing Set

c 2 4 6 10

Training set 0.326 0.245 0.237 0.213
Testing set 0.354 0.256 0.256 0.212
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Figure 14.8. Training data and bounds of the granular mapping (c = 2).
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Figure 14.9. Training data and bounds of the granular mapping (c = 10).

these two cases, where c = 2 and c = 10, the essential components of the granular
mapping—possibility and necessity measures—are included in Table 14.2.

We can present the distribution of bounds by plotting individual differences
between the bounds (lower and upper) and the numeric experimental data (see
Figure 14.10).

Notably, the bounds are asymmetric; the two plots above help us in two ways.
First, they are useful in identifying data points, with the broadest intervals that
could be revisited as potential outliers. Second, they help us learn about the
distribution of granularity of the realized mapping and quantify which bound
(lower or upper) is “tighter” with respect to the experimental data (Table 14.2).

14.7. CONCLUSIONS

We have introduced and studied the concept, analyzed the properties, and dis-
cussed the design of granular mappings viewed as one of the fundamental con-
structs of granular computing. The developed granular mapping help establish
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Figure 14.10. Differences between the bounds and numeric experimental data for c = 4,
m = 1.4: (a) upper bound and data, (b) lower bound and data; c = 18, m = 1.2: (c) upper
bound and data, (d) lower bound and data.

TABLE 14.2. Possibility and Necessity Measures
of Granular Mapping: (a) c = 2 and (b) c = 10∗

Cluster No. Possibility Necessity

(a)

1 0.483 0.193
2 0.751 0.321

(b)

1 0.601 0.451
2 0.644 0.408
3 0.708 0.386
4 0.386 0.322
5 0.429 0.236
6 0.451 0.386
7 0.376 0.193
8 0.751 0.386
9 0.515 0.322

10 0.343 0.215

∗In both cases, the results are reported for the optimal values of
the fuzzification factor.
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more general view of the data or detailed numeric functions, which for this
purpose are perceived as a collection of information granules. In a nutshell, the
introduced construct is formed by probing the function or data by a series of
granular “probes” (sets or fuzzy sets), recording the results of this interaction,
and aggregating the results. The underlying logical framework is based upon the
calculus of fuzzy relational equations. The probing results consist of possibility
and necessity measures. These then give rise to a set of fuzzy relational equations,
and the granular mapping is formed by solving a system of such equations. The
resulting lower and upper bounds fully describe the mapping. We elaborated on
the role and optimization of the granular probes and showed how their selection
is achieved through fuzzy clustering (and FCM in particular). The choice of the
shape of the fuzzy relations (which is controlled by the values of the fuzzifi-
cation coefficient) and the number of clusters (granules) have been studied in
detail, with a quantitative demonstration of their impact on the specificity of the
granular mapping (Bargiela and Pedrycz, 2003; Zadeh and Kacprzyk, 1999).
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15 Linguistic Modeling

In this chapter, we are concerned with the important paradigm of linguistic mod-
eling. As the name indicates, linguistic (granular) modeling is concerned with
models of complex systems consisting of information granules, particularly fuzzy
sets. The purpose of the models is to reveal associations (links) between fuzzy
sets defined in input and output spaces. Rule-based models occupy a central
position in this broad spectrum of linguistic models. Our objective is to demon-
strate the central role of fuzzy clustering—after all, fuzzy clusters contribute to
a “blueprint” of linguistic modeling.

15.1. INTRODUCTION

In granular computing, one of the most important applications is system mod-
eling. The quest for models that are accurate, transparent, and user-friendly has
characterized intelligent systems for decades. Granularity of information arose
as a fundamental concept that plays a pivotal role in any modeling endeavor. To
achieve transparency, models must be designed with components that are mean-
ingful to the user. More emphatically, well-defined semantics of the information
granules used in system modeling is essential when designing a user-centric
model. As the domain knowledge conveyed by information granules and/or
the character of relationships captured in the language of logic dependencies
is an indispensable component of such models, we refer to such human-centric
models as knowledge-based models and to the entire domain as knowledge-
based modeling.

Interestingly, in this capacity, rule-based systems have assumed a central role
in system modeling. Not surprisingly, these systems focus on information gran-
ules. Regardless of the specific format of the rules, they all involve granules in
their conditions and conclusion:

if condition1 is A and condition2 is B . . . then conclusion is W

with A,B, . . .W denote information granules defined in their respective spaces.
Depending on their specific realization, we refer to such systems as fuzzy,
rough, or rule-based systems. Interestingly, the change in the granularity level of
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the information granules in the rules implies a certain level of accuracy and
transparency or user friendliness. Intuitively, we note that higher granularity
(specificity) of the condition end of the rules implies more specific rules. If
the granularity at the condition end decreases (so that we start using more gen-
eral information granules), this implies rules of higher generality (that become
applicable or “fire” in more cases). Having more general rules, we require fewer
of them in describing the system or experimental data. However, by the same
token, accuracy may be reduced by the readability or transparency of the resulting
construct. Again, these two criteria, their quantification, and possible trade-offs
have been a subject of many investigations. See Kim et al. (1997), Pork et al.
(2002) Sugeno and Yasukawa (1993), Takagi and Sugeno (1985), and Farag et al.
(1998), to name only a few of the studies in this realm.

In this chapter, we discuss the methodological and algorithmic issues of
knowledge-based clustering in the design of granular models and elaborate on
a variety of architectures of models emerging therein. It is convenient to view
the development of granular model as a multiphase development process (Fig-
ure 15.1) in which we position clustering as a basic vehicle supporting the design
of granular models. Notably, by choosing a different clustering platform or even
changing the level of specificity at which we intend to construct information
granules, we may end up with different models. The refinement phase focuses on
the use of more specialized and numerically inclined optimization vehicles such
as regression models (Box and Jenkins, 1970), neural networks (Hecht Nielsen,
1990), splines, local regression models, polynomial networks (Park et al., 2002),
wavelets, and the like.

Granular
models

Model
refinements

Data

Knowledge-based
clustering

Figure 15.1. From data to granular models: the main design phases. Note the role of
clustering in the development of a design blueprint of granular models.
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We start with the commonly encountered fuzzy modeling scenario, in which
we construct a nonlinear mapping based on fuzzy clusters (or, more specifically,
their prototypes).

15.2. CLUSTER-BASED REPRESENTATION
OF INPUT-OUTPUT MAPPING

Fuzzy clusters (Gonzalez et al., 2002; Pedrycz and Vasilakos, 1999) establish a
solid basis for constructing fuzzy models. This framework is formed by distribut-
ing clusters (more specifically, their prototypes) throughout the feature space.
There is also a corresponding set of prototypes defined in the output space (what-
ever this space may be; we may have continuous membership grades of classes
or a continuous output variable). These prototypes are regarded as a structural
“skeleton” or a blueprint of the model. There are several ways of presenting
the detailed formula of the resulting model. The one commonly used in the
literature takes the weighted sum of the prototypes in the output space and com-
bines them linearly by using the membership grades of some given input x, that
is, u1(x), u2(x), . . . , uc(x). Let z1, z2, . . . , zc denote the prototypes in the output
space; the input space contains a series of corresponding prototypes v1, v2, . . . vc.
The output of the model (y) is determined as a weighted sum

y =
c∑

i=1

ziui(v) (15.1)

with ui(x) being the “activation” level of the ith cluster in the input space resulting
from the use of x computed in the standard form

ui(x) = 1

c∑
j=1

( ||x − vi ||
||x − vj ||

) 2
m−1

(15.2)

The reader familiar with radial basis function (RBF) neural networks (Joo
et al., 2002; Karyannis and Mi, 1997; Ridella et al., 1998; Rovetta and Zunino,
2000) will easily recognize that the above expression plays a role similar to
that of any RBF in this category of neural networks. The striking difference is
that here these receptive fields are automatically constructed, without any need
for their further adjustment. It is educational to visualize the characteristics of
the model, which realizes some nonlinear mapping from the input to the output
space. The character of nonlinearity depends upon the values of the prototypes.
This nonlinearity is easily affected by the values of the fuzzification factor (m).
Figure 15.2 provides several plots of the input-output characteristics of the fixed
values of the prototypes. The values of the fuzzification factor are varied. We
have included its typical value of 2. Undoubtedly, this design parameter has a
significant impact on the character of the nonlinearity produced, demonstrating



286 LINGUISTIC MODELING

−4 −2 0
−5

0

5

2 4

m = 1.2

m = 4.0

m = 2.0

Figure 15.2. Nonlinear input-output characteristics of the cluster-based model. The pro-
totypes are fixed (v1 = −1, v2 = 2.5, v3 = 6.1; z1 = 6, z2 = −4, z3 = 2), while the
fuzzification factor assumes several selected values.

the flexibility of this category of models. The values of m close to 1 produce
the stepwise nature of the mapping; we note significant jumps at the points
where the individual rules switch. In this fashion, the impact of each rule is
clearly delineated. The typical value of the fuzzification factor, 2, produces a
very smooth transition between the rules, manifesting in smooth nonlinearities
of the input-output relationships of the model. The increase in the value of m,
as shown in Figure 15.2, yields characteristics that are quite spiky. We reach
some modal values when moving close to the prototypes; in the remaining cases,
the characteristics switch between them in a relatively abrupt manner, appearing
close to the averages of the modes.

Figure 15.3 illustrates the characteristics of the model with different values of
the prototypes. Again, it is apparent that in moving the prototypes, we can adjust
the nonlinear mapping of the model to the existing experimental data.

0 2 4 6
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0 2 4 6

0

−5

5

Figure 15.3. Nonlinear input-output characteristics of the cluster-based model. The pro-
totypes in the input space vary; z1 = 6, z2 = −4, z3 = 8; m = 2.



CONDITIONAL CLUSTERING IN THE DEVELOPMENT OF A BLUEPRINT 287

5

0

−5
0 2 4 6 x

y

s = 0.5

s = 0.4

s = 0.1

Figure 15.4. Nonlinear input-output characteristics of an RBF network; the spread of the
receptive fields has an effect somewhat similar to that of the fuzzification factor used in the
previous construct. The other parameters are z1 = 6, z2 = −4, z3 = 8; v1 = 1; v2 = 5.2,
v3 = 5.1.

It is worth noting that the fuzzy clusters defined in the input space play a
role similar to that of receptive fields in RBF neural networks. However, there
is a substantial design difference. Fizzy clustering produces a set of fully devel-
oped membership functions. In RBF networks, we usually need to optimize the
parameters of the receptive fields. In Gaussian receptive fields, we must adjust
their centers and spreads (radii). A typical example of a model in this category
is governed by the expression

y =

c∑
i=1

ziG(x; vi, σ)

c∑
i=1

G(x; vi, σ)

(15.3)

where G(x; m, σ) denotes a certain Gaussian function characterized by its modal
value (m) and spread (σ). (Note that we usually require some normalization, as
the sum of these receptive fields may not always generate a value equal to 1.)
As shown in Figure 15.4, there is no guarantee that the model coincides with the
prototypes defined in the output space. This can be attributed to the smoothing
effect of the Gaussian receptive fields. This is in contrast to the nonlinear rela-
tionship formed by the fuzzy partition; due to their design, these receptive fields
coincide with the values of the prototypes.

15.3. CONDITIONAL CLUSTERING IN THE DEVELOPMENT
OF A BLUEPRINT OF GRANULAR MODELS

Clustering plays a crucial role in granular modeling. First, it helps convert
numeric data into information granules (with or without some hints of domain
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knowledge). These information granules form the backbone or blueprint of the
model. While the model could be further refined, it is aimed at capturing the most
essential, numerically dominant features of data by summarizing them. Obvi-
ously, the more clusters we intend to capture, the more detailed the resulting
blueprint is. Second, clustering helps manage dimensionality, which is usually a
critical issue in rule-based modeling. As they are based on fuzzy relations (rather
than fuzzy sets), clusters do not rely on the number of variables, and those
variables are not shown explicitly in the information granules as they emerge
at the level of the Cartesian product of the variables. Let us remember that in
any rule-based system, the number of input is critical in determining the dimen-
sionality of the rule base. A complete rule base consists of pn, where p is the
number of information granules in each input variable and n is the number of
variables. Even in a problem of fairly modest dimensionality, (say n = 10) and
very few information granules defined for each variable (say, p = 4), we end up
with a significant number of rules: 410 = 1, 049∗106. Keeping the same number
of variables but using eight linguistic terms (information granules) substantially
increases the size of the rule base; in this case, we end up with 2.825∗108 rules.
The effect of combinatorial explosion is clear (see Figure 15.5).

There are several ways of handling the dimensionality problem. The obvious
one is to recognize that we do not need a complete rule base because there
are various combinations of conditions that never occur in practice and are not
supported by any experimental evidence. While this seems pretty straightforward,
it is not easy to be confident about the nature of such unnecessary rules. The
second, more feasible approach is to treat all variables at the same time and apply
fuzzy clustering. The number of clusters is far smaller than the number of rules
involving individual variables.

In what follows, we discuss various modes of incorporating clustering results
into the skeleton of the model. It is important to understand the implications
of using the clustering technique in forming information granules, especially

104

103

100

10

1
5 10

10 6 4

2

Figure 15.5. Number of rules treated as a function of input variables; the dependency is
illustrated for several values of p.
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within the models. The most critical observation concerns the relational aspects
of clustering and the directional features of models. By its nature (unless prop-
erly endowed), clustering treats multivariable data as relational constructs, so
the final products of cluster analysis are clusters as descriptors of data where
each variable is treated in the same manner, regardless of where it is positioned
as a modeling entity. In a nutshell, in typical clustering algorithms we do not
distinguish between input and output variables. This stands in sharp contrast to
system modeling. There the role of the variable is critical, as most practical mod-
els are directional constructs, viz., they model a mapping from independent to
dependent variables. The distinction between these two categories of variables
requires modifications to the clustering algorithm to accommodate this require-
ment. As an example, let us consider a many input–many output (MIMO) model
involving input and output variables x and y, respectively, that is, y = f (x). The
experimental data come in the usual format {(xk, yk)}, k = 1, 2, . . . , N . If we
are to ignore directionality, the immediate approach to clustering the data would
be to concatenate the vectors so that zk = [xkyk] and carry out clustering in the
augmented feature space. Obviously, we concentrate on the relational aspects of
data, ignoring the possible mapping component that is of interest. To alleviate
the problem, we may attenuate the output variables by assigning higher weight
to them. In essence, the clustering needs to pay more attention to the differences
(and similarities) occurring in the output spaces (that is, vectors y1, y2, . . . , yn).
This issue was raised and has resulted in so-called D-fuzzy clustering (Hirota and
Pedrycz, 1995). An easy implementation would be to admit the distance function
computed differently, depending upon the coordinates of z, by using a weight
factor g. For instance, the Euclidean distance between z and z′ would be

||z − z′|| = ||x − x′|| + γ||y − y′|| (15.4)

where γ > 0. The higher the value of γ, the more attention is given to the
output variables. As usual, the dimensionality of the input space is higher than
that of the output space; the value of g needs to be properly selected to ensure
a suitable balance. Even though we become aware of the main direction, the
choice of the weight factor is a matter of intensive experimentation. Furthermore,
we must understand the implications of the possible normalization effect of the
input variables.

Conditional clustering (Pedrycz, 1998) is naturally geared to direction-aware
clustering. The context variable(s) are the output variables. Defining contexts
over them is a separate task. Once the contexts are given, the ensuing clustering
is induced (or directed) by the fuzzy set (relation) provided. Recall that the
rules achieve the granular model “if condition then conclusion.” In context-based
clustering, the role of the conclusion is played by the context fuzzy set. Given
the context, we use fuzzy clustering to reflect on the pertinent portion of data in
the input space and find a conditional structure there. By changing the context,
we continue to search by focusing on other parts of the data. The result produced
in this manner is a web of information granules developed conditionally upon
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Figure 15.6. A blueprint of a linguistic model induced by predefined fuzzy sets (or rela-
tions) of the context defined in the input space.

the assumed collection of contexts. Hence the directional aspects of the construct
we want to develop on the basis of the information granules become evident.
We do not need to worry about any weight factor (as presented above). The
design of contexts is quite intuitive. First, these are fuzzy sets whose semantics
is well defined. We can use the terms low, medium, and large output. We can
move achieve further refinements of these terms and introduce more linguistic
categories. They could be assessed with regard to their experimental evidence by
expressing their sigma count with respect to numeric data (Pedrycz, 1998). To
ensure full coverage of the output space, the fuzzy sets of contexts could form
a fuzzy partition. Obviously, we can carry out clustering of data in the output
space and arrive at membership functions generated in automatically. This option
is particularly attractive when there are many output variables and the manual
definition of the context fuzzy relations could be tedious or impractical.

The blueprint of the model (Figure 15.6) must be further formalized to capture
the mapping between the information granules. This leads to a detailed architec-
ture of an inherently linguistic network whose outputs are information granules.
A linguistic or granular neuron is an interesting construct worth exploring in
this setting.

15.4. THE GRANULAR NEURON AS A GENERIC PROCESSING
ELEMENT IN GRANULAR NETWORKS

As its name indicates, a granular neuron is a neuron with granular connec-
tions. More precisely, we consider the transformation of many numeric inputs
u1, u2, . . . , uc (confined to the unit interval) of the form

Y = N(u1, u2, . . . , uc, W1, W2, . . . ,Wc) =
∑
⊕

Wi ⊗ ui (15.5)

with W1, W2, . . . , Wc denoting granular weights (connections; see Figure 15.7).
The symbols of generalized addition and multiplication (⊕, ⊗) are used here
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Figure 15.7. Computational model of a granular neuron; note the granular character of
the connections.

to emphasize the granular character of the arguments used in this aggregation.
Depending on the specific realization, these connections can realized as intervals,
fuzzy sets, shadowed sets, rough sets, and so on. As a result of processing, the
output Y is also a granular neuron whose granular character is associated with
the nature of the connections of the neuron.

The computations performed by the neuron depend on the underlying formal-
ism of the granular computing achieved there. Having the general form of the
transformation (15.5), we still need to come up with a realization of the sum-
mation and multiplication operations to produce a final expression for the output
of the neuron. For instance, if the connections have an interval character, the
resulting granular input Y is completely characterized by its bounds:

Lower bound: y− =
c∑

i=1

wi−ui

Upper bound: y+ =
c∑

i=1

wi+ui

Here we have assumed that the connections are described in the interval form
Wi = [wi−, wi+], i = 1, 2, . . . , c.

The plot of the characteristics of the neuron for two inputs u1 = α and
u2 = 1 − α is shown in Figure 15.8. Here W1 = [0.3, 3] and W2 = [1.4, 7]. As
anticipated, the result (output of the neuron) is an interval that moves along the
y-axis as α changes from 0 to 1.

In fuzzy sets used to implement the connections, we end up with more com-
plicated formulas. They can be simplified profoundly if we confine ourselves to
triangular fuzzy sets (fuzzy numbers) of the connections. Following the calculus
of fuzzy numbers, we note that the multiplication of Wi by a positive constant
scales the fuzzy number yet retains the piecewise character of the membership
function. Furthermore, the summation operation does not affect the shape of the
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Figure 15.8. The interval output of the linguistic neuron with interval connections.

membership function, so the final result can be again described in the follow-
ing format:

Y =
〈 c∑

i=1

aiui,

c∑
i=1

miui,

c∑
i=1

biui

〉
(15.6)

where each connection Wi is fully characterized by the triple of real numbers
Wi = 〈ai,mi, bi〉. Here mi denotes a modal value of the connection, while ai and
bi stand for the lower and upper bound, respectively, of the triangular number
describing this fuzzy set of the connection. The plot of the output of the neuron
for u1 and u2 defined as above is presented in Figure 15.9.
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Figure 15.9. The output of the linguistic neuron with connections realized as trian-
gular fuzzy numbers: W1 = 〈0.3, 0.5, 3.0〉, W2 = 〈1.4, 1.5, 7.0〉 (a) and W1 = 〈0.3, 2.0,

3.0〉, W2 = 〈1.4, 5.0, 7.0〉 (b).
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The granular neuron exhibits several interesting properties that generalize the
characteristics of (numeric) neurons. Adding a nonlinearity component (g) to the
linear aggregation does not change the essence of computing; in a monotonically
increasing relationship (g(Y )) we end up with a transformation of the original
output interval or fuzzy set (in this case, we have to follow the calculations using
the well-known extension principle).

15.5. THE ARCHITECTURE OF LINGUISTIC MODELS BASED
ON CONDITIONAL FUZZY CLUSTERING

Conditional fuzzy clustering has provided us with a backbone of the linguistic
model (Pedrycz and Vasilakos, 1999). Following the principle of conditional clus-
tering, we end up with a general topology of the model shown in Figure 15.10.

The development of the linguistic model consists of two main phases: (a) form-
ing fuzzy sets or relations of the contexts and (b) conditional clustering for the
already available collection of contexts. The two phases are linked: once con-
texts are given, the clustering uses this information in the directed search for
the structure.

Much research has focused on RBF neural networks, fuzzy neural networks,
and counterpropagation networks, which seem to be similar to the linguistic
model discussed here. These models such as RBF neural networks fuzzy neural
networks etc. in spite of some differences, exhibit strong similarities. In one way
or another, they dwell on the concept of hybrid unsupervised-supervised learn-
ing. Consider, for example, RBF neural networks. Receptive fields forming the
input layer of the network are initially constructed using clustering, which yields
prototypes (centers) of the RBFs and provides an initial estimate of the spread of

Context-based
clusters

Contexts

Y

x

∑

∑

∑

∑

Figure 15.10. The architecture of the linguistic models.
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the functions. This is done in unsupervised mode with clustering, SOMs, or vec-
tor quantization algorithms. The ensuing linear part of the network is optimized
using the standard least square error method; the optimal values of connections
are easily computed in an analytical fashion. Further refinements are possible
based on the values of the connections; the position and spread of the receptive
fields are updated. From the architectural perspective, fuzzy models tend to be
similar to the RBF neural networks. They involve the design of receptive fields
(which in this case tend to carry some semantics relevant to fuzzy sets) and opti-
mization of the connections. The receptive fields can be more sophisticated, with
well-defined meanings, but the hybrid mechanism of unsupervised-supervised
learning is present there. The linguistic models, by contrast, have two clear dif-
ferences. First, we link the output with the clustering process (as the contexts
provide all necessary guidance); second, the output of the model is granular.
This is a result of the use of granular constructs of the contexts. Notably, by
changing the granularity of the contexts, we can control the size of the fuzzy
set of the output and adjust the specificity of the overall modeling process. The
computations of the output fuzzy sets are completed in two steps: (a) aggregation
of activation levels (membership grades) of all clusters associated with a given
context and (b) linear combination of the activation levels with the parameters of
the context fuzzy sets. In triangular membership functions of the context fuzzy
sets, the calculations follow the scheme described by (15.6).

15.6. REFINEMENTS OF LINGUISTIC MODELS

The conditional FCM has produced the prototypes (or, equivalently, clusters) in
the input space, and using these we generate inputs to the granular neuron. The
connections of the neuron are just the fuzzy sets of the context. In essence, the
parameters of the network are downloaded from the phase of fuzzy clustering.
Further optimization of the network may not seem to be required. However,
there is still room for improvement. Refinement may be necessary because of
the fact that each conditional FCM is realized for some specific context, and
these tasks are separate; as a consequence, prototypes may require some shifting.
Furthermore, the contexts themselves may require some refinement and refocus.
Note also that the result of the linguistic model is an information granule (interval,
fuzzy set, fuzzy relation, etc.), and this has to be compared with a numeric
datum yk. For illustrative purposes, we have confined ourselves to a single-
output linguistic model. Optimization has to take this into account. For instance,
one can require the highest matching possible with the highest specificity of the
result (see Figure 15.11).

This requirement translates into one of the following optimization problems:

1

N

N∑
k=1

Tk(yk) → Max (maximization of average

agreement with numeric data)
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Figure 15.11. Optimization of the linguistic model; see the detailed description in text.

or

1

N

N∑
k=1

(bk − ak) → Min (minimization of the average spread

of the granular output of the network)

whose solutions have to be searched for over the parameters of the context
fuzzy sets. In this sense, optimization can be confined to the portion of the
network requiring the refinement of the contexts. Furthermore, we can make
the optimization more manageable since the successive contexts have a one-half
overlap. Given this condition, optimization concentrates on the modal values
of the triangular fuzzy sets of the context. Once these have been modified, the
conditional FCM repeats and the iterative optimization moves forward.

15.7. CONCLUSIONS

Linguistic (granular) models are based on the concept of information granules
regarded as semantically meaningful conceptual entities that are crucial to the
overall framework of user-centric modeling. The user is can cast all modeling
activities in a way that directly reflects the main purpose of the modeling prob-
lem. For instance, in data mining, the user is ultimately interested in revealing
relationships that could be of potential interest to the given problem.

The algorithm of fuzzy clustering is particularly well suited to the key objec-
tives of linguistic modeling. Fuzzy clusters fully reflect the character of the data.
The search for the structure is ultimately affected by the well-articulated model-
ing needs of the user. We have demonstrated that fuzzy sets of context can play
an important role in shaping modeling activities and help combat dimensionality
problems (by decomposing the original problem into a series of subproblems
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guided by specific contexts). By linking context fuzzy sets and the induced
clusters, we form the blueprint of the model. Further refinements of the con-
nections (links) of this web of connections become a straightforward task given
the reduced, limited dimensionality of the problem and the transparency of the
model. It is relevant to note that the results of linguistic models are expressed at
a certain level of granularity. Instead of single numeric results (which are typical
of numeric models), the user is provided with a fuzzy set of results that can be
easily communicated in a linguistic format (compatible with the vocabulary of
linguistic terms originally used in the design of the model) and presented visually
in the format of respective membership functions.
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F. Höppner, F. Klawonn, Obtaining interpretable fuzzy models from fuzzy clustering and
fuzzy regression, Proc. 4th Int. Conference on Knowledge-Based Intelligent Engineering
Systems and Allied Technologies, 30 August–1 September 2000, vol. 1, 162–165.
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